ip_output.c revision 1.168 1 /* $NetBSD: ip_output.c,v 1.168 2006/12/06 00:41:59 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.168 2006/12/06 00:41:59 dyoung Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
160
161 #ifdef PFIL_HOOKS
162 extern struct pfil_head inet_pfil_hook; /* XXX */
163 #endif
164
165 int ip_do_loopback_cksum = 0;
166
167 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
168 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
169 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
171 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
172
173 /*
174 * IP output. The packet in mbuf chain m contains a skeletal IP
175 * header (with len, off, ttl, proto, tos, src, dst).
176 * The mbuf chain containing the packet will be freed.
177 * The mbuf opt, if present, will not be freed.
178 */
179 int
180 ip_output(struct mbuf *m0, ...)
181 {
182 struct ip *ip;
183 struct ifnet *ifp;
184 struct mbuf *m = m0;
185 int hlen = sizeof (struct ip);
186 int len, error = 0;
187 struct route iproute;
188 struct sockaddr_in *dst;
189 struct in_ifaddr *ia;
190 struct ifaddr *xifa;
191 struct mbuf *opt;
192 struct route *ro;
193 int flags, sw_csum;
194 int *mtu_p;
195 u_long mtu;
196 struct ip_moptions *imo;
197 struct socket *so;
198 va_list ap;
199 #ifdef IPSEC_NAT_T
200 int natt_frag = 0;
201 #endif
202 #ifdef IPSEC
203 struct secpolicy *sp = NULL;
204 #endif /*IPSEC*/
205 #ifdef FAST_IPSEC
206 struct inpcb *inp;
207 struct m_tag *mtag;
208 struct secpolicy *sp = NULL;
209 struct tdb_ident *tdbi;
210 int s;
211 #endif
212 u_int16_t ip_len;
213
214 len = 0;
215 va_start(ap, m0);
216 opt = va_arg(ap, struct mbuf *);
217 ro = va_arg(ap, struct route *);
218 flags = va_arg(ap, int);
219 imo = va_arg(ap, struct ip_moptions *);
220 so = va_arg(ap, struct socket *);
221 if (flags & IP_RETURNMTU)
222 mtu_p = va_arg(ap, int *);
223 else
224 mtu_p = NULL;
225 va_end(ap);
226
227 MCLAIM(m, &ip_tx_mowner);
228 #ifdef FAST_IPSEC
229 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
230 inp = (struct inpcb *)so->so_pcb;
231 else
232 inp = NULL;
233 #endif /* FAST_IPSEC */
234
235 #ifdef DIAGNOSTIC
236 if ((m->m_flags & M_PKTHDR) == 0)
237 panic("ip_output: no HDR");
238
239 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
240 panic("ip_output: IPv6 checksum offload flags: %d",
241 m->m_pkthdr.csum_flags);
242 }
243
244 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
245 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
246 panic("ip_output: conflicting checksum offload flags: %d",
247 m->m_pkthdr.csum_flags);
248 }
249 #endif
250 if (opt) {
251 m = ip_insertoptions(m, opt, &len);
252 if (len >= sizeof(struct ip))
253 hlen = len;
254 }
255 ip = mtod(m, struct ip *);
256 /*
257 * Fill in IP header.
258 */
259 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
260 ip->ip_v = IPVERSION;
261 ip->ip_off = htons(0);
262 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
263 ip->ip_id = ip_newid();
264 } else {
265
266 /*
267 * TSO capable interfaces (typically?) increment
268 * ip_id for each segment.
269 * "allocate" enough ids here to increase the chance
270 * for them to be unique.
271 *
272 * note that the following calculation is not
273 * needed to be precise. wasting some ip_id is fine.
274 */
275
276 unsigned int segsz = m->m_pkthdr.segsz;
277 unsigned int datasz = ntohs(ip->ip_len) - hlen;
278 unsigned int num = howmany(datasz, segsz);
279
280 ip->ip_id = ip_newid_range(num);
281 }
282 ip->ip_hl = hlen >> 2;
283 ipstat.ips_localout++;
284 } else {
285 hlen = ip->ip_hl << 2;
286 }
287 /*
288 * Route packet.
289 */
290 if (ro == NULL) {
291 ro = &iproute;
292 bzero((caddr_t)ro, sizeof (*ro));
293 }
294 dst = satosin(&ro->ro_dst);
295 /*
296 * If there is a cached route,
297 * check that it is to the same destination
298 * and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing the
300 * cache with IPv6.
301 */
302 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
303 dst->sin_family != AF_INET ||
304 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
305 RTFREE(ro->ro_rt);
306 ro->ro_rt = (struct rtentry *)0;
307 }
308 if (ro->ro_rt == 0) {
309 bzero(dst, sizeof(*dst));
310 dst->sin_family = AF_INET;
311 dst->sin_len = sizeof(*dst);
312 dst->sin_addr = ip->ip_dst;
313 }
314 /*
315 * If routing to interface only,
316 * short circuit routing lookup.
317 */
318 if (flags & IP_ROUTETOIF) {
319 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
320 ipstat.ips_noroute++;
321 error = ENETUNREACH;
322 goto bad;
323 }
324 ifp = ia->ia_ifp;
325 mtu = ifp->if_mtu;
326 ip->ip_ttl = 1;
327 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
328 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
329 imo != NULL && imo->imo_multicast_ifp != NULL) {
330 ifp = imo->imo_multicast_ifp;
331 mtu = ifp->if_mtu;
332 IFP_TO_IA(ifp, ia);
333 } else {
334 if (ro->ro_rt == NULL) {
335 rtalloc(ro);
336 if (ro->ro_rt == NULL) {
337 ipstat.ips_noroute++;
338 error = EHOSTUNREACH;
339 goto bad;
340 }
341 ia = ifatoia(ro->ro_rt->rt_ifa);
342 ifp = ro->ro_rt->rt_ifp;
343 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
344 mtu = ifp->if_mtu;
345 ro->ro_rt->rt_use++;
346 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
347 dst = satosin(ro->ro_rt->rt_gateway);
348 }
349 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
350 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
351 struct in_multi *inm;
352
353 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
354 M_BCAST : M_MCAST;
355 /*
356 * IP destination address is multicast. Make sure "dst"
357 * still points to the address in "ro". (It may have been
358 * changed to point to a gateway address, above.)
359 */
360 dst = satosin(&ro->ro_dst);
361 /*
362 * See if the caller provided any multicast options
363 */
364 if (imo != NULL)
365 ip->ip_ttl = imo->imo_multicast_ttl;
366 else
367 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
368
369 /*
370 * if we don't know the outgoing ifp yet, we can't generate
371 * output
372 */
373 if (!ifp) {
374 ipstat.ips_noroute++;
375 error = ENETUNREACH;
376 goto bad;
377 }
378
379 /*
380 * If the packet is multicast or broadcast, confirm that
381 * the outgoing interface can transmit it.
382 */
383 if (((m->m_flags & M_MCAST) &&
384 (ifp->if_flags & IFF_MULTICAST) == 0) ||
385 ((m->m_flags & M_BCAST) &&
386 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
387 ipstat.ips_noroute++;
388 error = ENETUNREACH;
389 goto bad;
390 }
391 /*
392 * If source address not specified yet, use an address
393 * of outgoing interface.
394 */
395 if (in_nullhost(ip->ip_src)) {
396 struct in_ifaddr *xia;
397
398 IFP_TO_IA(ifp, xia);
399 if (!xia) {
400 error = EADDRNOTAVAIL;
401 goto bad;
402 }
403 xifa = &xia->ia_ifa;
404 if (xifa->ifa_getifa != NULL) {
405 xia = ifatoia((*xifa->ifa_getifa)(xifa,
406 &ro->ro_dst));
407 }
408 ip->ip_src = xia->ia_addr.sin_addr;
409 }
410
411 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
412 if (inm != NULL &&
413 (imo == NULL || imo->imo_multicast_loop)) {
414 /*
415 * If we belong to the destination multicast group
416 * on the outgoing interface, and the caller did not
417 * forbid loopback, loop back a copy.
418 */
419 ip_mloopback(ifp, m, dst);
420 }
421 #ifdef MROUTING
422 else {
423 /*
424 * If we are acting as a multicast router, perform
425 * multicast forwarding as if the packet had just
426 * arrived on the interface to which we are about
427 * to send. The multicast forwarding function
428 * recursively calls this function, using the
429 * IP_FORWARDING flag to prevent infinite recursion.
430 *
431 * Multicasts that are looped back by ip_mloopback(),
432 * above, will be forwarded by the ip_input() routine,
433 * if necessary.
434 */
435 extern struct socket *ip_mrouter;
436
437 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
438 if (ip_mforward(m, ifp) != 0) {
439 m_freem(m);
440 goto done;
441 }
442 }
443 }
444 #endif
445 /*
446 * Multicasts with a time-to-live of zero may be looped-
447 * back, above, but must not be transmitted on a network.
448 * Also, multicasts addressed to the loopback interface
449 * are not sent -- the above call to ip_mloopback() will
450 * loop back a copy if this host actually belongs to the
451 * destination group on the loopback interface.
452 */
453 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
454 m_freem(m);
455 goto done;
456 }
457
458 goto sendit;
459 }
460 /*
461 * If source address not specified yet, use address
462 * of outgoing interface.
463 */
464 if (in_nullhost(ip->ip_src)) {
465 xifa = &ia->ia_ifa;
466 if (xifa->ifa_getifa != NULL)
467 ia = ifatoia((*xifa->ifa_getifa)(xifa, &ro->ro_dst));
468 ip->ip_src = ia->ia_addr.sin_addr;
469 }
470
471 /*
472 * packets with Class-D address as source are not valid per
473 * RFC 1112
474 */
475 if (IN_MULTICAST(ip->ip_src.s_addr)) {
476 ipstat.ips_odropped++;
477 error = EADDRNOTAVAIL;
478 goto bad;
479 }
480
481 /*
482 * Look for broadcast address and
483 * and verify user is allowed to send
484 * such a packet.
485 */
486 if (in_broadcast(dst->sin_addr, ifp)) {
487 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
488 error = EADDRNOTAVAIL;
489 goto bad;
490 }
491 if ((flags & IP_ALLOWBROADCAST) == 0) {
492 error = EACCES;
493 goto bad;
494 }
495 /* don't allow broadcast messages to be fragmented */
496 if (ntohs(ip->ip_len) > ifp->if_mtu) {
497 error = EMSGSIZE;
498 goto bad;
499 }
500 m->m_flags |= M_BCAST;
501 } else
502 m->m_flags &= ~M_BCAST;
503
504 sendit:
505 /*
506 * If we're doing Path MTU Discovery, we need to set DF unless
507 * the route's MTU is locked.
508 */
509 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
510 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
511 ip->ip_off |= htons(IP_DF);
512
513 /* Remember the current ip_len */
514 ip_len = ntohs(ip->ip_len);
515
516 #ifdef IPSEC
517 /* get SP for this packet */
518 if (so == NULL)
519 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
520 flags, &error);
521 else {
522 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
523 IPSEC_DIR_OUTBOUND))
524 goto skip_ipsec;
525 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
526 }
527
528 if (sp == NULL) {
529 ipsecstat.out_inval++;
530 goto bad;
531 }
532
533 error = 0;
534
535 /* check policy */
536 switch (sp->policy) {
537 case IPSEC_POLICY_DISCARD:
538 /*
539 * This packet is just discarded.
540 */
541 ipsecstat.out_polvio++;
542 goto bad;
543
544 case IPSEC_POLICY_BYPASS:
545 case IPSEC_POLICY_NONE:
546 /* no need to do IPsec. */
547 goto skip_ipsec;
548
549 case IPSEC_POLICY_IPSEC:
550 if (sp->req == NULL) {
551 /* XXX should be panic ? */
552 printf("ip_output: No IPsec request specified.\n");
553 error = EINVAL;
554 goto bad;
555 }
556 break;
557
558 case IPSEC_POLICY_ENTRUST:
559 default:
560 printf("ip_output: Invalid policy found. %d\n", sp->policy);
561 }
562
563 #ifdef IPSEC_NAT_T
564 /*
565 * NAT-T ESP fragmentation: don't do IPSec processing now,
566 * we'll do it on each fragmented packet.
567 */
568 if (sp->req->sav &&
569 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
570 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
571 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
572 natt_frag = 1;
573 mtu = sp->req->sav->esp_frag;
574 goto skip_ipsec;
575 }
576 }
577 #endif /* IPSEC_NAT_T */
578
579 /*
580 * ipsec4_output() expects ip_len and ip_off in network
581 * order. They have been set to network order above.
582 */
583
584 {
585 struct ipsec_output_state state;
586 bzero(&state, sizeof(state));
587 state.m = m;
588 if (flags & IP_ROUTETOIF) {
589 state.ro = &iproute;
590 bzero(&iproute, sizeof(iproute));
591 } else
592 state.ro = ro;
593 state.dst = (struct sockaddr *)dst;
594
595 /*
596 * We can't defer the checksum of payload data if
597 * we're about to encrypt/authenticate it.
598 *
599 * XXX When we support crypto offloading functions of
600 * XXX network interfaces, we need to reconsider this,
601 * XXX since it's likely that they'll support checksumming,
602 * XXX as well.
603 */
604 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
605 in_delayed_cksum(m);
606 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
607 }
608
609 error = ipsec4_output(&state, sp, flags);
610
611 m = state.m;
612 if (flags & IP_ROUTETOIF) {
613 /*
614 * if we have tunnel mode SA, we may need to ignore
615 * IP_ROUTETOIF.
616 */
617 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
618 flags &= ~IP_ROUTETOIF;
619 ro = state.ro;
620 }
621 } else
622 ro = state.ro;
623 dst = (struct sockaddr_in *)state.dst;
624 if (error) {
625 /* mbuf is already reclaimed in ipsec4_output. */
626 m0 = NULL;
627 switch (error) {
628 case EHOSTUNREACH:
629 case ENETUNREACH:
630 case EMSGSIZE:
631 case ENOBUFS:
632 case ENOMEM:
633 break;
634 default:
635 printf("ip4_output (ipsec): error code %d\n", error);
636 /*fall through*/
637 case ENOENT:
638 /* don't show these error codes to the user */
639 error = 0;
640 break;
641 }
642 goto bad;
643 }
644
645 /* be sure to update variables that are affected by ipsec4_output() */
646 ip = mtod(m, struct ip *);
647 hlen = ip->ip_hl << 2;
648 ip_len = ntohs(ip->ip_len);
649
650 if (ro->ro_rt == NULL) {
651 if ((flags & IP_ROUTETOIF) == 0) {
652 printf("ip_output: "
653 "can't update route after IPsec processing\n");
654 error = EHOSTUNREACH; /*XXX*/
655 goto bad;
656 }
657 } else {
658 /* nobody uses ia beyond here */
659 if (state.encap) {
660 ifp = ro->ro_rt->rt_ifp;
661 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
662 mtu = ifp->if_mtu;
663 }
664 }
665 }
666 skip_ipsec:
667 #endif /*IPSEC*/
668 #ifdef FAST_IPSEC
669 /*
670 * Check the security policy (SP) for the packet and, if
671 * required, do IPsec-related processing. There are two
672 * cases here; the first time a packet is sent through
673 * it will be untagged and handled by ipsec4_checkpolicy.
674 * If the packet is resubmitted to ip_output (e.g. after
675 * AH, ESP, etc. processing), there will be a tag to bypass
676 * the lookup and related policy checking.
677 */
678 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
679 s = splsoftnet();
680 if (mtag != NULL) {
681 tdbi = (struct tdb_ident *)(mtag + 1);
682 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
683 if (sp == NULL)
684 error = -EINVAL; /* force silent drop */
685 m_tag_delete(m, mtag);
686 } else {
687 if (inp != NULL &&
688 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
689 goto spd_done;
690 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
691 &error, inp);
692 }
693 /*
694 * There are four return cases:
695 * sp != NULL apply IPsec policy
696 * sp == NULL, error == 0 no IPsec handling needed
697 * sp == NULL, error == -EINVAL discard packet w/o error
698 * sp == NULL, error != 0 discard packet, report error
699 */
700 if (sp != NULL) {
701 #ifdef IPSEC_NAT_T
702 /*
703 * NAT-T ESP fragmentation: don't do IPSec processing now,
704 * we'll do it on each fragmented packet.
705 */
706 if (sp->req->sav &&
707 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
708 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
709 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
710 natt_frag = 1;
711 mtu = sp->req->sav->esp_frag;
712 goto spd_done;
713 }
714 }
715 #endif /* IPSEC_NAT_T */
716 /* Loop detection, check if ipsec processing already done */
717 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
718 for (mtag = m_tag_first(m); mtag != NULL;
719 mtag = m_tag_next(m, mtag)) {
720 #ifdef MTAG_ABI_COMPAT
721 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
722 continue;
723 #endif
724 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
725 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
726 continue;
727 /*
728 * Check if policy has an SA associated with it.
729 * This can happen when an SP has yet to acquire
730 * an SA; e.g. on first reference. If it occurs,
731 * then we let ipsec4_process_packet do its thing.
732 */
733 if (sp->req->sav == NULL)
734 break;
735 tdbi = (struct tdb_ident *)(mtag + 1);
736 if (tdbi->spi == sp->req->sav->spi &&
737 tdbi->proto == sp->req->sav->sah->saidx.proto &&
738 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
739 sizeof (union sockaddr_union)) == 0) {
740 /*
741 * No IPsec processing is needed, free
742 * reference to SP.
743 *
744 * NB: null pointer to avoid free at
745 * done: below.
746 */
747 KEY_FREESP(&sp), sp = NULL;
748 splx(s);
749 goto spd_done;
750 }
751 }
752
753 /*
754 * Do delayed checksums now because we send before
755 * this is done in the normal processing path.
756 */
757 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
758 in_delayed_cksum(m);
759 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
760 }
761
762 #ifdef __FreeBSD__
763 ip->ip_len = htons(ip->ip_len);
764 ip->ip_off = htons(ip->ip_off);
765 #endif
766
767 /* NB: callee frees mbuf */
768 error = ipsec4_process_packet(m, sp->req, flags, 0);
769 /*
770 * Preserve KAME behaviour: ENOENT can be returned
771 * when an SA acquire is in progress. Don't propagate
772 * this to user-level; it confuses applications.
773 *
774 * XXX this will go away when the SADB is redone.
775 */
776 if (error == ENOENT)
777 error = 0;
778 splx(s);
779 goto done;
780 } else {
781 splx(s);
782
783 if (error != 0) {
784 /*
785 * Hack: -EINVAL is used to signal that a packet
786 * should be silently discarded. This is typically
787 * because we asked key management for an SA and
788 * it was delayed (e.g. kicked up to IKE).
789 */
790 if (error == -EINVAL)
791 error = 0;
792 goto bad;
793 } else {
794 /* No IPsec processing for this packet. */
795 }
796 #ifdef notyet
797 /*
798 * If deferred crypto processing is needed, check that
799 * the interface supports it.
800 */
801 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
802 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
803 /* notify IPsec to do its own crypto */
804 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
805 error = EHOSTUNREACH;
806 goto bad;
807 }
808 #endif
809 }
810 spd_done:
811 #endif /* FAST_IPSEC */
812
813 #ifdef PFIL_HOOKS
814 /*
815 * Run through list of hooks for output packets.
816 */
817 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
818 goto done;
819 if (m == NULL)
820 goto done;
821
822 ip = mtod(m, struct ip *);
823 hlen = ip->ip_hl << 2;
824 #endif /* PFIL_HOOKS */
825
826 m->m_pkthdr.csum_data |= hlen << 16;
827
828 #if IFA_STATS
829 /*
830 * search for the source address structure to
831 * maintain output statistics.
832 */
833 INADDR_TO_IA(ip->ip_src, ia);
834 #endif
835
836 /* Maybe skip checksums on loopback interfaces. */
837 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
838 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
839 }
840 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
841 /*
842 * If small enough for mtu of path, or if using TCP segmentation
843 * offload, can just send directly.
844 */
845 if (ip_len <= mtu ||
846 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
847 #if IFA_STATS
848 if (ia)
849 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
850 #endif
851 /*
852 * Always initialize the sum to 0! Some HW assisted
853 * checksumming requires this.
854 */
855 ip->ip_sum = 0;
856
857 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
858 /*
859 * Perform any checksums that the hardware can't do
860 * for us.
861 *
862 * XXX Does any hardware require the {th,uh}_sum
863 * XXX fields to be 0?
864 */
865 if (sw_csum & M_CSUM_IPv4) {
866 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
867 ip->ip_sum = in_cksum(m, hlen);
868 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
869 }
870 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
871 if (IN_NEED_CHECKSUM(ifp,
872 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
873 in_delayed_cksum(m);
874 }
875 m->m_pkthdr.csum_flags &=
876 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
877 }
878 }
879
880 #ifdef IPSEC
881 /* clean ipsec history once it goes out of the node */
882 ipsec_delaux(m);
883 #endif
884
885 if (__predict_true(
886 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
887 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
888 error =
889 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
890 } else {
891 error =
892 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
893 }
894 goto done;
895 }
896
897 /*
898 * We can't use HW checksumming if we're about to
899 * to fragment the packet.
900 *
901 * XXX Some hardware can do this.
902 */
903 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
904 if (IN_NEED_CHECKSUM(ifp,
905 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
906 in_delayed_cksum(m);
907 }
908 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
909 }
910
911 /*
912 * Too large for interface; fragment if possible.
913 * Must be able to put at least 8 bytes per fragment.
914 */
915 if (ntohs(ip->ip_off) & IP_DF) {
916 if (flags & IP_RETURNMTU)
917 *mtu_p = mtu;
918 error = EMSGSIZE;
919 ipstat.ips_cantfrag++;
920 goto bad;
921 }
922
923 error = ip_fragment(m, ifp, mtu);
924 if (error) {
925 m = NULL;
926 goto bad;
927 }
928
929 for (; m; m = m0) {
930 m0 = m->m_nextpkt;
931 m->m_nextpkt = 0;
932 if (error == 0) {
933 #if IFA_STATS
934 if (ia)
935 ia->ia_ifa.ifa_data.ifad_outbytes +=
936 ntohs(ip->ip_len);
937 #endif
938 #ifdef IPSEC
939 /* clean ipsec history once it goes out of the node */
940 ipsec_delaux(m);
941 #endif /* IPSEC */
942
943 #ifdef IPSEC_NAT_T
944 /*
945 * If we get there, the packet has not been handeld by
946 * IPSec whereas it should have. Now that it has been
947 * fragmented, re-inject it in ip_output so that IPsec
948 * processing can occur.
949 */
950 if (natt_frag) {
951 error = ip_output(m, opt,
952 ro, flags, imo, so, mtu_p);
953 } else
954 #endif /* IPSEC_NAT_T */
955 {
956 KASSERT((m->m_pkthdr.csum_flags &
957 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
958 error = (*ifp->if_output)(ifp, m, sintosa(dst),
959 ro->ro_rt);
960 }
961 } else
962 m_freem(m);
963 }
964
965 if (error == 0)
966 ipstat.ips_fragmented++;
967 done:
968 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
969 RTFREE(ro->ro_rt);
970 ro->ro_rt = 0;
971 }
972
973 #ifdef IPSEC
974 if (sp != NULL) {
975 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
976 printf("DP ip_output call free SP:%p\n", sp));
977 key_freesp(sp);
978 }
979 #endif /* IPSEC */
980 #ifdef FAST_IPSEC
981 if (sp != NULL)
982 KEY_FREESP(&sp);
983 #endif /* FAST_IPSEC */
984
985 return (error);
986 bad:
987 m_freem(m);
988 goto done;
989 }
990
991 int
992 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
993 {
994 struct ip *ip, *mhip;
995 struct mbuf *m0;
996 int len, hlen, off;
997 int mhlen, firstlen;
998 struct mbuf **mnext;
999 int sw_csum = m->m_pkthdr.csum_flags;
1000 int fragments = 0;
1001 int s;
1002 int error = 0;
1003
1004 ip = mtod(m, struct ip *);
1005 hlen = ip->ip_hl << 2;
1006 if (ifp != NULL)
1007 sw_csum &= ~ifp->if_csum_flags_tx;
1008
1009 len = (mtu - hlen) &~ 7;
1010 if (len < 8) {
1011 m_freem(m);
1012 return (EMSGSIZE);
1013 }
1014
1015 firstlen = len;
1016 mnext = &m->m_nextpkt;
1017
1018 /*
1019 * Loop through length of segment after first fragment,
1020 * make new header and copy data of each part and link onto chain.
1021 */
1022 m0 = m;
1023 mhlen = sizeof (struct ip);
1024 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1025 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1026 if (m == 0) {
1027 error = ENOBUFS;
1028 ipstat.ips_odropped++;
1029 goto sendorfree;
1030 }
1031 MCLAIM(m, m0->m_owner);
1032 *mnext = m;
1033 mnext = &m->m_nextpkt;
1034 m->m_data += max_linkhdr;
1035 mhip = mtod(m, struct ip *);
1036 *mhip = *ip;
1037 /* we must inherit MCAST and BCAST flags */
1038 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1039 if (hlen > sizeof (struct ip)) {
1040 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1041 mhip->ip_hl = mhlen >> 2;
1042 }
1043 m->m_len = mhlen;
1044 mhip->ip_off = ((off - hlen) >> 3) +
1045 (ntohs(ip->ip_off) & ~IP_MF);
1046 if (ip->ip_off & htons(IP_MF))
1047 mhip->ip_off |= IP_MF;
1048 if (off + len >= ntohs(ip->ip_len))
1049 len = ntohs(ip->ip_len) - off;
1050 else
1051 mhip->ip_off |= IP_MF;
1052 HTONS(mhip->ip_off);
1053 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1054 m->m_next = m_copy(m0, off, len);
1055 if (m->m_next == 0) {
1056 error = ENOBUFS; /* ??? */
1057 ipstat.ips_odropped++;
1058 goto sendorfree;
1059 }
1060 m->m_pkthdr.len = mhlen + len;
1061 m->m_pkthdr.rcvif = (struct ifnet *)0;
1062 mhip->ip_sum = 0;
1063 if (sw_csum & M_CSUM_IPv4) {
1064 mhip->ip_sum = in_cksum(m, mhlen);
1065 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1066 } else {
1067 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1068 m->m_pkthdr.csum_data |= mhlen << 16;
1069 }
1070 ipstat.ips_ofragments++;
1071 fragments++;
1072 }
1073 /*
1074 * Update first fragment by trimming what's been copied out
1075 * and updating header, then send each fragment (in order).
1076 */
1077 m = m0;
1078 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1079 m->m_pkthdr.len = hlen + firstlen;
1080 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1081 ip->ip_off |= htons(IP_MF);
1082 ip->ip_sum = 0;
1083 if (sw_csum & M_CSUM_IPv4) {
1084 ip->ip_sum = in_cksum(m, hlen);
1085 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1086 } else {
1087 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1088 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1089 sizeof(struct ip));
1090 }
1091 sendorfree:
1092 /*
1093 * If there is no room for all the fragments, don't queue
1094 * any of them.
1095 */
1096 if (ifp != NULL) {
1097 s = splnet();
1098 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1099 error == 0) {
1100 error = ENOBUFS;
1101 ipstat.ips_odropped++;
1102 IFQ_INC_DROPS(&ifp->if_snd);
1103 }
1104 splx(s);
1105 }
1106 if (error) {
1107 for (m = m0; m; m = m0) {
1108 m0 = m->m_nextpkt;
1109 m->m_nextpkt = NULL;
1110 m_freem(m);
1111 }
1112 }
1113 return (error);
1114 }
1115
1116 /*
1117 * Process a delayed payload checksum calculation.
1118 */
1119 void
1120 in_delayed_cksum(struct mbuf *m)
1121 {
1122 struct ip *ip;
1123 u_int16_t csum, offset;
1124
1125 ip = mtod(m, struct ip *);
1126 offset = ip->ip_hl << 2;
1127 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1128 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1129 csum = 0xffff;
1130
1131 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1132
1133 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1134 /* This happen when ip options were inserted
1135 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1136 m->m_len, offset, ip->ip_p);
1137 */
1138 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1139 } else
1140 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1141 }
1142
1143 /*
1144 * Determine the maximum length of the options to be inserted;
1145 * we would far rather allocate too much space rather than too little.
1146 */
1147
1148 u_int
1149 ip_optlen(struct inpcb *inp)
1150 {
1151 struct mbuf *m = inp->inp_options;
1152
1153 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1154 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1155 else
1156 return 0;
1157 }
1158
1159
1160 /*
1161 * Insert IP options into preformed packet.
1162 * Adjust IP destination as required for IP source routing,
1163 * as indicated by a non-zero in_addr at the start of the options.
1164 */
1165 static struct mbuf *
1166 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1167 {
1168 struct ipoption *p = mtod(opt, struct ipoption *);
1169 struct mbuf *n;
1170 struct ip *ip = mtod(m, struct ip *);
1171 unsigned optlen;
1172
1173 optlen = opt->m_len - sizeof(p->ipopt_dst);
1174 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1175 return (m); /* XXX should fail */
1176 if (!in_nullhost(p->ipopt_dst))
1177 ip->ip_dst = p->ipopt_dst;
1178 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1179 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1180 if (n == 0)
1181 return (m);
1182 MCLAIM(n, m->m_owner);
1183 M_MOVE_PKTHDR(n, m);
1184 m->m_len -= sizeof(struct ip);
1185 m->m_data += sizeof(struct ip);
1186 n->m_next = m;
1187 m = n;
1188 m->m_len = optlen + sizeof(struct ip);
1189 m->m_data += max_linkhdr;
1190 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1191 } else {
1192 m->m_data -= optlen;
1193 m->m_len += optlen;
1194 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1195 }
1196 m->m_pkthdr.len += optlen;
1197 ip = mtod(m, struct ip *);
1198 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1199 *phlen = sizeof(struct ip) + optlen;
1200 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1201 return (m);
1202 }
1203
1204 /*
1205 * Copy options from ip to jp,
1206 * omitting those not copied during fragmentation.
1207 */
1208 int
1209 ip_optcopy(struct ip *ip, struct ip *jp)
1210 {
1211 u_char *cp, *dp;
1212 int opt, optlen, cnt;
1213
1214 cp = (u_char *)(ip + 1);
1215 dp = (u_char *)(jp + 1);
1216 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1217 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1218 opt = cp[0];
1219 if (opt == IPOPT_EOL)
1220 break;
1221 if (opt == IPOPT_NOP) {
1222 /* Preserve for IP mcast tunnel's LSRR alignment. */
1223 *dp++ = IPOPT_NOP;
1224 optlen = 1;
1225 continue;
1226 }
1227 #ifdef DIAGNOSTIC
1228 if (cnt < IPOPT_OLEN + sizeof(*cp))
1229 panic("malformed IPv4 option passed to ip_optcopy");
1230 #endif
1231 optlen = cp[IPOPT_OLEN];
1232 #ifdef DIAGNOSTIC
1233 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1234 panic("malformed IPv4 option passed to ip_optcopy");
1235 #endif
1236 /* bogus lengths should have been caught by ip_dooptions */
1237 if (optlen > cnt)
1238 optlen = cnt;
1239 if (IPOPT_COPIED(opt)) {
1240 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1241 dp += optlen;
1242 }
1243 }
1244 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1245 *dp++ = IPOPT_EOL;
1246 return (optlen);
1247 }
1248
1249 /*
1250 * IP socket option processing.
1251 */
1252 int
1253 ip_ctloutput(int op, struct socket *so, int level, int optname,
1254 struct mbuf **mp)
1255 {
1256 struct inpcb *inp = sotoinpcb(so);
1257 struct mbuf *m = *mp;
1258 int optval = 0;
1259 int error = 0;
1260 #if defined(IPSEC) || defined(FAST_IPSEC)
1261 struct lwp *l = curlwp; /*XXX*/
1262 #endif
1263
1264 if (level != IPPROTO_IP) {
1265 error = EINVAL;
1266 if (op == PRCO_SETOPT && *mp)
1267 (void) m_free(*mp);
1268 } else switch (op) {
1269
1270 case PRCO_SETOPT:
1271 switch (optname) {
1272 case IP_OPTIONS:
1273 #ifdef notyet
1274 case IP_RETOPTS:
1275 return (ip_pcbopts(optname, &inp->inp_options, m));
1276 #else
1277 return (ip_pcbopts(&inp->inp_options, m));
1278 #endif
1279
1280 case IP_TOS:
1281 case IP_TTL:
1282 case IP_RECVOPTS:
1283 case IP_RECVRETOPTS:
1284 case IP_RECVDSTADDR:
1285 case IP_RECVIF:
1286 if (m == NULL || m->m_len != sizeof(int))
1287 error = EINVAL;
1288 else {
1289 optval = *mtod(m, int *);
1290 switch (optname) {
1291
1292 case IP_TOS:
1293 inp->inp_ip.ip_tos = optval;
1294 break;
1295
1296 case IP_TTL:
1297 inp->inp_ip.ip_ttl = optval;
1298 break;
1299 #define OPTSET(bit) \
1300 if (optval) \
1301 inp->inp_flags |= bit; \
1302 else \
1303 inp->inp_flags &= ~bit;
1304
1305 case IP_RECVOPTS:
1306 OPTSET(INP_RECVOPTS);
1307 break;
1308
1309 case IP_RECVRETOPTS:
1310 OPTSET(INP_RECVRETOPTS);
1311 break;
1312
1313 case IP_RECVDSTADDR:
1314 OPTSET(INP_RECVDSTADDR);
1315 break;
1316
1317 case IP_RECVIF:
1318 OPTSET(INP_RECVIF);
1319 break;
1320 }
1321 }
1322 break;
1323 #undef OPTSET
1324
1325 case IP_MULTICAST_IF:
1326 case IP_MULTICAST_TTL:
1327 case IP_MULTICAST_LOOP:
1328 case IP_ADD_MEMBERSHIP:
1329 case IP_DROP_MEMBERSHIP:
1330 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1331 break;
1332
1333 case IP_PORTRANGE:
1334 if (m == 0 || m->m_len != sizeof(int))
1335 error = EINVAL;
1336 else {
1337 optval = *mtod(m, int *);
1338
1339 switch (optval) {
1340
1341 case IP_PORTRANGE_DEFAULT:
1342 case IP_PORTRANGE_HIGH:
1343 inp->inp_flags &= ~(INP_LOWPORT);
1344 break;
1345
1346 case IP_PORTRANGE_LOW:
1347 inp->inp_flags |= INP_LOWPORT;
1348 break;
1349
1350 default:
1351 error = EINVAL;
1352 break;
1353 }
1354 }
1355 break;
1356
1357 #if defined(IPSEC) || defined(FAST_IPSEC)
1358 case IP_IPSEC_POLICY:
1359 {
1360 caddr_t req = NULL;
1361 size_t len = 0;
1362 int priv = 0;
1363
1364 #ifdef __NetBSD__
1365 if (l == 0 || kauth_authorize_generic(l->l_cred,
1366 KAUTH_GENERIC_ISSUSER, &l->l_acflag))
1367 priv = 0;
1368 else
1369 priv = 1;
1370 #else
1371 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1372 #endif
1373 if (m) {
1374 req = mtod(m, caddr_t);
1375 len = m->m_len;
1376 }
1377 error = ipsec4_set_policy(inp, optname, req, len, priv);
1378 break;
1379 }
1380 #endif /*IPSEC*/
1381
1382 default:
1383 error = ENOPROTOOPT;
1384 break;
1385 }
1386 if (m)
1387 (void)m_free(m);
1388 break;
1389
1390 case PRCO_GETOPT:
1391 switch (optname) {
1392 case IP_OPTIONS:
1393 case IP_RETOPTS:
1394 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1395 MCLAIM(m, so->so_mowner);
1396 if (inp->inp_options) {
1397 m->m_len = inp->inp_options->m_len;
1398 bcopy(mtod(inp->inp_options, caddr_t),
1399 mtod(m, caddr_t), (unsigned)m->m_len);
1400 } else
1401 m->m_len = 0;
1402 break;
1403
1404 case IP_TOS:
1405 case IP_TTL:
1406 case IP_RECVOPTS:
1407 case IP_RECVRETOPTS:
1408 case IP_RECVDSTADDR:
1409 case IP_RECVIF:
1410 case IP_ERRORMTU:
1411 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1412 MCLAIM(m, so->so_mowner);
1413 m->m_len = sizeof(int);
1414 switch (optname) {
1415
1416 case IP_TOS:
1417 optval = inp->inp_ip.ip_tos;
1418 break;
1419
1420 case IP_TTL:
1421 optval = inp->inp_ip.ip_ttl;
1422 break;
1423
1424 case IP_ERRORMTU:
1425 optval = inp->inp_errormtu;
1426 break;
1427
1428 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1429
1430 case IP_RECVOPTS:
1431 optval = OPTBIT(INP_RECVOPTS);
1432 break;
1433
1434 case IP_RECVRETOPTS:
1435 optval = OPTBIT(INP_RECVRETOPTS);
1436 break;
1437
1438 case IP_RECVDSTADDR:
1439 optval = OPTBIT(INP_RECVDSTADDR);
1440 break;
1441
1442 case IP_RECVIF:
1443 optval = OPTBIT(INP_RECVIF);
1444 break;
1445 }
1446 *mtod(m, int *) = optval;
1447 break;
1448
1449 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1450 /* XXX: code broken */
1451 case IP_IPSEC_POLICY:
1452 {
1453 caddr_t req = NULL;
1454 size_t len = 0;
1455
1456 if (m) {
1457 req = mtod(m, caddr_t);
1458 len = m->m_len;
1459 }
1460 error = ipsec4_get_policy(inp, req, len, mp);
1461 break;
1462 }
1463 #endif /*IPSEC*/
1464
1465 case IP_MULTICAST_IF:
1466 case IP_MULTICAST_TTL:
1467 case IP_MULTICAST_LOOP:
1468 case IP_ADD_MEMBERSHIP:
1469 case IP_DROP_MEMBERSHIP:
1470 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1471 if (*mp)
1472 MCLAIM(*mp, so->so_mowner);
1473 break;
1474
1475 case IP_PORTRANGE:
1476 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1477 MCLAIM(m, so->so_mowner);
1478 m->m_len = sizeof(int);
1479
1480 if (inp->inp_flags & INP_LOWPORT)
1481 optval = IP_PORTRANGE_LOW;
1482 else
1483 optval = IP_PORTRANGE_DEFAULT;
1484
1485 *mtod(m, int *) = optval;
1486 break;
1487
1488 default:
1489 error = ENOPROTOOPT;
1490 break;
1491 }
1492 break;
1493 }
1494 return (error);
1495 }
1496
1497 /*
1498 * Set up IP options in pcb for insertion in output packets.
1499 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1500 * with destination address if source routed.
1501 */
1502 int
1503 #ifdef notyet
1504 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1505 #else
1506 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1507 #endif
1508 {
1509 int cnt, optlen;
1510 u_char *cp;
1511 u_char opt;
1512
1513 /* turn off any old options */
1514 if (*pcbopt)
1515 (void)m_free(*pcbopt);
1516 *pcbopt = 0;
1517 if (m == (struct mbuf *)0 || m->m_len == 0) {
1518 /*
1519 * Only turning off any previous options.
1520 */
1521 if (m)
1522 (void)m_free(m);
1523 return (0);
1524 }
1525
1526 #ifndef __vax__
1527 if (m->m_len % sizeof(int32_t))
1528 goto bad;
1529 #endif
1530 /*
1531 * IP first-hop destination address will be stored before
1532 * actual options; move other options back
1533 * and clear it when none present.
1534 */
1535 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1536 goto bad;
1537 cnt = m->m_len;
1538 m->m_len += sizeof(struct in_addr);
1539 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1540 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1541 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1542
1543 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1544 opt = cp[IPOPT_OPTVAL];
1545 if (opt == IPOPT_EOL)
1546 break;
1547 if (opt == IPOPT_NOP)
1548 optlen = 1;
1549 else {
1550 if (cnt < IPOPT_OLEN + sizeof(*cp))
1551 goto bad;
1552 optlen = cp[IPOPT_OLEN];
1553 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1554 goto bad;
1555 }
1556 switch (opt) {
1557
1558 default:
1559 break;
1560
1561 case IPOPT_LSRR:
1562 case IPOPT_SSRR:
1563 /*
1564 * user process specifies route as:
1565 * ->A->B->C->D
1566 * D must be our final destination (but we can't
1567 * check that since we may not have connected yet).
1568 * A is first hop destination, which doesn't appear in
1569 * actual IP option, but is stored before the options.
1570 */
1571 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1572 goto bad;
1573 m->m_len -= sizeof(struct in_addr);
1574 cnt -= sizeof(struct in_addr);
1575 optlen -= sizeof(struct in_addr);
1576 cp[IPOPT_OLEN] = optlen;
1577 /*
1578 * Move first hop before start of options.
1579 */
1580 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1581 sizeof(struct in_addr));
1582 /*
1583 * Then copy rest of options back
1584 * to close up the deleted entry.
1585 */
1586 (void)memmove(&cp[IPOPT_OFFSET+1],
1587 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1588 (unsigned)cnt - (IPOPT_MINOFF - 1));
1589 break;
1590 }
1591 }
1592 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1593 goto bad;
1594 *pcbopt = m;
1595 return (0);
1596
1597 bad:
1598 (void)m_free(m);
1599 return (EINVAL);
1600 }
1601
1602 /*
1603 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1604 */
1605 static struct ifnet *
1606 ip_multicast_if(struct in_addr *a, int *ifindexp)
1607 {
1608 int ifindex;
1609 struct ifnet *ifp = NULL;
1610 struct in_ifaddr *ia;
1611
1612 if (ifindexp)
1613 *ifindexp = 0;
1614 if (ntohl(a->s_addr) >> 24 == 0) {
1615 ifindex = ntohl(a->s_addr) & 0xffffff;
1616 if (ifindex < 0 || if_indexlim <= ifindex)
1617 return NULL;
1618 ifp = ifindex2ifnet[ifindex];
1619 if (!ifp)
1620 return NULL;
1621 if (ifindexp)
1622 *ifindexp = ifindex;
1623 } else {
1624 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1625 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1626 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1627 ifp = ia->ia_ifp;
1628 break;
1629 }
1630 }
1631 }
1632 return ifp;
1633 }
1634
1635 static int
1636 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1637 {
1638 u_int tval;
1639
1640 if (m == NULL)
1641 return EINVAL;
1642
1643 switch (m->m_len) {
1644 case sizeof(u_char):
1645 tval = *(mtod(m, u_char *));
1646 break;
1647 case sizeof(u_int):
1648 tval = *(mtod(m, u_int *));
1649 break;
1650 default:
1651 return EINVAL;
1652 }
1653
1654 if (tval > maxval)
1655 return EINVAL;
1656
1657 *val = tval;
1658 return 0;
1659 }
1660
1661 /*
1662 * Set the IP multicast options in response to user setsockopt().
1663 */
1664 int
1665 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1666 {
1667 int error = 0;
1668 int i;
1669 struct in_addr addr;
1670 struct ip_mreq *mreq;
1671 struct ifnet *ifp;
1672 struct ip_moptions *imo = *imop;
1673 struct route ro;
1674 struct sockaddr_in *dst;
1675 int ifindex;
1676
1677 if (imo == NULL) {
1678 /*
1679 * No multicast option buffer attached to the pcb;
1680 * allocate one and initialize to default values.
1681 */
1682 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1683 M_WAITOK);
1684
1685 if (imo == NULL)
1686 return (ENOBUFS);
1687 *imop = imo;
1688 imo->imo_multicast_ifp = NULL;
1689 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1690 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1691 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1692 imo->imo_num_memberships = 0;
1693 }
1694
1695 switch (optname) {
1696
1697 case IP_MULTICAST_IF:
1698 /*
1699 * Select the interface for outgoing multicast packets.
1700 */
1701 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1702 error = EINVAL;
1703 break;
1704 }
1705 addr = *(mtod(m, struct in_addr *));
1706 /*
1707 * INADDR_ANY is used to remove a previous selection.
1708 * When no interface is selected, a default one is
1709 * chosen every time a multicast packet is sent.
1710 */
1711 if (in_nullhost(addr)) {
1712 imo->imo_multicast_ifp = NULL;
1713 break;
1714 }
1715 /*
1716 * The selected interface is identified by its local
1717 * IP address. Find the interface and confirm that
1718 * it supports multicasting.
1719 */
1720 ifp = ip_multicast_if(&addr, &ifindex);
1721 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1722 error = EADDRNOTAVAIL;
1723 break;
1724 }
1725 imo->imo_multicast_ifp = ifp;
1726 if (ifindex)
1727 imo->imo_multicast_addr = addr;
1728 else
1729 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1730 break;
1731
1732 case IP_MULTICAST_TTL:
1733 /*
1734 * Set the IP time-to-live for outgoing multicast packets.
1735 */
1736 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1737 break;
1738
1739 case IP_MULTICAST_LOOP:
1740 /*
1741 * Set the loopback flag for outgoing multicast packets.
1742 * Must be zero or one.
1743 */
1744 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1745 break;
1746
1747 case IP_ADD_MEMBERSHIP:
1748 /*
1749 * Add a multicast group membership.
1750 * Group must be a valid IP multicast address.
1751 */
1752 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1753 error = EINVAL;
1754 break;
1755 }
1756 mreq = mtod(m, struct ip_mreq *);
1757 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1758 error = EINVAL;
1759 break;
1760 }
1761 /*
1762 * If no interface address was provided, use the interface of
1763 * the route to the given multicast address.
1764 */
1765 if (in_nullhost(mreq->imr_interface)) {
1766 bzero((caddr_t)&ro, sizeof(ro));
1767 ro.ro_rt = NULL;
1768 dst = satosin(&ro.ro_dst);
1769 dst->sin_len = sizeof(*dst);
1770 dst->sin_family = AF_INET;
1771 dst->sin_addr = mreq->imr_multiaddr;
1772 rtalloc(&ro);
1773 if (ro.ro_rt == NULL) {
1774 error = EADDRNOTAVAIL;
1775 break;
1776 }
1777 ifp = ro.ro_rt->rt_ifp;
1778 rtfree(ro.ro_rt);
1779 } else {
1780 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1781 }
1782 /*
1783 * See if we found an interface, and confirm that it
1784 * supports multicast.
1785 */
1786 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1787 error = EADDRNOTAVAIL;
1788 break;
1789 }
1790 /*
1791 * See if the membership already exists or if all the
1792 * membership slots are full.
1793 */
1794 for (i = 0; i < imo->imo_num_memberships; ++i) {
1795 if (imo->imo_membership[i]->inm_ifp == ifp &&
1796 in_hosteq(imo->imo_membership[i]->inm_addr,
1797 mreq->imr_multiaddr))
1798 break;
1799 }
1800 if (i < imo->imo_num_memberships) {
1801 error = EADDRINUSE;
1802 break;
1803 }
1804 if (i == IP_MAX_MEMBERSHIPS) {
1805 error = ETOOMANYREFS;
1806 break;
1807 }
1808 /*
1809 * Everything looks good; add a new record to the multicast
1810 * address list for the given interface.
1811 */
1812 if ((imo->imo_membership[i] =
1813 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1814 error = ENOBUFS;
1815 break;
1816 }
1817 ++imo->imo_num_memberships;
1818 break;
1819
1820 case IP_DROP_MEMBERSHIP:
1821 /*
1822 * Drop a multicast group membership.
1823 * Group must be a valid IP multicast address.
1824 */
1825 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1826 error = EINVAL;
1827 break;
1828 }
1829 mreq = mtod(m, struct ip_mreq *);
1830 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1831 error = EINVAL;
1832 break;
1833 }
1834 /*
1835 * If an interface address was specified, get a pointer
1836 * to its ifnet structure.
1837 */
1838 if (in_nullhost(mreq->imr_interface))
1839 ifp = NULL;
1840 else {
1841 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1842 if (ifp == NULL) {
1843 error = EADDRNOTAVAIL;
1844 break;
1845 }
1846 }
1847 /*
1848 * Find the membership in the membership array.
1849 */
1850 for (i = 0; i < imo->imo_num_memberships; ++i) {
1851 if ((ifp == NULL ||
1852 imo->imo_membership[i]->inm_ifp == ifp) &&
1853 in_hosteq(imo->imo_membership[i]->inm_addr,
1854 mreq->imr_multiaddr))
1855 break;
1856 }
1857 if (i == imo->imo_num_memberships) {
1858 error = EADDRNOTAVAIL;
1859 break;
1860 }
1861 /*
1862 * Give up the multicast address record to which the
1863 * membership points.
1864 */
1865 in_delmulti(imo->imo_membership[i]);
1866 /*
1867 * Remove the gap in the membership array.
1868 */
1869 for (++i; i < imo->imo_num_memberships; ++i)
1870 imo->imo_membership[i-1] = imo->imo_membership[i];
1871 --imo->imo_num_memberships;
1872 break;
1873
1874 default:
1875 error = EOPNOTSUPP;
1876 break;
1877 }
1878
1879 /*
1880 * If all options have default values, no need to keep the mbuf.
1881 */
1882 if (imo->imo_multicast_ifp == NULL &&
1883 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1884 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1885 imo->imo_num_memberships == 0) {
1886 free(*imop, M_IPMOPTS);
1887 *imop = NULL;
1888 }
1889
1890 return (error);
1891 }
1892
1893 /*
1894 * Return the IP multicast options in response to user getsockopt().
1895 */
1896 int
1897 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1898 {
1899 u_char *ttl;
1900 u_char *loop;
1901 struct in_addr *addr;
1902 struct in_ifaddr *ia;
1903
1904 *mp = m_get(M_WAIT, MT_SOOPTS);
1905
1906 switch (optname) {
1907
1908 case IP_MULTICAST_IF:
1909 addr = mtod(*mp, struct in_addr *);
1910 (*mp)->m_len = sizeof(struct in_addr);
1911 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1912 *addr = zeroin_addr;
1913 else if (imo->imo_multicast_addr.s_addr) {
1914 /* return the value user has set */
1915 *addr = imo->imo_multicast_addr;
1916 } else {
1917 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1918 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1919 }
1920 return (0);
1921
1922 case IP_MULTICAST_TTL:
1923 ttl = mtod(*mp, u_char *);
1924 (*mp)->m_len = 1;
1925 *ttl = imo ? imo->imo_multicast_ttl
1926 : IP_DEFAULT_MULTICAST_TTL;
1927 return (0);
1928
1929 case IP_MULTICAST_LOOP:
1930 loop = mtod(*mp, u_char *);
1931 (*mp)->m_len = 1;
1932 *loop = imo ? imo->imo_multicast_loop
1933 : IP_DEFAULT_MULTICAST_LOOP;
1934 return (0);
1935
1936 default:
1937 return (EOPNOTSUPP);
1938 }
1939 }
1940
1941 /*
1942 * Discard the IP multicast options.
1943 */
1944 void
1945 ip_freemoptions(struct ip_moptions *imo)
1946 {
1947 int i;
1948
1949 if (imo != NULL) {
1950 for (i = 0; i < imo->imo_num_memberships; ++i)
1951 in_delmulti(imo->imo_membership[i]);
1952 free(imo, M_IPMOPTS);
1953 }
1954 }
1955
1956 /*
1957 * Routine called from ip_output() to loop back a copy of an IP multicast
1958 * packet to the input queue of a specified interface. Note that this
1959 * calls the output routine of the loopback "driver", but with an interface
1960 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1961 */
1962 static void
1963 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1964 {
1965 struct ip *ip;
1966 struct mbuf *copym;
1967
1968 copym = m_copy(m, 0, M_COPYALL);
1969 if (copym != NULL
1970 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1971 copym = m_pullup(copym, sizeof(struct ip));
1972 if (copym != NULL) {
1973 /*
1974 * We don't bother to fragment if the IP length is greater
1975 * than the interface's MTU. Can this possibly matter?
1976 */
1977 ip = mtod(copym, struct ip *);
1978
1979 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1980 in_delayed_cksum(copym);
1981 copym->m_pkthdr.csum_flags &=
1982 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1983 }
1984
1985 ip->ip_sum = 0;
1986 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1987 (void) looutput(ifp, copym, sintosa(dst), NULL);
1988 }
1989 }
1990