ip_output.c revision 1.187 1 /* $NetBSD: ip_output.c,v 1.187 2007/12/21 02:07:55 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.187 2007/12/21 02:07:55 matt Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *,
159 const struct sockaddr_in *);
160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
161
162 #ifdef PFIL_HOOKS
163 extern struct pfil_head inet_pfil_hook; /* XXX */
164 #endif
165
166 int ip_do_loopback_cksum = 0;
167
168 /*
169 * IP output. The packet in mbuf chain m contains a skeletal IP
170 * header (with len, off, ttl, proto, tos, src, dst).
171 * The mbuf chain containing the packet will be freed.
172 * The mbuf opt, if present, will not be freed.
173 */
174 int
175 ip_output(struct mbuf *m0, ...)
176 {
177 struct rtentry *rt;
178 struct ip *ip;
179 struct ifnet *ifp;
180 struct mbuf *m = m0;
181 int hlen = sizeof (struct ip);
182 int len, error = 0;
183 struct route iproute;
184 const struct sockaddr_in *dst;
185 struct in_ifaddr *ia;
186 struct ifaddr *xifa;
187 struct mbuf *opt;
188 struct route *ro;
189 int flags, sw_csum;
190 int *mtu_p;
191 u_long mtu;
192 struct ip_moptions *imo;
193 struct socket *so;
194 va_list ap;
195 #ifdef IPSEC_NAT_T
196 int natt_frag = 0;
197 #endif
198 #ifdef IPSEC
199 struct secpolicy *sp = NULL;
200 #endif /*IPSEC*/
201 #ifdef FAST_IPSEC
202 struct inpcb *inp;
203 struct m_tag *mtag;
204 struct secpolicy *sp = NULL;
205 struct tdb_ident *tdbi;
206 int s;
207 #endif
208 u_int16_t ip_len;
209 union {
210 struct sockaddr dst;
211 struct sockaddr_in dst4;
212 } u;
213 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
214 * to the nexthop
215 */
216
217 len = 0;
218 va_start(ap, m0);
219 opt = va_arg(ap, struct mbuf *);
220 ro = va_arg(ap, struct route *);
221 flags = va_arg(ap, int);
222 imo = va_arg(ap, struct ip_moptions *);
223 so = va_arg(ap, struct socket *);
224 if (flags & IP_RETURNMTU)
225 mtu_p = va_arg(ap, int *);
226 else
227 mtu_p = NULL;
228 va_end(ap);
229
230 MCLAIM(m, &ip_tx_mowner);
231 #ifdef FAST_IPSEC
232 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
233 inp = (struct inpcb *)so->so_pcb;
234 else
235 inp = NULL;
236 #endif /* FAST_IPSEC */
237
238 #ifdef DIAGNOSTIC
239 if ((m->m_flags & M_PKTHDR) == 0)
240 panic("ip_output: no HDR");
241
242 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
243 panic("ip_output: IPv6 checksum offload flags: %d",
244 m->m_pkthdr.csum_flags);
245 }
246
247 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
248 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
249 panic("ip_output: conflicting checksum offload flags: %d",
250 m->m_pkthdr.csum_flags);
251 }
252 #endif
253 if (opt) {
254 m = ip_insertoptions(m, opt, &len);
255 if (len >= sizeof(struct ip))
256 hlen = len;
257 }
258 ip = mtod(m, struct ip *);
259 /*
260 * Fill in IP header.
261 */
262 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
263 ip->ip_v = IPVERSION;
264 ip->ip_off = htons(0);
265 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
266 ip->ip_id = 0;
267 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
268 ip->ip_id = ip_newid();
269 } else {
270
271 /*
272 * TSO capable interfaces (typically?) increment
273 * ip_id for each segment.
274 * "allocate" enough ids here to increase the chance
275 * for them to be unique.
276 *
277 * note that the following calculation is not
278 * needed to be precise. wasting some ip_id is fine.
279 */
280
281 unsigned int segsz = m->m_pkthdr.segsz;
282 unsigned int datasz = ntohs(ip->ip_len) - hlen;
283 unsigned int num = howmany(datasz, segsz);
284
285 ip->ip_id = ip_newid_range(num);
286 }
287 ip->ip_hl = hlen >> 2;
288 ipstat.ips_localout++;
289 } else {
290 hlen = ip->ip_hl << 2;
291 }
292 /*
293 * Route packet.
294 */
295 memset(&iproute, 0, sizeof(iproute));
296 if (ro == NULL)
297 ro = &iproute;
298 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
299 dst = satocsin(rtcache_getdst(ro));
300 /*
301 * If there is a cached route,
302 * check that it is to the same destination
303 * and is still up. If not, free it and try again.
304 * The address family should also be checked in case of sharing the
305 * cache with IPv6.
306 */
307 if (dst == NULL)
308 ;
309 else if (dst->sin_family != AF_INET ||
310 !in_hosteq(dst->sin_addr, ip->ip_dst))
311 rtcache_free(ro);
312 else
313 rtcache_check(ro);
314 if ((rt = rtcache_getrt(ro)) == NULL) {
315 dst = &u.dst4;
316 rtcache_setdst(ro, &u.dst);
317 }
318 /*
319 * If routing to interface only,
320 * short circuit routing lookup.
321 */
322 if (flags & IP_ROUTETOIF) {
323 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
324 ipstat.ips_noroute++;
325 error = ENETUNREACH;
326 goto bad;
327 }
328 ifp = ia->ia_ifp;
329 mtu = ifp->if_mtu;
330 ip->ip_ttl = 1;
331 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
332 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
333 imo != NULL && imo->imo_multicast_ifp != NULL) {
334 ifp = imo->imo_multicast_ifp;
335 mtu = ifp->if_mtu;
336 IFP_TO_IA(ifp, ia);
337 } else {
338 if (rt == NULL)
339 rtcache_init(ro);
340 if ((rt = rtcache_getrt(ro)) == NULL) {
341 ipstat.ips_noroute++;
342 error = EHOSTUNREACH;
343 goto bad;
344 }
345 ia = ifatoia(rt->rt_ifa);
346 ifp = rt->rt_ifp;
347 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
348 mtu = ifp->if_mtu;
349 rt->rt_use++;
350 if (rt->rt_flags & RTF_GATEWAY)
351 dst = satosin(rt->rt_gateway);
352 }
353 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
354 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
355 struct in_multi *inm;
356
357 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
358 M_BCAST : M_MCAST;
359 /*
360 * See if the caller provided any multicast options
361 */
362 if (imo != NULL)
363 ip->ip_ttl = imo->imo_multicast_ttl;
364 else
365 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
366
367 /*
368 * if we don't know the outgoing ifp yet, we can't generate
369 * output
370 */
371 if (!ifp) {
372 ipstat.ips_noroute++;
373 error = ENETUNREACH;
374 goto bad;
375 }
376
377 /*
378 * If the packet is multicast or broadcast, confirm that
379 * the outgoing interface can transmit it.
380 */
381 if (((m->m_flags & M_MCAST) &&
382 (ifp->if_flags & IFF_MULTICAST) == 0) ||
383 ((m->m_flags & M_BCAST) &&
384 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
385 ipstat.ips_noroute++;
386 error = ENETUNREACH;
387 goto bad;
388 }
389 /*
390 * If source address not specified yet, use an address
391 * of outgoing interface.
392 */
393 if (in_nullhost(ip->ip_src)) {
394 struct in_ifaddr *xia;
395
396 IFP_TO_IA(ifp, xia);
397 if (!xia) {
398 error = EADDRNOTAVAIL;
399 goto bad;
400 }
401 xifa = &xia->ia_ifa;
402 if (xifa->ifa_getifa != NULL) {
403 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
404 }
405 ip->ip_src = xia->ia_addr.sin_addr;
406 }
407
408 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
409 if (inm != NULL &&
410 (imo == NULL || imo->imo_multicast_loop)) {
411 /*
412 * If we belong to the destination multicast group
413 * on the outgoing interface, and the caller did not
414 * forbid loopback, loop back a copy.
415 */
416 ip_mloopback(ifp, m, &u.dst4);
417 }
418 #ifdef MROUTING
419 else {
420 /*
421 * If we are acting as a multicast router, perform
422 * multicast forwarding as if the packet had just
423 * arrived on the interface to which we are about
424 * to send. The multicast forwarding function
425 * recursively calls this function, using the
426 * IP_FORWARDING flag to prevent infinite recursion.
427 *
428 * Multicasts that are looped back by ip_mloopback(),
429 * above, will be forwarded by the ip_input() routine,
430 * if necessary.
431 */
432 extern struct socket *ip_mrouter;
433
434 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
435 if (ip_mforward(m, ifp) != 0) {
436 m_freem(m);
437 goto done;
438 }
439 }
440 }
441 #endif
442 /*
443 * Multicasts with a time-to-live of zero may be looped-
444 * back, above, but must not be transmitted on a network.
445 * Also, multicasts addressed to the loopback interface
446 * are not sent -- the above call to ip_mloopback() will
447 * loop back a copy if this host actually belongs to the
448 * destination group on the loopback interface.
449 */
450 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
451 m_freem(m);
452 goto done;
453 }
454
455 goto sendit;
456 }
457 /*
458 * If source address not specified yet, use address
459 * of outgoing interface.
460 */
461 if (in_nullhost(ip->ip_src)) {
462 xifa = &ia->ia_ifa;
463 if (xifa->ifa_getifa != NULL)
464 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
465 ip->ip_src = ia->ia_addr.sin_addr;
466 }
467
468 /*
469 * packets with Class-D address as source are not valid per
470 * RFC 1112
471 */
472 if (IN_MULTICAST(ip->ip_src.s_addr)) {
473 ipstat.ips_odropped++;
474 error = EADDRNOTAVAIL;
475 goto bad;
476 }
477
478 /*
479 * Look for broadcast address and
480 * and verify user is allowed to send
481 * such a packet.
482 */
483 if (in_broadcast(dst->sin_addr, ifp)) {
484 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
485 error = EADDRNOTAVAIL;
486 goto bad;
487 }
488 if ((flags & IP_ALLOWBROADCAST) == 0) {
489 error = EACCES;
490 goto bad;
491 }
492 /* don't allow broadcast messages to be fragmented */
493 if (ntohs(ip->ip_len) > ifp->if_mtu) {
494 error = EMSGSIZE;
495 goto bad;
496 }
497 m->m_flags |= M_BCAST;
498 } else
499 m->m_flags &= ~M_BCAST;
500
501 sendit:
502 /*
503 * If we're doing Path MTU Discovery, we need to set DF unless
504 * the route's MTU is locked.
505 */
506 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
507 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
508 ip->ip_off |= htons(IP_DF);
509
510 /* Remember the current ip_len */
511 ip_len = ntohs(ip->ip_len);
512
513 #ifdef IPSEC
514 /* get SP for this packet */
515 if (so == NULL)
516 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
517 flags, &error);
518 else {
519 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
520 IPSEC_DIR_OUTBOUND))
521 goto skip_ipsec;
522 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
523 }
524
525 if (sp == NULL) {
526 ipsecstat.out_inval++;
527 goto bad;
528 }
529
530 error = 0;
531
532 /* check policy */
533 switch (sp->policy) {
534 case IPSEC_POLICY_DISCARD:
535 /*
536 * This packet is just discarded.
537 */
538 ipsecstat.out_polvio++;
539 goto bad;
540
541 case IPSEC_POLICY_BYPASS:
542 case IPSEC_POLICY_NONE:
543 /* no need to do IPsec. */
544 goto skip_ipsec;
545
546 case IPSEC_POLICY_IPSEC:
547 if (sp->req == NULL) {
548 /* XXX should be panic ? */
549 printf("ip_output: No IPsec request specified.\n");
550 error = EINVAL;
551 goto bad;
552 }
553 break;
554
555 case IPSEC_POLICY_ENTRUST:
556 default:
557 printf("ip_output: Invalid policy found. %d\n", sp->policy);
558 }
559
560 #ifdef IPSEC_NAT_T
561 /*
562 * NAT-T ESP fragmentation: don't do IPSec processing now,
563 * we'll do it on each fragmented packet.
564 */
565 if (sp->req->sav &&
566 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
567 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
568 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
569 natt_frag = 1;
570 mtu = sp->req->sav->esp_frag;
571 goto skip_ipsec;
572 }
573 }
574 #endif /* IPSEC_NAT_T */
575
576 /*
577 * ipsec4_output() expects ip_len and ip_off in network
578 * order. They have been set to network order above.
579 */
580
581 {
582 struct ipsec_output_state state;
583 bzero(&state, sizeof(state));
584 state.m = m;
585 if (flags & IP_ROUTETOIF) {
586 state.ro = &iproute;
587 memset(&iproute, 0, sizeof(iproute));
588 } else
589 state.ro = ro;
590 state.dst = sintocsa(dst);
591
592 /*
593 * We can't defer the checksum of payload data if
594 * we're about to encrypt/authenticate it.
595 *
596 * XXX When we support crypto offloading functions of
597 * XXX network interfaces, we need to reconsider this,
598 * XXX since it's likely that they'll support checksumming,
599 * XXX as well.
600 */
601 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
602 in_delayed_cksum(m);
603 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
604 }
605
606 error = ipsec4_output(&state, sp, flags);
607
608 m = state.m;
609 if (flags & IP_ROUTETOIF) {
610 /*
611 * if we have tunnel mode SA, we may need to ignore
612 * IP_ROUTETOIF.
613 */
614 if (state.ro != &iproute || rtcache_getrt(state.ro) != NULL) {
615 flags &= ~IP_ROUTETOIF;
616 ro = state.ro;
617 }
618 } else
619 ro = state.ro;
620 rt = rtcache_getrt(ro);
621 dst = satocsin(state.dst);
622 if (error) {
623 /* mbuf is already reclaimed in ipsec4_output. */
624 m0 = NULL;
625 switch (error) {
626 case EHOSTUNREACH:
627 case ENETUNREACH:
628 case EMSGSIZE:
629 case ENOBUFS:
630 case ENOMEM:
631 break;
632 default:
633 printf("ip4_output (ipsec): error code %d\n", error);
634 /*fall through*/
635 case ENOENT:
636 /* don't show these error codes to the user */
637 error = 0;
638 break;
639 }
640 goto bad;
641 }
642
643 /* be sure to update variables that are affected by ipsec4_output() */
644 ip = mtod(m, struct ip *);
645 hlen = ip->ip_hl << 2;
646 ip_len = ntohs(ip->ip_len);
647
648 if (rt == NULL) {
649 if ((flags & IP_ROUTETOIF) == 0) {
650 printf("ip_output: "
651 "can't update route after IPsec processing\n");
652 error = EHOSTUNREACH; /*XXX*/
653 goto bad;
654 }
655 } else {
656 /* nobody uses ia beyond here */
657 if (state.encap) {
658 ifp = rt->rt_ifp;
659 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
660 mtu = ifp->if_mtu;
661 }
662 }
663 }
664 skip_ipsec:
665 #endif /*IPSEC*/
666 #ifdef FAST_IPSEC
667 /*
668 * Check the security policy (SP) for the packet and, if
669 * required, do IPsec-related processing. There are two
670 * cases here; the first time a packet is sent through
671 * it will be untagged and handled by ipsec4_checkpolicy.
672 * If the packet is resubmitted to ip_output (e.g. after
673 * AH, ESP, etc. processing), there will be a tag to bypass
674 * the lookup and related policy checking.
675 */
676 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
677 s = splsoftnet();
678 if (mtag != NULL) {
679 tdbi = (struct tdb_ident *)(mtag + 1);
680 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
681 if (sp == NULL)
682 error = -EINVAL; /* force silent drop */
683 m_tag_delete(m, mtag);
684 } else {
685 if (inp != NULL &&
686 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
687 goto spd_done;
688 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
689 &error, inp);
690 }
691 /*
692 * There are four return cases:
693 * sp != NULL apply IPsec policy
694 * sp == NULL, error == 0 no IPsec handling needed
695 * sp == NULL, error == -EINVAL discard packet w/o error
696 * sp == NULL, error != 0 discard packet, report error
697 */
698 if (sp != NULL) {
699 #ifdef IPSEC_NAT_T
700 /*
701 * NAT-T ESP fragmentation: don't do IPSec processing now,
702 * we'll do it on each fragmented packet.
703 */
704 if (sp->req->sav &&
705 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
706 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
707 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
708 natt_frag = 1;
709 mtu = sp->req->sav->esp_frag;
710 goto spd_done;
711 }
712 }
713 #endif /* IPSEC_NAT_T */
714 /* Loop detection, check if ipsec processing already done */
715 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
716 for (mtag = m_tag_first(m); mtag != NULL;
717 mtag = m_tag_next(m, mtag)) {
718 #ifdef MTAG_ABI_COMPAT
719 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
720 continue;
721 #endif
722 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
723 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
724 continue;
725 /*
726 * Check if policy has an SA associated with it.
727 * This can happen when an SP has yet to acquire
728 * an SA; e.g. on first reference. If it occurs,
729 * then we let ipsec4_process_packet do its thing.
730 */
731 if (sp->req->sav == NULL)
732 break;
733 tdbi = (struct tdb_ident *)(mtag + 1);
734 if (tdbi->spi == sp->req->sav->spi &&
735 tdbi->proto == sp->req->sav->sah->saidx.proto &&
736 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
737 sizeof (union sockaddr_union)) == 0) {
738 /*
739 * No IPsec processing is needed, free
740 * reference to SP.
741 *
742 * NB: null pointer to avoid free at
743 * done: below.
744 */
745 KEY_FREESP(&sp), sp = NULL;
746 splx(s);
747 goto spd_done;
748 }
749 }
750
751 /*
752 * Do delayed checksums now because we send before
753 * this is done in the normal processing path.
754 */
755 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
756 in_delayed_cksum(m);
757 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
758 }
759
760 #ifdef __FreeBSD__
761 ip->ip_len = htons(ip->ip_len);
762 ip->ip_off = htons(ip->ip_off);
763 #endif
764
765 /* NB: callee frees mbuf */
766 error = ipsec4_process_packet(m, sp->req, flags, 0);
767 /*
768 * Preserve KAME behaviour: ENOENT can be returned
769 * when an SA acquire is in progress. Don't propagate
770 * this to user-level; it confuses applications.
771 *
772 * XXX this will go away when the SADB is redone.
773 */
774 if (error == ENOENT)
775 error = 0;
776 splx(s);
777 goto done;
778 } else {
779 splx(s);
780
781 if (error != 0) {
782 /*
783 * Hack: -EINVAL is used to signal that a packet
784 * should be silently discarded. This is typically
785 * because we asked key management for an SA and
786 * it was delayed (e.g. kicked up to IKE).
787 */
788 if (error == -EINVAL)
789 error = 0;
790 goto bad;
791 } else {
792 /* No IPsec processing for this packet. */
793 }
794 #ifdef notyet
795 /*
796 * If deferred crypto processing is needed, check that
797 * the interface supports it.
798 */
799 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
800 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
801 /* notify IPsec to do its own crypto */
802 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
803 error = EHOSTUNREACH;
804 goto bad;
805 }
806 #endif
807 }
808 spd_done:
809 #endif /* FAST_IPSEC */
810
811 #ifdef PFIL_HOOKS
812 /*
813 * Run through list of hooks for output packets.
814 */
815 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
816 goto done;
817 if (m == NULL)
818 goto done;
819
820 ip = mtod(m, struct ip *);
821 hlen = ip->ip_hl << 2;
822 ip_len = ntohs(ip->ip_len);
823 #endif /* PFIL_HOOKS */
824
825 m->m_pkthdr.csum_data |= hlen << 16;
826
827 #if IFA_STATS
828 /*
829 * search for the source address structure to
830 * maintain output statistics.
831 */
832 INADDR_TO_IA(ip->ip_src, ia);
833 #endif
834
835 /* Maybe skip checksums on loopback interfaces. */
836 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
837 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
838 }
839 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
840 /*
841 * If small enough for mtu of path, or if using TCP segmentation
842 * offload, can just send directly.
843 */
844 if (ip_len <= mtu ||
845 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
846 #if IFA_STATS
847 if (ia)
848 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
849 #endif
850 /*
851 * Always initialize the sum to 0! Some HW assisted
852 * checksumming requires this.
853 */
854 ip->ip_sum = 0;
855
856 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
857 /*
858 * Perform any checksums that the hardware can't do
859 * for us.
860 *
861 * XXX Does any hardware require the {th,uh}_sum
862 * XXX fields to be 0?
863 */
864 if (sw_csum & M_CSUM_IPv4) {
865 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
866 ip->ip_sum = in_cksum(m, hlen);
867 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
868 }
869 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
870 if (IN_NEED_CHECKSUM(ifp,
871 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
872 in_delayed_cksum(m);
873 }
874 m->m_pkthdr.csum_flags &=
875 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
876 }
877 }
878
879 #ifdef IPSEC
880 /* clean ipsec history once it goes out of the node */
881 ipsec_delaux(m);
882 #endif
883
884 if (__predict_true(
885 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
886 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
887 error =
888 (*ifp->if_output)(ifp, m,
889 (m->m_flags & M_MCAST) ?
890 sintocsa(rdst) : sintocsa(dst),
891 rt);
892 } else {
893 error =
894 ip_tso_output(ifp, m,
895 (m->m_flags & M_MCAST) ?
896 sintocsa(rdst) : sintocsa(dst),
897 rt);
898 }
899 goto done;
900 }
901
902 /*
903 * We can't use HW checksumming if we're about to
904 * to fragment the packet.
905 *
906 * XXX Some hardware can do this.
907 */
908 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
909 if (IN_NEED_CHECKSUM(ifp,
910 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
911 in_delayed_cksum(m);
912 }
913 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
914 }
915
916 /*
917 * Too large for interface; fragment if possible.
918 * Must be able to put at least 8 bytes per fragment.
919 */
920 if (ntohs(ip->ip_off) & IP_DF) {
921 if (flags & IP_RETURNMTU)
922 *mtu_p = mtu;
923 error = EMSGSIZE;
924 ipstat.ips_cantfrag++;
925 goto bad;
926 }
927
928 error = ip_fragment(m, ifp, mtu);
929 if (error) {
930 m = NULL;
931 goto bad;
932 }
933
934 for (; m; m = m0) {
935 m0 = m->m_nextpkt;
936 m->m_nextpkt = 0;
937 if (error == 0) {
938 #if IFA_STATS
939 if (ia)
940 ia->ia_ifa.ifa_data.ifad_outbytes +=
941 ntohs(ip->ip_len);
942 #endif
943 #ifdef IPSEC
944 /* clean ipsec history once it goes out of the node */
945 ipsec_delaux(m);
946 #endif /* IPSEC */
947
948 #ifdef IPSEC_NAT_T
949 /*
950 * If we get there, the packet has not been handeld by
951 * IPSec whereas it should have. Now that it has been
952 * fragmented, re-inject it in ip_output so that IPsec
953 * processing can occur.
954 */
955 if (natt_frag) {
956 error = ip_output(m, opt,
957 ro, flags, imo, so, mtu_p);
958 } else
959 #endif /* IPSEC_NAT_T */
960 {
961 KASSERT((m->m_pkthdr.csum_flags &
962 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
963 error = (*ifp->if_output)(ifp, m,
964 (m->m_flags & M_MCAST) ?
965 sintocsa(rdst) : sintocsa(dst),
966 rt);
967 }
968 } else
969 m_freem(m);
970 }
971
972 if (error == 0)
973 ipstat.ips_fragmented++;
974 done:
975 rtcache_free(&iproute);
976
977 #ifdef IPSEC
978 if (sp != NULL) {
979 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
980 printf("DP ip_output call free SP:%p\n", sp));
981 key_freesp(sp);
982 }
983 #endif /* IPSEC */
984 #ifdef FAST_IPSEC
985 if (sp != NULL)
986 KEY_FREESP(&sp);
987 #endif /* FAST_IPSEC */
988
989 return (error);
990 bad:
991 m_freem(m);
992 goto done;
993 }
994
995 int
996 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
997 {
998 struct ip *ip, *mhip;
999 struct mbuf *m0;
1000 int len, hlen, off;
1001 int mhlen, firstlen;
1002 struct mbuf **mnext;
1003 int sw_csum = m->m_pkthdr.csum_flags;
1004 int fragments = 0;
1005 int s;
1006 int error = 0;
1007
1008 ip = mtod(m, struct ip *);
1009 hlen = ip->ip_hl << 2;
1010 if (ifp != NULL)
1011 sw_csum &= ~ifp->if_csum_flags_tx;
1012
1013 len = (mtu - hlen) &~ 7;
1014 if (len < 8) {
1015 m_freem(m);
1016 return (EMSGSIZE);
1017 }
1018
1019 firstlen = len;
1020 mnext = &m->m_nextpkt;
1021
1022 /*
1023 * Loop through length of segment after first fragment,
1024 * make new header and copy data of each part and link onto chain.
1025 */
1026 m0 = m;
1027 mhlen = sizeof (struct ip);
1028 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1029 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1030 if (m == 0) {
1031 error = ENOBUFS;
1032 ipstat.ips_odropped++;
1033 goto sendorfree;
1034 }
1035 MCLAIM(m, m0->m_owner);
1036 *mnext = m;
1037 mnext = &m->m_nextpkt;
1038 m->m_data += max_linkhdr;
1039 mhip = mtod(m, struct ip *);
1040 *mhip = *ip;
1041 /* we must inherit MCAST and BCAST flags */
1042 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1043 if (hlen > sizeof (struct ip)) {
1044 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1045 mhip->ip_hl = mhlen >> 2;
1046 }
1047 m->m_len = mhlen;
1048 mhip->ip_off = ((off - hlen) >> 3) +
1049 (ntohs(ip->ip_off) & ~IP_MF);
1050 if (ip->ip_off & htons(IP_MF))
1051 mhip->ip_off |= IP_MF;
1052 if (off + len >= ntohs(ip->ip_len))
1053 len = ntohs(ip->ip_len) - off;
1054 else
1055 mhip->ip_off |= IP_MF;
1056 HTONS(mhip->ip_off);
1057 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1058 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1059 if (m->m_next == 0) {
1060 error = ENOBUFS; /* ??? */
1061 ipstat.ips_odropped++;
1062 goto sendorfree;
1063 }
1064 m->m_pkthdr.len = mhlen + len;
1065 m->m_pkthdr.rcvif = (struct ifnet *)0;
1066 mhip->ip_sum = 0;
1067 if (sw_csum & M_CSUM_IPv4) {
1068 mhip->ip_sum = in_cksum(m, mhlen);
1069 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1070 } else {
1071 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1072 m->m_pkthdr.csum_data |= mhlen << 16;
1073 }
1074 ipstat.ips_ofragments++;
1075 fragments++;
1076 }
1077 /*
1078 * Update first fragment by trimming what's been copied out
1079 * and updating header, then send each fragment (in order).
1080 */
1081 m = m0;
1082 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1083 m->m_pkthdr.len = hlen + firstlen;
1084 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1085 ip->ip_off |= htons(IP_MF);
1086 ip->ip_sum = 0;
1087 if (sw_csum & M_CSUM_IPv4) {
1088 ip->ip_sum = in_cksum(m, hlen);
1089 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1090 } else {
1091 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1092 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1093 sizeof(struct ip));
1094 }
1095 sendorfree:
1096 /*
1097 * If there is no room for all the fragments, don't queue
1098 * any of them.
1099 */
1100 if (ifp != NULL) {
1101 s = splnet();
1102 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1103 error == 0) {
1104 error = ENOBUFS;
1105 ipstat.ips_odropped++;
1106 IFQ_INC_DROPS(&ifp->if_snd);
1107 }
1108 splx(s);
1109 }
1110 if (error) {
1111 for (m = m0; m; m = m0) {
1112 m0 = m->m_nextpkt;
1113 m->m_nextpkt = NULL;
1114 m_freem(m);
1115 }
1116 }
1117 return (error);
1118 }
1119
1120 /*
1121 * Process a delayed payload checksum calculation.
1122 */
1123 void
1124 in_delayed_cksum(struct mbuf *m)
1125 {
1126 struct ip *ip;
1127 u_int16_t csum, offset;
1128
1129 ip = mtod(m, struct ip *);
1130 offset = ip->ip_hl << 2;
1131 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1132 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1133 csum = 0xffff;
1134
1135 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1136
1137 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1138 /* This happen when ip options were inserted
1139 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1140 m->m_len, offset, ip->ip_p);
1141 */
1142 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1143 } else
1144 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1145 }
1146
1147 /*
1148 * Determine the maximum length of the options to be inserted;
1149 * we would far rather allocate too much space rather than too little.
1150 */
1151
1152 u_int
1153 ip_optlen(struct inpcb *inp)
1154 {
1155 struct mbuf *m = inp->inp_options;
1156
1157 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1158 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1159 else
1160 return 0;
1161 }
1162
1163
1164 /*
1165 * Insert IP options into preformed packet.
1166 * Adjust IP destination as required for IP source routing,
1167 * as indicated by a non-zero in_addr at the start of the options.
1168 */
1169 static struct mbuf *
1170 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1171 {
1172 struct ipoption *p = mtod(opt, struct ipoption *);
1173 struct mbuf *n;
1174 struct ip *ip = mtod(m, struct ip *);
1175 unsigned optlen;
1176
1177 optlen = opt->m_len - sizeof(p->ipopt_dst);
1178 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1179 return (m); /* XXX should fail */
1180 if (!in_nullhost(p->ipopt_dst))
1181 ip->ip_dst = p->ipopt_dst;
1182 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1183 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1184 if (n == 0)
1185 return (m);
1186 MCLAIM(n, m->m_owner);
1187 M_MOVE_PKTHDR(n, m);
1188 m->m_len -= sizeof(struct ip);
1189 m->m_data += sizeof(struct ip);
1190 n->m_next = m;
1191 m = n;
1192 m->m_len = optlen + sizeof(struct ip);
1193 m->m_data += max_linkhdr;
1194 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1195 } else {
1196 m->m_data -= optlen;
1197 m->m_len += optlen;
1198 memmove(mtod(m, void *), ip, sizeof(struct ip));
1199 }
1200 m->m_pkthdr.len += optlen;
1201 ip = mtod(m, struct ip *);
1202 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1203 *phlen = sizeof(struct ip) + optlen;
1204 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1205 return (m);
1206 }
1207
1208 /*
1209 * Copy options from ip to jp,
1210 * omitting those not copied during fragmentation.
1211 */
1212 int
1213 ip_optcopy(struct ip *ip, struct ip *jp)
1214 {
1215 u_char *cp, *dp;
1216 int opt, optlen, cnt;
1217
1218 cp = (u_char *)(ip + 1);
1219 dp = (u_char *)(jp + 1);
1220 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1221 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1222 opt = cp[0];
1223 if (opt == IPOPT_EOL)
1224 break;
1225 if (opt == IPOPT_NOP) {
1226 /* Preserve for IP mcast tunnel's LSRR alignment. */
1227 *dp++ = IPOPT_NOP;
1228 optlen = 1;
1229 continue;
1230 }
1231 #ifdef DIAGNOSTIC
1232 if (cnt < IPOPT_OLEN + sizeof(*cp))
1233 panic("malformed IPv4 option passed to ip_optcopy");
1234 #endif
1235 optlen = cp[IPOPT_OLEN];
1236 #ifdef DIAGNOSTIC
1237 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1238 panic("malformed IPv4 option passed to ip_optcopy");
1239 #endif
1240 /* bogus lengths should have been caught by ip_dooptions */
1241 if (optlen > cnt)
1242 optlen = cnt;
1243 if (IPOPT_COPIED(opt)) {
1244 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1245 dp += optlen;
1246 }
1247 }
1248 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1249 *dp++ = IPOPT_EOL;
1250 return (optlen);
1251 }
1252
1253 /*
1254 * IP socket option processing.
1255 */
1256 int
1257 ip_ctloutput(int op, struct socket *so, int level, int optname,
1258 struct mbuf **mp)
1259 {
1260 struct inpcb *inp = sotoinpcb(so);
1261 struct mbuf *m = *mp;
1262 int optval = 0;
1263 int error = 0;
1264 #if defined(IPSEC) || defined(FAST_IPSEC)
1265 struct lwp *l = curlwp; /*XXX*/
1266 #endif
1267
1268 if (level != IPPROTO_IP) {
1269 if (op == PRCO_SETOPT && *mp)
1270 (void) m_free(*mp);
1271 if (level == SOL_SOCKET && optname == SO_NOHEADER)
1272 return 0;
1273 return ENOPROTOOPT;
1274 }
1275
1276 switch (op) {
1277
1278 case PRCO_SETOPT:
1279 switch (optname) {
1280 case IP_OPTIONS:
1281 #ifdef notyet
1282 case IP_RETOPTS:
1283 return (ip_pcbopts(optname, &inp->inp_options, m));
1284 #else
1285 return (ip_pcbopts(&inp->inp_options, m));
1286 #endif
1287
1288 case IP_TOS:
1289 case IP_TTL:
1290 case IP_RECVOPTS:
1291 case IP_RECVRETOPTS:
1292 case IP_RECVDSTADDR:
1293 case IP_RECVIF:
1294 if (m == NULL || m->m_len != sizeof(int))
1295 error = EINVAL;
1296 else {
1297 optval = *mtod(m, int *);
1298 switch (optname) {
1299
1300 case IP_TOS:
1301 inp->inp_ip.ip_tos = optval;
1302 break;
1303
1304 case IP_TTL:
1305 inp->inp_ip.ip_ttl = optval;
1306 break;
1307 #define OPTSET(bit) \
1308 if (optval) \
1309 inp->inp_flags |= bit; \
1310 else \
1311 inp->inp_flags &= ~bit;
1312
1313 case IP_RECVOPTS:
1314 OPTSET(INP_RECVOPTS);
1315 break;
1316
1317 case IP_RECVRETOPTS:
1318 OPTSET(INP_RECVRETOPTS);
1319 break;
1320
1321 case IP_RECVDSTADDR:
1322 OPTSET(INP_RECVDSTADDR);
1323 break;
1324
1325 case IP_RECVIF:
1326 OPTSET(INP_RECVIF);
1327 break;
1328 }
1329 }
1330 break;
1331 #undef OPTSET
1332
1333 case IP_MULTICAST_IF:
1334 case IP_MULTICAST_TTL:
1335 case IP_MULTICAST_LOOP:
1336 case IP_ADD_MEMBERSHIP:
1337 case IP_DROP_MEMBERSHIP:
1338 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1339 break;
1340
1341 case IP_PORTRANGE:
1342 if (m == 0 || m->m_len != sizeof(int))
1343 error = EINVAL;
1344 else {
1345 optval = *mtod(m, int *);
1346
1347 switch (optval) {
1348
1349 case IP_PORTRANGE_DEFAULT:
1350 case IP_PORTRANGE_HIGH:
1351 inp->inp_flags &= ~(INP_LOWPORT);
1352 break;
1353
1354 case IP_PORTRANGE_LOW:
1355 inp->inp_flags |= INP_LOWPORT;
1356 break;
1357
1358 default:
1359 error = EINVAL;
1360 break;
1361 }
1362 }
1363 break;
1364
1365 #if defined(IPSEC) || defined(FAST_IPSEC)
1366 case IP_IPSEC_POLICY:
1367 {
1368 void *req = NULL;
1369 size_t len = 0;
1370 int priv = 0;
1371
1372 #ifdef __NetBSD__
1373 if (l == 0 || kauth_authorize_generic(l->l_cred,
1374 KAUTH_GENERIC_ISSUSER, NULL))
1375 priv = 0;
1376 else
1377 priv = 1;
1378 #else
1379 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1380 #endif
1381 if (m) {
1382 req = mtod(m, void *);
1383 len = m->m_len;
1384 }
1385 error = ipsec4_set_policy(inp, optname, req, len, priv);
1386 break;
1387 }
1388 #endif /*IPSEC*/
1389
1390 default:
1391 error = ENOPROTOOPT;
1392 break;
1393 }
1394 if (m)
1395 (void)m_free(m);
1396 break;
1397
1398 case PRCO_GETOPT:
1399 switch (optname) {
1400 case IP_OPTIONS:
1401 case IP_RETOPTS:
1402 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1403 MCLAIM(m, so->so_mowner);
1404 if (inp->inp_options) {
1405 m->m_len = inp->inp_options->m_len;
1406 bcopy(mtod(inp->inp_options, void *),
1407 mtod(m, void *), (unsigned)m->m_len);
1408 } else
1409 m->m_len = 0;
1410 break;
1411
1412 case IP_TOS:
1413 case IP_TTL:
1414 case IP_RECVOPTS:
1415 case IP_RECVRETOPTS:
1416 case IP_RECVDSTADDR:
1417 case IP_RECVIF:
1418 case IP_ERRORMTU:
1419 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1420 MCLAIM(m, so->so_mowner);
1421 m->m_len = sizeof(int);
1422 switch (optname) {
1423
1424 case IP_TOS:
1425 optval = inp->inp_ip.ip_tos;
1426 break;
1427
1428 case IP_TTL:
1429 optval = inp->inp_ip.ip_ttl;
1430 break;
1431
1432 case IP_ERRORMTU:
1433 optval = inp->inp_errormtu;
1434 break;
1435
1436 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1437
1438 case IP_RECVOPTS:
1439 optval = OPTBIT(INP_RECVOPTS);
1440 break;
1441
1442 case IP_RECVRETOPTS:
1443 optval = OPTBIT(INP_RECVRETOPTS);
1444 break;
1445
1446 case IP_RECVDSTADDR:
1447 optval = OPTBIT(INP_RECVDSTADDR);
1448 break;
1449
1450 case IP_RECVIF:
1451 optval = OPTBIT(INP_RECVIF);
1452 break;
1453 }
1454 *mtod(m, int *) = optval;
1455 break;
1456
1457 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1458 /* XXX: code broken */
1459 case IP_IPSEC_POLICY:
1460 {
1461 void *req = NULL;
1462 size_t len = 0;
1463
1464 if (m) {
1465 req = mtod(m, void *);
1466 len = m->m_len;
1467 }
1468 error = ipsec4_get_policy(inp, req, len, mp);
1469 break;
1470 }
1471 #endif /*IPSEC*/
1472
1473 case IP_MULTICAST_IF:
1474 case IP_MULTICAST_TTL:
1475 case IP_MULTICAST_LOOP:
1476 case IP_ADD_MEMBERSHIP:
1477 case IP_DROP_MEMBERSHIP:
1478 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1479 if (*mp)
1480 MCLAIM(*mp, so->so_mowner);
1481 break;
1482
1483 case IP_PORTRANGE:
1484 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1485 MCLAIM(m, so->so_mowner);
1486 m->m_len = sizeof(int);
1487
1488 if (inp->inp_flags & INP_LOWPORT)
1489 optval = IP_PORTRANGE_LOW;
1490 else
1491 optval = IP_PORTRANGE_DEFAULT;
1492
1493 *mtod(m, int *) = optval;
1494 break;
1495
1496 default:
1497 error = ENOPROTOOPT;
1498 break;
1499 }
1500 break;
1501 }
1502 return (error);
1503 }
1504
1505 /*
1506 * Set up IP options in pcb for insertion in output packets.
1507 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1508 * with destination address if source routed.
1509 */
1510 int
1511 #ifdef notyet
1512 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1513 #else
1514 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1515 #endif
1516 {
1517 int cnt, optlen;
1518 u_char *cp;
1519 u_char opt;
1520
1521 /* turn off any old options */
1522 if (*pcbopt)
1523 (void)m_free(*pcbopt);
1524 *pcbopt = 0;
1525 if (m == (struct mbuf *)0 || m->m_len == 0) {
1526 /*
1527 * Only turning off any previous options.
1528 */
1529 if (m)
1530 (void)m_free(m);
1531 return (0);
1532 }
1533
1534 #ifndef __vax__
1535 if (m->m_len % sizeof(int32_t))
1536 goto bad;
1537 #endif
1538 /*
1539 * IP first-hop destination address will be stored before
1540 * actual options; move other options back
1541 * and clear it when none present.
1542 */
1543 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1544 goto bad;
1545 cnt = m->m_len;
1546 m->m_len += sizeof(struct in_addr);
1547 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1548 memmove(cp, mtod(m, void *), (unsigned)cnt);
1549 bzero(mtod(m, void *), sizeof(struct in_addr));
1550
1551 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1552 opt = cp[IPOPT_OPTVAL];
1553 if (opt == IPOPT_EOL)
1554 break;
1555 if (opt == IPOPT_NOP)
1556 optlen = 1;
1557 else {
1558 if (cnt < IPOPT_OLEN + sizeof(*cp))
1559 goto bad;
1560 optlen = cp[IPOPT_OLEN];
1561 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1562 goto bad;
1563 }
1564 switch (opt) {
1565
1566 default:
1567 break;
1568
1569 case IPOPT_LSRR:
1570 case IPOPT_SSRR:
1571 /*
1572 * user process specifies route as:
1573 * ->A->B->C->D
1574 * D must be our final destination (but we can't
1575 * check that since we may not have connected yet).
1576 * A is first hop destination, which doesn't appear in
1577 * actual IP option, but is stored before the options.
1578 */
1579 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1580 goto bad;
1581 m->m_len -= sizeof(struct in_addr);
1582 cnt -= sizeof(struct in_addr);
1583 optlen -= sizeof(struct in_addr);
1584 cp[IPOPT_OLEN] = optlen;
1585 /*
1586 * Move first hop before start of options.
1587 */
1588 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1589 sizeof(struct in_addr));
1590 /*
1591 * Then copy rest of options back
1592 * to close up the deleted entry.
1593 */
1594 (void)memmove(&cp[IPOPT_OFFSET+1],
1595 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1596 (unsigned)cnt - (IPOPT_MINOFF - 1));
1597 break;
1598 }
1599 }
1600 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1601 goto bad;
1602 *pcbopt = m;
1603 return (0);
1604
1605 bad:
1606 (void)m_free(m);
1607 return (EINVAL);
1608 }
1609
1610 /*
1611 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1612 */
1613 static struct ifnet *
1614 ip_multicast_if(struct in_addr *a, int *ifindexp)
1615 {
1616 int ifindex;
1617 struct ifnet *ifp = NULL;
1618 struct in_ifaddr *ia;
1619
1620 if (ifindexp)
1621 *ifindexp = 0;
1622 if (ntohl(a->s_addr) >> 24 == 0) {
1623 ifindex = ntohl(a->s_addr) & 0xffffff;
1624 if (ifindex < 0 || if_indexlim <= ifindex)
1625 return NULL;
1626 ifp = ifindex2ifnet[ifindex];
1627 if (!ifp)
1628 return NULL;
1629 if (ifindexp)
1630 *ifindexp = ifindex;
1631 } else {
1632 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1633 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1634 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1635 ifp = ia->ia_ifp;
1636 break;
1637 }
1638 }
1639 }
1640 return ifp;
1641 }
1642
1643 static int
1644 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1645 {
1646 u_int tval;
1647
1648 if (m == NULL)
1649 return EINVAL;
1650
1651 switch (m->m_len) {
1652 case sizeof(u_char):
1653 tval = *(mtod(m, u_char *));
1654 break;
1655 case sizeof(u_int):
1656 tval = *(mtod(m, u_int *));
1657 break;
1658 default:
1659 return EINVAL;
1660 }
1661
1662 if (tval > maxval)
1663 return EINVAL;
1664
1665 *val = tval;
1666 return 0;
1667 }
1668
1669 /*
1670 * Set the IP multicast options in response to user setsockopt().
1671 */
1672 int
1673 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1674 {
1675 int error = 0;
1676 int i;
1677 struct in_addr addr;
1678 struct ip_mreq *mreq;
1679 struct ifnet *ifp;
1680 struct ip_moptions *imo = *imop;
1681 int ifindex;
1682
1683 if (imo == NULL) {
1684 /*
1685 * No multicast option buffer attached to the pcb;
1686 * allocate one and initialize to default values.
1687 */
1688 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1689 M_WAITOK);
1690
1691 if (imo == NULL)
1692 return (ENOBUFS);
1693 *imop = imo;
1694 imo->imo_multicast_ifp = NULL;
1695 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1696 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1697 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1698 imo->imo_num_memberships = 0;
1699 }
1700
1701 switch (optname) {
1702
1703 case IP_MULTICAST_IF:
1704 /*
1705 * Select the interface for outgoing multicast packets.
1706 */
1707 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1708 error = EINVAL;
1709 break;
1710 }
1711 addr = *(mtod(m, struct in_addr *));
1712 /*
1713 * INADDR_ANY is used to remove a previous selection.
1714 * When no interface is selected, a default one is
1715 * chosen every time a multicast packet is sent.
1716 */
1717 if (in_nullhost(addr)) {
1718 imo->imo_multicast_ifp = NULL;
1719 break;
1720 }
1721 /*
1722 * The selected interface is identified by its local
1723 * IP address. Find the interface and confirm that
1724 * it supports multicasting.
1725 */
1726 ifp = ip_multicast_if(&addr, &ifindex);
1727 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1728 error = EADDRNOTAVAIL;
1729 break;
1730 }
1731 imo->imo_multicast_ifp = ifp;
1732 if (ifindex)
1733 imo->imo_multicast_addr = addr;
1734 else
1735 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1736 break;
1737
1738 case IP_MULTICAST_TTL:
1739 /*
1740 * Set the IP time-to-live for outgoing multicast packets.
1741 */
1742 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1743 break;
1744
1745 case IP_MULTICAST_LOOP:
1746 /*
1747 * Set the loopback flag for outgoing multicast packets.
1748 * Must be zero or one.
1749 */
1750 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1751 break;
1752
1753 case IP_ADD_MEMBERSHIP:
1754 /*
1755 * Add a multicast group membership.
1756 * Group must be a valid IP multicast address.
1757 */
1758 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1759 error = EINVAL;
1760 break;
1761 }
1762 mreq = mtod(m, struct ip_mreq *);
1763 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1764 error = EINVAL;
1765 break;
1766 }
1767 /*
1768 * If no interface address was provided, use the interface of
1769 * the route to the given multicast address.
1770 */
1771 if (in_nullhost(mreq->imr_interface)) {
1772 struct rtentry *rt;
1773 union {
1774 struct sockaddr dst;
1775 struct sockaddr_in dst4;
1776 } u;
1777 struct route ro;
1778
1779 memset(&ro, 0, sizeof(ro));
1780
1781 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1782 rtcache_setdst(&ro, &u.dst);
1783 rtcache_init(&ro);
1784 ifp = (rt = rtcache_getrt(&ro)) != NULL ? rt->rt_ifp
1785 : NULL;
1786 rtcache_free(&ro);
1787 } else {
1788 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1789 }
1790 /*
1791 * See if we found an interface, and confirm that it
1792 * supports multicast.
1793 */
1794 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1795 error = EADDRNOTAVAIL;
1796 break;
1797 }
1798 /*
1799 * See if the membership already exists or if all the
1800 * membership slots are full.
1801 */
1802 for (i = 0; i < imo->imo_num_memberships; ++i) {
1803 if (imo->imo_membership[i]->inm_ifp == ifp &&
1804 in_hosteq(imo->imo_membership[i]->inm_addr,
1805 mreq->imr_multiaddr))
1806 break;
1807 }
1808 if (i < imo->imo_num_memberships) {
1809 error = EADDRINUSE;
1810 break;
1811 }
1812 if (i == IP_MAX_MEMBERSHIPS) {
1813 error = ETOOMANYREFS;
1814 break;
1815 }
1816 /*
1817 * Everything looks good; add a new record to the multicast
1818 * address list for the given interface.
1819 */
1820 if ((imo->imo_membership[i] =
1821 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1822 error = ENOBUFS;
1823 break;
1824 }
1825 ++imo->imo_num_memberships;
1826 break;
1827
1828 case IP_DROP_MEMBERSHIP:
1829 /*
1830 * Drop a multicast group membership.
1831 * Group must be a valid IP multicast address.
1832 */
1833 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1834 error = EINVAL;
1835 break;
1836 }
1837 mreq = mtod(m, struct ip_mreq *);
1838 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1839 error = EINVAL;
1840 break;
1841 }
1842 /*
1843 * If an interface address was specified, get a pointer
1844 * to its ifnet structure.
1845 */
1846 if (in_nullhost(mreq->imr_interface))
1847 ifp = NULL;
1848 else {
1849 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1850 if (ifp == NULL) {
1851 error = EADDRNOTAVAIL;
1852 break;
1853 }
1854 }
1855 /*
1856 * Find the membership in the membership array.
1857 */
1858 for (i = 0; i < imo->imo_num_memberships; ++i) {
1859 if ((ifp == NULL ||
1860 imo->imo_membership[i]->inm_ifp == ifp) &&
1861 in_hosteq(imo->imo_membership[i]->inm_addr,
1862 mreq->imr_multiaddr))
1863 break;
1864 }
1865 if (i == imo->imo_num_memberships) {
1866 error = EADDRNOTAVAIL;
1867 break;
1868 }
1869 /*
1870 * Give up the multicast address record to which the
1871 * membership points.
1872 */
1873 in_delmulti(imo->imo_membership[i]);
1874 /*
1875 * Remove the gap in the membership array.
1876 */
1877 for (++i; i < imo->imo_num_memberships; ++i)
1878 imo->imo_membership[i-1] = imo->imo_membership[i];
1879 --imo->imo_num_memberships;
1880 break;
1881
1882 default:
1883 error = EOPNOTSUPP;
1884 break;
1885 }
1886
1887 /*
1888 * If all options have default values, no need to keep the mbuf.
1889 */
1890 if (imo->imo_multicast_ifp == NULL &&
1891 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1892 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1893 imo->imo_num_memberships == 0) {
1894 free(*imop, M_IPMOPTS);
1895 *imop = NULL;
1896 }
1897
1898 return (error);
1899 }
1900
1901 /*
1902 * Return the IP multicast options in response to user getsockopt().
1903 */
1904 int
1905 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1906 {
1907 u_char *ttl;
1908 u_char *loop;
1909 struct in_addr *addr;
1910 struct in_ifaddr *ia;
1911
1912 *mp = m_get(M_WAIT, MT_SOOPTS);
1913
1914 switch (optname) {
1915
1916 case IP_MULTICAST_IF:
1917 addr = mtod(*mp, struct in_addr *);
1918 (*mp)->m_len = sizeof(struct in_addr);
1919 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1920 *addr = zeroin_addr;
1921 else if (imo->imo_multicast_addr.s_addr) {
1922 /* return the value user has set */
1923 *addr = imo->imo_multicast_addr;
1924 } else {
1925 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1926 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1927 }
1928 return (0);
1929
1930 case IP_MULTICAST_TTL:
1931 ttl = mtod(*mp, u_char *);
1932 (*mp)->m_len = 1;
1933 *ttl = imo ? imo->imo_multicast_ttl
1934 : IP_DEFAULT_MULTICAST_TTL;
1935 return (0);
1936
1937 case IP_MULTICAST_LOOP:
1938 loop = mtod(*mp, u_char *);
1939 (*mp)->m_len = 1;
1940 *loop = imo ? imo->imo_multicast_loop
1941 : IP_DEFAULT_MULTICAST_LOOP;
1942 return (0);
1943
1944 default:
1945 return (EOPNOTSUPP);
1946 }
1947 }
1948
1949 /*
1950 * Discard the IP multicast options.
1951 */
1952 void
1953 ip_freemoptions(struct ip_moptions *imo)
1954 {
1955 int i;
1956
1957 if (imo != NULL) {
1958 for (i = 0; i < imo->imo_num_memberships; ++i)
1959 in_delmulti(imo->imo_membership[i]);
1960 free(imo, M_IPMOPTS);
1961 }
1962 }
1963
1964 /*
1965 * Routine called from ip_output() to loop back a copy of an IP multicast
1966 * packet to the input queue of a specified interface. Note that this
1967 * calls the output routine of the loopback "driver", but with an interface
1968 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1969 */
1970 static void
1971 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1972 {
1973 struct ip *ip;
1974 struct mbuf *copym;
1975
1976 copym = m_copypacket(m, M_DONTWAIT);
1977 if (copym != NULL
1978 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1979 copym = m_pullup(copym, sizeof(struct ip));
1980 if (copym == NULL)
1981 return;
1982 /*
1983 * We don't bother to fragment if the IP length is greater
1984 * than the interface's MTU. Can this possibly matter?
1985 */
1986 ip = mtod(copym, struct ip *);
1987
1988 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1989 in_delayed_cksum(copym);
1990 copym->m_pkthdr.csum_flags &=
1991 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1992 }
1993
1994 ip->ip_sum = 0;
1995 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1996 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1997 }
1998