Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.179
      1 /*	$NetBSD: ip_output.c,v 1.179 2007/03/04 06:03:21 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.179 2007/03/04 06:03:21 christos Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #include <sys/kauth.h>
    116 #ifdef FAST_IPSEC
    117 #include <sys/domain.h>
    118 #endif
    119 #include <sys/systm.h>
    120 #include <sys/proc.h>
    121 
    122 #include <net/if.h>
    123 #include <net/route.h>
    124 #include <net/pfil.h>
    125 
    126 #include <netinet/in.h>
    127 #include <netinet/in_systm.h>
    128 #include <netinet/ip.h>
    129 #include <netinet/in_pcb.h>
    130 #include <netinet/in_var.h>
    131 #include <netinet/ip_var.h>
    132 #include <netinet/in_offload.h>
    133 
    134 #ifdef MROUTING
    135 #include <netinet/ip_mroute.h>
    136 #endif
    137 
    138 #include <machine/stdarg.h>
    139 
    140 #ifdef IPSEC
    141 #include <netinet6/ipsec.h>
    142 #include <netkey/key.h>
    143 #include <netkey/key_debug.h>
    144 #endif /*IPSEC*/
    145 
    146 #ifdef FAST_IPSEC
    147 #include <netipsec/ipsec.h>
    148 #include <netipsec/key.h>
    149 #include <netipsec/xform.h>
    150 #endif	/* FAST_IPSEC*/
    151 
    152 #ifdef IPSEC_NAT_T
    153 #include <netinet/udp.h>
    154 #endif
    155 
    156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
    159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
    160 
    161 #ifdef PFIL_HOOKS
    162 extern struct pfil_head inet_pfil_hook;			/* XXX */
    163 #endif
    164 
    165 int	ip_do_loopback_cksum = 0;
    166 
    167 #define	IN_NEED_CHECKSUM(ifp, csum_flags) \
    168 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    169 	(((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
    170 	(((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
    171 	(((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
    172 
    173 /*
    174  * IP output.  The packet in mbuf chain m contains a skeletal IP
    175  * header (with len, off, ttl, proto, tos, src, dst).
    176  * The mbuf chain containing the packet will be freed.
    177  * The mbuf opt, if present, will not be freed.
    178  */
    179 int
    180 ip_output(struct mbuf *m0, ...)
    181 {
    182 	struct ip *ip;
    183 	struct ifnet *ifp;
    184 	struct mbuf *m = m0;
    185 	int hlen = sizeof (struct ip);
    186 	int len, error = 0;
    187 	struct route iproute;
    188 	struct sockaddr_in *dst;
    189 	struct in_ifaddr *ia;
    190 	struct ifaddr *xifa;
    191 	struct mbuf *opt;
    192 	struct route *ro;
    193 	int flags, sw_csum;
    194 	int *mtu_p;
    195 	u_long mtu;
    196 	struct ip_moptions *imo;
    197 	struct socket *so;
    198 	va_list ap;
    199 #ifdef IPSEC_NAT_T
    200 	int natt_frag = 0;
    201 #endif
    202 #ifdef IPSEC
    203 	struct secpolicy *sp = NULL;
    204 #endif /*IPSEC*/
    205 #ifdef FAST_IPSEC
    206 	struct inpcb *inp;
    207 	struct m_tag *mtag;
    208 	struct secpolicy *sp = NULL;
    209 	struct tdb_ident *tdbi;
    210 	int s;
    211 #endif
    212 	u_int16_t ip_len;
    213 
    214 	len = 0;
    215 	va_start(ap, m0);
    216 	opt = va_arg(ap, struct mbuf *);
    217 	ro = va_arg(ap, struct route *);
    218 	flags = va_arg(ap, int);
    219 	imo = va_arg(ap, struct ip_moptions *);
    220 	so = va_arg(ap, struct socket *);
    221 	if (flags & IP_RETURNMTU)
    222 		mtu_p = va_arg(ap, int *);
    223 	else
    224 		mtu_p = NULL;
    225 	va_end(ap);
    226 
    227 	MCLAIM(m, &ip_tx_mowner);
    228 #ifdef FAST_IPSEC
    229 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    230 		inp = (struct inpcb *)so->so_pcb;
    231 	else
    232 		inp = NULL;
    233 #endif /* FAST_IPSEC */
    234 
    235 #ifdef	DIAGNOSTIC
    236 	if ((m->m_flags & M_PKTHDR) == 0)
    237 		panic("ip_output: no HDR");
    238 
    239 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    240 		panic("ip_output: IPv6 checksum offload flags: %d",
    241 		    m->m_pkthdr.csum_flags);
    242 	}
    243 
    244 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    245 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    246 		panic("ip_output: conflicting checksum offload flags: %d",
    247 		    m->m_pkthdr.csum_flags);
    248 	}
    249 #endif
    250 	if (opt) {
    251 		m = ip_insertoptions(m, opt, &len);
    252 		if (len >= sizeof(struct ip))
    253 			hlen = len;
    254 	}
    255 	ip = mtod(m, struct ip *);
    256 	/*
    257 	 * Fill in IP header.
    258 	 */
    259 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    260 		ip->ip_v = IPVERSION;
    261 		ip->ip_off = htons(0);
    262 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    263 			ip->ip_id = ip_newid();
    264 		} else {
    265 
    266 			/*
    267 			 * TSO capable interfaces (typically?) increment
    268 			 * ip_id for each segment.
    269 			 * "allocate" enough ids here to increase the chance
    270 			 * for them to be unique.
    271 			 *
    272 			 * note that the following calculation is not
    273 			 * needed to be precise.  wasting some ip_id is fine.
    274 			 */
    275 
    276 			unsigned int segsz = m->m_pkthdr.segsz;
    277 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    278 			unsigned int num = howmany(datasz, segsz);
    279 
    280 			ip->ip_id = ip_newid_range(num);
    281 		}
    282 		ip->ip_hl = hlen >> 2;
    283 		ipstat.ips_localout++;
    284 	} else {
    285 		hlen = ip->ip_hl << 2;
    286 	}
    287 	/*
    288 	 * Route packet.
    289 	 */
    290 	memset(&iproute, 0, sizeof(iproute));
    291 	if (ro == NULL)
    292 		ro = &iproute;
    293 	dst = satosin(&ro->ro_dst);
    294 	/*
    295 	 * If there is a cached route,
    296 	 * check that it is to the same destination
    297 	 * and is still up.  If not, free it and try again.
    298 	 * The address family should also be checked in case of sharing the
    299 	 * cache with IPv6.
    300 	 */
    301 	if (dst->sin_family != AF_INET || !in_hosteq(dst->sin_addr, ip->ip_dst))
    302 		rtcache_free(ro);
    303 	else
    304 		rtcache_check(ro);
    305 	if (ro->ro_rt == NULL) {
    306 		memset(dst, 0, sizeof(*dst));
    307 		dst->sin_family = AF_INET;
    308 		dst->sin_len = sizeof(*dst);
    309 		dst->sin_addr = ip->ip_dst;
    310 	}
    311 	/*
    312 	 * If routing to interface only,
    313 	 * short circuit routing lookup.
    314 	 */
    315 	if (flags & IP_ROUTETOIF) {
    316 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    317 			ipstat.ips_noroute++;
    318 			error = ENETUNREACH;
    319 			goto bad;
    320 		}
    321 		ifp = ia->ia_ifp;
    322 		mtu = ifp->if_mtu;
    323 		ip->ip_ttl = 1;
    324 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    325 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    326 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    327 		ifp = imo->imo_multicast_ifp;
    328 		mtu = ifp->if_mtu;
    329 		IFP_TO_IA(ifp, ia);
    330 	} else {
    331 		if (ro->ro_rt == NULL)
    332 			rtcache_init(ro);
    333 		if (ro->ro_rt == NULL) {
    334 			ipstat.ips_noroute++;
    335 			error = EHOSTUNREACH;
    336 			goto bad;
    337 		}
    338 		ia = ifatoia(ro->ro_rt->rt_ifa);
    339 		ifp = ro->ro_rt->rt_ifp;
    340 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    341 			mtu = ifp->if_mtu;
    342 		ro->ro_rt->rt_use++;
    343 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    344 			dst = satosin(ro->ro_rt->rt_gateway);
    345 	}
    346 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    347 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    348 		struct in_multi *inm;
    349 
    350 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    351 			M_BCAST : M_MCAST;
    352 		/*
    353 		 * IP destination address is multicast.  Make sure "dst"
    354 		 * still points to the address in "ro".  (It may have been
    355 		 * changed to point to a gateway address, above.)
    356 		 */
    357 		dst = satosin(&ro->ro_dst);
    358 		/*
    359 		 * See if the caller provided any multicast options
    360 		 */
    361 		if (imo != NULL)
    362 			ip->ip_ttl = imo->imo_multicast_ttl;
    363 		else
    364 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    365 
    366 		/*
    367 		 * if we don't know the outgoing ifp yet, we can't generate
    368 		 * output
    369 		 */
    370 		if (!ifp) {
    371 			ipstat.ips_noroute++;
    372 			error = ENETUNREACH;
    373 			goto bad;
    374 		}
    375 
    376 		/*
    377 		 * If the packet is multicast or broadcast, confirm that
    378 		 * the outgoing interface can transmit it.
    379 		 */
    380 		if (((m->m_flags & M_MCAST) &&
    381 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    382 		    ((m->m_flags & M_BCAST) &&
    383 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    384 			ipstat.ips_noroute++;
    385 			error = ENETUNREACH;
    386 			goto bad;
    387 		}
    388 		/*
    389 		 * If source address not specified yet, use an address
    390 		 * of outgoing interface.
    391 		 */
    392 		if (in_nullhost(ip->ip_src)) {
    393 			struct in_ifaddr *xia;
    394 
    395 			IFP_TO_IA(ifp, xia);
    396 			if (!xia) {
    397 				error = EADDRNOTAVAIL;
    398 				goto bad;
    399 			}
    400 			xifa = &xia->ia_ifa;
    401 			if (xifa->ifa_getifa != NULL) {
    402 				xia = ifatoia((*xifa->ifa_getifa)(xifa,
    403 				    rtcache_getdst(ro)));
    404 			}
    405 			ip->ip_src = xia->ia_addr.sin_addr;
    406 		}
    407 
    408 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    409 		if (inm != NULL &&
    410 		   (imo == NULL || imo->imo_multicast_loop)) {
    411 			/*
    412 			 * If we belong to the destination multicast group
    413 			 * on the outgoing interface, and the caller did not
    414 			 * forbid loopback, loop back a copy.
    415 			 */
    416 			ip_mloopback(ifp, m, dst);
    417 		}
    418 #ifdef MROUTING
    419 		else {
    420 			/*
    421 			 * If we are acting as a multicast router, perform
    422 			 * multicast forwarding as if the packet had just
    423 			 * arrived on the interface to which we are about
    424 			 * to send.  The multicast forwarding function
    425 			 * recursively calls this function, using the
    426 			 * IP_FORWARDING flag to prevent infinite recursion.
    427 			 *
    428 			 * Multicasts that are looped back by ip_mloopback(),
    429 			 * above, will be forwarded by the ip_input() routine,
    430 			 * if necessary.
    431 			 */
    432 			extern struct socket *ip_mrouter;
    433 
    434 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    435 				if (ip_mforward(m, ifp) != 0) {
    436 					m_freem(m);
    437 					goto done;
    438 				}
    439 			}
    440 		}
    441 #endif
    442 		/*
    443 		 * Multicasts with a time-to-live of zero may be looped-
    444 		 * back, above, but must not be transmitted on a network.
    445 		 * Also, multicasts addressed to the loopback interface
    446 		 * are not sent -- the above call to ip_mloopback() will
    447 		 * loop back a copy if this host actually belongs to the
    448 		 * destination group on the loopback interface.
    449 		 */
    450 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    451 			m_freem(m);
    452 			goto done;
    453 		}
    454 
    455 		goto sendit;
    456 	}
    457 	/*
    458 	 * If source address not specified yet, use address
    459 	 * of outgoing interface.
    460 	 */
    461 	if (in_nullhost(ip->ip_src)) {
    462 		xifa = &ia->ia_ifa;
    463 		if (xifa->ifa_getifa != NULL)
    464 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rtcache_getdst(ro)));
    465 		ip->ip_src = ia->ia_addr.sin_addr;
    466 	}
    467 
    468 	/*
    469 	 * packets with Class-D address as source are not valid per
    470 	 * RFC 1112
    471 	 */
    472 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    473 		ipstat.ips_odropped++;
    474 		error = EADDRNOTAVAIL;
    475 		goto bad;
    476 	}
    477 
    478 	/*
    479 	 * Look for broadcast address and
    480 	 * and verify user is allowed to send
    481 	 * such a packet.
    482 	 */
    483 	if (in_broadcast(dst->sin_addr, ifp)) {
    484 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    485 			error = EADDRNOTAVAIL;
    486 			goto bad;
    487 		}
    488 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    489 			error = EACCES;
    490 			goto bad;
    491 		}
    492 		/* don't allow broadcast messages to be fragmented */
    493 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    494 			error = EMSGSIZE;
    495 			goto bad;
    496 		}
    497 		m->m_flags |= M_BCAST;
    498 	} else
    499 		m->m_flags &= ~M_BCAST;
    500 
    501 sendit:
    502 	/*
    503 	 * If we're doing Path MTU Discovery, we need to set DF unless
    504 	 * the route's MTU is locked.
    505 	 */
    506 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    507 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    508 		ip->ip_off |= htons(IP_DF);
    509 
    510 	/* Remember the current ip_len */
    511 	ip_len = ntohs(ip->ip_len);
    512 
    513 #ifdef IPSEC
    514 	/* get SP for this packet */
    515 	if (so == NULL)
    516 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    517 		    flags, &error);
    518 	else {
    519 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    520 					 IPSEC_DIR_OUTBOUND))
    521 			goto skip_ipsec;
    522 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    523 	}
    524 
    525 	if (sp == NULL) {
    526 		ipsecstat.out_inval++;
    527 		goto bad;
    528 	}
    529 
    530 	error = 0;
    531 
    532 	/* check policy */
    533 	switch (sp->policy) {
    534 	case IPSEC_POLICY_DISCARD:
    535 		/*
    536 		 * This packet is just discarded.
    537 		 */
    538 		ipsecstat.out_polvio++;
    539 		goto bad;
    540 
    541 	case IPSEC_POLICY_BYPASS:
    542 	case IPSEC_POLICY_NONE:
    543 		/* no need to do IPsec. */
    544 		goto skip_ipsec;
    545 
    546 	case IPSEC_POLICY_IPSEC:
    547 		if (sp->req == NULL) {
    548 			/* XXX should be panic ? */
    549 			printf("ip_output: No IPsec request specified.\n");
    550 			error = EINVAL;
    551 			goto bad;
    552 		}
    553 		break;
    554 
    555 	case IPSEC_POLICY_ENTRUST:
    556 	default:
    557 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    558 	}
    559 
    560 #ifdef IPSEC_NAT_T
    561 	/*
    562 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    563 	 * we'll do it on each fragmented packet.
    564 	 */
    565 	if (sp->req->sav &&
    566 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    567 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    568 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    569 			natt_frag = 1;
    570 			mtu = sp->req->sav->esp_frag;
    571 			goto skip_ipsec;
    572 		}
    573 	}
    574 #endif /* IPSEC_NAT_T */
    575 
    576 	/*
    577 	 * ipsec4_output() expects ip_len and ip_off in network
    578 	 * order.  They have been set to network order above.
    579 	 */
    580 
    581     {
    582 	struct ipsec_output_state state;
    583 	bzero(&state, sizeof(state));
    584 	state.m = m;
    585 	if (flags & IP_ROUTETOIF) {
    586 		state.ro = &iproute;
    587 		memset(&iproute, 0, sizeof(iproute));
    588 	} else
    589 		state.ro = ro;
    590 	state.dst = (struct sockaddr *)dst;
    591 
    592 	/*
    593 	 * We can't defer the checksum of payload data if
    594 	 * we're about to encrypt/authenticate it.
    595 	 *
    596 	 * XXX When we support crypto offloading functions of
    597 	 * XXX network interfaces, we need to reconsider this,
    598 	 * XXX since it's likely that they'll support checksumming,
    599 	 * XXX as well.
    600 	 */
    601 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    602 		in_delayed_cksum(m);
    603 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    604 	}
    605 
    606 	error = ipsec4_output(&state, sp, flags);
    607 
    608 	m = state.m;
    609 	if (flags & IP_ROUTETOIF) {
    610 		/*
    611 		 * if we have tunnel mode SA, we may need to ignore
    612 		 * IP_ROUTETOIF.
    613 		 */
    614 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    615 			flags &= ~IP_ROUTETOIF;
    616 			ro = state.ro;
    617 		}
    618 	} else
    619 		ro = state.ro;
    620 	dst = (struct sockaddr_in *)state.dst;
    621 	if (error) {
    622 		/* mbuf is already reclaimed in ipsec4_output. */
    623 		m0 = NULL;
    624 		switch (error) {
    625 		case EHOSTUNREACH:
    626 		case ENETUNREACH:
    627 		case EMSGSIZE:
    628 		case ENOBUFS:
    629 		case ENOMEM:
    630 			break;
    631 		default:
    632 			printf("ip4_output (ipsec): error code %d\n", error);
    633 			/*fall through*/
    634 		case ENOENT:
    635 			/* don't show these error codes to the user */
    636 			error = 0;
    637 			break;
    638 		}
    639 		goto bad;
    640 	}
    641 
    642 	/* be sure to update variables that are affected by ipsec4_output() */
    643 	ip = mtod(m, struct ip *);
    644 	hlen = ip->ip_hl << 2;
    645 	ip_len = ntohs(ip->ip_len);
    646 
    647 	if (ro->ro_rt == NULL) {
    648 		if ((flags & IP_ROUTETOIF) == 0) {
    649 			printf("ip_output: "
    650 				"can't update route after IPsec processing\n");
    651 			error = EHOSTUNREACH;	/*XXX*/
    652 			goto bad;
    653 		}
    654 	} else {
    655 		/* nobody uses ia beyond here */
    656 		if (state.encap) {
    657 			ifp = ro->ro_rt->rt_ifp;
    658 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    659 				mtu = ifp->if_mtu;
    660 		}
    661 	}
    662     }
    663 skip_ipsec:
    664 #endif /*IPSEC*/
    665 #ifdef FAST_IPSEC
    666 	/*
    667 	 * Check the security policy (SP) for the packet and, if
    668 	 * required, do IPsec-related processing.  There are two
    669 	 * cases here; the first time a packet is sent through
    670 	 * it will be untagged and handled by ipsec4_checkpolicy.
    671 	 * If the packet is resubmitted to ip_output (e.g. after
    672 	 * AH, ESP, etc. processing), there will be a tag to bypass
    673 	 * the lookup and related policy checking.
    674 	 */
    675 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    676 	s = splsoftnet();
    677 	if (mtag != NULL) {
    678 		tdbi = (struct tdb_ident *)(mtag + 1);
    679 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    680 		if (sp == NULL)
    681 			error = -EINVAL;	/* force silent drop */
    682 		m_tag_delete(m, mtag);
    683 	} else {
    684 		if (inp != NULL &&
    685 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    686 			goto spd_done;
    687 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    688 					&error, inp);
    689 	}
    690 	/*
    691 	 * There are four return cases:
    692 	 *    sp != NULL	 	    apply IPsec policy
    693 	 *    sp == NULL, error == 0	    no IPsec handling needed
    694 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    695 	 *    sp == NULL, error != 0	    discard packet, report error
    696 	 */
    697 	if (sp != NULL) {
    698 #ifdef IPSEC_NAT_T
    699 		/*
    700 		 * NAT-T ESP fragmentation: don't do IPSec processing now,
    701 		 * we'll do it on each fragmented packet.
    702 		 */
    703 		if (sp->req->sav &&
    704 		    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    705 		     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    706 			if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    707 				natt_frag = 1;
    708 				mtu = sp->req->sav->esp_frag;
    709 				goto spd_done;
    710 			}
    711 		}
    712 #endif /* IPSEC_NAT_T */
    713 		/* Loop detection, check if ipsec processing already done */
    714 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    715 		for (mtag = m_tag_first(m); mtag != NULL;
    716 		     mtag = m_tag_next(m, mtag)) {
    717 #ifdef MTAG_ABI_COMPAT
    718 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    719 				continue;
    720 #endif
    721 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    722 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    723 				continue;
    724 			/*
    725 			 * Check if policy has an SA associated with it.
    726 			 * This can happen when an SP has yet to acquire
    727 			 * an SA; e.g. on first reference.  If it occurs,
    728 			 * then we let ipsec4_process_packet do its thing.
    729 			 */
    730 			if (sp->req->sav == NULL)
    731 				break;
    732 			tdbi = (struct tdb_ident *)(mtag + 1);
    733 			if (tdbi->spi == sp->req->sav->spi &&
    734 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    735 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    736 				 sizeof (union sockaddr_union)) == 0) {
    737 				/*
    738 				 * No IPsec processing is needed, free
    739 				 * reference to SP.
    740 				 *
    741 				 * NB: null pointer to avoid free at
    742 				 *     done: below.
    743 				 */
    744 				KEY_FREESP(&sp), sp = NULL;
    745 				splx(s);
    746 				goto spd_done;
    747 			}
    748 		}
    749 
    750 		/*
    751 		 * Do delayed checksums now because we send before
    752 		 * this is done in the normal processing path.
    753 		 */
    754 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    755 			in_delayed_cksum(m);
    756 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    757 		}
    758 
    759 #ifdef __FreeBSD__
    760 		ip->ip_len = htons(ip->ip_len);
    761 		ip->ip_off = htons(ip->ip_off);
    762 #endif
    763 
    764 		/* NB: callee frees mbuf */
    765 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    766 		/*
    767 		 * Preserve KAME behaviour: ENOENT can be returned
    768 		 * when an SA acquire is in progress.  Don't propagate
    769 		 * this to user-level; it confuses applications.
    770 		 *
    771 		 * XXX this will go away when the SADB is redone.
    772 		 */
    773 		if (error == ENOENT)
    774 			error = 0;
    775 		splx(s);
    776 		goto done;
    777 	} else {
    778 		splx(s);
    779 
    780 		if (error != 0) {
    781 			/*
    782 			 * Hack: -EINVAL is used to signal that a packet
    783 			 * should be silently discarded.  This is typically
    784 			 * because we asked key management for an SA and
    785 			 * it was delayed (e.g. kicked up to IKE).
    786 			 */
    787 			if (error == -EINVAL)
    788 				error = 0;
    789 			goto bad;
    790 		} else {
    791 			/* No IPsec processing for this packet. */
    792 		}
    793 #ifdef notyet
    794 		/*
    795 		 * If deferred crypto processing is needed, check that
    796 		 * the interface supports it.
    797 		 */
    798 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    799 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    800 			/* notify IPsec to do its own crypto */
    801 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    802 			error = EHOSTUNREACH;
    803 			goto bad;
    804 		}
    805 #endif
    806 	}
    807 spd_done:
    808 #endif /* FAST_IPSEC */
    809 
    810 #ifdef PFIL_HOOKS
    811 	/*
    812 	 * Run through list of hooks for output packets.
    813 	 */
    814 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    815 		goto done;
    816 	if (m == NULL)
    817 		goto done;
    818 
    819 	ip = mtod(m, struct ip *);
    820 	hlen = ip->ip_hl << 2;
    821 	ip_len = ntohs(ip->ip_len);
    822 #endif /* PFIL_HOOKS */
    823 
    824 	m->m_pkthdr.csum_data |= hlen << 16;
    825 
    826 #if IFA_STATS
    827 	/*
    828 	 * search for the source address structure to
    829 	 * maintain output statistics.
    830 	 */
    831 	INADDR_TO_IA(ip->ip_src, ia);
    832 #endif
    833 
    834 	/* Maybe skip checksums on loopback interfaces. */
    835 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    836 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    837 	}
    838 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    839 	/*
    840 	 * If small enough for mtu of path, or if using TCP segmentation
    841 	 * offload, can just send directly.
    842 	 */
    843 	if (ip_len <= mtu ||
    844 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    845 #if IFA_STATS
    846 		if (ia)
    847 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    848 #endif
    849 		/*
    850 		 * Always initialize the sum to 0!  Some HW assisted
    851 		 * checksumming requires this.
    852 		 */
    853 		ip->ip_sum = 0;
    854 
    855 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    856 			/*
    857 			 * Perform any checksums that the hardware can't do
    858 			 * for us.
    859 			 *
    860 			 * XXX Does any hardware require the {th,uh}_sum
    861 			 * XXX fields to be 0?
    862 			 */
    863 			if (sw_csum & M_CSUM_IPv4) {
    864 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    865 				ip->ip_sum = in_cksum(m, hlen);
    866 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    867 			}
    868 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    869 				if (IN_NEED_CHECKSUM(ifp,
    870 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    871 					in_delayed_cksum(m);
    872 				}
    873 				m->m_pkthdr.csum_flags &=
    874 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    875 			}
    876 		}
    877 
    878 #ifdef IPSEC
    879 		/* clean ipsec history once it goes out of the node */
    880 		ipsec_delaux(m);
    881 #endif
    882 
    883 		if (__predict_true(
    884 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    885 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    886 			error =
    887 			    (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    888 		} else {
    889 			error =
    890 			    ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
    891 		}
    892 		goto done;
    893 	}
    894 
    895 	/*
    896 	 * We can't use HW checksumming if we're about to
    897 	 * to fragment the packet.
    898 	 *
    899 	 * XXX Some hardware can do this.
    900 	 */
    901 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    902 		if (IN_NEED_CHECKSUM(ifp,
    903 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    904 			in_delayed_cksum(m);
    905 		}
    906 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    907 	}
    908 
    909 	/*
    910 	 * Too large for interface; fragment if possible.
    911 	 * Must be able to put at least 8 bytes per fragment.
    912 	 */
    913 	if (ntohs(ip->ip_off) & IP_DF) {
    914 		if (flags & IP_RETURNMTU)
    915 			*mtu_p = mtu;
    916 		error = EMSGSIZE;
    917 		ipstat.ips_cantfrag++;
    918 		goto bad;
    919 	}
    920 
    921 	error = ip_fragment(m, ifp, mtu);
    922 	if (error) {
    923 		m = NULL;
    924 		goto bad;
    925 	}
    926 
    927 	for (; m; m = m0) {
    928 		m0 = m->m_nextpkt;
    929 		m->m_nextpkt = 0;
    930 		if (error == 0) {
    931 #if IFA_STATS
    932 			if (ia)
    933 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    934 				    ntohs(ip->ip_len);
    935 #endif
    936 #ifdef IPSEC
    937 			/* clean ipsec history once it goes out of the node */
    938 			ipsec_delaux(m);
    939 #endif /* IPSEC */
    940 
    941 #ifdef IPSEC_NAT_T
    942 			/*
    943 			 * If we get there, the packet has not been handeld by
    944 			 * IPSec whereas it should have. Now that it has been
    945 			 * fragmented, re-inject it in ip_output so that IPsec
    946 			 * processing can occur.
    947 			 */
    948 			if (natt_frag) {
    949 				error = ip_output(m, opt,
    950 				    ro, flags, imo, so, mtu_p);
    951 			} else
    952 #endif /* IPSEC_NAT_T */
    953 			{
    954 				KASSERT((m->m_pkthdr.csum_flags &
    955 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    956 				error = (*ifp->if_output)(ifp, m, sintosa(dst),
    957 				    ro->ro_rt);
    958 			}
    959 		} else
    960 			m_freem(m);
    961 	}
    962 
    963 	if (error == 0)
    964 		ipstat.ips_fragmented++;
    965 done:
    966 	rtcache_free(&iproute);
    967 
    968 #ifdef IPSEC
    969 	if (sp != NULL) {
    970 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    971 			printf("DP ip_output call free SP:%p\n", sp));
    972 		key_freesp(sp);
    973 	}
    974 #endif /* IPSEC */
    975 #ifdef FAST_IPSEC
    976 	if (sp != NULL)
    977 		KEY_FREESP(&sp);
    978 #endif /* FAST_IPSEC */
    979 
    980 	return (error);
    981 bad:
    982 	m_freem(m);
    983 	goto done;
    984 }
    985 
    986 int
    987 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    988 {
    989 	struct ip *ip, *mhip;
    990 	struct mbuf *m0;
    991 	int len, hlen, off;
    992 	int mhlen, firstlen;
    993 	struct mbuf **mnext;
    994 	int sw_csum = m->m_pkthdr.csum_flags;
    995 	int fragments = 0;
    996 	int s;
    997 	int error = 0;
    998 
    999 	ip = mtod(m, struct ip *);
   1000 	hlen = ip->ip_hl << 2;
   1001 	if (ifp != NULL)
   1002 		sw_csum &= ~ifp->if_csum_flags_tx;
   1003 
   1004 	len = (mtu - hlen) &~ 7;
   1005 	if (len < 8) {
   1006 		m_freem(m);
   1007 		return (EMSGSIZE);
   1008 	}
   1009 
   1010 	firstlen = len;
   1011 	mnext = &m->m_nextpkt;
   1012 
   1013 	/*
   1014 	 * Loop through length of segment after first fragment,
   1015 	 * make new header and copy data of each part and link onto chain.
   1016 	 */
   1017 	m0 = m;
   1018 	mhlen = sizeof (struct ip);
   1019 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
   1020 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1021 		if (m == 0) {
   1022 			error = ENOBUFS;
   1023 			ipstat.ips_odropped++;
   1024 			goto sendorfree;
   1025 		}
   1026 		MCLAIM(m, m0->m_owner);
   1027 		*mnext = m;
   1028 		mnext = &m->m_nextpkt;
   1029 		m->m_data += max_linkhdr;
   1030 		mhip = mtod(m, struct ip *);
   1031 		*mhip = *ip;
   1032 		/* we must inherit MCAST and BCAST flags */
   1033 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
   1034 		if (hlen > sizeof (struct ip)) {
   1035 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
   1036 			mhip->ip_hl = mhlen >> 2;
   1037 		}
   1038 		m->m_len = mhlen;
   1039 		mhip->ip_off = ((off - hlen) >> 3) +
   1040 		    (ntohs(ip->ip_off) & ~IP_MF);
   1041 		if (ip->ip_off & htons(IP_MF))
   1042 			mhip->ip_off |= IP_MF;
   1043 		if (off + len >= ntohs(ip->ip_len))
   1044 			len = ntohs(ip->ip_len) - off;
   1045 		else
   1046 			mhip->ip_off |= IP_MF;
   1047 		HTONS(mhip->ip_off);
   1048 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
   1049 		m->m_next = m_copy(m0, off, len);
   1050 		if (m->m_next == 0) {
   1051 			error = ENOBUFS;	/* ??? */
   1052 			ipstat.ips_odropped++;
   1053 			goto sendorfree;
   1054 		}
   1055 		m->m_pkthdr.len = mhlen + len;
   1056 		m->m_pkthdr.rcvif = (struct ifnet *)0;
   1057 		mhip->ip_sum = 0;
   1058 		if (sw_csum & M_CSUM_IPv4) {
   1059 			mhip->ip_sum = in_cksum(m, mhlen);
   1060 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1061 		} else {
   1062 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1063 			m->m_pkthdr.csum_data |= mhlen << 16;
   1064 		}
   1065 		ipstat.ips_ofragments++;
   1066 		fragments++;
   1067 	}
   1068 	/*
   1069 	 * Update first fragment by trimming what's been copied out
   1070 	 * and updating header, then send each fragment (in order).
   1071 	 */
   1072 	m = m0;
   1073 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1074 	m->m_pkthdr.len = hlen + firstlen;
   1075 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1076 	ip->ip_off |= htons(IP_MF);
   1077 	ip->ip_sum = 0;
   1078 	if (sw_csum & M_CSUM_IPv4) {
   1079 		ip->ip_sum = in_cksum(m, hlen);
   1080 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1081 	} else {
   1082 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
   1083 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1084 			sizeof(struct ip));
   1085 	}
   1086 sendorfree:
   1087 	/*
   1088 	 * If there is no room for all the fragments, don't queue
   1089 	 * any of them.
   1090 	 */
   1091 	if (ifp != NULL) {
   1092 		s = splnet();
   1093 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1094 		    error == 0) {
   1095 			error = ENOBUFS;
   1096 			ipstat.ips_odropped++;
   1097 			IFQ_INC_DROPS(&ifp->if_snd);
   1098 		}
   1099 		splx(s);
   1100 	}
   1101 	if (error) {
   1102 		for (m = m0; m; m = m0) {
   1103 			m0 = m->m_nextpkt;
   1104 			m->m_nextpkt = NULL;
   1105 			m_freem(m);
   1106 		}
   1107 	}
   1108 	return (error);
   1109 }
   1110 
   1111 /*
   1112  * Process a delayed payload checksum calculation.
   1113  */
   1114 void
   1115 in_delayed_cksum(struct mbuf *m)
   1116 {
   1117 	struct ip *ip;
   1118 	u_int16_t csum, offset;
   1119 
   1120 	ip = mtod(m, struct ip *);
   1121 	offset = ip->ip_hl << 2;
   1122 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1123 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1124 		csum = 0xffff;
   1125 
   1126 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1127 
   1128 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1129 		/* This happen when ip options were inserted
   1130 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1131 		    m->m_len, offset, ip->ip_p);
   1132 		 */
   1133 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
   1134 	} else
   1135 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
   1136 }
   1137 
   1138 /*
   1139  * Determine the maximum length of the options to be inserted;
   1140  * we would far rather allocate too much space rather than too little.
   1141  */
   1142 
   1143 u_int
   1144 ip_optlen(struct inpcb *inp)
   1145 {
   1146 	struct mbuf *m = inp->inp_options;
   1147 
   1148 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1149 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1150 	else
   1151 		return 0;
   1152 }
   1153 
   1154 
   1155 /*
   1156  * Insert IP options into preformed packet.
   1157  * Adjust IP destination as required for IP source routing,
   1158  * as indicated by a non-zero in_addr at the start of the options.
   1159  */
   1160 static struct mbuf *
   1161 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1162 {
   1163 	struct ipoption *p = mtod(opt, struct ipoption *);
   1164 	struct mbuf *n;
   1165 	struct ip *ip = mtod(m, struct ip *);
   1166 	unsigned optlen;
   1167 
   1168 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1169 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1170 		return (m);		/* XXX should fail */
   1171 	if (!in_nullhost(p->ipopt_dst))
   1172 		ip->ip_dst = p->ipopt_dst;
   1173 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1174 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1175 		if (n == 0)
   1176 			return (m);
   1177 		MCLAIM(n, m->m_owner);
   1178 		M_MOVE_PKTHDR(n, m);
   1179 		m->m_len -= sizeof(struct ip);
   1180 		m->m_data += sizeof(struct ip);
   1181 		n->m_next = m;
   1182 		m = n;
   1183 		m->m_len = optlen + sizeof(struct ip);
   1184 		m->m_data += max_linkhdr;
   1185 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1186 	} else {
   1187 		m->m_data -= optlen;
   1188 		m->m_len += optlen;
   1189 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1190 	}
   1191 	m->m_pkthdr.len += optlen;
   1192 	ip = mtod(m, struct ip *);
   1193 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1194 	*phlen = sizeof(struct ip) + optlen;
   1195 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1196 	return (m);
   1197 }
   1198 
   1199 /*
   1200  * Copy options from ip to jp,
   1201  * omitting those not copied during fragmentation.
   1202  */
   1203 int
   1204 ip_optcopy(struct ip *ip, struct ip *jp)
   1205 {
   1206 	u_char *cp, *dp;
   1207 	int opt, optlen, cnt;
   1208 
   1209 	cp = (u_char *)(ip + 1);
   1210 	dp = (u_char *)(jp + 1);
   1211 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1212 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1213 		opt = cp[0];
   1214 		if (opt == IPOPT_EOL)
   1215 			break;
   1216 		if (opt == IPOPT_NOP) {
   1217 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1218 			*dp++ = IPOPT_NOP;
   1219 			optlen = 1;
   1220 			continue;
   1221 		}
   1222 #ifdef DIAGNOSTIC
   1223 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1224 			panic("malformed IPv4 option passed to ip_optcopy");
   1225 #endif
   1226 		optlen = cp[IPOPT_OLEN];
   1227 #ifdef DIAGNOSTIC
   1228 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1229 			panic("malformed IPv4 option passed to ip_optcopy");
   1230 #endif
   1231 		/* bogus lengths should have been caught by ip_dooptions */
   1232 		if (optlen > cnt)
   1233 			optlen = cnt;
   1234 		if (IPOPT_COPIED(opt)) {
   1235 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1236 			dp += optlen;
   1237 		}
   1238 	}
   1239 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1240 		*dp++ = IPOPT_EOL;
   1241 	return (optlen);
   1242 }
   1243 
   1244 /*
   1245  * IP socket option processing.
   1246  */
   1247 int
   1248 ip_ctloutput(int op, struct socket *so, int level, int optname,
   1249     struct mbuf **mp)
   1250 {
   1251 	struct inpcb *inp = sotoinpcb(so);
   1252 	struct mbuf *m = *mp;
   1253 	int optval = 0;
   1254 	int error = 0;
   1255 #if defined(IPSEC) || defined(FAST_IPSEC)
   1256 	struct lwp *l = curlwp;	/*XXX*/
   1257 #endif
   1258 
   1259 	if (level != IPPROTO_IP) {
   1260 		error = EINVAL;
   1261 		if (op == PRCO_SETOPT && *mp)
   1262 			(void) m_free(*mp);
   1263 	} else switch (op) {
   1264 
   1265 	case PRCO_SETOPT:
   1266 		switch (optname) {
   1267 		case IP_OPTIONS:
   1268 #ifdef notyet
   1269 		case IP_RETOPTS:
   1270 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1271 #else
   1272 			return (ip_pcbopts(&inp->inp_options, m));
   1273 #endif
   1274 
   1275 		case IP_TOS:
   1276 		case IP_TTL:
   1277 		case IP_RECVOPTS:
   1278 		case IP_RECVRETOPTS:
   1279 		case IP_RECVDSTADDR:
   1280 		case IP_RECVIF:
   1281 			if (m == NULL || m->m_len != sizeof(int))
   1282 				error = EINVAL;
   1283 			else {
   1284 				optval = *mtod(m, int *);
   1285 				switch (optname) {
   1286 
   1287 				case IP_TOS:
   1288 					inp->inp_ip.ip_tos = optval;
   1289 					break;
   1290 
   1291 				case IP_TTL:
   1292 					inp->inp_ip.ip_ttl = optval;
   1293 					break;
   1294 #define	OPTSET(bit) \
   1295 	if (optval) \
   1296 		inp->inp_flags |= bit; \
   1297 	else \
   1298 		inp->inp_flags &= ~bit;
   1299 
   1300 				case IP_RECVOPTS:
   1301 					OPTSET(INP_RECVOPTS);
   1302 					break;
   1303 
   1304 				case IP_RECVRETOPTS:
   1305 					OPTSET(INP_RECVRETOPTS);
   1306 					break;
   1307 
   1308 				case IP_RECVDSTADDR:
   1309 					OPTSET(INP_RECVDSTADDR);
   1310 					break;
   1311 
   1312 				case IP_RECVIF:
   1313 					OPTSET(INP_RECVIF);
   1314 					break;
   1315 				}
   1316 			}
   1317 			break;
   1318 #undef OPTSET
   1319 
   1320 		case IP_MULTICAST_IF:
   1321 		case IP_MULTICAST_TTL:
   1322 		case IP_MULTICAST_LOOP:
   1323 		case IP_ADD_MEMBERSHIP:
   1324 		case IP_DROP_MEMBERSHIP:
   1325 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1326 			break;
   1327 
   1328 		case IP_PORTRANGE:
   1329 			if (m == 0 || m->m_len != sizeof(int))
   1330 				error = EINVAL;
   1331 			else {
   1332 				optval = *mtod(m, int *);
   1333 
   1334 				switch (optval) {
   1335 
   1336 				case IP_PORTRANGE_DEFAULT:
   1337 				case IP_PORTRANGE_HIGH:
   1338 					inp->inp_flags &= ~(INP_LOWPORT);
   1339 					break;
   1340 
   1341 				case IP_PORTRANGE_LOW:
   1342 					inp->inp_flags |= INP_LOWPORT;
   1343 					break;
   1344 
   1345 				default:
   1346 					error = EINVAL;
   1347 					break;
   1348 				}
   1349 			}
   1350 			break;
   1351 
   1352 #if defined(IPSEC) || defined(FAST_IPSEC)
   1353 		case IP_IPSEC_POLICY:
   1354 		{
   1355 			void *req = NULL;
   1356 			size_t len = 0;
   1357 			int priv = 0;
   1358 
   1359 #ifdef __NetBSD__
   1360 			if (l == 0 || kauth_authorize_generic(l->l_cred,
   1361 			    KAUTH_GENERIC_ISSUSER, NULL))
   1362 				priv = 0;
   1363 			else
   1364 				priv = 1;
   1365 #else
   1366 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1367 #endif
   1368 			if (m) {
   1369 				req = mtod(m, void *);
   1370 				len = m->m_len;
   1371 			}
   1372 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1373 			break;
   1374 		    }
   1375 #endif /*IPSEC*/
   1376 
   1377 		default:
   1378 			error = ENOPROTOOPT;
   1379 			break;
   1380 		}
   1381 		if (m)
   1382 			(void)m_free(m);
   1383 		break;
   1384 
   1385 	case PRCO_GETOPT:
   1386 		switch (optname) {
   1387 		case IP_OPTIONS:
   1388 		case IP_RETOPTS:
   1389 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1390 			MCLAIM(m, so->so_mowner);
   1391 			if (inp->inp_options) {
   1392 				m->m_len = inp->inp_options->m_len;
   1393 				bcopy(mtod(inp->inp_options, void *),
   1394 				    mtod(m, void *), (unsigned)m->m_len);
   1395 			} else
   1396 				m->m_len = 0;
   1397 			break;
   1398 
   1399 		case IP_TOS:
   1400 		case IP_TTL:
   1401 		case IP_RECVOPTS:
   1402 		case IP_RECVRETOPTS:
   1403 		case IP_RECVDSTADDR:
   1404 		case IP_RECVIF:
   1405 		case IP_ERRORMTU:
   1406 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1407 			MCLAIM(m, so->so_mowner);
   1408 			m->m_len = sizeof(int);
   1409 			switch (optname) {
   1410 
   1411 			case IP_TOS:
   1412 				optval = inp->inp_ip.ip_tos;
   1413 				break;
   1414 
   1415 			case IP_TTL:
   1416 				optval = inp->inp_ip.ip_ttl;
   1417 				break;
   1418 
   1419 			case IP_ERRORMTU:
   1420 				optval = inp->inp_errormtu;
   1421 				break;
   1422 
   1423 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1424 
   1425 			case IP_RECVOPTS:
   1426 				optval = OPTBIT(INP_RECVOPTS);
   1427 				break;
   1428 
   1429 			case IP_RECVRETOPTS:
   1430 				optval = OPTBIT(INP_RECVRETOPTS);
   1431 				break;
   1432 
   1433 			case IP_RECVDSTADDR:
   1434 				optval = OPTBIT(INP_RECVDSTADDR);
   1435 				break;
   1436 
   1437 			case IP_RECVIF:
   1438 				optval = OPTBIT(INP_RECVIF);
   1439 				break;
   1440 			}
   1441 			*mtod(m, int *) = optval;
   1442 			break;
   1443 
   1444 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
   1445 		/* XXX: code broken */
   1446 		case IP_IPSEC_POLICY:
   1447 		{
   1448 			void *req = NULL;
   1449 			size_t len = 0;
   1450 
   1451 			if (m) {
   1452 				req = mtod(m, void *);
   1453 				len = m->m_len;
   1454 			}
   1455 			error = ipsec4_get_policy(inp, req, len, mp);
   1456 			break;
   1457 		}
   1458 #endif /*IPSEC*/
   1459 
   1460 		case IP_MULTICAST_IF:
   1461 		case IP_MULTICAST_TTL:
   1462 		case IP_MULTICAST_LOOP:
   1463 		case IP_ADD_MEMBERSHIP:
   1464 		case IP_DROP_MEMBERSHIP:
   1465 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1466 			if (*mp)
   1467 				MCLAIM(*mp, so->so_mowner);
   1468 			break;
   1469 
   1470 		case IP_PORTRANGE:
   1471 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1472 			MCLAIM(m, so->so_mowner);
   1473 			m->m_len = sizeof(int);
   1474 
   1475 			if (inp->inp_flags & INP_LOWPORT)
   1476 				optval = IP_PORTRANGE_LOW;
   1477 			else
   1478 				optval = IP_PORTRANGE_DEFAULT;
   1479 
   1480 			*mtod(m, int *) = optval;
   1481 			break;
   1482 
   1483 		default:
   1484 			error = ENOPROTOOPT;
   1485 			break;
   1486 		}
   1487 		break;
   1488 	}
   1489 	return (error);
   1490 }
   1491 
   1492 /*
   1493  * Set up IP options in pcb for insertion in output packets.
   1494  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1495  * with destination address if source routed.
   1496  */
   1497 int
   1498 #ifdef notyet
   1499 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
   1500 #else
   1501 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
   1502 #endif
   1503 {
   1504 	int cnt, optlen;
   1505 	u_char *cp;
   1506 	u_char opt;
   1507 
   1508 	/* turn off any old options */
   1509 	if (*pcbopt)
   1510 		(void)m_free(*pcbopt);
   1511 	*pcbopt = 0;
   1512 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1513 		/*
   1514 		 * Only turning off any previous options.
   1515 		 */
   1516 		if (m)
   1517 			(void)m_free(m);
   1518 		return (0);
   1519 	}
   1520 
   1521 #ifndef	__vax__
   1522 	if (m->m_len % sizeof(int32_t))
   1523 		goto bad;
   1524 #endif
   1525 	/*
   1526 	 * IP first-hop destination address will be stored before
   1527 	 * actual options; move other options back
   1528 	 * and clear it when none present.
   1529 	 */
   1530 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1531 		goto bad;
   1532 	cnt = m->m_len;
   1533 	m->m_len += sizeof(struct in_addr);
   1534 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1535 	memmove(cp, mtod(m, void *), (unsigned)cnt);
   1536 	bzero(mtod(m, void *), sizeof(struct in_addr));
   1537 
   1538 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1539 		opt = cp[IPOPT_OPTVAL];
   1540 		if (opt == IPOPT_EOL)
   1541 			break;
   1542 		if (opt == IPOPT_NOP)
   1543 			optlen = 1;
   1544 		else {
   1545 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1546 				goto bad;
   1547 			optlen = cp[IPOPT_OLEN];
   1548 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1549 				goto bad;
   1550 		}
   1551 		switch (opt) {
   1552 
   1553 		default:
   1554 			break;
   1555 
   1556 		case IPOPT_LSRR:
   1557 		case IPOPT_SSRR:
   1558 			/*
   1559 			 * user process specifies route as:
   1560 			 *	->A->B->C->D
   1561 			 * D must be our final destination (but we can't
   1562 			 * check that since we may not have connected yet).
   1563 			 * A is first hop destination, which doesn't appear in
   1564 			 * actual IP option, but is stored before the options.
   1565 			 */
   1566 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1567 				goto bad;
   1568 			m->m_len -= sizeof(struct in_addr);
   1569 			cnt -= sizeof(struct in_addr);
   1570 			optlen -= sizeof(struct in_addr);
   1571 			cp[IPOPT_OLEN] = optlen;
   1572 			/*
   1573 			 * Move first hop before start of options.
   1574 			 */
   1575 			bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
   1576 			    sizeof(struct in_addr));
   1577 			/*
   1578 			 * Then copy rest of options back
   1579 			 * to close up the deleted entry.
   1580 			 */
   1581 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1582 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1583 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1584 			break;
   1585 		}
   1586 	}
   1587 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1588 		goto bad;
   1589 	*pcbopt = m;
   1590 	return (0);
   1591 
   1592 bad:
   1593 	(void)m_free(m);
   1594 	return (EINVAL);
   1595 }
   1596 
   1597 /*
   1598  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1599  */
   1600 static struct ifnet *
   1601 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1602 {
   1603 	int ifindex;
   1604 	struct ifnet *ifp = NULL;
   1605 	struct in_ifaddr *ia;
   1606 
   1607 	if (ifindexp)
   1608 		*ifindexp = 0;
   1609 	if (ntohl(a->s_addr) >> 24 == 0) {
   1610 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1611 		if (ifindex < 0 || if_indexlim <= ifindex)
   1612 			return NULL;
   1613 		ifp = ifindex2ifnet[ifindex];
   1614 		if (!ifp)
   1615 			return NULL;
   1616 		if (ifindexp)
   1617 			*ifindexp = ifindex;
   1618 	} else {
   1619 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1620 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1621 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1622 				ifp = ia->ia_ifp;
   1623 				break;
   1624 			}
   1625 		}
   1626 	}
   1627 	return ifp;
   1628 }
   1629 
   1630 static int
   1631 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
   1632 {
   1633 	u_int tval;
   1634 
   1635 	if (m == NULL)
   1636 		return EINVAL;
   1637 
   1638 	switch (m->m_len) {
   1639 	case sizeof(u_char):
   1640 		tval = *(mtod(m, u_char *));
   1641 		break;
   1642 	case sizeof(u_int):
   1643 		tval = *(mtod(m, u_int *));
   1644 		break;
   1645 	default:
   1646 		return EINVAL;
   1647 	}
   1648 
   1649 	if (tval > maxval)
   1650 		return EINVAL;
   1651 
   1652 	*val = tval;
   1653 	return 0;
   1654 }
   1655 
   1656 /*
   1657  * Set the IP multicast options in response to user setsockopt().
   1658  */
   1659 int
   1660 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
   1661 {
   1662 	int error = 0;
   1663 	int i;
   1664 	struct in_addr addr;
   1665 	struct ip_mreq *mreq;
   1666 	struct ifnet *ifp;
   1667 	struct ip_moptions *imo = *imop;
   1668 	struct route ro;
   1669 	struct sockaddr_in *dst;
   1670 	int ifindex;
   1671 
   1672 	if (imo == NULL) {
   1673 		/*
   1674 		 * No multicast option buffer attached to the pcb;
   1675 		 * allocate one and initialize to default values.
   1676 		 */
   1677 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1678 		    M_WAITOK);
   1679 
   1680 		if (imo == NULL)
   1681 			return (ENOBUFS);
   1682 		*imop = imo;
   1683 		imo->imo_multicast_ifp = NULL;
   1684 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1685 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1686 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1687 		imo->imo_num_memberships = 0;
   1688 	}
   1689 
   1690 	switch (optname) {
   1691 
   1692 	case IP_MULTICAST_IF:
   1693 		/*
   1694 		 * Select the interface for outgoing multicast packets.
   1695 		 */
   1696 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1697 			error = EINVAL;
   1698 			break;
   1699 		}
   1700 		addr = *(mtod(m, struct in_addr *));
   1701 		/*
   1702 		 * INADDR_ANY is used to remove a previous selection.
   1703 		 * When no interface is selected, a default one is
   1704 		 * chosen every time a multicast packet is sent.
   1705 		 */
   1706 		if (in_nullhost(addr)) {
   1707 			imo->imo_multicast_ifp = NULL;
   1708 			break;
   1709 		}
   1710 		/*
   1711 		 * The selected interface is identified by its local
   1712 		 * IP address.  Find the interface and confirm that
   1713 		 * it supports multicasting.
   1714 		 */
   1715 		ifp = ip_multicast_if(&addr, &ifindex);
   1716 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1717 			error = EADDRNOTAVAIL;
   1718 			break;
   1719 		}
   1720 		imo->imo_multicast_ifp = ifp;
   1721 		if (ifindex)
   1722 			imo->imo_multicast_addr = addr;
   1723 		else
   1724 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1725 		break;
   1726 
   1727 	case IP_MULTICAST_TTL:
   1728 		/*
   1729 		 * Set the IP time-to-live for outgoing multicast packets.
   1730 		 */
   1731 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
   1732 		break;
   1733 
   1734 	case IP_MULTICAST_LOOP:
   1735 		/*
   1736 		 * Set the loopback flag for outgoing multicast packets.
   1737 		 * Must be zero or one.
   1738 		 */
   1739 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
   1740 		break;
   1741 
   1742 	case IP_ADD_MEMBERSHIP:
   1743 		/*
   1744 		 * Add a multicast group membership.
   1745 		 * Group must be a valid IP multicast address.
   1746 		 */
   1747 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1748 			error = EINVAL;
   1749 			break;
   1750 		}
   1751 		mreq = mtod(m, struct ip_mreq *);
   1752 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1753 			error = EINVAL;
   1754 			break;
   1755 		}
   1756 		/*
   1757 		 * If no interface address was provided, use the interface of
   1758 		 * the route to the given multicast address.
   1759 		 */
   1760 		if (in_nullhost(mreq->imr_interface)) {
   1761 			memset(&ro, 0, sizeof(ro));
   1762 			dst = satosin(&ro.ro_dst);
   1763 			dst->sin_len = sizeof(*dst);
   1764 			dst->sin_family = AF_INET;
   1765 			dst->sin_addr = mreq->imr_multiaddr;
   1766 			rtcache_init(&ro);
   1767 			ifp = (ro.ro_rt != NULL) ? ro.ro_rt->rt_ifp : NULL;
   1768 			rtcache_free(&ro);
   1769 		} else {
   1770 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1771 		}
   1772 		/*
   1773 		 * See if we found an interface, and confirm that it
   1774 		 * supports multicast.
   1775 		 */
   1776 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1777 			error = EADDRNOTAVAIL;
   1778 			break;
   1779 		}
   1780 		/*
   1781 		 * See if the membership already exists or if all the
   1782 		 * membership slots are full.
   1783 		 */
   1784 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1785 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1786 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1787 				      mreq->imr_multiaddr))
   1788 				break;
   1789 		}
   1790 		if (i < imo->imo_num_memberships) {
   1791 			error = EADDRINUSE;
   1792 			break;
   1793 		}
   1794 		if (i == IP_MAX_MEMBERSHIPS) {
   1795 			error = ETOOMANYREFS;
   1796 			break;
   1797 		}
   1798 		/*
   1799 		 * Everything looks good; add a new record to the multicast
   1800 		 * address list for the given interface.
   1801 		 */
   1802 		if ((imo->imo_membership[i] =
   1803 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1804 			error = ENOBUFS;
   1805 			break;
   1806 		}
   1807 		++imo->imo_num_memberships;
   1808 		break;
   1809 
   1810 	case IP_DROP_MEMBERSHIP:
   1811 		/*
   1812 		 * Drop a multicast group membership.
   1813 		 * Group must be a valid IP multicast address.
   1814 		 */
   1815 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1816 			error = EINVAL;
   1817 			break;
   1818 		}
   1819 		mreq = mtod(m, struct ip_mreq *);
   1820 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1821 			error = EINVAL;
   1822 			break;
   1823 		}
   1824 		/*
   1825 		 * If an interface address was specified, get a pointer
   1826 		 * to its ifnet structure.
   1827 		 */
   1828 		if (in_nullhost(mreq->imr_interface))
   1829 			ifp = NULL;
   1830 		else {
   1831 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1832 			if (ifp == NULL) {
   1833 				error = EADDRNOTAVAIL;
   1834 				break;
   1835 			}
   1836 		}
   1837 		/*
   1838 		 * Find the membership in the membership array.
   1839 		 */
   1840 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1841 			if ((ifp == NULL ||
   1842 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1843 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1844 				       mreq->imr_multiaddr))
   1845 				break;
   1846 		}
   1847 		if (i == imo->imo_num_memberships) {
   1848 			error = EADDRNOTAVAIL;
   1849 			break;
   1850 		}
   1851 		/*
   1852 		 * Give up the multicast address record to which the
   1853 		 * membership points.
   1854 		 */
   1855 		in_delmulti(imo->imo_membership[i]);
   1856 		/*
   1857 		 * Remove the gap in the membership array.
   1858 		 */
   1859 		for (++i; i < imo->imo_num_memberships; ++i)
   1860 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1861 		--imo->imo_num_memberships;
   1862 		break;
   1863 
   1864 	default:
   1865 		error = EOPNOTSUPP;
   1866 		break;
   1867 	}
   1868 
   1869 	/*
   1870 	 * If all options have default values, no need to keep the mbuf.
   1871 	 */
   1872 	if (imo->imo_multicast_ifp == NULL &&
   1873 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1874 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1875 	    imo->imo_num_memberships == 0) {
   1876 		free(*imop, M_IPMOPTS);
   1877 		*imop = NULL;
   1878 	}
   1879 
   1880 	return (error);
   1881 }
   1882 
   1883 /*
   1884  * Return the IP multicast options in response to user getsockopt().
   1885  */
   1886 int
   1887 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
   1888 {
   1889 	u_char *ttl;
   1890 	u_char *loop;
   1891 	struct in_addr *addr;
   1892 	struct in_ifaddr *ia;
   1893 
   1894 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1895 
   1896 	switch (optname) {
   1897 
   1898 	case IP_MULTICAST_IF:
   1899 		addr = mtod(*mp, struct in_addr *);
   1900 		(*mp)->m_len = sizeof(struct in_addr);
   1901 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1902 			*addr = zeroin_addr;
   1903 		else if (imo->imo_multicast_addr.s_addr) {
   1904 			/* return the value user has set */
   1905 			*addr = imo->imo_multicast_addr;
   1906 		} else {
   1907 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1908 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1909 		}
   1910 		return (0);
   1911 
   1912 	case IP_MULTICAST_TTL:
   1913 		ttl = mtod(*mp, u_char *);
   1914 		(*mp)->m_len = 1;
   1915 		*ttl = imo ? imo->imo_multicast_ttl
   1916 			   : IP_DEFAULT_MULTICAST_TTL;
   1917 		return (0);
   1918 
   1919 	case IP_MULTICAST_LOOP:
   1920 		loop = mtod(*mp, u_char *);
   1921 		(*mp)->m_len = 1;
   1922 		*loop = imo ? imo->imo_multicast_loop
   1923 			    : IP_DEFAULT_MULTICAST_LOOP;
   1924 		return (0);
   1925 
   1926 	default:
   1927 		return (EOPNOTSUPP);
   1928 	}
   1929 }
   1930 
   1931 /*
   1932  * Discard the IP multicast options.
   1933  */
   1934 void
   1935 ip_freemoptions(struct ip_moptions *imo)
   1936 {
   1937 	int i;
   1938 
   1939 	if (imo != NULL) {
   1940 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1941 			in_delmulti(imo->imo_membership[i]);
   1942 		free(imo, M_IPMOPTS);
   1943 	}
   1944 }
   1945 
   1946 /*
   1947  * Routine called from ip_output() to loop back a copy of an IP multicast
   1948  * packet to the input queue of a specified interface.  Note that this
   1949  * calls the output routine of the loopback "driver", but with an interface
   1950  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1951  */
   1952 static void
   1953 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
   1954 {
   1955 	struct ip *ip;
   1956 	struct mbuf *copym;
   1957 
   1958 	copym = m_copy(m, 0, M_COPYALL);
   1959 	if (copym != NULL
   1960 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1961 		copym = m_pullup(copym, sizeof(struct ip));
   1962 	if (copym != NULL) {
   1963 		/*
   1964 		 * We don't bother to fragment if the IP length is greater
   1965 		 * than the interface's MTU.  Can this possibly matter?
   1966 		 */
   1967 		ip = mtod(copym, struct ip *);
   1968 
   1969 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1970 			in_delayed_cksum(copym);
   1971 			copym->m_pkthdr.csum_flags &=
   1972 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1973 		}
   1974 
   1975 		ip->ip_sum = 0;
   1976 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1977 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   1978 	}
   1979 }
   1980