ip_output.c revision 1.186 1 /* $NetBSD: ip_output.c,v 1.186 2007/12/20 19:53:32 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.186 2007/12/20 19:53:32 dyoung Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *,
159 const struct sockaddr_in *);
160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
161
162 #ifdef PFIL_HOOKS
163 extern struct pfil_head inet_pfil_hook; /* XXX */
164 #endif
165
166 int ip_do_loopback_cksum = 0;
167
168 /*
169 * IP output. The packet in mbuf chain m contains a skeletal IP
170 * header (with len, off, ttl, proto, tos, src, dst).
171 * The mbuf chain containing the packet will be freed.
172 * The mbuf opt, if present, will not be freed.
173 */
174 int
175 ip_output(struct mbuf *m0, ...)
176 {
177 struct rtentry *rt;
178 struct ip *ip;
179 struct ifnet *ifp;
180 struct mbuf *m = m0;
181 int hlen = sizeof (struct ip);
182 int len, error = 0;
183 struct route iproute;
184 const struct sockaddr_in *dst;
185 struct in_ifaddr *ia;
186 struct ifaddr *xifa;
187 struct mbuf *opt;
188 struct route *ro;
189 int flags, sw_csum;
190 int *mtu_p;
191 u_long mtu;
192 struct ip_moptions *imo;
193 struct socket *so;
194 va_list ap;
195 #ifdef IPSEC_NAT_T
196 int natt_frag = 0;
197 #endif
198 #ifdef IPSEC
199 struct secpolicy *sp = NULL;
200 #endif /*IPSEC*/
201 #ifdef FAST_IPSEC
202 struct inpcb *inp;
203 struct m_tag *mtag;
204 struct secpolicy *sp = NULL;
205 struct tdb_ident *tdbi;
206 int s;
207 #endif
208 u_int16_t ip_len;
209 union {
210 struct sockaddr dst;
211 struct sockaddr_in dst4;
212 } u;
213 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
214 * to the nexthop
215 */
216
217 len = 0;
218 va_start(ap, m0);
219 opt = va_arg(ap, struct mbuf *);
220 ro = va_arg(ap, struct route *);
221 flags = va_arg(ap, int);
222 imo = va_arg(ap, struct ip_moptions *);
223 so = va_arg(ap, struct socket *);
224 if (flags & IP_RETURNMTU)
225 mtu_p = va_arg(ap, int *);
226 else
227 mtu_p = NULL;
228 va_end(ap);
229
230 MCLAIM(m, &ip_tx_mowner);
231 #ifdef FAST_IPSEC
232 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
233 inp = (struct inpcb *)so->so_pcb;
234 else
235 inp = NULL;
236 #endif /* FAST_IPSEC */
237
238 #ifdef DIAGNOSTIC
239 if ((m->m_flags & M_PKTHDR) == 0)
240 panic("ip_output: no HDR");
241
242 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
243 panic("ip_output: IPv6 checksum offload flags: %d",
244 m->m_pkthdr.csum_flags);
245 }
246
247 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
248 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
249 panic("ip_output: conflicting checksum offload flags: %d",
250 m->m_pkthdr.csum_flags);
251 }
252 #endif
253 if (opt) {
254 m = ip_insertoptions(m, opt, &len);
255 if (len >= sizeof(struct ip))
256 hlen = len;
257 }
258 ip = mtod(m, struct ip *);
259 /*
260 * Fill in IP header.
261 */
262 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
263 ip->ip_v = IPVERSION;
264 ip->ip_off = htons(0);
265 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
266 ip->ip_id = ip_newid();
267 } else {
268
269 /*
270 * TSO capable interfaces (typically?) increment
271 * ip_id for each segment.
272 * "allocate" enough ids here to increase the chance
273 * for them to be unique.
274 *
275 * note that the following calculation is not
276 * needed to be precise. wasting some ip_id is fine.
277 */
278
279 unsigned int segsz = m->m_pkthdr.segsz;
280 unsigned int datasz = ntohs(ip->ip_len) - hlen;
281 unsigned int num = howmany(datasz, segsz);
282
283 ip->ip_id = ip_newid_range(num);
284 }
285 ip->ip_hl = hlen >> 2;
286 ipstat.ips_localout++;
287 } else {
288 hlen = ip->ip_hl << 2;
289 }
290 /*
291 * Route packet.
292 */
293 memset(&iproute, 0, sizeof(iproute));
294 if (ro == NULL)
295 ro = &iproute;
296 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
297 dst = satocsin(rtcache_getdst(ro));
298 /*
299 * If there is a cached route,
300 * check that it is to the same destination
301 * and is still up. If not, free it and try again.
302 * The address family should also be checked in case of sharing the
303 * cache with IPv6.
304 */
305 if (dst == NULL)
306 ;
307 else if (dst->sin_family != AF_INET ||
308 !in_hosteq(dst->sin_addr, ip->ip_dst))
309 rtcache_free(ro);
310 else
311 rtcache_check(ro);
312 if ((rt = rtcache_getrt(ro)) == NULL) {
313 dst = &u.dst4;
314 rtcache_setdst(ro, &u.dst);
315 }
316 /*
317 * If routing to interface only,
318 * short circuit routing lookup.
319 */
320 if (flags & IP_ROUTETOIF) {
321 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
322 ipstat.ips_noroute++;
323 error = ENETUNREACH;
324 goto bad;
325 }
326 ifp = ia->ia_ifp;
327 mtu = ifp->if_mtu;
328 ip->ip_ttl = 1;
329 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
330 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
331 imo != NULL && imo->imo_multicast_ifp != NULL) {
332 ifp = imo->imo_multicast_ifp;
333 mtu = ifp->if_mtu;
334 IFP_TO_IA(ifp, ia);
335 } else {
336 if (rt == NULL)
337 rtcache_init(ro);
338 if ((rt = rtcache_getrt(ro)) == NULL) {
339 ipstat.ips_noroute++;
340 error = EHOSTUNREACH;
341 goto bad;
342 }
343 ia = ifatoia(rt->rt_ifa);
344 ifp = rt->rt_ifp;
345 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
346 mtu = ifp->if_mtu;
347 rt->rt_use++;
348 if (rt->rt_flags & RTF_GATEWAY)
349 dst = satosin(rt->rt_gateway);
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
353 struct in_multi *inm;
354
355 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
356 M_BCAST : M_MCAST;
357 /*
358 * See if the caller provided any multicast options
359 */
360 if (imo != NULL)
361 ip->ip_ttl = imo->imo_multicast_ttl;
362 else
363 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
364
365 /*
366 * if we don't know the outgoing ifp yet, we can't generate
367 * output
368 */
369 if (!ifp) {
370 ipstat.ips_noroute++;
371 error = ENETUNREACH;
372 goto bad;
373 }
374
375 /*
376 * If the packet is multicast or broadcast, confirm that
377 * the outgoing interface can transmit it.
378 */
379 if (((m->m_flags & M_MCAST) &&
380 (ifp->if_flags & IFF_MULTICAST) == 0) ||
381 ((m->m_flags & M_BCAST) &&
382 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
383 ipstat.ips_noroute++;
384 error = ENETUNREACH;
385 goto bad;
386 }
387 /*
388 * If source address not specified yet, use an address
389 * of outgoing interface.
390 */
391 if (in_nullhost(ip->ip_src)) {
392 struct in_ifaddr *xia;
393
394 IFP_TO_IA(ifp, xia);
395 if (!xia) {
396 error = EADDRNOTAVAIL;
397 goto bad;
398 }
399 xifa = &xia->ia_ifa;
400 if (xifa->ifa_getifa != NULL) {
401 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
402 }
403 ip->ip_src = xia->ia_addr.sin_addr;
404 }
405
406 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
407 if (inm != NULL &&
408 (imo == NULL || imo->imo_multicast_loop)) {
409 /*
410 * If we belong to the destination multicast group
411 * on the outgoing interface, and the caller did not
412 * forbid loopback, loop back a copy.
413 */
414 ip_mloopback(ifp, m, &u.dst4);
415 }
416 #ifdef MROUTING
417 else {
418 /*
419 * If we are acting as a multicast router, perform
420 * multicast forwarding as if the packet had just
421 * arrived on the interface to which we are about
422 * to send. The multicast forwarding function
423 * recursively calls this function, using the
424 * IP_FORWARDING flag to prevent infinite recursion.
425 *
426 * Multicasts that are looped back by ip_mloopback(),
427 * above, will be forwarded by the ip_input() routine,
428 * if necessary.
429 */
430 extern struct socket *ip_mrouter;
431
432 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
433 if (ip_mforward(m, ifp) != 0) {
434 m_freem(m);
435 goto done;
436 }
437 }
438 }
439 #endif
440 /*
441 * Multicasts with a time-to-live of zero may be looped-
442 * back, above, but must not be transmitted on a network.
443 * Also, multicasts addressed to the loopback interface
444 * are not sent -- the above call to ip_mloopback() will
445 * loop back a copy if this host actually belongs to the
446 * destination group on the loopback interface.
447 */
448 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
449 m_freem(m);
450 goto done;
451 }
452
453 goto sendit;
454 }
455 /*
456 * If source address not specified yet, use address
457 * of outgoing interface.
458 */
459 if (in_nullhost(ip->ip_src)) {
460 xifa = &ia->ia_ifa;
461 if (xifa->ifa_getifa != NULL)
462 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
463 ip->ip_src = ia->ia_addr.sin_addr;
464 }
465
466 /*
467 * packets with Class-D address as source are not valid per
468 * RFC 1112
469 */
470 if (IN_MULTICAST(ip->ip_src.s_addr)) {
471 ipstat.ips_odropped++;
472 error = EADDRNOTAVAIL;
473 goto bad;
474 }
475
476 /*
477 * Look for broadcast address and
478 * and verify user is allowed to send
479 * such a packet.
480 */
481 if (in_broadcast(dst->sin_addr, ifp)) {
482 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
483 error = EADDRNOTAVAIL;
484 goto bad;
485 }
486 if ((flags & IP_ALLOWBROADCAST) == 0) {
487 error = EACCES;
488 goto bad;
489 }
490 /* don't allow broadcast messages to be fragmented */
491 if (ntohs(ip->ip_len) > ifp->if_mtu) {
492 error = EMSGSIZE;
493 goto bad;
494 }
495 m->m_flags |= M_BCAST;
496 } else
497 m->m_flags &= ~M_BCAST;
498
499 sendit:
500 /*
501 * If we're doing Path MTU Discovery, we need to set DF unless
502 * the route's MTU is locked.
503 */
504 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
505 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
506 ip->ip_off |= htons(IP_DF);
507
508 /* Remember the current ip_len */
509 ip_len = ntohs(ip->ip_len);
510
511 #ifdef IPSEC
512 /* get SP for this packet */
513 if (so == NULL)
514 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
515 flags, &error);
516 else {
517 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
518 IPSEC_DIR_OUTBOUND))
519 goto skip_ipsec;
520 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
521 }
522
523 if (sp == NULL) {
524 ipsecstat.out_inval++;
525 goto bad;
526 }
527
528 error = 0;
529
530 /* check policy */
531 switch (sp->policy) {
532 case IPSEC_POLICY_DISCARD:
533 /*
534 * This packet is just discarded.
535 */
536 ipsecstat.out_polvio++;
537 goto bad;
538
539 case IPSEC_POLICY_BYPASS:
540 case IPSEC_POLICY_NONE:
541 /* no need to do IPsec. */
542 goto skip_ipsec;
543
544 case IPSEC_POLICY_IPSEC:
545 if (sp->req == NULL) {
546 /* XXX should be panic ? */
547 printf("ip_output: No IPsec request specified.\n");
548 error = EINVAL;
549 goto bad;
550 }
551 break;
552
553 case IPSEC_POLICY_ENTRUST:
554 default:
555 printf("ip_output: Invalid policy found. %d\n", sp->policy);
556 }
557
558 #ifdef IPSEC_NAT_T
559 /*
560 * NAT-T ESP fragmentation: don't do IPSec processing now,
561 * we'll do it on each fragmented packet.
562 */
563 if (sp->req->sav &&
564 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
565 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
566 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
567 natt_frag = 1;
568 mtu = sp->req->sav->esp_frag;
569 goto skip_ipsec;
570 }
571 }
572 #endif /* IPSEC_NAT_T */
573
574 /*
575 * ipsec4_output() expects ip_len and ip_off in network
576 * order. They have been set to network order above.
577 */
578
579 {
580 struct ipsec_output_state state;
581 bzero(&state, sizeof(state));
582 state.m = m;
583 if (flags & IP_ROUTETOIF) {
584 state.ro = &iproute;
585 memset(&iproute, 0, sizeof(iproute));
586 } else
587 state.ro = ro;
588 state.dst = sintocsa(dst);
589
590 /*
591 * We can't defer the checksum of payload data if
592 * we're about to encrypt/authenticate it.
593 *
594 * XXX When we support crypto offloading functions of
595 * XXX network interfaces, we need to reconsider this,
596 * XXX since it's likely that they'll support checksumming,
597 * XXX as well.
598 */
599 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
600 in_delayed_cksum(m);
601 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
602 }
603
604 error = ipsec4_output(&state, sp, flags);
605
606 m = state.m;
607 if (flags & IP_ROUTETOIF) {
608 /*
609 * if we have tunnel mode SA, we may need to ignore
610 * IP_ROUTETOIF.
611 */
612 if (state.ro != &iproute || rtcache_getrt(state.ro) != NULL) {
613 flags &= ~IP_ROUTETOIF;
614 ro = state.ro;
615 }
616 } else
617 ro = state.ro;
618 rt = rtcache_getrt(ro);
619 dst = satocsin(state.dst);
620 if (error) {
621 /* mbuf is already reclaimed in ipsec4_output. */
622 m0 = NULL;
623 switch (error) {
624 case EHOSTUNREACH:
625 case ENETUNREACH:
626 case EMSGSIZE:
627 case ENOBUFS:
628 case ENOMEM:
629 break;
630 default:
631 printf("ip4_output (ipsec): error code %d\n", error);
632 /*fall through*/
633 case ENOENT:
634 /* don't show these error codes to the user */
635 error = 0;
636 break;
637 }
638 goto bad;
639 }
640
641 /* be sure to update variables that are affected by ipsec4_output() */
642 ip = mtod(m, struct ip *);
643 hlen = ip->ip_hl << 2;
644 ip_len = ntohs(ip->ip_len);
645
646 if (rt == NULL) {
647 if ((flags & IP_ROUTETOIF) == 0) {
648 printf("ip_output: "
649 "can't update route after IPsec processing\n");
650 error = EHOSTUNREACH; /*XXX*/
651 goto bad;
652 }
653 } else {
654 /* nobody uses ia beyond here */
655 if (state.encap) {
656 ifp = rt->rt_ifp;
657 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
658 mtu = ifp->if_mtu;
659 }
660 }
661 }
662 skip_ipsec:
663 #endif /*IPSEC*/
664 #ifdef FAST_IPSEC
665 /*
666 * Check the security policy (SP) for the packet and, if
667 * required, do IPsec-related processing. There are two
668 * cases here; the first time a packet is sent through
669 * it will be untagged and handled by ipsec4_checkpolicy.
670 * If the packet is resubmitted to ip_output (e.g. after
671 * AH, ESP, etc. processing), there will be a tag to bypass
672 * the lookup and related policy checking.
673 */
674 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
675 s = splsoftnet();
676 if (mtag != NULL) {
677 tdbi = (struct tdb_ident *)(mtag + 1);
678 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
679 if (sp == NULL)
680 error = -EINVAL; /* force silent drop */
681 m_tag_delete(m, mtag);
682 } else {
683 if (inp != NULL &&
684 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
685 goto spd_done;
686 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
687 &error, inp);
688 }
689 /*
690 * There are four return cases:
691 * sp != NULL apply IPsec policy
692 * sp == NULL, error == 0 no IPsec handling needed
693 * sp == NULL, error == -EINVAL discard packet w/o error
694 * sp == NULL, error != 0 discard packet, report error
695 */
696 if (sp != NULL) {
697 #ifdef IPSEC_NAT_T
698 /*
699 * NAT-T ESP fragmentation: don't do IPSec processing now,
700 * we'll do it on each fragmented packet.
701 */
702 if (sp->req->sav &&
703 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
704 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
705 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
706 natt_frag = 1;
707 mtu = sp->req->sav->esp_frag;
708 goto spd_done;
709 }
710 }
711 #endif /* IPSEC_NAT_T */
712 /* Loop detection, check if ipsec processing already done */
713 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
714 for (mtag = m_tag_first(m); mtag != NULL;
715 mtag = m_tag_next(m, mtag)) {
716 #ifdef MTAG_ABI_COMPAT
717 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
718 continue;
719 #endif
720 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
721 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
722 continue;
723 /*
724 * Check if policy has an SA associated with it.
725 * This can happen when an SP has yet to acquire
726 * an SA; e.g. on first reference. If it occurs,
727 * then we let ipsec4_process_packet do its thing.
728 */
729 if (sp->req->sav == NULL)
730 break;
731 tdbi = (struct tdb_ident *)(mtag + 1);
732 if (tdbi->spi == sp->req->sav->spi &&
733 tdbi->proto == sp->req->sav->sah->saidx.proto &&
734 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
735 sizeof (union sockaddr_union)) == 0) {
736 /*
737 * No IPsec processing is needed, free
738 * reference to SP.
739 *
740 * NB: null pointer to avoid free at
741 * done: below.
742 */
743 KEY_FREESP(&sp), sp = NULL;
744 splx(s);
745 goto spd_done;
746 }
747 }
748
749 /*
750 * Do delayed checksums now because we send before
751 * this is done in the normal processing path.
752 */
753 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
754 in_delayed_cksum(m);
755 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
756 }
757
758 #ifdef __FreeBSD__
759 ip->ip_len = htons(ip->ip_len);
760 ip->ip_off = htons(ip->ip_off);
761 #endif
762
763 /* NB: callee frees mbuf */
764 error = ipsec4_process_packet(m, sp->req, flags, 0);
765 /*
766 * Preserve KAME behaviour: ENOENT can be returned
767 * when an SA acquire is in progress. Don't propagate
768 * this to user-level; it confuses applications.
769 *
770 * XXX this will go away when the SADB is redone.
771 */
772 if (error == ENOENT)
773 error = 0;
774 splx(s);
775 goto done;
776 } else {
777 splx(s);
778
779 if (error != 0) {
780 /*
781 * Hack: -EINVAL is used to signal that a packet
782 * should be silently discarded. This is typically
783 * because we asked key management for an SA and
784 * it was delayed (e.g. kicked up to IKE).
785 */
786 if (error == -EINVAL)
787 error = 0;
788 goto bad;
789 } else {
790 /* No IPsec processing for this packet. */
791 }
792 #ifdef notyet
793 /*
794 * If deferred crypto processing is needed, check that
795 * the interface supports it.
796 */
797 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
798 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
799 /* notify IPsec to do its own crypto */
800 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
801 error = EHOSTUNREACH;
802 goto bad;
803 }
804 #endif
805 }
806 spd_done:
807 #endif /* FAST_IPSEC */
808
809 #ifdef PFIL_HOOKS
810 /*
811 * Run through list of hooks for output packets.
812 */
813 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
814 goto done;
815 if (m == NULL)
816 goto done;
817
818 ip = mtod(m, struct ip *);
819 hlen = ip->ip_hl << 2;
820 ip_len = ntohs(ip->ip_len);
821 #endif /* PFIL_HOOKS */
822
823 m->m_pkthdr.csum_data |= hlen << 16;
824
825 #if IFA_STATS
826 /*
827 * search for the source address structure to
828 * maintain output statistics.
829 */
830 INADDR_TO_IA(ip->ip_src, ia);
831 #endif
832
833 /* Maybe skip checksums on loopback interfaces. */
834 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
835 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
836 }
837 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
838 /*
839 * If small enough for mtu of path, or if using TCP segmentation
840 * offload, can just send directly.
841 */
842 if (ip_len <= mtu ||
843 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
844 #if IFA_STATS
845 if (ia)
846 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
847 #endif
848 /*
849 * Always initialize the sum to 0! Some HW assisted
850 * checksumming requires this.
851 */
852 ip->ip_sum = 0;
853
854 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
855 /*
856 * Perform any checksums that the hardware can't do
857 * for us.
858 *
859 * XXX Does any hardware require the {th,uh}_sum
860 * XXX fields to be 0?
861 */
862 if (sw_csum & M_CSUM_IPv4) {
863 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
864 ip->ip_sum = in_cksum(m, hlen);
865 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
866 }
867 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
868 if (IN_NEED_CHECKSUM(ifp,
869 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
870 in_delayed_cksum(m);
871 }
872 m->m_pkthdr.csum_flags &=
873 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
874 }
875 }
876
877 #ifdef IPSEC
878 /* clean ipsec history once it goes out of the node */
879 ipsec_delaux(m);
880 #endif
881
882 if (__predict_true(
883 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
884 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
885 error =
886 (*ifp->if_output)(ifp, m,
887 (m->m_flags & M_MCAST) ?
888 sintocsa(rdst) : sintocsa(dst),
889 rt);
890 } else {
891 error =
892 ip_tso_output(ifp, m,
893 (m->m_flags & M_MCAST) ?
894 sintocsa(rdst) : sintocsa(dst),
895 rt);
896 }
897 goto done;
898 }
899
900 /*
901 * We can't use HW checksumming if we're about to
902 * to fragment the packet.
903 *
904 * XXX Some hardware can do this.
905 */
906 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
907 if (IN_NEED_CHECKSUM(ifp,
908 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
909 in_delayed_cksum(m);
910 }
911 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
912 }
913
914 /*
915 * Too large for interface; fragment if possible.
916 * Must be able to put at least 8 bytes per fragment.
917 */
918 if (ntohs(ip->ip_off) & IP_DF) {
919 if (flags & IP_RETURNMTU)
920 *mtu_p = mtu;
921 error = EMSGSIZE;
922 ipstat.ips_cantfrag++;
923 goto bad;
924 }
925
926 error = ip_fragment(m, ifp, mtu);
927 if (error) {
928 m = NULL;
929 goto bad;
930 }
931
932 for (; m; m = m0) {
933 m0 = m->m_nextpkt;
934 m->m_nextpkt = 0;
935 if (error == 0) {
936 #if IFA_STATS
937 if (ia)
938 ia->ia_ifa.ifa_data.ifad_outbytes +=
939 ntohs(ip->ip_len);
940 #endif
941 #ifdef IPSEC
942 /* clean ipsec history once it goes out of the node */
943 ipsec_delaux(m);
944 #endif /* IPSEC */
945
946 #ifdef IPSEC_NAT_T
947 /*
948 * If we get there, the packet has not been handeld by
949 * IPSec whereas it should have. Now that it has been
950 * fragmented, re-inject it in ip_output so that IPsec
951 * processing can occur.
952 */
953 if (natt_frag) {
954 error = ip_output(m, opt,
955 ro, flags, imo, so, mtu_p);
956 } else
957 #endif /* IPSEC_NAT_T */
958 {
959 KASSERT((m->m_pkthdr.csum_flags &
960 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
961 error = (*ifp->if_output)(ifp, m,
962 (m->m_flags & M_MCAST) ?
963 sintocsa(rdst) : sintocsa(dst),
964 rt);
965 }
966 } else
967 m_freem(m);
968 }
969
970 if (error == 0)
971 ipstat.ips_fragmented++;
972 done:
973 rtcache_free(&iproute);
974
975 #ifdef IPSEC
976 if (sp != NULL) {
977 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
978 printf("DP ip_output call free SP:%p\n", sp));
979 key_freesp(sp);
980 }
981 #endif /* IPSEC */
982 #ifdef FAST_IPSEC
983 if (sp != NULL)
984 KEY_FREESP(&sp);
985 #endif /* FAST_IPSEC */
986
987 return (error);
988 bad:
989 m_freem(m);
990 goto done;
991 }
992
993 int
994 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
995 {
996 struct ip *ip, *mhip;
997 struct mbuf *m0;
998 int len, hlen, off;
999 int mhlen, firstlen;
1000 struct mbuf **mnext;
1001 int sw_csum = m->m_pkthdr.csum_flags;
1002 int fragments = 0;
1003 int s;
1004 int error = 0;
1005
1006 ip = mtod(m, struct ip *);
1007 hlen = ip->ip_hl << 2;
1008 if (ifp != NULL)
1009 sw_csum &= ~ifp->if_csum_flags_tx;
1010
1011 len = (mtu - hlen) &~ 7;
1012 if (len < 8) {
1013 m_freem(m);
1014 return (EMSGSIZE);
1015 }
1016
1017 firstlen = len;
1018 mnext = &m->m_nextpkt;
1019
1020 /*
1021 * Loop through length of segment after first fragment,
1022 * make new header and copy data of each part and link onto chain.
1023 */
1024 m0 = m;
1025 mhlen = sizeof (struct ip);
1026 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1027 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1028 if (m == 0) {
1029 error = ENOBUFS;
1030 ipstat.ips_odropped++;
1031 goto sendorfree;
1032 }
1033 MCLAIM(m, m0->m_owner);
1034 *mnext = m;
1035 mnext = &m->m_nextpkt;
1036 m->m_data += max_linkhdr;
1037 mhip = mtod(m, struct ip *);
1038 *mhip = *ip;
1039 /* we must inherit MCAST and BCAST flags */
1040 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1041 if (hlen > sizeof (struct ip)) {
1042 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1043 mhip->ip_hl = mhlen >> 2;
1044 }
1045 m->m_len = mhlen;
1046 mhip->ip_off = ((off - hlen) >> 3) +
1047 (ntohs(ip->ip_off) & ~IP_MF);
1048 if (ip->ip_off & htons(IP_MF))
1049 mhip->ip_off |= IP_MF;
1050 if (off + len >= ntohs(ip->ip_len))
1051 len = ntohs(ip->ip_len) - off;
1052 else
1053 mhip->ip_off |= IP_MF;
1054 HTONS(mhip->ip_off);
1055 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1056 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1057 if (m->m_next == 0) {
1058 error = ENOBUFS; /* ??? */
1059 ipstat.ips_odropped++;
1060 goto sendorfree;
1061 }
1062 m->m_pkthdr.len = mhlen + len;
1063 m->m_pkthdr.rcvif = (struct ifnet *)0;
1064 mhip->ip_sum = 0;
1065 if (sw_csum & M_CSUM_IPv4) {
1066 mhip->ip_sum = in_cksum(m, mhlen);
1067 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1068 } else {
1069 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1070 m->m_pkthdr.csum_data |= mhlen << 16;
1071 }
1072 ipstat.ips_ofragments++;
1073 fragments++;
1074 }
1075 /*
1076 * Update first fragment by trimming what's been copied out
1077 * and updating header, then send each fragment (in order).
1078 */
1079 m = m0;
1080 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1081 m->m_pkthdr.len = hlen + firstlen;
1082 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1083 ip->ip_off |= htons(IP_MF);
1084 ip->ip_sum = 0;
1085 if (sw_csum & M_CSUM_IPv4) {
1086 ip->ip_sum = in_cksum(m, hlen);
1087 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1088 } else {
1089 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1090 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1091 sizeof(struct ip));
1092 }
1093 sendorfree:
1094 /*
1095 * If there is no room for all the fragments, don't queue
1096 * any of them.
1097 */
1098 if (ifp != NULL) {
1099 s = splnet();
1100 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1101 error == 0) {
1102 error = ENOBUFS;
1103 ipstat.ips_odropped++;
1104 IFQ_INC_DROPS(&ifp->if_snd);
1105 }
1106 splx(s);
1107 }
1108 if (error) {
1109 for (m = m0; m; m = m0) {
1110 m0 = m->m_nextpkt;
1111 m->m_nextpkt = NULL;
1112 m_freem(m);
1113 }
1114 }
1115 return (error);
1116 }
1117
1118 /*
1119 * Process a delayed payload checksum calculation.
1120 */
1121 void
1122 in_delayed_cksum(struct mbuf *m)
1123 {
1124 struct ip *ip;
1125 u_int16_t csum, offset;
1126
1127 ip = mtod(m, struct ip *);
1128 offset = ip->ip_hl << 2;
1129 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1130 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1131 csum = 0xffff;
1132
1133 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1134
1135 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1136 /* This happen when ip options were inserted
1137 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1138 m->m_len, offset, ip->ip_p);
1139 */
1140 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1141 } else
1142 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1143 }
1144
1145 /*
1146 * Determine the maximum length of the options to be inserted;
1147 * we would far rather allocate too much space rather than too little.
1148 */
1149
1150 u_int
1151 ip_optlen(struct inpcb *inp)
1152 {
1153 struct mbuf *m = inp->inp_options;
1154
1155 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1156 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1157 else
1158 return 0;
1159 }
1160
1161
1162 /*
1163 * Insert IP options into preformed packet.
1164 * Adjust IP destination as required for IP source routing,
1165 * as indicated by a non-zero in_addr at the start of the options.
1166 */
1167 static struct mbuf *
1168 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1169 {
1170 struct ipoption *p = mtod(opt, struct ipoption *);
1171 struct mbuf *n;
1172 struct ip *ip = mtod(m, struct ip *);
1173 unsigned optlen;
1174
1175 optlen = opt->m_len - sizeof(p->ipopt_dst);
1176 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1177 return (m); /* XXX should fail */
1178 if (!in_nullhost(p->ipopt_dst))
1179 ip->ip_dst = p->ipopt_dst;
1180 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1181 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1182 if (n == 0)
1183 return (m);
1184 MCLAIM(n, m->m_owner);
1185 M_MOVE_PKTHDR(n, m);
1186 m->m_len -= sizeof(struct ip);
1187 m->m_data += sizeof(struct ip);
1188 n->m_next = m;
1189 m = n;
1190 m->m_len = optlen + sizeof(struct ip);
1191 m->m_data += max_linkhdr;
1192 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1193 } else {
1194 m->m_data -= optlen;
1195 m->m_len += optlen;
1196 memmove(mtod(m, void *), ip, sizeof(struct ip));
1197 }
1198 m->m_pkthdr.len += optlen;
1199 ip = mtod(m, struct ip *);
1200 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1201 *phlen = sizeof(struct ip) + optlen;
1202 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1203 return (m);
1204 }
1205
1206 /*
1207 * Copy options from ip to jp,
1208 * omitting those not copied during fragmentation.
1209 */
1210 int
1211 ip_optcopy(struct ip *ip, struct ip *jp)
1212 {
1213 u_char *cp, *dp;
1214 int opt, optlen, cnt;
1215
1216 cp = (u_char *)(ip + 1);
1217 dp = (u_char *)(jp + 1);
1218 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1219 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1220 opt = cp[0];
1221 if (opt == IPOPT_EOL)
1222 break;
1223 if (opt == IPOPT_NOP) {
1224 /* Preserve for IP mcast tunnel's LSRR alignment. */
1225 *dp++ = IPOPT_NOP;
1226 optlen = 1;
1227 continue;
1228 }
1229 #ifdef DIAGNOSTIC
1230 if (cnt < IPOPT_OLEN + sizeof(*cp))
1231 panic("malformed IPv4 option passed to ip_optcopy");
1232 #endif
1233 optlen = cp[IPOPT_OLEN];
1234 #ifdef DIAGNOSTIC
1235 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1236 panic("malformed IPv4 option passed to ip_optcopy");
1237 #endif
1238 /* bogus lengths should have been caught by ip_dooptions */
1239 if (optlen > cnt)
1240 optlen = cnt;
1241 if (IPOPT_COPIED(opt)) {
1242 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1243 dp += optlen;
1244 }
1245 }
1246 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1247 *dp++ = IPOPT_EOL;
1248 return (optlen);
1249 }
1250
1251 /*
1252 * IP socket option processing.
1253 */
1254 int
1255 ip_ctloutput(int op, struct socket *so, int level, int optname,
1256 struct mbuf **mp)
1257 {
1258 struct inpcb *inp = sotoinpcb(so);
1259 struct mbuf *m = *mp;
1260 int optval = 0;
1261 int error = 0;
1262 #if defined(IPSEC) || defined(FAST_IPSEC)
1263 struct lwp *l = curlwp; /*XXX*/
1264 #endif
1265
1266 if (level != IPPROTO_IP) {
1267 if (op == PRCO_SETOPT && *mp)
1268 (void) m_free(*mp);
1269 if (level == SOL_SOCKET && optname == SO_NOHEADER)
1270 return 0;
1271 return ENOPROTOOPT;
1272 }
1273
1274 switch (op) {
1275
1276 case PRCO_SETOPT:
1277 switch (optname) {
1278 case IP_OPTIONS:
1279 #ifdef notyet
1280 case IP_RETOPTS:
1281 return (ip_pcbopts(optname, &inp->inp_options, m));
1282 #else
1283 return (ip_pcbopts(&inp->inp_options, m));
1284 #endif
1285
1286 case IP_TOS:
1287 case IP_TTL:
1288 case IP_RECVOPTS:
1289 case IP_RECVRETOPTS:
1290 case IP_RECVDSTADDR:
1291 case IP_RECVIF:
1292 if (m == NULL || m->m_len != sizeof(int))
1293 error = EINVAL;
1294 else {
1295 optval = *mtod(m, int *);
1296 switch (optname) {
1297
1298 case IP_TOS:
1299 inp->inp_ip.ip_tos = optval;
1300 break;
1301
1302 case IP_TTL:
1303 inp->inp_ip.ip_ttl = optval;
1304 break;
1305 #define OPTSET(bit) \
1306 if (optval) \
1307 inp->inp_flags |= bit; \
1308 else \
1309 inp->inp_flags &= ~bit;
1310
1311 case IP_RECVOPTS:
1312 OPTSET(INP_RECVOPTS);
1313 break;
1314
1315 case IP_RECVRETOPTS:
1316 OPTSET(INP_RECVRETOPTS);
1317 break;
1318
1319 case IP_RECVDSTADDR:
1320 OPTSET(INP_RECVDSTADDR);
1321 break;
1322
1323 case IP_RECVIF:
1324 OPTSET(INP_RECVIF);
1325 break;
1326 }
1327 }
1328 break;
1329 #undef OPTSET
1330
1331 case IP_MULTICAST_IF:
1332 case IP_MULTICAST_TTL:
1333 case IP_MULTICAST_LOOP:
1334 case IP_ADD_MEMBERSHIP:
1335 case IP_DROP_MEMBERSHIP:
1336 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1337 break;
1338
1339 case IP_PORTRANGE:
1340 if (m == 0 || m->m_len != sizeof(int))
1341 error = EINVAL;
1342 else {
1343 optval = *mtod(m, int *);
1344
1345 switch (optval) {
1346
1347 case IP_PORTRANGE_DEFAULT:
1348 case IP_PORTRANGE_HIGH:
1349 inp->inp_flags &= ~(INP_LOWPORT);
1350 break;
1351
1352 case IP_PORTRANGE_LOW:
1353 inp->inp_flags |= INP_LOWPORT;
1354 break;
1355
1356 default:
1357 error = EINVAL;
1358 break;
1359 }
1360 }
1361 break;
1362
1363 #if defined(IPSEC) || defined(FAST_IPSEC)
1364 case IP_IPSEC_POLICY:
1365 {
1366 void *req = NULL;
1367 size_t len = 0;
1368 int priv = 0;
1369
1370 #ifdef __NetBSD__
1371 if (l == 0 || kauth_authorize_generic(l->l_cred,
1372 KAUTH_GENERIC_ISSUSER, NULL))
1373 priv = 0;
1374 else
1375 priv = 1;
1376 #else
1377 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1378 #endif
1379 if (m) {
1380 req = mtod(m, void *);
1381 len = m->m_len;
1382 }
1383 error = ipsec4_set_policy(inp, optname, req, len, priv);
1384 break;
1385 }
1386 #endif /*IPSEC*/
1387
1388 default:
1389 error = ENOPROTOOPT;
1390 break;
1391 }
1392 if (m)
1393 (void)m_free(m);
1394 break;
1395
1396 case PRCO_GETOPT:
1397 switch (optname) {
1398 case IP_OPTIONS:
1399 case IP_RETOPTS:
1400 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1401 MCLAIM(m, so->so_mowner);
1402 if (inp->inp_options) {
1403 m->m_len = inp->inp_options->m_len;
1404 bcopy(mtod(inp->inp_options, void *),
1405 mtod(m, void *), (unsigned)m->m_len);
1406 } else
1407 m->m_len = 0;
1408 break;
1409
1410 case IP_TOS:
1411 case IP_TTL:
1412 case IP_RECVOPTS:
1413 case IP_RECVRETOPTS:
1414 case IP_RECVDSTADDR:
1415 case IP_RECVIF:
1416 case IP_ERRORMTU:
1417 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1418 MCLAIM(m, so->so_mowner);
1419 m->m_len = sizeof(int);
1420 switch (optname) {
1421
1422 case IP_TOS:
1423 optval = inp->inp_ip.ip_tos;
1424 break;
1425
1426 case IP_TTL:
1427 optval = inp->inp_ip.ip_ttl;
1428 break;
1429
1430 case IP_ERRORMTU:
1431 optval = inp->inp_errormtu;
1432 break;
1433
1434 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1435
1436 case IP_RECVOPTS:
1437 optval = OPTBIT(INP_RECVOPTS);
1438 break;
1439
1440 case IP_RECVRETOPTS:
1441 optval = OPTBIT(INP_RECVRETOPTS);
1442 break;
1443
1444 case IP_RECVDSTADDR:
1445 optval = OPTBIT(INP_RECVDSTADDR);
1446 break;
1447
1448 case IP_RECVIF:
1449 optval = OPTBIT(INP_RECVIF);
1450 break;
1451 }
1452 *mtod(m, int *) = optval;
1453 break;
1454
1455 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1456 /* XXX: code broken */
1457 case IP_IPSEC_POLICY:
1458 {
1459 void *req = NULL;
1460 size_t len = 0;
1461
1462 if (m) {
1463 req = mtod(m, void *);
1464 len = m->m_len;
1465 }
1466 error = ipsec4_get_policy(inp, req, len, mp);
1467 break;
1468 }
1469 #endif /*IPSEC*/
1470
1471 case IP_MULTICAST_IF:
1472 case IP_MULTICAST_TTL:
1473 case IP_MULTICAST_LOOP:
1474 case IP_ADD_MEMBERSHIP:
1475 case IP_DROP_MEMBERSHIP:
1476 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1477 if (*mp)
1478 MCLAIM(*mp, so->so_mowner);
1479 break;
1480
1481 case IP_PORTRANGE:
1482 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1483 MCLAIM(m, so->so_mowner);
1484 m->m_len = sizeof(int);
1485
1486 if (inp->inp_flags & INP_LOWPORT)
1487 optval = IP_PORTRANGE_LOW;
1488 else
1489 optval = IP_PORTRANGE_DEFAULT;
1490
1491 *mtod(m, int *) = optval;
1492 break;
1493
1494 default:
1495 error = ENOPROTOOPT;
1496 break;
1497 }
1498 break;
1499 }
1500 return (error);
1501 }
1502
1503 /*
1504 * Set up IP options in pcb for insertion in output packets.
1505 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1506 * with destination address if source routed.
1507 */
1508 int
1509 #ifdef notyet
1510 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1511 #else
1512 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1513 #endif
1514 {
1515 int cnt, optlen;
1516 u_char *cp;
1517 u_char opt;
1518
1519 /* turn off any old options */
1520 if (*pcbopt)
1521 (void)m_free(*pcbopt);
1522 *pcbopt = 0;
1523 if (m == (struct mbuf *)0 || m->m_len == 0) {
1524 /*
1525 * Only turning off any previous options.
1526 */
1527 if (m)
1528 (void)m_free(m);
1529 return (0);
1530 }
1531
1532 #ifndef __vax__
1533 if (m->m_len % sizeof(int32_t))
1534 goto bad;
1535 #endif
1536 /*
1537 * IP first-hop destination address will be stored before
1538 * actual options; move other options back
1539 * and clear it when none present.
1540 */
1541 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1542 goto bad;
1543 cnt = m->m_len;
1544 m->m_len += sizeof(struct in_addr);
1545 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1546 memmove(cp, mtod(m, void *), (unsigned)cnt);
1547 bzero(mtod(m, void *), sizeof(struct in_addr));
1548
1549 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1550 opt = cp[IPOPT_OPTVAL];
1551 if (opt == IPOPT_EOL)
1552 break;
1553 if (opt == IPOPT_NOP)
1554 optlen = 1;
1555 else {
1556 if (cnt < IPOPT_OLEN + sizeof(*cp))
1557 goto bad;
1558 optlen = cp[IPOPT_OLEN];
1559 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1560 goto bad;
1561 }
1562 switch (opt) {
1563
1564 default:
1565 break;
1566
1567 case IPOPT_LSRR:
1568 case IPOPT_SSRR:
1569 /*
1570 * user process specifies route as:
1571 * ->A->B->C->D
1572 * D must be our final destination (but we can't
1573 * check that since we may not have connected yet).
1574 * A is first hop destination, which doesn't appear in
1575 * actual IP option, but is stored before the options.
1576 */
1577 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1578 goto bad;
1579 m->m_len -= sizeof(struct in_addr);
1580 cnt -= sizeof(struct in_addr);
1581 optlen -= sizeof(struct in_addr);
1582 cp[IPOPT_OLEN] = optlen;
1583 /*
1584 * Move first hop before start of options.
1585 */
1586 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1587 sizeof(struct in_addr));
1588 /*
1589 * Then copy rest of options back
1590 * to close up the deleted entry.
1591 */
1592 (void)memmove(&cp[IPOPT_OFFSET+1],
1593 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1594 (unsigned)cnt - (IPOPT_MINOFF - 1));
1595 break;
1596 }
1597 }
1598 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1599 goto bad;
1600 *pcbopt = m;
1601 return (0);
1602
1603 bad:
1604 (void)m_free(m);
1605 return (EINVAL);
1606 }
1607
1608 /*
1609 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1610 */
1611 static struct ifnet *
1612 ip_multicast_if(struct in_addr *a, int *ifindexp)
1613 {
1614 int ifindex;
1615 struct ifnet *ifp = NULL;
1616 struct in_ifaddr *ia;
1617
1618 if (ifindexp)
1619 *ifindexp = 0;
1620 if (ntohl(a->s_addr) >> 24 == 0) {
1621 ifindex = ntohl(a->s_addr) & 0xffffff;
1622 if (ifindex < 0 || if_indexlim <= ifindex)
1623 return NULL;
1624 ifp = ifindex2ifnet[ifindex];
1625 if (!ifp)
1626 return NULL;
1627 if (ifindexp)
1628 *ifindexp = ifindex;
1629 } else {
1630 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1631 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1632 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1633 ifp = ia->ia_ifp;
1634 break;
1635 }
1636 }
1637 }
1638 return ifp;
1639 }
1640
1641 static int
1642 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1643 {
1644 u_int tval;
1645
1646 if (m == NULL)
1647 return EINVAL;
1648
1649 switch (m->m_len) {
1650 case sizeof(u_char):
1651 tval = *(mtod(m, u_char *));
1652 break;
1653 case sizeof(u_int):
1654 tval = *(mtod(m, u_int *));
1655 break;
1656 default:
1657 return EINVAL;
1658 }
1659
1660 if (tval > maxval)
1661 return EINVAL;
1662
1663 *val = tval;
1664 return 0;
1665 }
1666
1667 /*
1668 * Set the IP multicast options in response to user setsockopt().
1669 */
1670 int
1671 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1672 {
1673 int error = 0;
1674 int i;
1675 struct in_addr addr;
1676 struct ip_mreq *mreq;
1677 struct ifnet *ifp;
1678 struct ip_moptions *imo = *imop;
1679 int ifindex;
1680
1681 if (imo == NULL) {
1682 /*
1683 * No multicast option buffer attached to the pcb;
1684 * allocate one and initialize to default values.
1685 */
1686 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1687 M_WAITOK);
1688
1689 if (imo == NULL)
1690 return (ENOBUFS);
1691 *imop = imo;
1692 imo->imo_multicast_ifp = NULL;
1693 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1694 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1695 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1696 imo->imo_num_memberships = 0;
1697 }
1698
1699 switch (optname) {
1700
1701 case IP_MULTICAST_IF:
1702 /*
1703 * Select the interface for outgoing multicast packets.
1704 */
1705 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1706 error = EINVAL;
1707 break;
1708 }
1709 addr = *(mtod(m, struct in_addr *));
1710 /*
1711 * INADDR_ANY is used to remove a previous selection.
1712 * When no interface is selected, a default one is
1713 * chosen every time a multicast packet is sent.
1714 */
1715 if (in_nullhost(addr)) {
1716 imo->imo_multicast_ifp = NULL;
1717 break;
1718 }
1719 /*
1720 * The selected interface is identified by its local
1721 * IP address. Find the interface and confirm that
1722 * it supports multicasting.
1723 */
1724 ifp = ip_multicast_if(&addr, &ifindex);
1725 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1726 error = EADDRNOTAVAIL;
1727 break;
1728 }
1729 imo->imo_multicast_ifp = ifp;
1730 if (ifindex)
1731 imo->imo_multicast_addr = addr;
1732 else
1733 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1734 break;
1735
1736 case IP_MULTICAST_TTL:
1737 /*
1738 * Set the IP time-to-live for outgoing multicast packets.
1739 */
1740 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1741 break;
1742
1743 case IP_MULTICAST_LOOP:
1744 /*
1745 * Set the loopback flag for outgoing multicast packets.
1746 * Must be zero or one.
1747 */
1748 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1749 break;
1750
1751 case IP_ADD_MEMBERSHIP:
1752 /*
1753 * Add a multicast group membership.
1754 * Group must be a valid IP multicast address.
1755 */
1756 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1757 error = EINVAL;
1758 break;
1759 }
1760 mreq = mtod(m, struct ip_mreq *);
1761 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1762 error = EINVAL;
1763 break;
1764 }
1765 /*
1766 * If no interface address was provided, use the interface of
1767 * the route to the given multicast address.
1768 */
1769 if (in_nullhost(mreq->imr_interface)) {
1770 struct rtentry *rt;
1771 union {
1772 struct sockaddr dst;
1773 struct sockaddr_in dst4;
1774 } u;
1775 struct route ro;
1776
1777 memset(&ro, 0, sizeof(ro));
1778
1779 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1780 rtcache_setdst(&ro, &u.dst);
1781 rtcache_init(&ro);
1782 ifp = (rt = rtcache_getrt(&ro)) != NULL ? rt->rt_ifp
1783 : NULL;
1784 rtcache_free(&ro);
1785 } else {
1786 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1787 }
1788 /*
1789 * See if we found an interface, and confirm that it
1790 * supports multicast.
1791 */
1792 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1793 error = EADDRNOTAVAIL;
1794 break;
1795 }
1796 /*
1797 * See if the membership already exists or if all the
1798 * membership slots are full.
1799 */
1800 for (i = 0; i < imo->imo_num_memberships; ++i) {
1801 if (imo->imo_membership[i]->inm_ifp == ifp &&
1802 in_hosteq(imo->imo_membership[i]->inm_addr,
1803 mreq->imr_multiaddr))
1804 break;
1805 }
1806 if (i < imo->imo_num_memberships) {
1807 error = EADDRINUSE;
1808 break;
1809 }
1810 if (i == IP_MAX_MEMBERSHIPS) {
1811 error = ETOOMANYREFS;
1812 break;
1813 }
1814 /*
1815 * Everything looks good; add a new record to the multicast
1816 * address list for the given interface.
1817 */
1818 if ((imo->imo_membership[i] =
1819 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1820 error = ENOBUFS;
1821 break;
1822 }
1823 ++imo->imo_num_memberships;
1824 break;
1825
1826 case IP_DROP_MEMBERSHIP:
1827 /*
1828 * Drop a multicast group membership.
1829 * Group must be a valid IP multicast address.
1830 */
1831 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1832 error = EINVAL;
1833 break;
1834 }
1835 mreq = mtod(m, struct ip_mreq *);
1836 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1837 error = EINVAL;
1838 break;
1839 }
1840 /*
1841 * If an interface address was specified, get a pointer
1842 * to its ifnet structure.
1843 */
1844 if (in_nullhost(mreq->imr_interface))
1845 ifp = NULL;
1846 else {
1847 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1848 if (ifp == NULL) {
1849 error = EADDRNOTAVAIL;
1850 break;
1851 }
1852 }
1853 /*
1854 * Find the membership in the membership array.
1855 */
1856 for (i = 0; i < imo->imo_num_memberships; ++i) {
1857 if ((ifp == NULL ||
1858 imo->imo_membership[i]->inm_ifp == ifp) &&
1859 in_hosteq(imo->imo_membership[i]->inm_addr,
1860 mreq->imr_multiaddr))
1861 break;
1862 }
1863 if (i == imo->imo_num_memberships) {
1864 error = EADDRNOTAVAIL;
1865 break;
1866 }
1867 /*
1868 * Give up the multicast address record to which the
1869 * membership points.
1870 */
1871 in_delmulti(imo->imo_membership[i]);
1872 /*
1873 * Remove the gap in the membership array.
1874 */
1875 for (++i; i < imo->imo_num_memberships; ++i)
1876 imo->imo_membership[i-1] = imo->imo_membership[i];
1877 --imo->imo_num_memberships;
1878 break;
1879
1880 default:
1881 error = EOPNOTSUPP;
1882 break;
1883 }
1884
1885 /*
1886 * If all options have default values, no need to keep the mbuf.
1887 */
1888 if (imo->imo_multicast_ifp == NULL &&
1889 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1890 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1891 imo->imo_num_memberships == 0) {
1892 free(*imop, M_IPMOPTS);
1893 *imop = NULL;
1894 }
1895
1896 return (error);
1897 }
1898
1899 /*
1900 * Return the IP multicast options in response to user getsockopt().
1901 */
1902 int
1903 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1904 {
1905 u_char *ttl;
1906 u_char *loop;
1907 struct in_addr *addr;
1908 struct in_ifaddr *ia;
1909
1910 *mp = m_get(M_WAIT, MT_SOOPTS);
1911
1912 switch (optname) {
1913
1914 case IP_MULTICAST_IF:
1915 addr = mtod(*mp, struct in_addr *);
1916 (*mp)->m_len = sizeof(struct in_addr);
1917 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1918 *addr = zeroin_addr;
1919 else if (imo->imo_multicast_addr.s_addr) {
1920 /* return the value user has set */
1921 *addr = imo->imo_multicast_addr;
1922 } else {
1923 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1924 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1925 }
1926 return (0);
1927
1928 case IP_MULTICAST_TTL:
1929 ttl = mtod(*mp, u_char *);
1930 (*mp)->m_len = 1;
1931 *ttl = imo ? imo->imo_multicast_ttl
1932 : IP_DEFAULT_MULTICAST_TTL;
1933 return (0);
1934
1935 case IP_MULTICAST_LOOP:
1936 loop = mtod(*mp, u_char *);
1937 (*mp)->m_len = 1;
1938 *loop = imo ? imo->imo_multicast_loop
1939 : IP_DEFAULT_MULTICAST_LOOP;
1940 return (0);
1941
1942 default:
1943 return (EOPNOTSUPP);
1944 }
1945 }
1946
1947 /*
1948 * Discard the IP multicast options.
1949 */
1950 void
1951 ip_freemoptions(struct ip_moptions *imo)
1952 {
1953 int i;
1954
1955 if (imo != NULL) {
1956 for (i = 0; i < imo->imo_num_memberships; ++i)
1957 in_delmulti(imo->imo_membership[i]);
1958 free(imo, M_IPMOPTS);
1959 }
1960 }
1961
1962 /*
1963 * Routine called from ip_output() to loop back a copy of an IP multicast
1964 * packet to the input queue of a specified interface. Note that this
1965 * calls the output routine of the loopback "driver", but with an interface
1966 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1967 */
1968 static void
1969 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1970 {
1971 struct ip *ip;
1972 struct mbuf *copym;
1973
1974 copym = m_copypacket(m, M_DONTWAIT);
1975 if (copym != NULL
1976 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1977 copym = m_pullup(copym, sizeof(struct ip));
1978 if (copym == NULL)
1979 return;
1980 /*
1981 * We don't bother to fragment if the IP length is greater
1982 * than the interface's MTU. Can this possibly matter?
1983 */
1984 ip = mtod(copym, struct ip *);
1985
1986 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1987 in_delayed_cksum(copym);
1988 copym->m_pkthdr.csum_flags &=
1989 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1990 }
1991
1992 ip->ip_sum = 0;
1993 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1994 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1995 }
1996