ip_output.c revision 1.181 1 /* $NetBSD: ip_output.c,v 1.181 2007/08/28 23:45:39 cube Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.181 2007/08/28 23:45:39 cube Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *,
159 const struct sockaddr_in *);
160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
161
162 #ifdef PFIL_HOOKS
163 extern struct pfil_head inet_pfil_hook; /* XXX */
164 #endif
165
166 int ip_do_loopback_cksum = 0;
167
168 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
169 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
170 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
171 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
172 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
173
174 /*
175 * IP output. The packet in mbuf chain m contains a skeletal IP
176 * header (with len, off, ttl, proto, tos, src, dst).
177 * The mbuf chain containing the packet will be freed.
178 * The mbuf opt, if present, will not be freed.
179 */
180 int
181 ip_output(struct mbuf *m0, ...)
182 {
183 struct ip *ip;
184 struct ifnet *ifp;
185 struct mbuf *m = m0;
186 int hlen = sizeof (struct ip);
187 int len, error = 0;
188 struct route iproute;
189 const struct sockaddr_in *dst;
190 struct in_ifaddr *ia;
191 struct ifaddr *xifa;
192 struct mbuf *opt;
193 struct route *ro;
194 int flags, sw_csum;
195 int *mtu_p;
196 u_long mtu;
197 struct ip_moptions *imo;
198 struct socket *so;
199 va_list ap;
200 #ifdef IPSEC_NAT_T
201 int natt_frag = 0;
202 #endif
203 #ifdef IPSEC
204 struct secpolicy *sp = NULL;
205 #endif /*IPSEC*/
206 #ifdef FAST_IPSEC
207 struct inpcb *inp;
208 struct m_tag *mtag;
209 struct secpolicy *sp = NULL;
210 struct tdb_ident *tdbi;
211 int s;
212 #endif
213 u_int16_t ip_len;
214 union {
215 struct sockaddr dst;
216 struct sockaddr_in dst4;
217 } u;
218 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
219 * to the nexthop
220 */
221
222 len = 0;
223 va_start(ap, m0);
224 opt = va_arg(ap, struct mbuf *);
225 ro = va_arg(ap, struct route *);
226 flags = va_arg(ap, int);
227 imo = va_arg(ap, struct ip_moptions *);
228 so = va_arg(ap, struct socket *);
229 if (flags & IP_RETURNMTU)
230 mtu_p = va_arg(ap, int *);
231 else
232 mtu_p = NULL;
233 va_end(ap);
234
235 MCLAIM(m, &ip_tx_mowner);
236 #ifdef FAST_IPSEC
237 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
238 inp = (struct inpcb *)so->so_pcb;
239 else
240 inp = NULL;
241 #endif /* FAST_IPSEC */
242
243 #ifdef DIAGNOSTIC
244 if ((m->m_flags & M_PKTHDR) == 0)
245 panic("ip_output: no HDR");
246
247 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
248 panic("ip_output: IPv6 checksum offload flags: %d",
249 m->m_pkthdr.csum_flags);
250 }
251
252 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
253 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
254 panic("ip_output: conflicting checksum offload flags: %d",
255 m->m_pkthdr.csum_flags);
256 }
257 #endif
258 if (opt) {
259 m = ip_insertoptions(m, opt, &len);
260 if (len >= sizeof(struct ip))
261 hlen = len;
262 }
263 ip = mtod(m, struct ip *);
264 /*
265 * Fill in IP header.
266 */
267 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
268 ip->ip_v = IPVERSION;
269 ip->ip_off = htons(0);
270 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
271 ip->ip_id = ip_newid();
272 } else {
273
274 /*
275 * TSO capable interfaces (typically?) increment
276 * ip_id for each segment.
277 * "allocate" enough ids here to increase the chance
278 * for them to be unique.
279 *
280 * note that the following calculation is not
281 * needed to be precise. wasting some ip_id is fine.
282 */
283
284 unsigned int segsz = m->m_pkthdr.segsz;
285 unsigned int datasz = ntohs(ip->ip_len) - hlen;
286 unsigned int num = howmany(datasz, segsz);
287
288 ip->ip_id = ip_newid_range(num);
289 }
290 ip->ip_hl = hlen >> 2;
291 ipstat.ips_localout++;
292 } else {
293 hlen = ip->ip_hl << 2;
294 }
295 /*
296 * Route packet.
297 */
298 memset(&iproute, 0, sizeof(iproute));
299 if (ro == NULL)
300 ro = &iproute;
301 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
302 dst = satocsin(rtcache_getdst(ro));
303 /*
304 * If there is a cached route,
305 * check that it is to the same destination
306 * and is still up. If not, free it and try again.
307 * The address family should also be checked in case of sharing the
308 * cache with IPv6.
309 */
310 if (dst == NULL)
311 ;
312 else if (dst->sin_family != AF_INET ||
313 !in_hosteq(dst->sin_addr, ip->ip_dst))
314 rtcache_free(ro);
315 else
316 rtcache_check(ro);
317 if (ro->ro_rt == NULL) {
318 dst = &u.dst4;
319 rtcache_setdst(ro, &u.dst);
320 }
321 /*
322 * If routing to interface only,
323 * short circuit routing lookup.
324 */
325 if (flags & IP_ROUTETOIF) {
326 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
327 ipstat.ips_noroute++;
328 error = ENETUNREACH;
329 goto bad;
330 }
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
335 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
336 imo != NULL && imo->imo_multicast_ifp != NULL) {
337 ifp = imo->imo_multicast_ifp;
338 mtu = ifp->if_mtu;
339 IFP_TO_IA(ifp, ia);
340 } else {
341 if (ro->ro_rt == NULL)
342 rtcache_init(ro);
343 if (ro->ro_rt == NULL) {
344 ipstat.ips_noroute++;
345 error = EHOSTUNREACH;
346 goto bad;
347 }
348 ia = ifatoia(ro->ro_rt->rt_ifa);
349 ifp = ro->ro_rt->rt_ifp;
350 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
351 mtu = ifp->if_mtu;
352 ro->ro_rt->rt_use++;
353 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
354 dst = satosin(ro->ro_rt->rt_gateway);
355 }
356 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
357 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
358 struct in_multi *inm;
359
360 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
361 M_BCAST : M_MCAST;
362 /*
363 * See if the caller provided any multicast options
364 */
365 if (imo != NULL)
366 ip->ip_ttl = imo->imo_multicast_ttl;
367 else
368 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
369
370 /*
371 * if we don't know the outgoing ifp yet, we can't generate
372 * output
373 */
374 if (!ifp) {
375 ipstat.ips_noroute++;
376 error = ENETUNREACH;
377 goto bad;
378 }
379
380 /*
381 * If the packet is multicast or broadcast, confirm that
382 * the outgoing interface can transmit it.
383 */
384 if (((m->m_flags & M_MCAST) &&
385 (ifp->if_flags & IFF_MULTICAST) == 0) ||
386 ((m->m_flags & M_BCAST) &&
387 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
388 ipstat.ips_noroute++;
389 error = ENETUNREACH;
390 goto bad;
391 }
392 /*
393 * If source address not specified yet, use an address
394 * of outgoing interface.
395 */
396 if (in_nullhost(ip->ip_src)) {
397 struct in_ifaddr *xia;
398
399 IFP_TO_IA(ifp, xia);
400 if (!xia) {
401 error = EADDRNOTAVAIL;
402 goto bad;
403 }
404 xifa = &xia->ia_ifa;
405 if (xifa->ifa_getifa != NULL) {
406 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
407 }
408 ip->ip_src = xia->ia_addr.sin_addr;
409 }
410
411 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
412 if (inm != NULL &&
413 (imo == NULL || imo->imo_multicast_loop)) {
414 /*
415 * If we belong to the destination multicast group
416 * on the outgoing interface, and the caller did not
417 * forbid loopback, loop back a copy.
418 */
419 ip_mloopback(ifp, m, &u.dst4);
420 }
421 #ifdef MROUTING
422 else {
423 /*
424 * If we are acting as a multicast router, perform
425 * multicast forwarding as if the packet had just
426 * arrived on the interface to which we are about
427 * to send. The multicast forwarding function
428 * recursively calls this function, using the
429 * IP_FORWARDING flag to prevent infinite recursion.
430 *
431 * Multicasts that are looped back by ip_mloopback(),
432 * above, will be forwarded by the ip_input() routine,
433 * if necessary.
434 */
435 extern struct socket *ip_mrouter;
436
437 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
438 if (ip_mforward(m, ifp) != 0) {
439 m_freem(m);
440 goto done;
441 }
442 }
443 }
444 #endif
445 /*
446 * Multicasts with a time-to-live of zero may be looped-
447 * back, above, but must not be transmitted on a network.
448 * Also, multicasts addressed to the loopback interface
449 * are not sent -- the above call to ip_mloopback() will
450 * loop back a copy if this host actually belongs to the
451 * destination group on the loopback interface.
452 */
453 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
454 m_freem(m);
455 goto done;
456 }
457
458 goto sendit;
459 }
460 /*
461 * If source address not specified yet, use address
462 * of outgoing interface.
463 */
464 if (in_nullhost(ip->ip_src)) {
465 xifa = &ia->ia_ifa;
466 if (xifa->ifa_getifa != NULL)
467 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
468 ip->ip_src = ia->ia_addr.sin_addr;
469 }
470
471 /*
472 * packets with Class-D address as source are not valid per
473 * RFC 1112
474 */
475 if (IN_MULTICAST(ip->ip_src.s_addr)) {
476 ipstat.ips_odropped++;
477 error = EADDRNOTAVAIL;
478 goto bad;
479 }
480
481 /*
482 * Look for broadcast address and
483 * and verify user is allowed to send
484 * such a packet.
485 */
486 if (in_broadcast(dst->sin_addr, ifp)) {
487 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
488 error = EADDRNOTAVAIL;
489 goto bad;
490 }
491 if ((flags & IP_ALLOWBROADCAST) == 0) {
492 error = EACCES;
493 goto bad;
494 }
495 /* don't allow broadcast messages to be fragmented */
496 if (ntohs(ip->ip_len) > ifp->if_mtu) {
497 error = EMSGSIZE;
498 goto bad;
499 }
500 m->m_flags |= M_BCAST;
501 } else
502 m->m_flags &= ~M_BCAST;
503
504 sendit:
505 /*
506 * If we're doing Path MTU Discovery, we need to set DF unless
507 * the route's MTU is locked.
508 */
509 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
510 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
511 ip->ip_off |= htons(IP_DF);
512
513 /* Remember the current ip_len */
514 ip_len = ntohs(ip->ip_len);
515
516 #ifdef IPSEC
517 /* get SP for this packet */
518 if (so == NULL)
519 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
520 flags, &error);
521 else {
522 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
523 IPSEC_DIR_OUTBOUND))
524 goto skip_ipsec;
525 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
526 }
527
528 if (sp == NULL) {
529 ipsecstat.out_inval++;
530 goto bad;
531 }
532
533 error = 0;
534
535 /* check policy */
536 switch (sp->policy) {
537 case IPSEC_POLICY_DISCARD:
538 /*
539 * This packet is just discarded.
540 */
541 ipsecstat.out_polvio++;
542 goto bad;
543
544 case IPSEC_POLICY_BYPASS:
545 case IPSEC_POLICY_NONE:
546 /* no need to do IPsec. */
547 goto skip_ipsec;
548
549 case IPSEC_POLICY_IPSEC:
550 if (sp->req == NULL) {
551 /* XXX should be panic ? */
552 printf("ip_output: No IPsec request specified.\n");
553 error = EINVAL;
554 goto bad;
555 }
556 break;
557
558 case IPSEC_POLICY_ENTRUST:
559 default:
560 printf("ip_output: Invalid policy found. %d\n", sp->policy);
561 }
562
563 #ifdef IPSEC_NAT_T
564 /*
565 * NAT-T ESP fragmentation: don't do IPSec processing now,
566 * we'll do it on each fragmented packet.
567 */
568 if (sp->req->sav &&
569 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
570 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
571 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
572 natt_frag = 1;
573 mtu = sp->req->sav->esp_frag;
574 goto skip_ipsec;
575 }
576 }
577 #endif /* IPSEC_NAT_T */
578
579 /*
580 * ipsec4_output() expects ip_len and ip_off in network
581 * order. They have been set to network order above.
582 */
583
584 {
585 struct ipsec_output_state state;
586 bzero(&state, sizeof(state));
587 state.m = m;
588 if (flags & IP_ROUTETOIF) {
589 state.ro = &iproute;
590 memset(&iproute, 0, sizeof(iproute));
591 } else
592 state.ro = ro;
593 state.dst = sintocsa(dst);
594
595 /*
596 * We can't defer the checksum of payload data if
597 * we're about to encrypt/authenticate it.
598 *
599 * XXX When we support crypto offloading functions of
600 * XXX network interfaces, we need to reconsider this,
601 * XXX since it's likely that they'll support checksumming,
602 * XXX as well.
603 */
604 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
605 in_delayed_cksum(m);
606 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
607 }
608
609 error = ipsec4_output(&state, sp, flags);
610
611 m = state.m;
612 if (flags & IP_ROUTETOIF) {
613 /*
614 * if we have tunnel mode SA, we may need to ignore
615 * IP_ROUTETOIF.
616 */
617 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
618 flags &= ~IP_ROUTETOIF;
619 ro = state.ro;
620 }
621 } else
622 ro = state.ro;
623 dst = satocsin(state.dst);
624 if (error) {
625 /* mbuf is already reclaimed in ipsec4_output. */
626 m0 = NULL;
627 switch (error) {
628 case EHOSTUNREACH:
629 case ENETUNREACH:
630 case EMSGSIZE:
631 case ENOBUFS:
632 case ENOMEM:
633 break;
634 default:
635 printf("ip4_output (ipsec): error code %d\n", error);
636 /*fall through*/
637 case ENOENT:
638 /* don't show these error codes to the user */
639 error = 0;
640 break;
641 }
642 goto bad;
643 }
644
645 /* be sure to update variables that are affected by ipsec4_output() */
646 ip = mtod(m, struct ip *);
647 hlen = ip->ip_hl << 2;
648 ip_len = ntohs(ip->ip_len);
649
650 if (ro->ro_rt == NULL) {
651 if ((flags & IP_ROUTETOIF) == 0) {
652 printf("ip_output: "
653 "can't update route after IPsec processing\n");
654 error = EHOSTUNREACH; /*XXX*/
655 goto bad;
656 }
657 } else {
658 /* nobody uses ia beyond here */
659 if (state.encap) {
660 ifp = ro->ro_rt->rt_ifp;
661 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
662 mtu = ifp->if_mtu;
663 }
664 }
665 }
666 skip_ipsec:
667 #endif /*IPSEC*/
668 #ifdef FAST_IPSEC
669 /*
670 * Check the security policy (SP) for the packet and, if
671 * required, do IPsec-related processing. There are two
672 * cases here; the first time a packet is sent through
673 * it will be untagged and handled by ipsec4_checkpolicy.
674 * If the packet is resubmitted to ip_output (e.g. after
675 * AH, ESP, etc. processing), there will be a tag to bypass
676 * the lookup and related policy checking.
677 */
678 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
679 s = splsoftnet();
680 if (mtag != NULL) {
681 tdbi = (struct tdb_ident *)(mtag + 1);
682 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
683 if (sp == NULL)
684 error = -EINVAL; /* force silent drop */
685 m_tag_delete(m, mtag);
686 } else {
687 if (inp != NULL &&
688 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
689 goto spd_done;
690 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
691 &error, inp);
692 }
693 /*
694 * There are four return cases:
695 * sp != NULL apply IPsec policy
696 * sp == NULL, error == 0 no IPsec handling needed
697 * sp == NULL, error == -EINVAL discard packet w/o error
698 * sp == NULL, error != 0 discard packet, report error
699 */
700 if (sp != NULL) {
701 #ifdef IPSEC_NAT_T
702 /*
703 * NAT-T ESP fragmentation: don't do IPSec processing now,
704 * we'll do it on each fragmented packet.
705 */
706 if (sp->req->sav &&
707 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
708 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
709 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
710 natt_frag = 1;
711 mtu = sp->req->sav->esp_frag;
712 goto spd_done;
713 }
714 }
715 #endif /* IPSEC_NAT_T */
716 /* Loop detection, check if ipsec processing already done */
717 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
718 for (mtag = m_tag_first(m); mtag != NULL;
719 mtag = m_tag_next(m, mtag)) {
720 #ifdef MTAG_ABI_COMPAT
721 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
722 continue;
723 #endif
724 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
725 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
726 continue;
727 /*
728 * Check if policy has an SA associated with it.
729 * This can happen when an SP has yet to acquire
730 * an SA; e.g. on first reference. If it occurs,
731 * then we let ipsec4_process_packet do its thing.
732 */
733 if (sp->req->sav == NULL)
734 break;
735 tdbi = (struct tdb_ident *)(mtag + 1);
736 if (tdbi->spi == sp->req->sav->spi &&
737 tdbi->proto == sp->req->sav->sah->saidx.proto &&
738 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
739 sizeof (union sockaddr_union)) == 0) {
740 /*
741 * No IPsec processing is needed, free
742 * reference to SP.
743 *
744 * NB: null pointer to avoid free at
745 * done: below.
746 */
747 KEY_FREESP(&sp), sp = NULL;
748 splx(s);
749 goto spd_done;
750 }
751 }
752
753 /*
754 * Do delayed checksums now because we send before
755 * this is done in the normal processing path.
756 */
757 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
758 in_delayed_cksum(m);
759 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
760 }
761
762 #ifdef __FreeBSD__
763 ip->ip_len = htons(ip->ip_len);
764 ip->ip_off = htons(ip->ip_off);
765 #endif
766
767 /* NB: callee frees mbuf */
768 error = ipsec4_process_packet(m, sp->req, flags, 0);
769 /*
770 * Preserve KAME behaviour: ENOENT can be returned
771 * when an SA acquire is in progress. Don't propagate
772 * this to user-level; it confuses applications.
773 *
774 * XXX this will go away when the SADB is redone.
775 */
776 if (error == ENOENT)
777 error = 0;
778 splx(s);
779 goto done;
780 } else {
781 splx(s);
782
783 if (error != 0) {
784 /*
785 * Hack: -EINVAL is used to signal that a packet
786 * should be silently discarded. This is typically
787 * because we asked key management for an SA and
788 * it was delayed (e.g. kicked up to IKE).
789 */
790 if (error == -EINVAL)
791 error = 0;
792 goto bad;
793 } else {
794 /* No IPsec processing for this packet. */
795 }
796 #ifdef notyet
797 /*
798 * If deferred crypto processing is needed, check that
799 * the interface supports it.
800 */
801 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
802 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
803 /* notify IPsec to do its own crypto */
804 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
805 error = EHOSTUNREACH;
806 goto bad;
807 }
808 #endif
809 }
810 spd_done:
811 #endif /* FAST_IPSEC */
812
813 #ifdef PFIL_HOOKS
814 /*
815 * Run through list of hooks for output packets.
816 */
817 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
818 goto done;
819 if (m == NULL)
820 goto done;
821
822 ip = mtod(m, struct ip *);
823 hlen = ip->ip_hl << 2;
824 ip_len = ntohs(ip->ip_len);
825 #endif /* PFIL_HOOKS */
826
827 m->m_pkthdr.csum_data |= hlen << 16;
828
829 #if IFA_STATS
830 /*
831 * search for the source address structure to
832 * maintain output statistics.
833 */
834 INADDR_TO_IA(ip->ip_src, ia);
835 #endif
836
837 /* Maybe skip checksums on loopback interfaces. */
838 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
839 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
840 }
841 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
842 /*
843 * If small enough for mtu of path, or if using TCP segmentation
844 * offload, can just send directly.
845 */
846 if (ip_len <= mtu ||
847 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
848 #if IFA_STATS
849 if (ia)
850 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
851 #endif
852 /*
853 * Always initialize the sum to 0! Some HW assisted
854 * checksumming requires this.
855 */
856 ip->ip_sum = 0;
857
858 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
859 /*
860 * Perform any checksums that the hardware can't do
861 * for us.
862 *
863 * XXX Does any hardware require the {th,uh}_sum
864 * XXX fields to be 0?
865 */
866 if (sw_csum & M_CSUM_IPv4) {
867 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
868 ip->ip_sum = in_cksum(m, hlen);
869 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
870 }
871 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
872 if (IN_NEED_CHECKSUM(ifp,
873 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
874 in_delayed_cksum(m);
875 }
876 m->m_pkthdr.csum_flags &=
877 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
878 }
879 }
880
881 #ifdef IPSEC
882 /* clean ipsec history once it goes out of the node */
883 ipsec_delaux(m);
884 #endif
885
886 if (__predict_true(
887 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
888 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
889 error =
890 (*ifp->if_output)(ifp, m,
891 (m->m_flags & M_MCAST) ?
892 sintocsa(rdst) : sintocsa(dst),
893 ro->ro_rt);
894 } else {
895 error =
896 ip_tso_output(ifp, m,
897 (m->m_flags & M_MCAST) ?
898 sintocsa(rdst) : sintocsa(dst),
899 ro->ro_rt);
900 }
901 goto done;
902 }
903
904 /*
905 * We can't use HW checksumming if we're about to
906 * to fragment the packet.
907 *
908 * XXX Some hardware can do this.
909 */
910 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
911 if (IN_NEED_CHECKSUM(ifp,
912 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
913 in_delayed_cksum(m);
914 }
915 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
916 }
917
918 /*
919 * Too large for interface; fragment if possible.
920 * Must be able to put at least 8 bytes per fragment.
921 */
922 if (ntohs(ip->ip_off) & IP_DF) {
923 if (flags & IP_RETURNMTU)
924 *mtu_p = mtu;
925 error = EMSGSIZE;
926 ipstat.ips_cantfrag++;
927 goto bad;
928 }
929
930 error = ip_fragment(m, ifp, mtu);
931 if (error) {
932 m = NULL;
933 goto bad;
934 }
935
936 for (; m; m = m0) {
937 m0 = m->m_nextpkt;
938 m->m_nextpkt = 0;
939 if (error == 0) {
940 #if IFA_STATS
941 if (ia)
942 ia->ia_ifa.ifa_data.ifad_outbytes +=
943 ntohs(ip->ip_len);
944 #endif
945 #ifdef IPSEC
946 /* clean ipsec history once it goes out of the node */
947 ipsec_delaux(m);
948 #endif /* IPSEC */
949
950 #ifdef IPSEC_NAT_T
951 /*
952 * If we get there, the packet has not been handeld by
953 * IPSec whereas it should have. Now that it has been
954 * fragmented, re-inject it in ip_output so that IPsec
955 * processing can occur.
956 */
957 if (natt_frag) {
958 error = ip_output(m, opt,
959 ro, flags, imo, so, mtu_p);
960 } else
961 #endif /* IPSEC_NAT_T */
962 {
963 KASSERT((m->m_pkthdr.csum_flags &
964 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
965 error = (*ifp->if_output)(ifp, m,
966 (m->m_flags & M_MCAST) ?
967 sintocsa(rdst) : sintocsa(dst),
968 ro->ro_rt);
969 }
970 } else
971 m_freem(m);
972 }
973
974 if (error == 0)
975 ipstat.ips_fragmented++;
976 done:
977 rtcache_free(&iproute);
978
979 #ifdef IPSEC
980 if (sp != NULL) {
981 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
982 printf("DP ip_output call free SP:%p\n", sp));
983 key_freesp(sp);
984 }
985 #endif /* IPSEC */
986 #ifdef FAST_IPSEC
987 if (sp != NULL)
988 KEY_FREESP(&sp);
989 #endif /* FAST_IPSEC */
990
991 return (error);
992 bad:
993 m_freem(m);
994 goto done;
995 }
996
997 int
998 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
999 {
1000 struct ip *ip, *mhip;
1001 struct mbuf *m0;
1002 int len, hlen, off;
1003 int mhlen, firstlen;
1004 struct mbuf **mnext;
1005 int sw_csum = m->m_pkthdr.csum_flags;
1006 int fragments = 0;
1007 int s;
1008 int error = 0;
1009
1010 ip = mtod(m, struct ip *);
1011 hlen = ip->ip_hl << 2;
1012 if (ifp != NULL)
1013 sw_csum &= ~ifp->if_csum_flags_tx;
1014
1015 len = (mtu - hlen) &~ 7;
1016 if (len < 8) {
1017 m_freem(m);
1018 return (EMSGSIZE);
1019 }
1020
1021 firstlen = len;
1022 mnext = &m->m_nextpkt;
1023
1024 /*
1025 * Loop through length of segment after first fragment,
1026 * make new header and copy data of each part and link onto chain.
1027 */
1028 m0 = m;
1029 mhlen = sizeof (struct ip);
1030 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1031 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1032 if (m == 0) {
1033 error = ENOBUFS;
1034 ipstat.ips_odropped++;
1035 goto sendorfree;
1036 }
1037 MCLAIM(m, m0->m_owner);
1038 *mnext = m;
1039 mnext = &m->m_nextpkt;
1040 m->m_data += max_linkhdr;
1041 mhip = mtod(m, struct ip *);
1042 *mhip = *ip;
1043 /* we must inherit MCAST and BCAST flags */
1044 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1045 if (hlen > sizeof (struct ip)) {
1046 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1047 mhip->ip_hl = mhlen >> 2;
1048 }
1049 m->m_len = mhlen;
1050 mhip->ip_off = ((off - hlen) >> 3) +
1051 (ntohs(ip->ip_off) & ~IP_MF);
1052 if (ip->ip_off & htons(IP_MF))
1053 mhip->ip_off |= IP_MF;
1054 if (off + len >= ntohs(ip->ip_len))
1055 len = ntohs(ip->ip_len) - off;
1056 else
1057 mhip->ip_off |= IP_MF;
1058 HTONS(mhip->ip_off);
1059 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1060 m->m_next = m_copy(m0, off, len);
1061 if (m->m_next == 0) {
1062 error = ENOBUFS; /* ??? */
1063 ipstat.ips_odropped++;
1064 goto sendorfree;
1065 }
1066 m->m_pkthdr.len = mhlen + len;
1067 m->m_pkthdr.rcvif = (struct ifnet *)0;
1068 mhip->ip_sum = 0;
1069 if (sw_csum & M_CSUM_IPv4) {
1070 mhip->ip_sum = in_cksum(m, mhlen);
1071 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1072 } else {
1073 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1074 m->m_pkthdr.csum_data |= mhlen << 16;
1075 }
1076 ipstat.ips_ofragments++;
1077 fragments++;
1078 }
1079 /*
1080 * Update first fragment by trimming what's been copied out
1081 * and updating header, then send each fragment (in order).
1082 */
1083 m = m0;
1084 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1085 m->m_pkthdr.len = hlen + firstlen;
1086 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1087 ip->ip_off |= htons(IP_MF);
1088 ip->ip_sum = 0;
1089 if (sw_csum & M_CSUM_IPv4) {
1090 ip->ip_sum = in_cksum(m, hlen);
1091 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1092 } else {
1093 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1094 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1095 sizeof(struct ip));
1096 }
1097 sendorfree:
1098 /*
1099 * If there is no room for all the fragments, don't queue
1100 * any of them.
1101 */
1102 if (ifp != NULL) {
1103 s = splnet();
1104 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1105 error == 0) {
1106 error = ENOBUFS;
1107 ipstat.ips_odropped++;
1108 IFQ_INC_DROPS(&ifp->if_snd);
1109 }
1110 splx(s);
1111 }
1112 if (error) {
1113 for (m = m0; m; m = m0) {
1114 m0 = m->m_nextpkt;
1115 m->m_nextpkt = NULL;
1116 m_freem(m);
1117 }
1118 }
1119 return (error);
1120 }
1121
1122 /*
1123 * Process a delayed payload checksum calculation.
1124 */
1125 void
1126 in_delayed_cksum(struct mbuf *m)
1127 {
1128 struct ip *ip;
1129 u_int16_t csum, offset;
1130
1131 ip = mtod(m, struct ip *);
1132 offset = ip->ip_hl << 2;
1133 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1134 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1135 csum = 0xffff;
1136
1137 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1138
1139 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1140 /* This happen when ip options were inserted
1141 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1142 m->m_len, offset, ip->ip_p);
1143 */
1144 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1145 } else
1146 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1147 }
1148
1149 /*
1150 * Determine the maximum length of the options to be inserted;
1151 * we would far rather allocate too much space rather than too little.
1152 */
1153
1154 u_int
1155 ip_optlen(struct inpcb *inp)
1156 {
1157 struct mbuf *m = inp->inp_options;
1158
1159 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1160 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1161 else
1162 return 0;
1163 }
1164
1165
1166 /*
1167 * Insert IP options into preformed packet.
1168 * Adjust IP destination as required for IP source routing,
1169 * as indicated by a non-zero in_addr at the start of the options.
1170 */
1171 static struct mbuf *
1172 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1173 {
1174 struct ipoption *p = mtod(opt, struct ipoption *);
1175 struct mbuf *n;
1176 struct ip *ip = mtod(m, struct ip *);
1177 unsigned optlen;
1178
1179 optlen = opt->m_len - sizeof(p->ipopt_dst);
1180 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1181 return (m); /* XXX should fail */
1182 if (!in_nullhost(p->ipopt_dst))
1183 ip->ip_dst = p->ipopt_dst;
1184 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1185 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1186 if (n == 0)
1187 return (m);
1188 MCLAIM(n, m->m_owner);
1189 M_MOVE_PKTHDR(n, m);
1190 m->m_len -= sizeof(struct ip);
1191 m->m_data += sizeof(struct ip);
1192 n->m_next = m;
1193 m = n;
1194 m->m_len = optlen + sizeof(struct ip);
1195 m->m_data += max_linkhdr;
1196 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1197 } else {
1198 m->m_data -= optlen;
1199 m->m_len += optlen;
1200 memmove(mtod(m, void *), ip, sizeof(struct ip));
1201 }
1202 m->m_pkthdr.len += optlen;
1203 ip = mtod(m, struct ip *);
1204 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1205 *phlen = sizeof(struct ip) + optlen;
1206 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1207 return (m);
1208 }
1209
1210 /*
1211 * Copy options from ip to jp,
1212 * omitting those not copied during fragmentation.
1213 */
1214 int
1215 ip_optcopy(struct ip *ip, struct ip *jp)
1216 {
1217 u_char *cp, *dp;
1218 int opt, optlen, cnt;
1219
1220 cp = (u_char *)(ip + 1);
1221 dp = (u_char *)(jp + 1);
1222 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1223 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1224 opt = cp[0];
1225 if (opt == IPOPT_EOL)
1226 break;
1227 if (opt == IPOPT_NOP) {
1228 /* Preserve for IP mcast tunnel's LSRR alignment. */
1229 *dp++ = IPOPT_NOP;
1230 optlen = 1;
1231 continue;
1232 }
1233 #ifdef DIAGNOSTIC
1234 if (cnt < IPOPT_OLEN + sizeof(*cp))
1235 panic("malformed IPv4 option passed to ip_optcopy");
1236 #endif
1237 optlen = cp[IPOPT_OLEN];
1238 #ifdef DIAGNOSTIC
1239 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1240 panic("malformed IPv4 option passed to ip_optcopy");
1241 #endif
1242 /* bogus lengths should have been caught by ip_dooptions */
1243 if (optlen > cnt)
1244 optlen = cnt;
1245 if (IPOPT_COPIED(opt)) {
1246 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1247 dp += optlen;
1248 }
1249 }
1250 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1251 *dp++ = IPOPT_EOL;
1252 return (optlen);
1253 }
1254
1255 /*
1256 * IP socket option processing.
1257 */
1258 int
1259 ip_ctloutput(int op, struct socket *so, int level, int optname,
1260 struct mbuf **mp)
1261 {
1262 struct inpcb *inp = sotoinpcb(so);
1263 struct mbuf *m = *mp;
1264 int optval = 0;
1265 int error = 0;
1266 #if defined(IPSEC) || defined(FAST_IPSEC)
1267 struct lwp *l = curlwp; /*XXX*/
1268 #endif
1269
1270 if (level != IPPROTO_IP) {
1271 error = EINVAL;
1272 if (op == PRCO_SETOPT && *mp)
1273 (void) m_free(*mp);
1274 } else switch (op) {
1275
1276 case PRCO_SETOPT:
1277 switch (optname) {
1278 case IP_OPTIONS:
1279 #ifdef notyet
1280 case IP_RETOPTS:
1281 return (ip_pcbopts(optname, &inp->inp_options, m));
1282 #else
1283 return (ip_pcbopts(&inp->inp_options, m));
1284 #endif
1285
1286 case IP_TOS:
1287 case IP_TTL:
1288 case IP_RECVOPTS:
1289 case IP_RECVRETOPTS:
1290 case IP_RECVDSTADDR:
1291 case IP_RECVIF:
1292 if (m == NULL || m->m_len != sizeof(int))
1293 error = EINVAL;
1294 else {
1295 optval = *mtod(m, int *);
1296 switch (optname) {
1297
1298 case IP_TOS:
1299 inp->inp_ip.ip_tos = optval;
1300 break;
1301
1302 case IP_TTL:
1303 inp->inp_ip.ip_ttl = optval;
1304 break;
1305 #define OPTSET(bit) \
1306 if (optval) \
1307 inp->inp_flags |= bit; \
1308 else \
1309 inp->inp_flags &= ~bit;
1310
1311 case IP_RECVOPTS:
1312 OPTSET(INP_RECVOPTS);
1313 break;
1314
1315 case IP_RECVRETOPTS:
1316 OPTSET(INP_RECVRETOPTS);
1317 break;
1318
1319 case IP_RECVDSTADDR:
1320 OPTSET(INP_RECVDSTADDR);
1321 break;
1322
1323 case IP_RECVIF:
1324 OPTSET(INP_RECVIF);
1325 break;
1326 }
1327 }
1328 break;
1329 #undef OPTSET
1330
1331 case IP_MULTICAST_IF:
1332 case IP_MULTICAST_TTL:
1333 case IP_MULTICAST_LOOP:
1334 case IP_ADD_MEMBERSHIP:
1335 case IP_DROP_MEMBERSHIP:
1336 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1337 break;
1338
1339 case IP_PORTRANGE:
1340 if (m == 0 || m->m_len != sizeof(int))
1341 error = EINVAL;
1342 else {
1343 optval = *mtod(m, int *);
1344
1345 switch (optval) {
1346
1347 case IP_PORTRANGE_DEFAULT:
1348 case IP_PORTRANGE_HIGH:
1349 inp->inp_flags &= ~(INP_LOWPORT);
1350 break;
1351
1352 case IP_PORTRANGE_LOW:
1353 inp->inp_flags |= INP_LOWPORT;
1354 break;
1355
1356 default:
1357 error = EINVAL;
1358 break;
1359 }
1360 }
1361 break;
1362
1363 #if defined(IPSEC) || defined(FAST_IPSEC)
1364 case IP_IPSEC_POLICY:
1365 {
1366 void *req = NULL;
1367 size_t len = 0;
1368 int priv = 0;
1369
1370 #ifdef __NetBSD__
1371 if (l == 0 || kauth_authorize_generic(l->l_cred,
1372 KAUTH_GENERIC_ISSUSER, NULL))
1373 priv = 0;
1374 else
1375 priv = 1;
1376 #else
1377 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1378 #endif
1379 if (m) {
1380 req = mtod(m, void *);
1381 len = m->m_len;
1382 }
1383 error = ipsec4_set_policy(inp, optname, req, len, priv);
1384 break;
1385 }
1386 #endif /*IPSEC*/
1387
1388 default:
1389 error = ENOPROTOOPT;
1390 break;
1391 }
1392 if (m)
1393 (void)m_free(m);
1394 break;
1395
1396 case PRCO_GETOPT:
1397 switch (optname) {
1398 case IP_OPTIONS:
1399 case IP_RETOPTS:
1400 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1401 MCLAIM(m, so->so_mowner);
1402 if (inp->inp_options) {
1403 m->m_len = inp->inp_options->m_len;
1404 bcopy(mtod(inp->inp_options, void *),
1405 mtod(m, void *), (unsigned)m->m_len);
1406 } else
1407 m->m_len = 0;
1408 break;
1409
1410 case IP_TOS:
1411 case IP_TTL:
1412 case IP_RECVOPTS:
1413 case IP_RECVRETOPTS:
1414 case IP_RECVDSTADDR:
1415 case IP_RECVIF:
1416 case IP_ERRORMTU:
1417 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1418 MCLAIM(m, so->so_mowner);
1419 m->m_len = sizeof(int);
1420 switch (optname) {
1421
1422 case IP_TOS:
1423 optval = inp->inp_ip.ip_tos;
1424 break;
1425
1426 case IP_TTL:
1427 optval = inp->inp_ip.ip_ttl;
1428 break;
1429
1430 case IP_ERRORMTU:
1431 optval = inp->inp_errormtu;
1432 break;
1433
1434 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1435
1436 case IP_RECVOPTS:
1437 optval = OPTBIT(INP_RECVOPTS);
1438 break;
1439
1440 case IP_RECVRETOPTS:
1441 optval = OPTBIT(INP_RECVRETOPTS);
1442 break;
1443
1444 case IP_RECVDSTADDR:
1445 optval = OPTBIT(INP_RECVDSTADDR);
1446 break;
1447
1448 case IP_RECVIF:
1449 optval = OPTBIT(INP_RECVIF);
1450 break;
1451 }
1452 *mtod(m, int *) = optval;
1453 break;
1454
1455 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1456 /* XXX: code broken */
1457 case IP_IPSEC_POLICY:
1458 {
1459 void *req = NULL;
1460 size_t len = 0;
1461
1462 if (m) {
1463 req = mtod(m, void *);
1464 len = m->m_len;
1465 }
1466 error = ipsec4_get_policy(inp, req, len, mp);
1467 break;
1468 }
1469 #endif /*IPSEC*/
1470
1471 case IP_MULTICAST_IF:
1472 case IP_MULTICAST_TTL:
1473 case IP_MULTICAST_LOOP:
1474 case IP_ADD_MEMBERSHIP:
1475 case IP_DROP_MEMBERSHIP:
1476 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1477 if (*mp)
1478 MCLAIM(*mp, so->so_mowner);
1479 break;
1480
1481 case IP_PORTRANGE:
1482 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1483 MCLAIM(m, so->so_mowner);
1484 m->m_len = sizeof(int);
1485
1486 if (inp->inp_flags & INP_LOWPORT)
1487 optval = IP_PORTRANGE_LOW;
1488 else
1489 optval = IP_PORTRANGE_DEFAULT;
1490
1491 *mtod(m, int *) = optval;
1492 break;
1493
1494 default:
1495 error = ENOPROTOOPT;
1496 break;
1497 }
1498 break;
1499 }
1500 return (error);
1501 }
1502
1503 /*
1504 * Set up IP options in pcb for insertion in output packets.
1505 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1506 * with destination address if source routed.
1507 */
1508 int
1509 #ifdef notyet
1510 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1511 #else
1512 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1513 #endif
1514 {
1515 int cnt, optlen;
1516 u_char *cp;
1517 u_char opt;
1518
1519 /* turn off any old options */
1520 if (*pcbopt)
1521 (void)m_free(*pcbopt);
1522 *pcbopt = 0;
1523 if (m == (struct mbuf *)0 || m->m_len == 0) {
1524 /*
1525 * Only turning off any previous options.
1526 */
1527 if (m)
1528 (void)m_free(m);
1529 return (0);
1530 }
1531
1532 #ifndef __vax__
1533 if (m->m_len % sizeof(int32_t))
1534 goto bad;
1535 #endif
1536 /*
1537 * IP first-hop destination address will be stored before
1538 * actual options; move other options back
1539 * and clear it when none present.
1540 */
1541 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1542 goto bad;
1543 cnt = m->m_len;
1544 m->m_len += sizeof(struct in_addr);
1545 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1546 memmove(cp, mtod(m, void *), (unsigned)cnt);
1547 bzero(mtod(m, void *), sizeof(struct in_addr));
1548
1549 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1550 opt = cp[IPOPT_OPTVAL];
1551 if (opt == IPOPT_EOL)
1552 break;
1553 if (opt == IPOPT_NOP)
1554 optlen = 1;
1555 else {
1556 if (cnt < IPOPT_OLEN + sizeof(*cp))
1557 goto bad;
1558 optlen = cp[IPOPT_OLEN];
1559 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1560 goto bad;
1561 }
1562 switch (opt) {
1563
1564 default:
1565 break;
1566
1567 case IPOPT_LSRR:
1568 case IPOPT_SSRR:
1569 /*
1570 * user process specifies route as:
1571 * ->A->B->C->D
1572 * D must be our final destination (but we can't
1573 * check that since we may not have connected yet).
1574 * A is first hop destination, which doesn't appear in
1575 * actual IP option, but is stored before the options.
1576 */
1577 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1578 goto bad;
1579 m->m_len -= sizeof(struct in_addr);
1580 cnt -= sizeof(struct in_addr);
1581 optlen -= sizeof(struct in_addr);
1582 cp[IPOPT_OLEN] = optlen;
1583 /*
1584 * Move first hop before start of options.
1585 */
1586 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1587 sizeof(struct in_addr));
1588 /*
1589 * Then copy rest of options back
1590 * to close up the deleted entry.
1591 */
1592 (void)memmove(&cp[IPOPT_OFFSET+1],
1593 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1594 (unsigned)cnt - (IPOPT_MINOFF - 1));
1595 break;
1596 }
1597 }
1598 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1599 goto bad;
1600 *pcbopt = m;
1601 return (0);
1602
1603 bad:
1604 (void)m_free(m);
1605 return (EINVAL);
1606 }
1607
1608 /*
1609 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1610 */
1611 static struct ifnet *
1612 ip_multicast_if(struct in_addr *a, int *ifindexp)
1613 {
1614 int ifindex;
1615 struct ifnet *ifp = NULL;
1616 struct in_ifaddr *ia;
1617
1618 if (ifindexp)
1619 *ifindexp = 0;
1620 if (ntohl(a->s_addr) >> 24 == 0) {
1621 ifindex = ntohl(a->s_addr) & 0xffffff;
1622 if (ifindex < 0 || if_indexlim <= ifindex)
1623 return NULL;
1624 ifp = ifindex2ifnet[ifindex];
1625 if (!ifp)
1626 return NULL;
1627 if (ifindexp)
1628 *ifindexp = ifindex;
1629 } else {
1630 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1631 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1632 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1633 ifp = ia->ia_ifp;
1634 break;
1635 }
1636 }
1637 }
1638 return ifp;
1639 }
1640
1641 static int
1642 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1643 {
1644 u_int tval;
1645
1646 if (m == NULL)
1647 return EINVAL;
1648
1649 switch (m->m_len) {
1650 case sizeof(u_char):
1651 tval = *(mtod(m, u_char *));
1652 break;
1653 case sizeof(u_int):
1654 tval = *(mtod(m, u_int *));
1655 break;
1656 default:
1657 return EINVAL;
1658 }
1659
1660 if (tval > maxval)
1661 return EINVAL;
1662
1663 *val = tval;
1664 return 0;
1665 }
1666
1667 /*
1668 * Set the IP multicast options in response to user setsockopt().
1669 */
1670 int
1671 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1672 {
1673 int error = 0;
1674 int i;
1675 struct in_addr addr;
1676 struct ip_mreq *mreq;
1677 struct ifnet *ifp;
1678 struct ip_moptions *imo = *imop;
1679 int ifindex;
1680
1681 if (imo == NULL) {
1682 /*
1683 * No multicast option buffer attached to the pcb;
1684 * allocate one and initialize to default values.
1685 */
1686 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1687 M_WAITOK);
1688
1689 if (imo == NULL)
1690 return (ENOBUFS);
1691 *imop = imo;
1692 imo->imo_multicast_ifp = NULL;
1693 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1694 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1695 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1696 imo->imo_num_memberships = 0;
1697 }
1698
1699 switch (optname) {
1700
1701 case IP_MULTICAST_IF:
1702 /*
1703 * Select the interface for outgoing multicast packets.
1704 */
1705 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1706 error = EINVAL;
1707 break;
1708 }
1709 addr = *(mtod(m, struct in_addr *));
1710 /*
1711 * INADDR_ANY is used to remove a previous selection.
1712 * When no interface is selected, a default one is
1713 * chosen every time a multicast packet is sent.
1714 */
1715 if (in_nullhost(addr)) {
1716 imo->imo_multicast_ifp = NULL;
1717 break;
1718 }
1719 /*
1720 * The selected interface is identified by its local
1721 * IP address. Find the interface and confirm that
1722 * it supports multicasting.
1723 */
1724 ifp = ip_multicast_if(&addr, &ifindex);
1725 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1726 error = EADDRNOTAVAIL;
1727 break;
1728 }
1729 imo->imo_multicast_ifp = ifp;
1730 if (ifindex)
1731 imo->imo_multicast_addr = addr;
1732 else
1733 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1734 break;
1735
1736 case IP_MULTICAST_TTL:
1737 /*
1738 * Set the IP time-to-live for outgoing multicast packets.
1739 */
1740 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1741 break;
1742
1743 case IP_MULTICAST_LOOP:
1744 /*
1745 * Set the loopback flag for outgoing multicast packets.
1746 * Must be zero or one.
1747 */
1748 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1749 break;
1750
1751 case IP_ADD_MEMBERSHIP:
1752 /*
1753 * Add a multicast group membership.
1754 * Group must be a valid IP multicast address.
1755 */
1756 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1757 error = EINVAL;
1758 break;
1759 }
1760 mreq = mtod(m, struct ip_mreq *);
1761 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1762 error = EINVAL;
1763 break;
1764 }
1765 /*
1766 * If no interface address was provided, use the interface of
1767 * the route to the given multicast address.
1768 */
1769 if (in_nullhost(mreq->imr_interface)) {
1770 union {
1771 struct sockaddr dst;
1772 struct sockaddr_in dst4;
1773 } u;
1774 struct route ro;
1775
1776 memset(&ro, 0, sizeof(ro));
1777
1778 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1779 rtcache_setdst(&ro, &u.dst);
1780 rtcache_init(&ro);
1781 ifp = (ro.ro_rt != NULL) ? ro.ro_rt->rt_ifp : NULL;
1782 rtcache_free(&ro);
1783 } else {
1784 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1785 }
1786 /*
1787 * See if we found an interface, and confirm that it
1788 * supports multicast.
1789 */
1790 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1791 error = EADDRNOTAVAIL;
1792 break;
1793 }
1794 /*
1795 * See if the membership already exists or if all the
1796 * membership slots are full.
1797 */
1798 for (i = 0; i < imo->imo_num_memberships; ++i) {
1799 if (imo->imo_membership[i]->inm_ifp == ifp &&
1800 in_hosteq(imo->imo_membership[i]->inm_addr,
1801 mreq->imr_multiaddr))
1802 break;
1803 }
1804 if (i < imo->imo_num_memberships) {
1805 error = EADDRINUSE;
1806 break;
1807 }
1808 if (i == IP_MAX_MEMBERSHIPS) {
1809 error = ETOOMANYREFS;
1810 break;
1811 }
1812 /*
1813 * Everything looks good; add a new record to the multicast
1814 * address list for the given interface.
1815 */
1816 if ((imo->imo_membership[i] =
1817 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1818 error = ENOBUFS;
1819 break;
1820 }
1821 ++imo->imo_num_memberships;
1822 break;
1823
1824 case IP_DROP_MEMBERSHIP:
1825 /*
1826 * Drop a multicast group membership.
1827 * Group must be a valid IP multicast address.
1828 */
1829 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1830 error = EINVAL;
1831 break;
1832 }
1833 mreq = mtod(m, struct ip_mreq *);
1834 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1835 error = EINVAL;
1836 break;
1837 }
1838 /*
1839 * If an interface address was specified, get a pointer
1840 * to its ifnet structure.
1841 */
1842 if (in_nullhost(mreq->imr_interface))
1843 ifp = NULL;
1844 else {
1845 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1846 if (ifp == NULL) {
1847 error = EADDRNOTAVAIL;
1848 break;
1849 }
1850 }
1851 /*
1852 * Find the membership in the membership array.
1853 */
1854 for (i = 0; i < imo->imo_num_memberships; ++i) {
1855 if ((ifp == NULL ||
1856 imo->imo_membership[i]->inm_ifp == ifp) &&
1857 in_hosteq(imo->imo_membership[i]->inm_addr,
1858 mreq->imr_multiaddr))
1859 break;
1860 }
1861 if (i == imo->imo_num_memberships) {
1862 error = EADDRNOTAVAIL;
1863 break;
1864 }
1865 /*
1866 * Give up the multicast address record to which the
1867 * membership points.
1868 */
1869 in_delmulti(imo->imo_membership[i]);
1870 /*
1871 * Remove the gap in the membership array.
1872 */
1873 for (++i; i < imo->imo_num_memberships; ++i)
1874 imo->imo_membership[i-1] = imo->imo_membership[i];
1875 --imo->imo_num_memberships;
1876 break;
1877
1878 default:
1879 error = EOPNOTSUPP;
1880 break;
1881 }
1882
1883 /*
1884 * If all options have default values, no need to keep the mbuf.
1885 */
1886 if (imo->imo_multicast_ifp == NULL &&
1887 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1888 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1889 imo->imo_num_memberships == 0) {
1890 free(*imop, M_IPMOPTS);
1891 *imop = NULL;
1892 }
1893
1894 return (error);
1895 }
1896
1897 /*
1898 * Return the IP multicast options in response to user getsockopt().
1899 */
1900 int
1901 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1902 {
1903 u_char *ttl;
1904 u_char *loop;
1905 struct in_addr *addr;
1906 struct in_ifaddr *ia;
1907
1908 *mp = m_get(M_WAIT, MT_SOOPTS);
1909
1910 switch (optname) {
1911
1912 case IP_MULTICAST_IF:
1913 addr = mtod(*mp, struct in_addr *);
1914 (*mp)->m_len = sizeof(struct in_addr);
1915 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1916 *addr = zeroin_addr;
1917 else if (imo->imo_multicast_addr.s_addr) {
1918 /* return the value user has set */
1919 *addr = imo->imo_multicast_addr;
1920 } else {
1921 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1922 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1923 }
1924 return (0);
1925
1926 case IP_MULTICAST_TTL:
1927 ttl = mtod(*mp, u_char *);
1928 (*mp)->m_len = 1;
1929 *ttl = imo ? imo->imo_multicast_ttl
1930 : IP_DEFAULT_MULTICAST_TTL;
1931 return (0);
1932
1933 case IP_MULTICAST_LOOP:
1934 loop = mtod(*mp, u_char *);
1935 (*mp)->m_len = 1;
1936 *loop = imo ? imo->imo_multicast_loop
1937 : IP_DEFAULT_MULTICAST_LOOP;
1938 return (0);
1939
1940 default:
1941 return (EOPNOTSUPP);
1942 }
1943 }
1944
1945 /*
1946 * Discard the IP multicast options.
1947 */
1948 void
1949 ip_freemoptions(struct ip_moptions *imo)
1950 {
1951 int i;
1952
1953 if (imo != NULL) {
1954 for (i = 0; i < imo->imo_num_memberships; ++i)
1955 in_delmulti(imo->imo_membership[i]);
1956 free(imo, M_IPMOPTS);
1957 }
1958 }
1959
1960 /*
1961 * Routine called from ip_output() to loop back a copy of an IP multicast
1962 * packet to the input queue of a specified interface. Note that this
1963 * calls the output routine of the loopback "driver", but with an interface
1964 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1965 */
1966 static void
1967 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1968 {
1969 struct ip *ip;
1970 struct mbuf *copym;
1971
1972 copym = m_copy(m, 0, M_COPYALL);
1973 if (copym != NULL
1974 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1975 copym = m_pullup(copym, sizeof(struct ip));
1976 if (copym == NULL)
1977 return;
1978 /*
1979 * We don't bother to fragment if the IP length is greater
1980 * than the interface's MTU. Can this possibly matter?
1981 */
1982 ip = mtod(copym, struct ip *);
1983
1984 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1985 in_delayed_cksum(copym);
1986 copym->m_pkthdr.csum_flags &=
1987 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1988 }
1989
1990 ip->ip_sum = 0;
1991 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1992 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1993 }
1994