ip_output.c revision 1.171 1 /* $NetBSD: ip_output.c,v 1.171 2006/12/15 21:18:54 joerg Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.171 2006/12/15 21:18:54 joerg Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
160
161 #ifdef PFIL_HOOKS
162 extern struct pfil_head inet_pfil_hook; /* XXX */
163 #endif
164
165 int ip_do_loopback_cksum = 0;
166
167 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
168 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
169 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
171 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
172
173 /*
174 * IP output. The packet in mbuf chain m contains a skeletal IP
175 * header (with len, off, ttl, proto, tos, src, dst).
176 * The mbuf chain containing the packet will be freed.
177 * The mbuf opt, if present, will not be freed.
178 */
179 int
180 ip_output(struct mbuf *m0, ...)
181 {
182 struct ip *ip;
183 struct ifnet *ifp;
184 struct mbuf *m = m0;
185 int hlen = sizeof (struct ip);
186 int len, error = 0;
187 struct route iproute;
188 struct sockaddr_in *dst;
189 struct in_ifaddr *ia;
190 struct ifaddr *xifa;
191 struct mbuf *opt;
192 struct route *ro;
193 int flags, sw_csum;
194 int *mtu_p;
195 u_long mtu;
196 struct ip_moptions *imo;
197 struct socket *so;
198 va_list ap;
199 #ifdef IPSEC_NAT_T
200 int natt_frag = 0;
201 #endif
202 #ifdef IPSEC
203 struct secpolicy *sp = NULL;
204 #endif /*IPSEC*/
205 #ifdef FAST_IPSEC
206 struct inpcb *inp;
207 struct m_tag *mtag;
208 struct secpolicy *sp = NULL;
209 struct tdb_ident *tdbi;
210 int s;
211 #endif
212 u_int16_t ip_len;
213
214 len = 0;
215 va_start(ap, m0);
216 opt = va_arg(ap, struct mbuf *);
217 ro = va_arg(ap, struct route *);
218 flags = va_arg(ap, int);
219 imo = va_arg(ap, struct ip_moptions *);
220 so = va_arg(ap, struct socket *);
221 if (flags & IP_RETURNMTU)
222 mtu_p = va_arg(ap, int *);
223 else
224 mtu_p = NULL;
225 va_end(ap);
226
227 MCLAIM(m, &ip_tx_mowner);
228 #ifdef FAST_IPSEC
229 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
230 inp = (struct inpcb *)so->so_pcb;
231 else
232 inp = NULL;
233 #endif /* FAST_IPSEC */
234
235 #ifdef DIAGNOSTIC
236 if ((m->m_flags & M_PKTHDR) == 0)
237 panic("ip_output: no HDR");
238
239 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
240 panic("ip_output: IPv6 checksum offload flags: %d",
241 m->m_pkthdr.csum_flags);
242 }
243
244 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
245 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
246 panic("ip_output: conflicting checksum offload flags: %d",
247 m->m_pkthdr.csum_flags);
248 }
249 #endif
250 if (opt) {
251 m = ip_insertoptions(m, opt, &len);
252 if (len >= sizeof(struct ip))
253 hlen = len;
254 }
255 ip = mtod(m, struct ip *);
256 /*
257 * Fill in IP header.
258 */
259 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
260 ip->ip_v = IPVERSION;
261 ip->ip_off = htons(0);
262 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
263 ip->ip_id = ip_newid();
264 } else {
265
266 /*
267 * TSO capable interfaces (typically?) increment
268 * ip_id for each segment.
269 * "allocate" enough ids here to increase the chance
270 * for them to be unique.
271 *
272 * note that the following calculation is not
273 * needed to be precise. wasting some ip_id is fine.
274 */
275
276 unsigned int segsz = m->m_pkthdr.segsz;
277 unsigned int datasz = ntohs(ip->ip_len) - hlen;
278 unsigned int num = howmany(datasz, segsz);
279
280 ip->ip_id = ip_newid_range(num);
281 }
282 ip->ip_hl = hlen >> 2;
283 ipstat.ips_localout++;
284 } else {
285 hlen = ip->ip_hl << 2;
286 }
287 /*
288 * Route packet.
289 */
290 if (ro == NULL) {
291 ro = &iproute;
292 bzero((caddr_t)ro, sizeof (*ro));
293 }
294 dst = satosin(&ro->ro_dst);
295 /*
296 * If there is a cached route,
297 * check that it is to the same destination
298 * and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing the
300 * cache with IPv6.
301 */
302 if (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst))
304 rtcache_free(ro);
305 else
306 rtcache_check(ro);
307 if (ro->ro_rt == NULL) {
308 bzero(dst, sizeof(*dst));
309 dst->sin_family = AF_INET;
310 dst->sin_len = sizeof(*dst);
311 dst->sin_addr = ip->ip_dst;
312 }
313 /*
314 * If routing to interface only,
315 * short circuit routing lookup.
316 */
317 if (flags & IP_ROUTETOIF) {
318 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
319 ipstat.ips_noroute++;
320 error = ENETUNREACH;
321 goto bad;
322 }
323 ifp = ia->ia_ifp;
324 mtu = ifp->if_mtu;
325 ip->ip_ttl = 1;
326 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
327 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
328 imo != NULL && imo->imo_multicast_ifp != NULL) {
329 ifp = imo->imo_multicast_ifp;
330 mtu = ifp->if_mtu;
331 IFP_TO_IA(ifp, ia);
332 } else {
333 if (ro->ro_rt == NULL)
334 rtcache_init(ro);
335 if (ro->ro_rt == NULL) {
336 ipstat.ips_noroute++;
337 error = EHOSTUNREACH;
338 goto bad;
339 }
340 ia = ifatoia(ro->ro_rt->rt_ifa);
341 ifp = ro->ro_rt->rt_ifp;
342 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
343 mtu = ifp->if_mtu;
344 ro->ro_rt->rt_use++;
345 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
346 dst = satosin(ro->ro_rt->rt_gateway);
347 }
348 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
349 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
350 struct in_multi *inm;
351
352 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
353 M_BCAST : M_MCAST;
354 /*
355 * IP destination address is multicast. Make sure "dst"
356 * still points to the address in "ro". (It may have been
357 * changed to point to a gateway address, above.)
358 */
359 dst = satosin(&ro->ro_dst);
360 /*
361 * See if the caller provided any multicast options
362 */
363 if (imo != NULL)
364 ip->ip_ttl = imo->imo_multicast_ttl;
365 else
366 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
367
368 /*
369 * if we don't know the outgoing ifp yet, we can't generate
370 * output
371 */
372 if (!ifp) {
373 ipstat.ips_noroute++;
374 error = ENETUNREACH;
375 goto bad;
376 }
377
378 /*
379 * If the packet is multicast or broadcast, confirm that
380 * the outgoing interface can transmit it.
381 */
382 if (((m->m_flags & M_MCAST) &&
383 (ifp->if_flags & IFF_MULTICAST) == 0) ||
384 ((m->m_flags & M_BCAST) &&
385 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
386 ipstat.ips_noroute++;
387 error = ENETUNREACH;
388 goto bad;
389 }
390 /*
391 * If source address not specified yet, use an address
392 * of outgoing interface.
393 */
394 if (in_nullhost(ip->ip_src)) {
395 struct in_ifaddr *xia;
396
397 IFP_TO_IA(ifp, xia);
398 if (!xia) {
399 error = EADDRNOTAVAIL;
400 goto bad;
401 }
402 xifa = &xia->ia_ifa;
403 if (xifa->ifa_getifa != NULL) {
404 xia = ifatoia((*xifa->ifa_getifa)(xifa,
405 &ro->ro_dst));
406 }
407 ip->ip_src = xia->ia_addr.sin_addr;
408 }
409
410 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
411 if (inm != NULL &&
412 (imo == NULL || imo->imo_multicast_loop)) {
413 /*
414 * If we belong to the destination multicast group
415 * on the outgoing interface, and the caller did not
416 * forbid loopback, loop back a copy.
417 */
418 ip_mloopback(ifp, m, dst);
419 }
420 #ifdef MROUTING
421 else {
422 /*
423 * If we are acting as a multicast router, perform
424 * multicast forwarding as if the packet had just
425 * arrived on the interface to which we are about
426 * to send. The multicast forwarding function
427 * recursively calls this function, using the
428 * IP_FORWARDING flag to prevent infinite recursion.
429 *
430 * Multicasts that are looped back by ip_mloopback(),
431 * above, will be forwarded by the ip_input() routine,
432 * if necessary.
433 */
434 extern struct socket *ip_mrouter;
435
436 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
437 if (ip_mforward(m, ifp) != 0) {
438 m_freem(m);
439 goto done;
440 }
441 }
442 }
443 #endif
444 /*
445 * Multicasts with a time-to-live of zero may be looped-
446 * back, above, but must not be transmitted on a network.
447 * Also, multicasts addressed to the loopback interface
448 * are not sent -- the above call to ip_mloopback() will
449 * loop back a copy if this host actually belongs to the
450 * destination group on the loopback interface.
451 */
452 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
453 m_freem(m);
454 goto done;
455 }
456
457 goto sendit;
458 }
459 /*
460 * If source address not specified yet, use address
461 * of outgoing interface.
462 */
463 if (in_nullhost(ip->ip_src)) {
464 xifa = &ia->ia_ifa;
465 if (xifa->ifa_getifa != NULL)
466 ia = ifatoia((*xifa->ifa_getifa)(xifa, &ro->ro_dst));
467 ip->ip_src = ia->ia_addr.sin_addr;
468 }
469
470 /*
471 * packets with Class-D address as source are not valid per
472 * RFC 1112
473 */
474 if (IN_MULTICAST(ip->ip_src.s_addr)) {
475 ipstat.ips_odropped++;
476 error = EADDRNOTAVAIL;
477 goto bad;
478 }
479
480 /*
481 * Look for broadcast address and
482 * and verify user is allowed to send
483 * such a packet.
484 */
485 if (in_broadcast(dst->sin_addr, ifp)) {
486 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
487 error = EADDRNOTAVAIL;
488 goto bad;
489 }
490 if ((flags & IP_ALLOWBROADCAST) == 0) {
491 error = EACCES;
492 goto bad;
493 }
494 /* don't allow broadcast messages to be fragmented */
495 if (ntohs(ip->ip_len) > ifp->if_mtu) {
496 error = EMSGSIZE;
497 goto bad;
498 }
499 m->m_flags |= M_BCAST;
500 } else
501 m->m_flags &= ~M_BCAST;
502
503 sendit:
504 /*
505 * If we're doing Path MTU Discovery, we need to set DF unless
506 * the route's MTU is locked.
507 */
508 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
509 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
510 ip->ip_off |= htons(IP_DF);
511
512 /* Remember the current ip_len */
513 ip_len = ntohs(ip->ip_len);
514
515 #ifdef IPSEC
516 /* get SP for this packet */
517 if (so == NULL)
518 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
519 flags, &error);
520 else {
521 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
522 IPSEC_DIR_OUTBOUND))
523 goto skip_ipsec;
524 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
525 }
526
527 if (sp == NULL) {
528 ipsecstat.out_inval++;
529 goto bad;
530 }
531
532 error = 0;
533
534 /* check policy */
535 switch (sp->policy) {
536 case IPSEC_POLICY_DISCARD:
537 /*
538 * This packet is just discarded.
539 */
540 ipsecstat.out_polvio++;
541 goto bad;
542
543 case IPSEC_POLICY_BYPASS:
544 case IPSEC_POLICY_NONE:
545 /* no need to do IPsec. */
546 goto skip_ipsec;
547
548 case IPSEC_POLICY_IPSEC:
549 if (sp->req == NULL) {
550 /* XXX should be panic ? */
551 printf("ip_output: No IPsec request specified.\n");
552 error = EINVAL;
553 goto bad;
554 }
555 break;
556
557 case IPSEC_POLICY_ENTRUST:
558 default:
559 printf("ip_output: Invalid policy found. %d\n", sp->policy);
560 }
561
562 #ifdef IPSEC_NAT_T
563 /*
564 * NAT-T ESP fragmentation: don't do IPSec processing now,
565 * we'll do it on each fragmented packet.
566 */
567 if (sp->req->sav &&
568 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
569 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
570 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
571 natt_frag = 1;
572 mtu = sp->req->sav->esp_frag;
573 goto skip_ipsec;
574 }
575 }
576 #endif /* IPSEC_NAT_T */
577
578 /*
579 * ipsec4_output() expects ip_len and ip_off in network
580 * order. They have been set to network order above.
581 */
582
583 {
584 struct ipsec_output_state state;
585 bzero(&state, sizeof(state));
586 state.m = m;
587 if (flags & IP_ROUTETOIF) {
588 state.ro = &iproute;
589 bzero(&iproute, sizeof(iproute));
590 } else
591 state.ro = ro;
592 state.dst = (struct sockaddr *)dst;
593
594 /*
595 * We can't defer the checksum of payload data if
596 * we're about to encrypt/authenticate it.
597 *
598 * XXX When we support crypto offloading functions of
599 * XXX network interfaces, we need to reconsider this,
600 * XXX since it's likely that they'll support checksumming,
601 * XXX as well.
602 */
603 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
604 in_delayed_cksum(m);
605 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
606 }
607
608 error = ipsec4_output(&state, sp, flags);
609
610 m = state.m;
611 if (flags & IP_ROUTETOIF) {
612 /*
613 * if we have tunnel mode SA, we may need to ignore
614 * IP_ROUTETOIF.
615 */
616 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
617 flags &= ~IP_ROUTETOIF;
618 ro = state.ro;
619 }
620 } else
621 ro = state.ro;
622 dst = (struct sockaddr_in *)state.dst;
623 if (error) {
624 /* mbuf is already reclaimed in ipsec4_output. */
625 m0 = NULL;
626 switch (error) {
627 case EHOSTUNREACH:
628 case ENETUNREACH:
629 case EMSGSIZE:
630 case ENOBUFS:
631 case ENOMEM:
632 break;
633 default:
634 printf("ip4_output (ipsec): error code %d\n", error);
635 /*fall through*/
636 case ENOENT:
637 /* don't show these error codes to the user */
638 error = 0;
639 break;
640 }
641 goto bad;
642 }
643
644 /* be sure to update variables that are affected by ipsec4_output() */
645 ip = mtod(m, struct ip *);
646 hlen = ip->ip_hl << 2;
647 ip_len = ntohs(ip->ip_len);
648
649 if (ro->ro_rt == NULL) {
650 if ((flags & IP_ROUTETOIF) == 0) {
651 printf("ip_output: "
652 "can't update route after IPsec processing\n");
653 error = EHOSTUNREACH; /*XXX*/
654 goto bad;
655 }
656 } else {
657 /* nobody uses ia beyond here */
658 if (state.encap) {
659 ifp = ro->ro_rt->rt_ifp;
660 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
661 mtu = ifp->if_mtu;
662 }
663 }
664 }
665 skip_ipsec:
666 #endif /*IPSEC*/
667 #ifdef FAST_IPSEC
668 /*
669 * Check the security policy (SP) for the packet and, if
670 * required, do IPsec-related processing. There are two
671 * cases here; the first time a packet is sent through
672 * it will be untagged and handled by ipsec4_checkpolicy.
673 * If the packet is resubmitted to ip_output (e.g. after
674 * AH, ESP, etc. processing), there will be a tag to bypass
675 * the lookup and related policy checking.
676 */
677 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
678 s = splsoftnet();
679 if (mtag != NULL) {
680 tdbi = (struct tdb_ident *)(mtag + 1);
681 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
682 if (sp == NULL)
683 error = -EINVAL; /* force silent drop */
684 m_tag_delete(m, mtag);
685 } else {
686 if (inp != NULL &&
687 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
688 goto spd_done;
689 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
690 &error, inp);
691 }
692 /*
693 * There are four return cases:
694 * sp != NULL apply IPsec policy
695 * sp == NULL, error == 0 no IPsec handling needed
696 * sp == NULL, error == -EINVAL discard packet w/o error
697 * sp == NULL, error != 0 discard packet, report error
698 */
699 if (sp != NULL) {
700 #ifdef IPSEC_NAT_T
701 /*
702 * NAT-T ESP fragmentation: don't do IPSec processing now,
703 * we'll do it on each fragmented packet.
704 */
705 if (sp->req->sav &&
706 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
707 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
708 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
709 natt_frag = 1;
710 mtu = sp->req->sav->esp_frag;
711 goto spd_done;
712 }
713 }
714 #endif /* IPSEC_NAT_T */
715 /* Loop detection, check if ipsec processing already done */
716 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
717 for (mtag = m_tag_first(m); mtag != NULL;
718 mtag = m_tag_next(m, mtag)) {
719 #ifdef MTAG_ABI_COMPAT
720 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
721 continue;
722 #endif
723 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
724 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
725 continue;
726 /*
727 * Check if policy has an SA associated with it.
728 * This can happen when an SP has yet to acquire
729 * an SA; e.g. on first reference. If it occurs,
730 * then we let ipsec4_process_packet do its thing.
731 */
732 if (sp->req->sav == NULL)
733 break;
734 tdbi = (struct tdb_ident *)(mtag + 1);
735 if (tdbi->spi == sp->req->sav->spi &&
736 tdbi->proto == sp->req->sav->sah->saidx.proto &&
737 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
738 sizeof (union sockaddr_union)) == 0) {
739 /*
740 * No IPsec processing is needed, free
741 * reference to SP.
742 *
743 * NB: null pointer to avoid free at
744 * done: below.
745 */
746 KEY_FREESP(&sp), sp = NULL;
747 splx(s);
748 goto spd_done;
749 }
750 }
751
752 /*
753 * Do delayed checksums now because we send before
754 * this is done in the normal processing path.
755 */
756 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
757 in_delayed_cksum(m);
758 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
759 }
760
761 #ifdef __FreeBSD__
762 ip->ip_len = htons(ip->ip_len);
763 ip->ip_off = htons(ip->ip_off);
764 #endif
765
766 /* NB: callee frees mbuf */
767 error = ipsec4_process_packet(m, sp->req, flags, 0);
768 /*
769 * Preserve KAME behaviour: ENOENT can be returned
770 * when an SA acquire is in progress. Don't propagate
771 * this to user-level; it confuses applications.
772 *
773 * XXX this will go away when the SADB is redone.
774 */
775 if (error == ENOENT)
776 error = 0;
777 splx(s);
778 goto done;
779 } else {
780 splx(s);
781
782 if (error != 0) {
783 /*
784 * Hack: -EINVAL is used to signal that a packet
785 * should be silently discarded. This is typically
786 * because we asked key management for an SA and
787 * it was delayed (e.g. kicked up to IKE).
788 */
789 if (error == -EINVAL)
790 error = 0;
791 goto bad;
792 } else {
793 /* No IPsec processing for this packet. */
794 }
795 #ifdef notyet
796 /*
797 * If deferred crypto processing is needed, check that
798 * the interface supports it.
799 */
800 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
801 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
802 /* notify IPsec to do its own crypto */
803 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
804 error = EHOSTUNREACH;
805 goto bad;
806 }
807 #endif
808 }
809 spd_done:
810 #endif /* FAST_IPSEC */
811
812 #ifdef PFIL_HOOKS
813 /*
814 * Run through list of hooks for output packets.
815 */
816 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
817 goto done;
818 if (m == NULL)
819 goto done;
820
821 ip = mtod(m, struct ip *);
822 hlen = ip->ip_hl << 2;
823 #endif /* PFIL_HOOKS */
824
825 m->m_pkthdr.csum_data |= hlen << 16;
826
827 #if IFA_STATS
828 /*
829 * search for the source address structure to
830 * maintain output statistics.
831 */
832 INADDR_TO_IA(ip->ip_src, ia);
833 #endif
834
835 /* Maybe skip checksums on loopback interfaces. */
836 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
837 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
838 }
839 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
840 /*
841 * If small enough for mtu of path, or if using TCP segmentation
842 * offload, can just send directly.
843 */
844 if (ip_len <= mtu ||
845 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
846 #if IFA_STATS
847 if (ia)
848 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
849 #endif
850 /*
851 * Always initialize the sum to 0! Some HW assisted
852 * checksumming requires this.
853 */
854 ip->ip_sum = 0;
855
856 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
857 /*
858 * Perform any checksums that the hardware can't do
859 * for us.
860 *
861 * XXX Does any hardware require the {th,uh}_sum
862 * XXX fields to be 0?
863 */
864 if (sw_csum & M_CSUM_IPv4) {
865 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
866 ip->ip_sum = in_cksum(m, hlen);
867 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
868 }
869 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
870 if (IN_NEED_CHECKSUM(ifp,
871 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
872 in_delayed_cksum(m);
873 }
874 m->m_pkthdr.csum_flags &=
875 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
876 }
877 }
878
879 #ifdef IPSEC
880 /* clean ipsec history once it goes out of the node */
881 ipsec_delaux(m);
882 #endif
883
884 if (__predict_true(
885 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
886 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
887 error =
888 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
889 } else {
890 error =
891 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
892 }
893 goto done;
894 }
895
896 /*
897 * We can't use HW checksumming if we're about to
898 * to fragment the packet.
899 *
900 * XXX Some hardware can do this.
901 */
902 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
903 if (IN_NEED_CHECKSUM(ifp,
904 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
905 in_delayed_cksum(m);
906 }
907 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
908 }
909
910 /*
911 * Too large for interface; fragment if possible.
912 * Must be able to put at least 8 bytes per fragment.
913 */
914 if (ntohs(ip->ip_off) & IP_DF) {
915 if (flags & IP_RETURNMTU)
916 *mtu_p = mtu;
917 error = EMSGSIZE;
918 ipstat.ips_cantfrag++;
919 goto bad;
920 }
921
922 error = ip_fragment(m, ifp, mtu);
923 if (error) {
924 m = NULL;
925 goto bad;
926 }
927
928 for (; m; m = m0) {
929 m0 = m->m_nextpkt;
930 m->m_nextpkt = 0;
931 if (error == 0) {
932 #if IFA_STATS
933 if (ia)
934 ia->ia_ifa.ifa_data.ifad_outbytes +=
935 ntohs(ip->ip_len);
936 #endif
937 #ifdef IPSEC
938 /* clean ipsec history once it goes out of the node */
939 ipsec_delaux(m);
940 #endif /* IPSEC */
941
942 #ifdef IPSEC_NAT_T
943 /*
944 * If we get there, the packet has not been handeld by
945 * IPSec whereas it should have. Now that it has been
946 * fragmented, re-inject it in ip_output so that IPsec
947 * processing can occur.
948 */
949 if (natt_frag) {
950 error = ip_output(m, opt,
951 ro, flags, imo, so, mtu_p);
952 } else
953 #endif /* IPSEC_NAT_T */
954 {
955 KASSERT((m->m_pkthdr.csum_flags &
956 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
957 error = (*ifp->if_output)(ifp, m, sintosa(dst),
958 ro->ro_rt);
959 }
960 } else
961 m_freem(m);
962 }
963
964 if (error == 0)
965 ipstat.ips_fragmented++;
966 done:
967 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0)
968 rtcache_free(ro);
969
970 #ifdef IPSEC
971 if (sp != NULL) {
972 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
973 printf("DP ip_output call free SP:%p\n", sp));
974 key_freesp(sp);
975 }
976 #endif /* IPSEC */
977 #ifdef FAST_IPSEC
978 if (sp != NULL)
979 KEY_FREESP(&sp);
980 #endif /* FAST_IPSEC */
981
982 return (error);
983 bad:
984 m_freem(m);
985 goto done;
986 }
987
988 int
989 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
990 {
991 struct ip *ip, *mhip;
992 struct mbuf *m0;
993 int len, hlen, off;
994 int mhlen, firstlen;
995 struct mbuf **mnext;
996 int sw_csum = m->m_pkthdr.csum_flags;
997 int fragments = 0;
998 int s;
999 int error = 0;
1000
1001 ip = mtod(m, struct ip *);
1002 hlen = ip->ip_hl << 2;
1003 if (ifp != NULL)
1004 sw_csum &= ~ifp->if_csum_flags_tx;
1005
1006 len = (mtu - hlen) &~ 7;
1007 if (len < 8) {
1008 m_freem(m);
1009 return (EMSGSIZE);
1010 }
1011
1012 firstlen = len;
1013 mnext = &m->m_nextpkt;
1014
1015 /*
1016 * Loop through length of segment after first fragment,
1017 * make new header and copy data of each part and link onto chain.
1018 */
1019 m0 = m;
1020 mhlen = sizeof (struct ip);
1021 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1022 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1023 if (m == 0) {
1024 error = ENOBUFS;
1025 ipstat.ips_odropped++;
1026 goto sendorfree;
1027 }
1028 MCLAIM(m, m0->m_owner);
1029 *mnext = m;
1030 mnext = &m->m_nextpkt;
1031 m->m_data += max_linkhdr;
1032 mhip = mtod(m, struct ip *);
1033 *mhip = *ip;
1034 /* we must inherit MCAST and BCAST flags */
1035 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1036 if (hlen > sizeof (struct ip)) {
1037 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1038 mhip->ip_hl = mhlen >> 2;
1039 }
1040 m->m_len = mhlen;
1041 mhip->ip_off = ((off - hlen) >> 3) +
1042 (ntohs(ip->ip_off) & ~IP_MF);
1043 if (ip->ip_off & htons(IP_MF))
1044 mhip->ip_off |= IP_MF;
1045 if (off + len >= ntohs(ip->ip_len))
1046 len = ntohs(ip->ip_len) - off;
1047 else
1048 mhip->ip_off |= IP_MF;
1049 HTONS(mhip->ip_off);
1050 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1051 m->m_next = m_copy(m0, off, len);
1052 if (m->m_next == 0) {
1053 error = ENOBUFS; /* ??? */
1054 ipstat.ips_odropped++;
1055 goto sendorfree;
1056 }
1057 m->m_pkthdr.len = mhlen + len;
1058 m->m_pkthdr.rcvif = (struct ifnet *)0;
1059 mhip->ip_sum = 0;
1060 if (sw_csum & M_CSUM_IPv4) {
1061 mhip->ip_sum = in_cksum(m, mhlen);
1062 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1063 } else {
1064 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1065 m->m_pkthdr.csum_data |= mhlen << 16;
1066 }
1067 ipstat.ips_ofragments++;
1068 fragments++;
1069 }
1070 /*
1071 * Update first fragment by trimming what's been copied out
1072 * and updating header, then send each fragment (in order).
1073 */
1074 m = m0;
1075 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1076 m->m_pkthdr.len = hlen + firstlen;
1077 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1078 ip->ip_off |= htons(IP_MF);
1079 ip->ip_sum = 0;
1080 if (sw_csum & M_CSUM_IPv4) {
1081 ip->ip_sum = in_cksum(m, hlen);
1082 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1083 } else {
1084 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1085 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1086 sizeof(struct ip));
1087 }
1088 sendorfree:
1089 /*
1090 * If there is no room for all the fragments, don't queue
1091 * any of them.
1092 */
1093 if (ifp != NULL) {
1094 s = splnet();
1095 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1096 error == 0) {
1097 error = ENOBUFS;
1098 ipstat.ips_odropped++;
1099 IFQ_INC_DROPS(&ifp->if_snd);
1100 }
1101 splx(s);
1102 }
1103 if (error) {
1104 for (m = m0; m; m = m0) {
1105 m0 = m->m_nextpkt;
1106 m->m_nextpkt = NULL;
1107 m_freem(m);
1108 }
1109 }
1110 return (error);
1111 }
1112
1113 /*
1114 * Process a delayed payload checksum calculation.
1115 */
1116 void
1117 in_delayed_cksum(struct mbuf *m)
1118 {
1119 struct ip *ip;
1120 u_int16_t csum, offset;
1121
1122 ip = mtod(m, struct ip *);
1123 offset = ip->ip_hl << 2;
1124 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1125 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1126 csum = 0xffff;
1127
1128 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1129
1130 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1131 /* This happen when ip options were inserted
1132 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1133 m->m_len, offset, ip->ip_p);
1134 */
1135 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1136 } else
1137 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1138 }
1139
1140 /*
1141 * Determine the maximum length of the options to be inserted;
1142 * we would far rather allocate too much space rather than too little.
1143 */
1144
1145 u_int
1146 ip_optlen(struct inpcb *inp)
1147 {
1148 struct mbuf *m = inp->inp_options;
1149
1150 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1151 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1152 else
1153 return 0;
1154 }
1155
1156
1157 /*
1158 * Insert IP options into preformed packet.
1159 * Adjust IP destination as required for IP source routing,
1160 * as indicated by a non-zero in_addr at the start of the options.
1161 */
1162 static struct mbuf *
1163 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1164 {
1165 struct ipoption *p = mtod(opt, struct ipoption *);
1166 struct mbuf *n;
1167 struct ip *ip = mtod(m, struct ip *);
1168 unsigned optlen;
1169
1170 optlen = opt->m_len - sizeof(p->ipopt_dst);
1171 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1172 return (m); /* XXX should fail */
1173 if (!in_nullhost(p->ipopt_dst))
1174 ip->ip_dst = p->ipopt_dst;
1175 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1176 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1177 if (n == 0)
1178 return (m);
1179 MCLAIM(n, m->m_owner);
1180 M_MOVE_PKTHDR(n, m);
1181 m->m_len -= sizeof(struct ip);
1182 m->m_data += sizeof(struct ip);
1183 n->m_next = m;
1184 m = n;
1185 m->m_len = optlen + sizeof(struct ip);
1186 m->m_data += max_linkhdr;
1187 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1188 } else {
1189 m->m_data -= optlen;
1190 m->m_len += optlen;
1191 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1192 }
1193 m->m_pkthdr.len += optlen;
1194 ip = mtod(m, struct ip *);
1195 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1196 *phlen = sizeof(struct ip) + optlen;
1197 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1198 return (m);
1199 }
1200
1201 /*
1202 * Copy options from ip to jp,
1203 * omitting those not copied during fragmentation.
1204 */
1205 int
1206 ip_optcopy(struct ip *ip, struct ip *jp)
1207 {
1208 u_char *cp, *dp;
1209 int opt, optlen, cnt;
1210
1211 cp = (u_char *)(ip + 1);
1212 dp = (u_char *)(jp + 1);
1213 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1214 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1215 opt = cp[0];
1216 if (opt == IPOPT_EOL)
1217 break;
1218 if (opt == IPOPT_NOP) {
1219 /* Preserve for IP mcast tunnel's LSRR alignment. */
1220 *dp++ = IPOPT_NOP;
1221 optlen = 1;
1222 continue;
1223 }
1224 #ifdef DIAGNOSTIC
1225 if (cnt < IPOPT_OLEN + sizeof(*cp))
1226 panic("malformed IPv4 option passed to ip_optcopy");
1227 #endif
1228 optlen = cp[IPOPT_OLEN];
1229 #ifdef DIAGNOSTIC
1230 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1231 panic("malformed IPv4 option passed to ip_optcopy");
1232 #endif
1233 /* bogus lengths should have been caught by ip_dooptions */
1234 if (optlen > cnt)
1235 optlen = cnt;
1236 if (IPOPT_COPIED(opt)) {
1237 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1238 dp += optlen;
1239 }
1240 }
1241 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1242 *dp++ = IPOPT_EOL;
1243 return (optlen);
1244 }
1245
1246 /*
1247 * IP socket option processing.
1248 */
1249 int
1250 ip_ctloutput(int op, struct socket *so, int level, int optname,
1251 struct mbuf **mp)
1252 {
1253 struct inpcb *inp = sotoinpcb(so);
1254 struct mbuf *m = *mp;
1255 int optval = 0;
1256 int error = 0;
1257 #if defined(IPSEC) || defined(FAST_IPSEC)
1258 struct lwp *l = curlwp; /*XXX*/
1259 #endif
1260
1261 if (level != IPPROTO_IP) {
1262 error = EINVAL;
1263 if (op == PRCO_SETOPT && *mp)
1264 (void) m_free(*mp);
1265 } else switch (op) {
1266
1267 case PRCO_SETOPT:
1268 switch (optname) {
1269 case IP_OPTIONS:
1270 #ifdef notyet
1271 case IP_RETOPTS:
1272 return (ip_pcbopts(optname, &inp->inp_options, m));
1273 #else
1274 return (ip_pcbopts(&inp->inp_options, m));
1275 #endif
1276
1277 case IP_TOS:
1278 case IP_TTL:
1279 case IP_RECVOPTS:
1280 case IP_RECVRETOPTS:
1281 case IP_RECVDSTADDR:
1282 case IP_RECVIF:
1283 if (m == NULL || m->m_len != sizeof(int))
1284 error = EINVAL;
1285 else {
1286 optval = *mtod(m, int *);
1287 switch (optname) {
1288
1289 case IP_TOS:
1290 inp->inp_ip.ip_tos = optval;
1291 break;
1292
1293 case IP_TTL:
1294 inp->inp_ip.ip_ttl = optval;
1295 break;
1296 #define OPTSET(bit) \
1297 if (optval) \
1298 inp->inp_flags |= bit; \
1299 else \
1300 inp->inp_flags &= ~bit;
1301
1302 case IP_RECVOPTS:
1303 OPTSET(INP_RECVOPTS);
1304 break;
1305
1306 case IP_RECVRETOPTS:
1307 OPTSET(INP_RECVRETOPTS);
1308 break;
1309
1310 case IP_RECVDSTADDR:
1311 OPTSET(INP_RECVDSTADDR);
1312 break;
1313
1314 case IP_RECVIF:
1315 OPTSET(INP_RECVIF);
1316 break;
1317 }
1318 }
1319 break;
1320 #undef OPTSET
1321
1322 case IP_MULTICAST_IF:
1323 case IP_MULTICAST_TTL:
1324 case IP_MULTICAST_LOOP:
1325 case IP_ADD_MEMBERSHIP:
1326 case IP_DROP_MEMBERSHIP:
1327 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1328 break;
1329
1330 case IP_PORTRANGE:
1331 if (m == 0 || m->m_len != sizeof(int))
1332 error = EINVAL;
1333 else {
1334 optval = *mtod(m, int *);
1335
1336 switch (optval) {
1337
1338 case IP_PORTRANGE_DEFAULT:
1339 case IP_PORTRANGE_HIGH:
1340 inp->inp_flags &= ~(INP_LOWPORT);
1341 break;
1342
1343 case IP_PORTRANGE_LOW:
1344 inp->inp_flags |= INP_LOWPORT;
1345 break;
1346
1347 default:
1348 error = EINVAL;
1349 break;
1350 }
1351 }
1352 break;
1353
1354 #if defined(IPSEC) || defined(FAST_IPSEC)
1355 case IP_IPSEC_POLICY:
1356 {
1357 caddr_t req = NULL;
1358 size_t len = 0;
1359 int priv = 0;
1360
1361 #ifdef __NetBSD__
1362 if (l == 0 || kauth_authorize_generic(l->l_cred,
1363 KAUTH_GENERIC_ISSUSER, &l->l_acflag))
1364 priv = 0;
1365 else
1366 priv = 1;
1367 #else
1368 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1369 #endif
1370 if (m) {
1371 req = mtod(m, caddr_t);
1372 len = m->m_len;
1373 }
1374 error = ipsec4_set_policy(inp, optname, req, len, priv);
1375 break;
1376 }
1377 #endif /*IPSEC*/
1378
1379 default:
1380 error = ENOPROTOOPT;
1381 break;
1382 }
1383 if (m)
1384 (void)m_free(m);
1385 break;
1386
1387 case PRCO_GETOPT:
1388 switch (optname) {
1389 case IP_OPTIONS:
1390 case IP_RETOPTS:
1391 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1392 MCLAIM(m, so->so_mowner);
1393 if (inp->inp_options) {
1394 m->m_len = inp->inp_options->m_len;
1395 bcopy(mtod(inp->inp_options, caddr_t),
1396 mtod(m, caddr_t), (unsigned)m->m_len);
1397 } else
1398 m->m_len = 0;
1399 break;
1400
1401 case IP_TOS:
1402 case IP_TTL:
1403 case IP_RECVOPTS:
1404 case IP_RECVRETOPTS:
1405 case IP_RECVDSTADDR:
1406 case IP_RECVIF:
1407 case IP_ERRORMTU:
1408 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1409 MCLAIM(m, so->so_mowner);
1410 m->m_len = sizeof(int);
1411 switch (optname) {
1412
1413 case IP_TOS:
1414 optval = inp->inp_ip.ip_tos;
1415 break;
1416
1417 case IP_TTL:
1418 optval = inp->inp_ip.ip_ttl;
1419 break;
1420
1421 case IP_ERRORMTU:
1422 optval = inp->inp_errormtu;
1423 break;
1424
1425 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1426
1427 case IP_RECVOPTS:
1428 optval = OPTBIT(INP_RECVOPTS);
1429 break;
1430
1431 case IP_RECVRETOPTS:
1432 optval = OPTBIT(INP_RECVRETOPTS);
1433 break;
1434
1435 case IP_RECVDSTADDR:
1436 optval = OPTBIT(INP_RECVDSTADDR);
1437 break;
1438
1439 case IP_RECVIF:
1440 optval = OPTBIT(INP_RECVIF);
1441 break;
1442 }
1443 *mtod(m, int *) = optval;
1444 break;
1445
1446 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1447 /* XXX: code broken */
1448 case IP_IPSEC_POLICY:
1449 {
1450 caddr_t req = NULL;
1451 size_t len = 0;
1452
1453 if (m) {
1454 req = mtod(m, caddr_t);
1455 len = m->m_len;
1456 }
1457 error = ipsec4_get_policy(inp, req, len, mp);
1458 break;
1459 }
1460 #endif /*IPSEC*/
1461
1462 case IP_MULTICAST_IF:
1463 case IP_MULTICAST_TTL:
1464 case IP_MULTICAST_LOOP:
1465 case IP_ADD_MEMBERSHIP:
1466 case IP_DROP_MEMBERSHIP:
1467 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1468 if (*mp)
1469 MCLAIM(*mp, so->so_mowner);
1470 break;
1471
1472 case IP_PORTRANGE:
1473 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1474 MCLAIM(m, so->so_mowner);
1475 m->m_len = sizeof(int);
1476
1477 if (inp->inp_flags & INP_LOWPORT)
1478 optval = IP_PORTRANGE_LOW;
1479 else
1480 optval = IP_PORTRANGE_DEFAULT;
1481
1482 *mtod(m, int *) = optval;
1483 break;
1484
1485 default:
1486 error = ENOPROTOOPT;
1487 break;
1488 }
1489 break;
1490 }
1491 return (error);
1492 }
1493
1494 /*
1495 * Set up IP options in pcb for insertion in output packets.
1496 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1497 * with destination address if source routed.
1498 */
1499 int
1500 #ifdef notyet
1501 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1502 #else
1503 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1504 #endif
1505 {
1506 int cnt, optlen;
1507 u_char *cp;
1508 u_char opt;
1509
1510 /* turn off any old options */
1511 if (*pcbopt)
1512 (void)m_free(*pcbopt);
1513 *pcbopt = 0;
1514 if (m == (struct mbuf *)0 || m->m_len == 0) {
1515 /*
1516 * Only turning off any previous options.
1517 */
1518 if (m)
1519 (void)m_free(m);
1520 return (0);
1521 }
1522
1523 #ifndef __vax__
1524 if (m->m_len % sizeof(int32_t))
1525 goto bad;
1526 #endif
1527 /*
1528 * IP first-hop destination address will be stored before
1529 * actual options; move other options back
1530 * and clear it when none present.
1531 */
1532 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1533 goto bad;
1534 cnt = m->m_len;
1535 m->m_len += sizeof(struct in_addr);
1536 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1537 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1538 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1539
1540 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1541 opt = cp[IPOPT_OPTVAL];
1542 if (opt == IPOPT_EOL)
1543 break;
1544 if (opt == IPOPT_NOP)
1545 optlen = 1;
1546 else {
1547 if (cnt < IPOPT_OLEN + sizeof(*cp))
1548 goto bad;
1549 optlen = cp[IPOPT_OLEN];
1550 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1551 goto bad;
1552 }
1553 switch (opt) {
1554
1555 default:
1556 break;
1557
1558 case IPOPT_LSRR:
1559 case IPOPT_SSRR:
1560 /*
1561 * user process specifies route as:
1562 * ->A->B->C->D
1563 * D must be our final destination (but we can't
1564 * check that since we may not have connected yet).
1565 * A is first hop destination, which doesn't appear in
1566 * actual IP option, but is stored before the options.
1567 */
1568 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1569 goto bad;
1570 m->m_len -= sizeof(struct in_addr);
1571 cnt -= sizeof(struct in_addr);
1572 optlen -= sizeof(struct in_addr);
1573 cp[IPOPT_OLEN] = optlen;
1574 /*
1575 * Move first hop before start of options.
1576 */
1577 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1578 sizeof(struct in_addr));
1579 /*
1580 * Then copy rest of options back
1581 * to close up the deleted entry.
1582 */
1583 (void)memmove(&cp[IPOPT_OFFSET+1],
1584 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1585 (unsigned)cnt - (IPOPT_MINOFF - 1));
1586 break;
1587 }
1588 }
1589 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1590 goto bad;
1591 *pcbopt = m;
1592 return (0);
1593
1594 bad:
1595 (void)m_free(m);
1596 return (EINVAL);
1597 }
1598
1599 /*
1600 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1601 */
1602 static struct ifnet *
1603 ip_multicast_if(struct in_addr *a, int *ifindexp)
1604 {
1605 int ifindex;
1606 struct ifnet *ifp = NULL;
1607 struct in_ifaddr *ia;
1608
1609 if (ifindexp)
1610 *ifindexp = 0;
1611 if (ntohl(a->s_addr) >> 24 == 0) {
1612 ifindex = ntohl(a->s_addr) & 0xffffff;
1613 if (ifindex < 0 || if_indexlim <= ifindex)
1614 return NULL;
1615 ifp = ifindex2ifnet[ifindex];
1616 if (!ifp)
1617 return NULL;
1618 if (ifindexp)
1619 *ifindexp = ifindex;
1620 } else {
1621 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1622 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1623 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1624 ifp = ia->ia_ifp;
1625 break;
1626 }
1627 }
1628 }
1629 return ifp;
1630 }
1631
1632 static int
1633 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1634 {
1635 u_int tval;
1636
1637 if (m == NULL)
1638 return EINVAL;
1639
1640 switch (m->m_len) {
1641 case sizeof(u_char):
1642 tval = *(mtod(m, u_char *));
1643 break;
1644 case sizeof(u_int):
1645 tval = *(mtod(m, u_int *));
1646 break;
1647 default:
1648 return EINVAL;
1649 }
1650
1651 if (tval > maxval)
1652 return EINVAL;
1653
1654 *val = tval;
1655 return 0;
1656 }
1657
1658 /*
1659 * Set the IP multicast options in response to user setsockopt().
1660 */
1661 int
1662 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1663 {
1664 int error = 0;
1665 int i;
1666 struct in_addr addr;
1667 struct ip_mreq *mreq;
1668 struct ifnet *ifp;
1669 struct ip_moptions *imo = *imop;
1670 struct route ro;
1671 struct sockaddr_in *dst;
1672 int ifindex;
1673
1674 if (imo == NULL) {
1675 /*
1676 * No multicast option buffer attached to the pcb;
1677 * allocate one and initialize to default values.
1678 */
1679 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1680 M_WAITOK);
1681
1682 if (imo == NULL)
1683 return (ENOBUFS);
1684 *imop = imo;
1685 imo->imo_multicast_ifp = NULL;
1686 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1687 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1688 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1689 imo->imo_num_memberships = 0;
1690 }
1691
1692 switch (optname) {
1693
1694 case IP_MULTICAST_IF:
1695 /*
1696 * Select the interface for outgoing multicast packets.
1697 */
1698 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1699 error = EINVAL;
1700 break;
1701 }
1702 addr = *(mtod(m, struct in_addr *));
1703 /*
1704 * INADDR_ANY is used to remove a previous selection.
1705 * When no interface is selected, a default one is
1706 * chosen every time a multicast packet is sent.
1707 */
1708 if (in_nullhost(addr)) {
1709 imo->imo_multicast_ifp = NULL;
1710 break;
1711 }
1712 /*
1713 * The selected interface is identified by its local
1714 * IP address. Find the interface and confirm that
1715 * it supports multicasting.
1716 */
1717 ifp = ip_multicast_if(&addr, &ifindex);
1718 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1719 error = EADDRNOTAVAIL;
1720 break;
1721 }
1722 imo->imo_multicast_ifp = ifp;
1723 if (ifindex)
1724 imo->imo_multicast_addr = addr;
1725 else
1726 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1727 break;
1728
1729 case IP_MULTICAST_TTL:
1730 /*
1731 * Set the IP time-to-live for outgoing multicast packets.
1732 */
1733 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1734 break;
1735
1736 case IP_MULTICAST_LOOP:
1737 /*
1738 * Set the loopback flag for outgoing multicast packets.
1739 * Must be zero or one.
1740 */
1741 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1742 break;
1743
1744 case IP_ADD_MEMBERSHIP:
1745 /*
1746 * Add a multicast group membership.
1747 * Group must be a valid IP multicast address.
1748 */
1749 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1750 error = EINVAL;
1751 break;
1752 }
1753 mreq = mtod(m, struct ip_mreq *);
1754 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1755 error = EINVAL;
1756 break;
1757 }
1758 /*
1759 * If no interface address was provided, use the interface of
1760 * the route to the given multicast address.
1761 */
1762 if (in_nullhost(mreq->imr_interface)) {
1763 bzero((caddr_t)&ro, sizeof(ro));
1764 dst = satosin(&ro.ro_dst);
1765 dst->sin_len = sizeof(*dst);
1766 dst->sin_family = AF_INET;
1767 dst->sin_addr = mreq->imr_multiaddr;
1768 rtcache_init(&ro);
1769 if (ro.ro_rt == NULL) {
1770 error = EADDRNOTAVAIL;
1771 break;
1772 }
1773 ifp = ro.ro_rt->rt_ifp;
1774 rtcache_free(&ro);
1775 } else {
1776 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1777 }
1778 /*
1779 * See if we found an interface, and confirm that it
1780 * supports multicast.
1781 */
1782 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1783 error = EADDRNOTAVAIL;
1784 break;
1785 }
1786 /*
1787 * See if the membership already exists or if all the
1788 * membership slots are full.
1789 */
1790 for (i = 0; i < imo->imo_num_memberships; ++i) {
1791 if (imo->imo_membership[i]->inm_ifp == ifp &&
1792 in_hosteq(imo->imo_membership[i]->inm_addr,
1793 mreq->imr_multiaddr))
1794 break;
1795 }
1796 if (i < imo->imo_num_memberships) {
1797 error = EADDRINUSE;
1798 break;
1799 }
1800 if (i == IP_MAX_MEMBERSHIPS) {
1801 error = ETOOMANYREFS;
1802 break;
1803 }
1804 /*
1805 * Everything looks good; add a new record to the multicast
1806 * address list for the given interface.
1807 */
1808 if ((imo->imo_membership[i] =
1809 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1810 error = ENOBUFS;
1811 break;
1812 }
1813 ++imo->imo_num_memberships;
1814 break;
1815
1816 case IP_DROP_MEMBERSHIP:
1817 /*
1818 * Drop a multicast group membership.
1819 * Group must be a valid IP multicast address.
1820 */
1821 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1822 error = EINVAL;
1823 break;
1824 }
1825 mreq = mtod(m, struct ip_mreq *);
1826 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1827 error = EINVAL;
1828 break;
1829 }
1830 /*
1831 * If an interface address was specified, get a pointer
1832 * to its ifnet structure.
1833 */
1834 if (in_nullhost(mreq->imr_interface))
1835 ifp = NULL;
1836 else {
1837 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1838 if (ifp == NULL) {
1839 error = EADDRNOTAVAIL;
1840 break;
1841 }
1842 }
1843 /*
1844 * Find the membership in the membership array.
1845 */
1846 for (i = 0; i < imo->imo_num_memberships; ++i) {
1847 if ((ifp == NULL ||
1848 imo->imo_membership[i]->inm_ifp == ifp) &&
1849 in_hosteq(imo->imo_membership[i]->inm_addr,
1850 mreq->imr_multiaddr))
1851 break;
1852 }
1853 if (i == imo->imo_num_memberships) {
1854 error = EADDRNOTAVAIL;
1855 break;
1856 }
1857 /*
1858 * Give up the multicast address record to which the
1859 * membership points.
1860 */
1861 in_delmulti(imo->imo_membership[i]);
1862 /*
1863 * Remove the gap in the membership array.
1864 */
1865 for (++i; i < imo->imo_num_memberships; ++i)
1866 imo->imo_membership[i-1] = imo->imo_membership[i];
1867 --imo->imo_num_memberships;
1868 break;
1869
1870 default:
1871 error = EOPNOTSUPP;
1872 break;
1873 }
1874
1875 /*
1876 * If all options have default values, no need to keep the mbuf.
1877 */
1878 if (imo->imo_multicast_ifp == NULL &&
1879 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1880 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1881 imo->imo_num_memberships == 0) {
1882 free(*imop, M_IPMOPTS);
1883 *imop = NULL;
1884 }
1885
1886 return (error);
1887 }
1888
1889 /*
1890 * Return the IP multicast options in response to user getsockopt().
1891 */
1892 int
1893 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1894 {
1895 u_char *ttl;
1896 u_char *loop;
1897 struct in_addr *addr;
1898 struct in_ifaddr *ia;
1899
1900 *mp = m_get(M_WAIT, MT_SOOPTS);
1901
1902 switch (optname) {
1903
1904 case IP_MULTICAST_IF:
1905 addr = mtod(*mp, struct in_addr *);
1906 (*mp)->m_len = sizeof(struct in_addr);
1907 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1908 *addr = zeroin_addr;
1909 else if (imo->imo_multicast_addr.s_addr) {
1910 /* return the value user has set */
1911 *addr = imo->imo_multicast_addr;
1912 } else {
1913 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1914 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1915 }
1916 return (0);
1917
1918 case IP_MULTICAST_TTL:
1919 ttl = mtod(*mp, u_char *);
1920 (*mp)->m_len = 1;
1921 *ttl = imo ? imo->imo_multicast_ttl
1922 : IP_DEFAULT_MULTICAST_TTL;
1923 return (0);
1924
1925 case IP_MULTICAST_LOOP:
1926 loop = mtod(*mp, u_char *);
1927 (*mp)->m_len = 1;
1928 *loop = imo ? imo->imo_multicast_loop
1929 : IP_DEFAULT_MULTICAST_LOOP;
1930 return (0);
1931
1932 default:
1933 return (EOPNOTSUPP);
1934 }
1935 }
1936
1937 /*
1938 * Discard the IP multicast options.
1939 */
1940 void
1941 ip_freemoptions(struct ip_moptions *imo)
1942 {
1943 int i;
1944
1945 if (imo != NULL) {
1946 for (i = 0; i < imo->imo_num_memberships; ++i)
1947 in_delmulti(imo->imo_membership[i]);
1948 free(imo, M_IPMOPTS);
1949 }
1950 }
1951
1952 /*
1953 * Routine called from ip_output() to loop back a copy of an IP multicast
1954 * packet to the input queue of a specified interface. Note that this
1955 * calls the output routine of the loopback "driver", but with an interface
1956 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1957 */
1958 static void
1959 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1960 {
1961 struct ip *ip;
1962 struct mbuf *copym;
1963
1964 copym = m_copy(m, 0, M_COPYALL);
1965 if (copym != NULL
1966 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1967 copym = m_pullup(copym, sizeof(struct ip));
1968 if (copym != NULL) {
1969 /*
1970 * We don't bother to fragment if the IP length is greater
1971 * than the interface's MTU. Can this possibly matter?
1972 */
1973 ip = mtod(copym, struct ip *);
1974
1975 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1976 in_delayed_cksum(copym);
1977 copym->m_pkthdr.csum_flags &=
1978 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1979 }
1980
1981 ip->ip_sum = 0;
1982 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1983 (void) looutput(ifp, copym, sintosa(dst), NULL);
1984 }
1985 }
1986