ip_output.c revision 1.185 1 /* $NetBSD: ip_output.c,v 1.185 2007/11/28 04:14:11 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.185 2007/11/28 04:14:11 dyoung Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *,
159 const struct sockaddr_in *);
160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
161
162 #ifdef PFIL_HOOKS
163 extern struct pfil_head inet_pfil_hook; /* XXX */
164 #endif
165
166 int ip_do_loopback_cksum = 0;
167
168 /*
169 * IP output. The packet in mbuf chain m contains a skeletal IP
170 * header (with len, off, ttl, proto, tos, src, dst).
171 * The mbuf chain containing the packet will be freed.
172 * The mbuf opt, if present, will not be freed.
173 */
174 int
175 ip_output(struct mbuf *m0, ...)
176 {
177 struct ip *ip;
178 struct ifnet *ifp;
179 struct mbuf *m = m0;
180 int hlen = sizeof (struct ip);
181 int len, error = 0;
182 struct route iproute;
183 const struct sockaddr_in *dst;
184 struct in_ifaddr *ia;
185 struct ifaddr *xifa;
186 struct mbuf *opt;
187 struct route *ro;
188 int flags, sw_csum;
189 int *mtu_p;
190 u_long mtu;
191 struct ip_moptions *imo;
192 struct socket *so;
193 va_list ap;
194 #ifdef IPSEC_NAT_T
195 int natt_frag = 0;
196 #endif
197 #ifdef IPSEC
198 struct secpolicy *sp = NULL;
199 #endif /*IPSEC*/
200 #ifdef FAST_IPSEC
201 struct inpcb *inp;
202 struct m_tag *mtag;
203 struct secpolicy *sp = NULL;
204 struct tdb_ident *tdbi;
205 int s;
206 #endif
207 u_int16_t ip_len;
208 union {
209 struct sockaddr dst;
210 struct sockaddr_in dst4;
211 } u;
212 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
213 * to the nexthop
214 */
215
216 len = 0;
217 va_start(ap, m0);
218 opt = va_arg(ap, struct mbuf *);
219 ro = va_arg(ap, struct route *);
220 flags = va_arg(ap, int);
221 imo = va_arg(ap, struct ip_moptions *);
222 so = va_arg(ap, struct socket *);
223 if (flags & IP_RETURNMTU)
224 mtu_p = va_arg(ap, int *);
225 else
226 mtu_p = NULL;
227 va_end(ap);
228
229 MCLAIM(m, &ip_tx_mowner);
230 #ifdef FAST_IPSEC
231 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
232 inp = (struct inpcb *)so->so_pcb;
233 else
234 inp = NULL;
235 #endif /* FAST_IPSEC */
236
237 #ifdef DIAGNOSTIC
238 if ((m->m_flags & M_PKTHDR) == 0)
239 panic("ip_output: no HDR");
240
241 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
242 panic("ip_output: IPv6 checksum offload flags: %d",
243 m->m_pkthdr.csum_flags);
244 }
245
246 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
247 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
248 panic("ip_output: conflicting checksum offload flags: %d",
249 m->m_pkthdr.csum_flags);
250 }
251 #endif
252 if (opt) {
253 m = ip_insertoptions(m, opt, &len);
254 if (len >= sizeof(struct ip))
255 hlen = len;
256 }
257 ip = mtod(m, struct ip *);
258 /*
259 * Fill in IP header.
260 */
261 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
262 ip->ip_v = IPVERSION;
263 ip->ip_off = htons(0);
264 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
265 ip->ip_id = ip_newid();
266 } else {
267
268 /*
269 * TSO capable interfaces (typically?) increment
270 * ip_id for each segment.
271 * "allocate" enough ids here to increase the chance
272 * for them to be unique.
273 *
274 * note that the following calculation is not
275 * needed to be precise. wasting some ip_id is fine.
276 */
277
278 unsigned int segsz = m->m_pkthdr.segsz;
279 unsigned int datasz = ntohs(ip->ip_len) - hlen;
280 unsigned int num = howmany(datasz, segsz);
281
282 ip->ip_id = ip_newid_range(num);
283 }
284 ip->ip_hl = hlen >> 2;
285 ipstat.ips_localout++;
286 } else {
287 hlen = ip->ip_hl << 2;
288 }
289 /*
290 * Route packet.
291 */
292 memset(&iproute, 0, sizeof(iproute));
293 if (ro == NULL)
294 ro = &iproute;
295 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
296 dst = satocsin(rtcache_getdst(ro));
297 /*
298 * If there is a cached route,
299 * check that it is to the same destination
300 * and is still up. If not, free it and try again.
301 * The address family should also be checked in case of sharing the
302 * cache with IPv6.
303 */
304 if (dst == NULL)
305 ;
306 else if (dst->sin_family != AF_INET ||
307 !in_hosteq(dst->sin_addr, ip->ip_dst))
308 rtcache_free(ro);
309 else
310 rtcache_check(ro);
311 if (ro->ro_rt == NULL) {
312 dst = &u.dst4;
313 rtcache_setdst(ro, &u.dst);
314 }
315 /*
316 * If routing to interface only,
317 * short circuit routing lookup.
318 */
319 if (flags & IP_ROUTETOIF) {
320 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
321 ipstat.ips_noroute++;
322 error = ENETUNREACH;
323 goto bad;
324 }
325 ifp = ia->ia_ifp;
326 mtu = ifp->if_mtu;
327 ip->ip_ttl = 1;
328 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
329 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
330 imo != NULL && imo->imo_multicast_ifp != NULL) {
331 ifp = imo->imo_multicast_ifp;
332 mtu = ifp->if_mtu;
333 IFP_TO_IA(ifp, ia);
334 } else {
335 if (ro->ro_rt == NULL)
336 rtcache_init(ro);
337 if (ro->ro_rt == NULL) {
338 ipstat.ips_noroute++;
339 error = EHOSTUNREACH;
340 goto bad;
341 }
342 ia = ifatoia(ro->ro_rt->rt_ifa);
343 ifp = ro->ro_rt->rt_ifp;
344 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
345 mtu = ifp->if_mtu;
346 ro->ro_rt->rt_use++;
347 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
348 dst = satosin(ro->ro_rt->rt_gateway);
349 }
350 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
351 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
352 struct in_multi *inm;
353
354 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
355 M_BCAST : M_MCAST;
356 /*
357 * See if the caller provided any multicast options
358 */
359 if (imo != NULL)
360 ip->ip_ttl = imo->imo_multicast_ttl;
361 else
362 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
363
364 /*
365 * if we don't know the outgoing ifp yet, we can't generate
366 * output
367 */
368 if (!ifp) {
369 ipstat.ips_noroute++;
370 error = ENETUNREACH;
371 goto bad;
372 }
373
374 /*
375 * If the packet is multicast or broadcast, confirm that
376 * the outgoing interface can transmit it.
377 */
378 if (((m->m_flags & M_MCAST) &&
379 (ifp->if_flags & IFF_MULTICAST) == 0) ||
380 ((m->m_flags & M_BCAST) &&
381 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
382 ipstat.ips_noroute++;
383 error = ENETUNREACH;
384 goto bad;
385 }
386 /*
387 * If source address not specified yet, use an address
388 * of outgoing interface.
389 */
390 if (in_nullhost(ip->ip_src)) {
391 struct in_ifaddr *xia;
392
393 IFP_TO_IA(ifp, xia);
394 if (!xia) {
395 error = EADDRNOTAVAIL;
396 goto bad;
397 }
398 xifa = &xia->ia_ifa;
399 if (xifa->ifa_getifa != NULL) {
400 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
401 }
402 ip->ip_src = xia->ia_addr.sin_addr;
403 }
404
405 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
406 if (inm != NULL &&
407 (imo == NULL || imo->imo_multicast_loop)) {
408 /*
409 * If we belong to the destination multicast group
410 * on the outgoing interface, and the caller did not
411 * forbid loopback, loop back a copy.
412 */
413 ip_mloopback(ifp, m, &u.dst4);
414 }
415 #ifdef MROUTING
416 else {
417 /*
418 * If we are acting as a multicast router, perform
419 * multicast forwarding as if the packet had just
420 * arrived on the interface to which we are about
421 * to send. The multicast forwarding function
422 * recursively calls this function, using the
423 * IP_FORWARDING flag to prevent infinite recursion.
424 *
425 * Multicasts that are looped back by ip_mloopback(),
426 * above, will be forwarded by the ip_input() routine,
427 * if necessary.
428 */
429 extern struct socket *ip_mrouter;
430
431 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
432 if (ip_mforward(m, ifp) != 0) {
433 m_freem(m);
434 goto done;
435 }
436 }
437 }
438 #endif
439 /*
440 * Multicasts with a time-to-live of zero may be looped-
441 * back, above, but must not be transmitted on a network.
442 * Also, multicasts addressed to the loopback interface
443 * are not sent -- the above call to ip_mloopback() will
444 * loop back a copy if this host actually belongs to the
445 * destination group on the loopback interface.
446 */
447 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
448 m_freem(m);
449 goto done;
450 }
451
452 goto sendit;
453 }
454 /*
455 * If source address not specified yet, use address
456 * of outgoing interface.
457 */
458 if (in_nullhost(ip->ip_src)) {
459 xifa = &ia->ia_ifa;
460 if (xifa->ifa_getifa != NULL)
461 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
462 ip->ip_src = ia->ia_addr.sin_addr;
463 }
464
465 /*
466 * packets with Class-D address as source are not valid per
467 * RFC 1112
468 */
469 if (IN_MULTICAST(ip->ip_src.s_addr)) {
470 ipstat.ips_odropped++;
471 error = EADDRNOTAVAIL;
472 goto bad;
473 }
474
475 /*
476 * Look for broadcast address and
477 * and verify user is allowed to send
478 * such a packet.
479 */
480 if (in_broadcast(dst->sin_addr, ifp)) {
481 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
482 error = EADDRNOTAVAIL;
483 goto bad;
484 }
485 if ((flags & IP_ALLOWBROADCAST) == 0) {
486 error = EACCES;
487 goto bad;
488 }
489 /* don't allow broadcast messages to be fragmented */
490 if (ntohs(ip->ip_len) > ifp->if_mtu) {
491 error = EMSGSIZE;
492 goto bad;
493 }
494 m->m_flags |= M_BCAST;
495 } else
496 m->m_flags &= ~M_BCAST;
497
498 sendit:
499 /*
500 * If we're doing Path MTU Discovery, we need to set DF unless
501 * the route's MTU is locked.
502 */
503 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
504 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
505 ip->ip_off |= htons(IP_DF);
506
507 /* Remember the current ip_len */
508 ip_len = ntohs(ip->ip_len);
509
510 #ifdef IPSEC
511 /* get SP for this packet */
512 if (so == NULL)
513 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
514 flags, &error);
515 else {
516 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
517 IPSEC_DIR_OUTBOUND))
518 goto skip_ipsec;
519 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
520 }
521
522 if (sp == NULL) {
523 ipsecstat.out_inval++;
524 goto bad;
525 }
526
527 error = 0;
528
529 /* check policy */
530 switch (sp->policy) {
531 case IPSEC_POLICY_DISCARD:
532 /*
533 * This packet is just discarded.
534 */
535 ipsecstat.out_polvio++;
536 goto bad;
537
538 case IPSEC_POLICY_BYPASS:
539 case IPSEC_POLICY_NONE:
540 /* no need to do IPsec. */
541 goto skip_ipsec;
542
543 case IPSEC_POLICY_IPSEC:
544 if (sp->req == NULL) {
545 /* XXX should be panic ? */
546 printf("ip_output: No IPsec request specified.\n");
547 error = EINVAL;
548 goto bad;
549 }
550 break;
551
552 case IPSEC_POLICY_ENTRUST:
553 default:
554 printf("ip_output: Invalid policy found. %d\n", sp->policy);
555 }
556
557 #ifdef IPSEC_NAT_T
558 /*
559 * NAT-T ESP fragmentation: don't do IPSec processing now,
560 * we'll do it on each fragmented packet.
561 */
562 if (sp->req->sav &&
563 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
564 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
565 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
566 natt_frag = 1;
567 mtu = sp->req->sav->esp_frag;
568 goto skip_ipsec;
569 }
570 }
571 #endif /* IPSEC_NAT_T */
572
573 /*
574 * ipsec4_output() expects ip_len and ip_off in network
575 * order. They have been set to network order above.
576 */
577
578 {
579 struct ipsec_output_state state;
580 bzero(&state, sizeof(state));
581 state.m = m;
582 if (flags & IP_ROUTETOIF) {
583 state.ro = &iproute;
584 memset(&iproute, 0, sizeof(iproute));
585 } else
586 state.ro = ro;
587 state.dst = sintocsa(dst);
588
589 /*
590 * We can't defer the checksum of payload data if
591 * we're about to encrypt/authenticate it.
592 *
593 * XXX When we support crypto offloading functions of
594 * XXX network interfaces, we need to reconsider this,
595 * XXX since it's likely that they'll support checksumming,
596 * XXX as well.
597 */
598 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
599 in_delayed_cksum(m);
600 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
601 }
602
603 error = ipsec4_output(&state, sp, flags);
604
605 m = state.m;
606 if (flags & IP_ROUTETOIF) {
607 /*
608 * if we have tunnel mode SA, we may need to ignore
609 * IP_ROUTETOIF.
610 */
611 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
612 flags &= ~IP_ROUTETOIF;
613 ro = state.ro;
614 }
615 } else
616 ro = state.ro;
617 dst = satocsin(state.dst);
618 if (error) {
619 /* mbuf is already reclaimed in ipsec4_output. */
620 m0 = NULL;
621 switch (error) {
622 case EHOSTUNREACH:
623 case ENETUNREACH:
624 case EMSGSIZE:
625 case ENOBUFS:
626 case ENOMEM:
627 break;
628 default:
629 printf("ip4_output (ipsec): error code %d\n", error);
630 /*fall through*/
631 case ENOENT:
632 /* don't show these error codes to the user */
633 error = 0;
634 break;
635 }
636 goto bad;
637 }
638
639 /* be sure to update variables that are affected by ipsec4_output() */
640 ip = mtod(m, struct ip *);
641 hlen = ip->ip_hl << 2;
642 ip_len = ntohs(ip->ip_len);
643
644 if (ro->ro_rt == NULL) {
645 if ((flags & IP_ROUTETOIF) == 0) {
646 printf("ip_output: "
647 "can't update route after IPsec processing\n");
648 error = EHOSTUNREACH; /*XXX*/
649 goto bad;
650 }
651 } else {
652 /* nobody uses ia beyond here */
653 if (state.encap) {
654 ifp = ro->ro_rt->rt_ifp;
655 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
656 mtu = ifp->if_mtu;
657 }
658 }
659 }
660 skip_ipsec:
661 #endif /*IPSEC*/
662 #ifdef FAST_IPSEC
663 /*
664 * Check the security policy (SP) for the packet and, if
665 * required, do IPsec-related processing. There are two
666 * cases here; the first time a packet is sent through
667 * it will be untagged and handled by ipsec4_checkpolicy.
668 * If the packet is resubmitted to ip_output (e.g. after
669 * AH, ESP, etc. processing), there will be a tag to bypass
670 * the lookup and related policy checking.
671 */
672 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
673 s = splsoftnet();
674 if (mtag != NULL) {
675 tdbi = (struct tdb_ident *)(mtag + 1);
676 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
677 if (sp == NULL)
678 error = -EINVAL; /* force silent drop */
679 m_tag_delete(m, mtag);
680 } else {
681 if (inp != NULL &&
682 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
683 goto spd_done;
684 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
685 &error, inp);
686 }
687 /*
688 * There are four return cases:
689 * sp != NULL apply IPsec policy
690 * sp == NULL, error == 0 no IPsec handling needed
691 * sp == NULL, error == -EINVAL discard packet w/o error
692 * sp == NULL, error != 0 discard packet, report error
693 */
694 if (sp != NULL) {
695 #ifdef IPSEC_NAT_T
696 /*
697 * NAT-T ESP fragmentation: don't do IPSec processing now,
698 * we'll do it on each fragmented packet.
699 */
700 if (sp->req->sav &&
701 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
702 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
703 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
704 natt_frag = 1;
705 mtu = sp->req->sav->esp_frag;
706 goto spd_done;
707 }
708 }
709 #endif /* IPSEC_NAT_T */
710 /* Loop detection, check if ipsec processing already done */
711 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
712 for (mtag = m_tag_first(m); mtag != NULL;
713 mtag = m_tag_next(m, mtag)) {
714 #ifdef MTAG_ABI_COMPAT
715 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
716 continue;
717 #endif
718 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
719 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
720 continue;
721 /*
722 * Check if policy has an SA associated with it.
723 * This can happen when an SP has yet to acquire
724 * an SA; e.g. on first reference. If it occurs,
725 * then we let ipsec4_process_packet do its thing.
726 */
727 if (sp->req->sav == NULL)
728 break;
729 tdbi = (struct tdb_ident *)(mtag + 1);
730 if (tdbi->spi == sp->req->sav->spi &&
731 tdbi->proto == sp->req->sav->sah->saidx.proto &&
732 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
733 sizeof (union sockaddr_union)) == 0) {
734 /*
735 * No IPsec processing is needed, free
736 * reference to SP.
737 *
738 * NB: null pointer to avoid free at
739 * done: below.
740 */
741 KEY_FREESP(&sp), sp = NULL;
742 splx(s);
743 goto spd_done;
744 }
745 }
746
747 /*
748 * Do delayed checksums now because we send before
749 * this is done in the normal processing path.
750 */
751 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
752 in_delayed_cksum(m);
753 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
754 }
755
756 #ifdef __FreeBSD__
757 ip->ip_len = htons(ip->ip_len);
758 ip->ip_off = htons(ip->ip_off);
759 #endif
760
761 /* NB: callee frees mbuf */
762 error = ipsec4_process_packet(m, sp->req, flags, 0);
763 /*
764 * Preserve KAME behaviour: ENOENT can be returned
765 * when an SA acquire is in progress. Don't propagate
766 * this to user-level; it confuses applications.
767 *
768 * XXX this will go away when the SADB is redone.
769 */
770 if (error == ENOENT)
771 error = 0;
772 splx(s);
773 goto done;
774 } else {
775 splx(s);
776
777 if (error != 0) {
778 /*
779 * Hack: -EINVAL is used to signal that a packet
780 * should be silently discarded. This is typically
781 * because we asked key management for an SA and
782 * it was delayed (e.g. kicked up to IKE).
783 */
784 if (error == -EINVAL)
785 error = 0;
786 goto bad;
787 } else {
788 /* No IPsec processing for this packet. */
789 }
790 #ifdef notyet
791 /*
792 * If deferred crypto processing is needed, check that
793 * the interface supports it.
794 */
795 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
796 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
797 /* notify IPsec to do its own crypto */
798 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
799 error = EHOSTUNREACH;
800 goto bad;
801 }
802 #endif
803 }
804 spd_done:
805 #endif /* FAST_IPSEC */
806
807 #ifdef PFIL_HOOKS
808 /*
809 * Run through list of hooks for output packets.
810 */
811 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
812 goto done;
813 if (m == NULL)
814 goto done;
815
816 ip = mtod(m, struct ip *);
817 hlen = ip->ip_hl << 2;
818 ip_len = ntohs(ip->ip_len);
819 #endif /* PFIL_HOOKS */
820
821 m->m_pkthdr.csum_data |= hlen << 16;
822
823 #if IFA_STATS
824 /*
825 * search for the source address structure to
826 * maintain output statistics.
827 */
828 INADDR_TO_IA(ip->ip_src, ia);
829 #endif
830
831 /* Maybe skip checksums on loopback interfaces. */
832 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
833 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
834 }
835 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
836 /*
837 * If small enough for mtu of path, or if using TCP segmentation
838 * offload, can just send directly.
839 */
840 if (ip_len <= mtu ||
841 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
842 #if IFA_STATS
843 if (ia)
844 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
845 #endif
846 /*
847 * Always initialize the sum to 0! Some HW assisted
848 * checksumming requires this.
849 */
850 ip->ip_sum = 0;
851
852 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
853 /*
854 * Perform any checksums that the hardware can't do
855 * for us.
856 *
857 * XXX Does any hardware require the {th,uh}_sum
858 * XXX fields to be 0?
859 */
860 if (sw_csum & M_CSUM_IPv4) {
861 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
862 ip->ip_sum = in_cksum(m, hlen);
863 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
864 }
865 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
866 if (IN_NEED_CHECKSUM(ifp,
867 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
868 in_delayed_cksum(m);
869 }
870 m->m_pkthdr.csum_flags &=
871 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
872 }
873 }
874
875 #ifdef IPSEC
876 /* clean ipsec history once it goes out of the node */
877 ipsec_delaux(m);
878 #endif
879
880 if (__predict_true(
881 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
882 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
883 error =
884 (*ifp->if_output)(ifp, m,
885 (m->m_flags & M_MCAST) ?
886 sintocsa(rdst) : sintocsa(dst),
887 ro->ro_rt);
888 } else {
889 error =
890 ip_tso_output(ifp, m,
891 (m->m_flags & M_MCAST) ?
892 sintocsa(rdst) : sintocsa(dst),
893 ro->ro_rt);
894 }
895 goto done;
896 }
897
898 /*
899 * We can't use HW checksumming if we're about to
900 * to fragment the packet.
901 *
902 * XXX Some hardware can do this.
903 */
904 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
905 if (IN_NEED_CHECKSUM(ifp,
906 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
907 in_delayed_cksum(m);
908 }
909 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
910 }
911
912 /*
913 * Too large for interface; fragment if possible.
914 * Must be able to put at least 8 bytes per fragment.
915 */
916 if (ntohs(ip->ip_off) & IP_DF) {
917 if (flags & IP_RETURNMTU)
918 *mtu_p = mtu;
919 error = EMSGSIZE;
920 ipstat.ips_cantfrag++;
921 goto bad;
922 }
923
924 error = ip_fragment(m, ifp, mtu);
925 if (error) {
926 m = NULL;
927 goto bad;
928 }
929
930 for (; m; m = m0) {
931 m0 = m->m_nextpkt;
932 m->m_nextpkt = 0;
933 if (error == 0) {
934 #if IFA_STATS
935 if (ia)
936 ia->ia_ifa.ifa_data.ifad_outbytes +=
937 ntohs(ip->ip_len);
938 #endif
939 #ifdef IPSEC
940 /* clean ipsec history once it goes out of the node */
941 ipsec_delaux(m);
942 #endif /* IPSEC */
943
944 #ifdef IPSEC_NAT_T
945 /*
946 * If we get there, the packet has not been handeld by
947 * IPSec whereas it should have. Now that it has been
948 * fragmented, re-inject it in ip_output so that IPsec
949 * processing can occur.
950 */
951 if (natt_frag) {
952 error = ip_output(m, opt,
953 ro, flags, imo, so, mtu_p);
954 } else
955 #endif /* IPSEC_NAT_T */
956 {
957 KASSERT((m->m_pkthdr.csum_flags &
958 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
959 error = (*ifp->if_output)(ifp, m,
960 (m->m_flags & M_MCAST) ?
961 sintocsa(rdst) : sintocsa(dst),
962 ro->ro_rt);
963 }
964 } else
965 m_freem(m);
966 }
967
968 if (error == 0)
969 ipstat.ips_fragmented++;
970 done:
971 rtcache_free(&iproute);
972
973 #ifdef IPSEC
974 if (sp != NULL) {
975 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
976 printf("DP ip_output call free SP:%p\n", sp));
977 key_freesp(sp);
978 }
979 #endif /* IPSEC */
980 #ifdef FAST_IPSEC
981 if (sp != NULL)
982 KEY_FREESP(&sp);
983 #endif /* FAST_IPSEC */
984
985 return (error);
986 bad:
987 m_freem(m);
988 goto done;
989 }
990
991 int
992 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
993 {
994 struct ip *ip, *mhip;
995 struct mbuf *m0;
996 int len, hlen, off;
997 int mhlen, firstlen;
998 struct mbuf **mnext;
999 int sw_csum = m->m_pkthdr.csum_flags;
1000 int fragments = 0;
1001 int s;
1002 int error = 0;
1003
1004 ip = mtod(m, struct ip *);
1005 hlen = ip->ip_hl << 2;
1006 if (ifp != NULL)
1007 sw_csum &= ~ifp->if_csum_flags_tx;
1008
1009 len = (mtu - hlen) &~ 7;
1010 if (len < 8) {
1011 m_freem(m);
1012 return (EMSGSIZE);
1013 }
1014
1015 firstlen = len;
1016 mnext = &m->m_nextpkt;
1017
1018 /*
1019 * Loop through length of segment after first fragment,
1020 * make new header and copy data of each part and link onto chain.
1021 */
1022 m0 = m;
1023 mhlen = sizeof (struct ip);
1024 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1025 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1026 if (m == 0) {
1027 error = ENOBUFS;
1028 ipstat.ips_odropped++;
1029 goto sendorfree;
1030 }
1031 MCLAIM(m, m0->m_owner);
1032 *mnext = m;
1033 mnext = &m->m_nextpkt;
1034 m->m_data += max_linkhdr;
1035 mhip = mtod(m, struct ip *);
1036 *mhip = *ip;
1037 /* we must inherit MCAST and BCAST flags */
1038 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1039 if (hlen > sizeof (struct ip)) {
1040 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1041 mhip->ip_hl = mhlen >> 2;
1042 }
1043 m->m_len = mhlen;
1044 mhip->ip_off = ((off - hlen) >> 3) +
1045 (ntohs(ip->ip_off) & ~IP_MF);
1046 if (ip->ip_off & htons(IP_MF))
1047 mhip->ip_off |= IP_MF;
1048 if (off + len >= ntohs(ip->ip_len))
1049 len = ntohs(ip->ip_len) - off;
1050 else
1051 mhip->ip_off |= IP_MF;
1052 HTONS(mhip->ip_off);
1053 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1054 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1055 if (m->m_next == 0) {
1056 error = ENOBUFS; /* ??? */
1057 ipstat.ips_odropped++;
1058 goto sendorfree;
1059 }
1060 m->m_pkthdr.len = mhlen + len;
1061 m->m_pkthdr.rcvif = (struct ifnet *)0;
1062 mhip->ip_sum = 0;
1063 if (sw_csum & M_CSUM_IPv4) {
1064 mhip->ip_sum = in_cksum(m, mhlen);
1065 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1066 } else {
1067 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1068 m->m_pkthdr.csum_data |= mhlen << 16;
1069 }
1070 ipstat.ips_ofragments++;
1071 fragments++;
1072 }
1073 /*
1074 * Update first fragment by trimming what's been copied out
1075 * and updating header, then send each fragment (in order).
1076 */
1077 m = m0;
1078 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1079 m->m_pkthdr.len = hlen + firstlen;
1080 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1081 ip->ip_off |= htons(IP_MF);
1082 ip->ip_sum = 0;
1083 if (sw_csum & M_CSUM_IPv4) {
1084 ip->ip_sum = in_cksum(m, hlen);
1085 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1086 } else {
1087 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1088 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1089 sizeof(struct ip));
1090 }
1091 sendorfree:
1092 /*
1093 * If there is no room for all the fragments, don't queue
1094 * any of them.
1095 */
1096 if (ifp != NULL) {
1097 s = splnet();
1098 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1099 error == 0) {
1100 error = ENOBUFS;
1101 ipstat.ips_odropped++;
1102 IFQ_INC_DROPS(&ifp->if_snd);
1103 }
1104 splx(s);
1105 }
1106 if (error) {
1107 for (m = m0; m; m = m0) {
1108 m0 = m->m_nextpkt;
1109 m->m_nextpkt = NULL;
1110 m_freem(m);
1111 }
1112 }
1113 return (error);
1114 }
1115
1116 /*
1117 * Process a delayed payload checksum calculation.
1118 */
1119 void
1120 in_delayed_cksum(struct mbuf *m)
1121 {
1122 struct ip *ip;
1123 u_int16_t csum, offset;
1124
1125 ip = mtod(m, struct ip *);
1126 offset = ip->ip_hl << 2;
1127 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1128 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1129 csum = 0xffff;
1130
1131 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1132
1133 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1134 /* This happen when ip options were inserted
1135 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1136 m->m_len, offset, ip->ip_p);
1137 */
1138 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1139 } else
1140 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1141 }
1142
1143 /*
1144 * Determine the maximum length of the options to be inserted;
1145 * we would far rather allocate too much space rather than too little.
1146 */
1147
1148 u_int
1149 ip_optlen(struct inpcb *inp)
1150 {
1151 struct mbuf *m = inp->inp_options;
1152
1153 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1154 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1155 else
1156 return 0;
1157 }
1158
1159
1160 /*
1161 * Insert IP options into preformed packet.
1162 * Adjust IP destination as required for IP source routing,
1163 * as indicated by a non-zero in_addr at the start of the options.
1164 */
1165 static struct mbuf *
1166 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1167 {
1168 struct ipoption *p = mtod(opt, struct ipoption *);
1169 struct mbuf *n;
1170 struct ip *ip = mtod(m, struct ip *);
1171 unsigned optlen;
1172
1173 optlen = opt->m_len - sizeof(p->ipopt_dst);
1174 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1175 return (m); /* XXX should fail */
1176 if (!in_nullhost(p->ipopt_dst))
1177 ip->ip_dst = p->ipopt_dst;
1178 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1179 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1180 if (n == 0)
1181 return (m);
1182 MCLAIM(n, m->m_owner);
1183 M_MOVE_PKTHDR(n, m);
1184 m->m_len -= sizeof(struct ip);
1185 m->m_data += sizeof(struct ip);
1186 n->m_next = m;
1187 m = n;
1188 m->m_len = optlen + sizeof(struct ip);
1189 m->m_data += max_linkhdr;
1190 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1191 } else {
1192 m->m_data -= optlen;
1193 m->m_len += optlen;
1194 memmove(mtod(m, void *), ip, sizeof(struct ip));
1195 }
1196 m->m_pkthdr.len += optlen;
1197 ip = mtod(m, struct ip *);
1198 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1199 *phlen = sizeof(struct ip) + optlen;
1200 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1201 return (m);
1202 }
1203
1204 /*
1205 * Copy options from ip to jp,
1206 * omitting those not copied during fragmentation.
1207 */
1208 int
1209 ip_optcopy(struct ip *ip, struct ip *jp)
1210 {
1211 u_char *cp, *dp;
1212 int opt, optlen, cnt;
1213
1214 cp = (u_char *)(ip + 1);
1215 dp = (u_char *)(jp + 1);
1216 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1217 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1218 opt = cp[0];
1219 if (opt == IPOPT_EOL)
1220 break;
1221 if (opt == IPOPT_NOP) {
1222 /* Preserve for IP mcast tunnel's LSRR alignment. */
1223 *dp++ = IPOPT_NOP;
1224 optlen = 1;
1225 continue;
1226 }
1227 #ifdef DIAGNOSTIC
1228 if (cnt < IPOPT_OLEN + sizeof(*cp))
1229 panic("malformed IPv4 option passed to ip_optcopy");
1230 #endif
1231 optlen = cp[IPOPT_OLEN];
1232 #ifdef DIAGNOSTIC
1233 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1234 panic("malformed IPv4 option passed to ip_optcopy");
1235 #endif
1236 /* bogus lengths should have been caught by ip_dooptions */
1237 if (optlen > cnt)
1238 optlen = cnt;
1239 if (IPOPT_COPIED(opt)) {
1240 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1241 dp += optlen;
1242 }
1243 }
1244 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1245 *dp++ = IPOPT_EOL;
1246 return (optlen);
1247 }
1248
1249 /*
1250 * IP socket option processing.
1251 */
1252 int
1253 ip_ctloutput(int op, struct socket *so, int level, int optname,
1254 struct mbuf **mp)
1255 {
1256 struct inpcb *inp = sotoinpcb(so);
1257 struct mbuf *m = *mp;
1258 int optval = 0;
1259 int error = 0;
1260 #if defined(IPSEC) || defined(FAST_IPSEC)
1261 struct lwp *l = curlwp; /*XXX*/
1262 #endif
1263
1264 if (level != IPPROTO_IP) {
1265 if (op == PRCO_SETOPT && *mp)
1266 (void) m_free(*mp);
1267 if (level == SOL_SOCKET && optname == SO_NOHEADER)
1268 return 0;
1269 return ENOPROTOOPT;
1270 }
1271
1272 switch (op) {
1273
1274 case PRCO_SETOPT:
1275 switch (optname) {
1276 case IP_OPTIONS:
1277 #ifdef notyet
1278 case IP_RETOPTS:
1279 return (ip_pcbopts(optname, &inp->inp_options, m));
1280 #else
1281 return (ip_pcbopts(&inp->inp_options, m));
1282 #endif
1283
1284 case IP_TOS:
1285 case IP_TTL:
1286 case IP_RECVOPTS:
1287 case IP_RECVRETOPTS:
1288 case IP_RECVDSTADDR:
1289 case IP_RECVIF:
1290 if (m == NULL || m->m_len != sizeof(int))
1291 error = EINVAL;
1292 else {
1293 optval = *mtod(m, int *);
1294 switch (optname) {
1295
1296 case IP_TOS:
1297 inp->inp_ip.ip_tos = optval;
1298 break;
1299
1300 case IP_TTL:
1301 inp->inp_ip.ip_ttl = optval;
1302 break;
1303 #define OPTSET(bit) \
1304 if (optval) \
1305 inp->inp_flags |= bit; \
1306 else \
1307 inp->inp_flags &= ~bit;
1308
1309 case IP_RECVOPTS:
1310 OPTSET(INP_RECVOPTS);
1311 break;
1312
1313 case IP_RECVRETOPTS:
1314 OPTSET(INP_RECVRETOPTS);
1315 break;
1316
1317 case IP_RECVDSTADDR:
1318 OPTSET(INP_RECVDSTADDR);
1319 break;
1320
1321 case IP_RECVIF:
1322 OPTSET(INP_RECVIF);
1323 break;
1324 }
1325 }
1326 break;
1327 #undef OPTSET
1328
1329 case IP_MULTICAST_IF:
1330 case IP_MULTICAST_TTL:
1331 case IP_MULTICAST_LOOP:
1332 case IP_ADD_MEMBERSHIP:
1333 case IP_DROP_MEMBERSHIP:
1334 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1335 break;
1336
1337 case IP_PORTRANGE:
1338 if (m == 0 || m->m_len != sizeof(int))
1339 error = EINVAL;
1340 else {
1341 optval = *mtod(m, int *);
1342
1343 switch (optval) {
1344
1345 case IP_PORTRANGE_DEFAULT:
1346 case IP_PORTRANGE_HIGH:
1347 inp->inp_flags &= ~(INP_LOWPORT);
1348 break;
1349
1350 case IP_PORTRANGE_LOW:
1351 inp->inp_flags |= INP_LOWPORT;
1352 break;
1353
1354 default:
1355 error = EINVAL;
1356 break;
1357 }
1358 }
1359 break;
1360
1361 #if defined(IPSEC) || defined(FAST_IPSEC)
1362 case IP_IPSEC_POLICY:
1363 {
1364 void *req = NULL;
1365 size_t len = 0;
1366 int priv = 0;
1367
1368 #ifdef __NetBSD__
1369 if (l == 0 || kauth_authorize_generic(l->l_cred,
1370 KAUTH_GENERIC_ISSUSER, NULL))
1371 priv = 0;
1372 else
1373 priv = 1;
1374 #else
1375 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1376 #endif
1377 if (m) {
1378 req = mtod(m, void *);
1379 len = m->m_len;
1380 }
1381 error = ipsec4_set_policy(inp, optname, req, len, priv);
1382 break;
1383 }
1384 #endif /*IPSEC*/
1385
1386 default:
1387 error = ENOPROTOOPT;
1388 break;
1389 }
1390 if (m)
1391 (void)m_free(m);
1392 break;
1393
1394 case PRCO_GETOPT:
1395 switch (optname) {
1396 case IP_OPTIONS:
1397 case IP_RETOPTS:
1398 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1399 MCLAIM(m, so->so_mowner);
1400 if (inp->inp_options) {
1401 m->m_len = inp->inp_options->m_len;
1402 bcopy(mtod(inp->inp_options, void *),
1403 mtod(m, void *), (unsigned)m->m_len);
1404 } else
1405 m->m_len = 0;
1406 break;
1407
1408 case IP_TOS:
1409 case IP_TTL:
1410 case IP_RECVOPTS:
1411 case IP_RECVRETOPTS:
1412 case IP_RECVDSTADDR:
1413 case IP_RECVIF:
1414 case IP_ERRORMTU:
1415 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1416 MCLAIM(m, so->so_mowner);
1417 m->m_len = sizeof(int);
1418 switch (optname) {
1419
1420 case IP_TOS:
1421 optval = inp->inp_ip.ip_tos;
1422 break;
1423
1424 case IP_TTL:
1425 optval = inp->inp_ip.ip_ttl;
1426 break;
1427
1428 case IP_ERRORMTU:
1429 optval = inp->inp_errormtu;
1430 break;
1431
1432 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1433
1434 case IP_RECVOPTS:
1435 optval = OPTBIT(INP_RECVOPTS);
1436 break;
1437
1438 case IP_RECVRETOPTS:
1439 optval = OPTBIT(INP_RECVRETOPTS);
1440 break;
1441
1442 case IP_RECVDSTADDR:
1443 optval = OPTBIT(INP_RECVDSTADDR);
1444 break;
1445
1446 case IP_RECVIF:
1447 optval = OPTBIT(INP_RECVIF);
1448 break;
1449 }
1450 *mtod(m, int *) = optval;
1451 break;
1452
1453 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1454 /* XXX: code broken */
1455 case IP_IPSEC_POLICY:
1456 {
1457 void *req = NULL;
1458 size_t len = 0;
1459
1460 if (m) {
1461 req = mtod(m, void *);
1462 len = m->m_len;
1463 }
1464 error = ipsec4_get_policy(inp, req, len, mp);
1465 break;
1466 }
1467 #endif /*IPSEC*/
1468
1469 case IP_MULTICAST_IF:
1470 case IP_MULTICAST_TTL:
1471 case IP_MULTICAST_LOOP:
1472 case IP_ADD_MEMBERSHIP:
1473 case IP_DROP_MEMBERSHIP:
1474 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1475 if (*mp)
1476 MCLAIM(*mp, so->so_mowner);
1477 break;
1478
1479 case IP_PORTRANGE:
1480 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1481 MCLAIM(m, so->so_mowner);
1482 m->m_len = sizeof(int);
1483
1484 if (inp->inp_flags & INP_LOWPORT)
1485 optval = IP_PORTRANGE_LOW;
1486 else
1487 optval = IP_PORTRANGE_DEFAULT;
1488
1489 *mtod(m, int *) = optval;
1490 break;
1491
1492 default:
1493 error = ENOPROTOOPT;
1494 break;
1495 }
1496 break;
1497 }
1498 return (error);
1499 }
1500
1501 /*
1502 * Set up IP options in pcb for insertion in output packets.
1503 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1504 * with destination address if source routed.
1505 */
1506 int
1507 #ifdef notyet
1508 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1509 #else
1510 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1511 #endif
1512 {
1513 int cnt, optlen;
1514 u_char *cp;
1515 u_char opt;
1516
1517 /* turn off any old options */
1518 if (*pcbopt)
1519 (void)m_free(*pcbopt);
1520 *pcbopt = 0;
1521 if (m == (struct mbuf *)0 || m->m_len == 0) {
1522 /*
1523 * Only turning off any previous options.
1524 */
1525 if (m)
1526 (void)m_free(m);
1527 return (0);
1528 }
1529
1530 #ifndef __vax__
1531 if (m->m_len % sizeof(int32_t))
1532 goto bad;
1533 #endif
1534 /*
1535 * IP first-hop destination address will be stored before
1536 * actual options; move other options back
1537 * and clear it when none present.
1538 */
1539 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1540 goto bad;
1541 cnt = m->m_len;
1542 m->m_len += sizeof(struct in_addr);
1543 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1544 memmove(cp, mtod(m, void *), (unsigned)cnt);
1545 bzero(mtod(m, void *), sizeof(struct in_addr));
1546
1547 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1548 opt = cp[IPOPT_OPTVAL];
1549 if (opt == IPOPT_EOL)
1550 break;
1551 if (opt == IPOPT_NOP)
1552 optlen = 1;
1553 else {
1554 if (cnt < IPOPT_OLEN + sizeof(*cp))
1555 goto bad;
1556 optlen = cp[IPOPT_OLEN];
1557 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1558 goto bad;
1559 }
1560 switch (opt) {
1561
1562 default:
1563 break;
1564
1565 case IPOPT_LSRR:
1566 case IPOPT_SSRR:
1567 /*
1568 * user process specifies route as:
1569 * ->A->B->C->D
1570 * D must be our final destination (but we can't
1571 * check that since we may not have connected yet).
1572 * A is first hop destination, which doesn't appear in
1573 * actual IP option, but is stored before the options.
1574 */
1575 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1576 goto bad;
1577 m->m_len -= sizeof(struct in_addr);
1578 cnt -= sizeof(struct in_addr);
1579 optlen -= sizeof(struct in_addr);
1580 cp[IPOPT_OLEN] = optlen;
1581 /*
1582 * Move first hop before start of options.
1583 */
1584 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1585 sizeof(struct in_addr));
1586 /*
1587 * Then copy rest of options back
1588 * to close up the deleted entry.
1589 */
1590 (void)memmove(&cp[IPOPT_OFFSET+1],
1591 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1592 (unsigned)cnt - (IPOPT_MINOFF - 1));
1593 break;
1594 }
1595 }
1596 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1597 goto bad;
1598 *pcbopt = m;
1599 return (0);
1600
1601 bad:
1602 (void)m_free(m);
1603 return (EINVAL);
1604 }
1605
1606 /*
1607 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1608 */
1609 static struct ifnet *
1610 ip_multicast_if(struct in_addr *a, int *ifindexp)
1611 {
1612 int ifindex;
1613 struct ifnet *ifp = NULL;
1614 struct in_ifaddr *ia;
1615
1616 if (ifindexp)
1617 *ifindexp = 0;
1618 if (ntohl(a->s_addr) >> 24 == 0) {
1619 ifindex = ntohl(a->s_addr) & 0xffffff;
1620 if (ifindex < 0 || if_indexlim <= ifindex)
1621 return NULL;
1622 ifp = ifindex2ifnet[ifindex];
1623 if (!ifp)
1624 return NULL;
1625 if (ifindexp)
1626 *ifindexp = ifindex;
1627 } else {
1628 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1629 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1630 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1631 ifp = ia->ia_ifp;
1632 break;
1633 }
1634 }
1635 }
1636 return ifp;
1637 }
1638
1639 static int
1640 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1641 {
1642 u_int tval;
1643
1644 if (m == NULL)
1645 return EINVAL;
1646
1647 switch (m->m_len) {
1648 case sizeof(u_char):
1649 tval = *(mtod(m, u_char *));
1650 break;
1651 case sizeof(u_int):
1652 tval = *(mtod(m, u_int *));
1653 break;
1654 default:
1655 return EINVAL;
1656 }
1657
1658 if (tval > maxval)
1659 return EINVAL;
1660
1661 *val = tval;
1662 return 0;
1663 }
1664
1665 /*
1666 * Set the IP multicast options in response to user setsockopt().
1667 */
1668 int
1669 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1670 {
1671 int error = 0;
1672 int i;
1673 struct in_addr addr;
1674 struct ip_mreq *mreq;
1675 struct ifnet *ifp;
1676 struct ip_moptions *imo = *imop;
1677 int ifindex;
1678
1679 if (imo == NULL) {
1680 /*
1681 * No multicast option buffer attached to the pcb;
1682 * allocate one and initialize to default values.
1683 */
1684 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1685 M_WAITOK);
1686
1687 if (imo == NULL)
1688 return (ENOBUFS);
1689 *imop = imo;
1690 imo->imo_multicast_ifp = NULL;
1691 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1692 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1693 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1694 imo->imo_num_memberships = 0;
1695 }
1696
1697 switch (optname) {
1698
1699 case IP_MULTICAST_IF:
1700 /*
1701 * Select the interface for outgoing multicast packets.
1702 */
1703 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1704 error = EINVAL;
1705 break;
1706 }
1707 addr = *(mtod(m, struct in_addr *));
1708 /*
1709 * INADDR_ANY is used to remove a previous selection.
1710 * When no interface is selected, a default one is
1711 * chosen every time a multicast packet is sent.
1712 */
1713 if (in_nullhost(addr)) {
1714 imo->imo_multicast_ifp = NULL;
1715 break;
1716 }
1717 /*
1718 * The selected interface is identified by its local
1719 * IP address. Find the interface and confirm that
1720 * it supports multicasting.
1721 */
1722 ifp = ip_multicast_if(&addr, &ifindex);
1723 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1724 error = EADDRNOTAVAIL;
1725 break;
1726 }
1727 imo->imo_multicast_ifp = ifp;
1728 if (ifindex)
1729 imo->imo_multicast_addr = addr;
1730 else
1731 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1732 break;
1733
1734 case IP_MULTICAST_TTL:
1735 /*
1736 * Set the IP time-to-live for outgoing multicast packets.
1737 */
1738 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1739 break;
1740
1741 case IP_MULTICAST_LOOP:
1742 /*
1743 * Set the loopback flag for outgoing multicast packets.
1744 * Must be zero or one.
1745 */
1746 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1747 break;
1748
1749 case IP_ADD_MEMBERSHIP:
1750 /*
1751 * Add a multicast group membership.
1752 * Group must be a valid IP multicast address.
1753 */
1754 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1755 error = EINVAL;
1756 break;
1757 }
1758 mreq = mtod(m, struct ip_mreq *);
1759 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1760 error = EINVAL;
1761 break;
1762 }
1763 /*
1764 * If no interface address was provided, use the interface of
1765 * the route to the given multicast address.
1766 */
1767 if (in_nullhost(mreq->imr_interface)) {
1768 union {
1769 struct sockaddr dst;
1770 struct sockaddr_in dst4;
1771 } u;
1772 struct route ro;
1773
1774 memset(&ro, 0, sizeof(ro));
1775
1776 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1777 rtcache_setdst(&ro, &u.dst);
1778 rtcache_init(&ro);
1779 ifp = (ro.ro_rt != NULL) ? ro.ro_rt->rt_ifp : NULL;
1780 rtcache_free(&ro);
1781 } else {
1782 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1783 }
1784 /*
1785 * See if we found an interface, and confirm that it
1786 * supports multicast.
1787 */
1788 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1789 error = EADDRNOTAVAIL;
1790 break;
1791 }
1792 /*
1793 * See if the membership already exists or if all the
1794 * membership slots are full.
1795 */
1796 for (i = 0; i < imo->imo_num_memberships; ++i) {
1797 if (imo->imo_membership[i]->inm_ifp == ifp &&
1798 in_hosteq(imo->imo_membership[i]->inm_addr,
1799 mreq->imr_multiaddr))
1800 break;
1801 }
1802 if (i < imo->imo_num_memberships) {
1803 error = EADDRINUSE;
1804 break;
1805 }
1806 if (i == IP_MAX_MEMBERSHIPS) {
1807 error = ETOOMANYREFS;
1808 break;
1809 }
1810 /*
1811 * Everything looks good; add a new record to the multicast
1812 * address list for the given interface.
1813 */
1814 if ((imo->imo_membership[i] =
1815 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1816 error = ENOBUFS;
1817 break;
1818 }
1819 ++imo->imo_num_memberships;
1820 break;
1821
1822 case IP_DROP_MEMBERSHIP:
1823 /*
1824 * Drop a multicast group membership.
1825 * Group must be a valid IP multicast address.
1826 */
1827 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1828 error = EINVAL;
1829 break;
1830 }
1831 mreq = mtod(m, struct ip_mreq *);
1832 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1833 error = EINVAL;
1834 break;
1835 }
1836 /*
1837 * If an interface address was specified, get a pointer
1838 * to its ifnet structure.
1839 */
1840 if (in_nullhost(mreq->imr_interface))
1841 ifp = NULL;
1842 else {
1843 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1844 if (ifp == NULL) {
1845 error = EADDRNOTAVAIL;
1846 break;
1847 }
1848 }
1849 /*
1850 * Find the membership in the membership array.
1851 */
1852 for (i = 0; i < imo->imo_num_memberships; ++i) {
1853 if ((ifp == NULL ||
1854 imo->imo_membership[i]->inm_ifp == ifp) &&
1855 in_hosteq(imo->imo_membership[i]->inm_addr,
1856 mreq->imr_multiaddr))
1857 break;
1858 }
1859 if (i == imo->imo_num_memberships) {
1860 error = EADDRNOTAVAIL;
1861 break;
1862 }
1863 /*
1864 * Give up the multicast address record to which the
1865 * membership points.
1866 */
1867 in_delmulti(imo->imo_membership[i]);
1868 /*
1869 * Remove the gap in the membership array.
1870 */
1871 for (++i; i < imo->imo_num_memberships; ++i)
1872 imo->imo_membership[i-1] = imo->imo_membership[i];
1873 --imo->imo_num_memberships;
1874 break;
1875
1876 default:
1877 error = EOPNOTSUPP;
1878 break;
1879 }
1880
1881 /*
1882 * If all options have default values, no need to keep the mbuf.
1883 */
1884 if (imo->imo_multicast_ifp == NULL &&
1885 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1886 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1887 imo->imo_num_memberships == 0) {
1888 free(*imop, M_IPMOPTS);
1889 *imop = NULL;
1890 }
1891
1892 return (error);
1893 }
1894
1895 /*
1896 * Return the IP multicast options in response to user getsockopt().
1897 */
1898 int
1899 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1900 {
1901 u_char *ttl;
1902 u_char *loop;
1903 struct in_addr *addr;
1904 struct in_ifaddr *ia;
1905
1906 *mp = m_get(M_WAIT, MT_SOOPTS);
1907
1908 switch (optname) {
1909
1910 case IP_MULTICAST_IF:
1911 addr = mtod(*mp, struct in_addr *);
1912 (*mp)->m_len = sizeof(struct in_addr);
1913 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1914 *addr = zeroin_addr;
1915 else if (imo->imo_multicast_addr.s_addr) {
1916 /* return the value user has set */
1917 *addr = imo->imo_multicast_addr;
1918 } else {
1919 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1920 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1921 }
1922 return (0);
1923
1924 case IP_MULTICAST_TTL:
1925 ttl = mtod(*mp, u_char *);
1926 (*mp)->m_len = 1;
1927 *ttl = imo ? imo->imo_multicast_ttl
1928 : IP_DEFAULT_MULTICAST_TTL;
1929 return (0);
1930
1931 case IP_MULTICAST_LOOP:
1932 loop = mtod(*mp, u_char *);
1933 (*mp)->m_len = 1;
1934 *loop = imo ? imo->imo_multicast_loop
1935 : IP_DEFAULT_MULTICAST_LOOP;
1936 return (0);
1937
1938 default:
1939 return (EOPNOTSUPP);
1940 }
1941 }
1942
1943 /*
1944 * Discard the IP multicast options.
1945 */
1946 void
1947 ip_freemoptions(struct ip_moptions *imo)
1948 {
1949 int i;
1950
1951 if (imo != NULL) {
1952 for (i = 0; i < imo->imo_num_memberships; ++i)
1953 in_delmulti(imo->imo_membership[i]);
1954 free(imo, M_IPMOPTS);
1955 }
1956 }
1957
1958 /*
1959 * Routine called from ip_output() to loop back a copy of an IP multicast
1960 * packet to the input queue of a specified interface. Note that this
1961 * calls the output routine of the loopback "driver", but with an interface
1962 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1963 */
1964 static void
1965 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1966 {
1967 struct ip *ip;
1968 struct mbuf *copym;
1969
1970 copym = m_copypacket(m, M_DONTWAIT);
1971 if (copym != NULL
1972 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1973 copym = m_pullup(copym, sizeof(struct ip));
1974 if (copym == NULL)
1975 return;
1976 /*
1977 * We don't bother to fragment if the IP length is greater
1978 * than the interface's MTU. Can this possibly matter?
1979 */
1980 ip = mtod(copym, struct ip *);
1981
1982 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1983 in_delayed_cksum(copym);
1984 copym->m_pkthdr.csum_flags &=
1985 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1986 }
1987
1988 ip->ip_sum = 0;
1989 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1990 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1991 }
1992