ip_output.c revision 1.188 1 /* $NetBSD: ip_output.c,v 1.188 2007/12/29 14:53:25 degroote Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.188 2007/12/29 14:53:25 degroote Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *,
159 const struct sockaddr_in *);
160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
161
162 #ifdef PFIL_HOOKS
163 extern struct pfil_head inet_pfil_hook; /* XXX */
164 #endif
165
166 int ip_do_loopback_cksum = 0;
167
168 /*
169 * IP output. The packet in mbuf chain m contains a skeletal IP
170 * header (with len, off, ttl, proto, tos, src, dst).
171 * The mbuf chain containing the packet will be freed.
172 * The mbuf opt, if present, will not be freed.
173 */
174 int
175 ip_output(struct mbuf *m0, ...)
176 {
177 struct rtentry *rt;
178 struct ip *ip;
179 struct ifnet *ifp;
180 struct mbuf *m = m0;
181 int hlen = sizeof (struct ip);
182 int len, error = 0;
183 struct route iproute;
184 const struct sockaddr_in *dst;
185 struct in_ifaddr *ia;
186 struct ifaddr *xifa;
187 struct mbuf *opt;
188 struct route *ro;
189 int flags, sw_csum;
190 int *mtu_p;
191 u_long mtu;
192 struct ip_moptions *imo;
193 struct socket *so;
194 va_list ap;
195 #ifdef IPSEC_NAT_T
196 int natt_frag = 0;
197 #endif
198 #ifdef IPSEC
199 struct secpolicy *sp = NULL;
200 #endif /*IPSEC*/
201 #ifdef FAST_IPSEC
202 struct inpcb *inp;
203 struct secpolicy *sp = NULL;
204 int s;
205 #endif
206 u_int16_t ip_len;
207 union {
208 struct sockaddr dst;
209 struct sockaddr_in dst4;
210 } u;
211 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
212 * to the nexthop
213 */
214
215 len = 0;
216 va_start(ap, m0);
217 opt = va_arg(ap, struct mbuf *);
218 ro = va_arg(ap, struct route *);
219 flags = va_arg(ap, int);
220 imo = va_arg(ap, struct ip_moptions *);
221 so = va_arg(ap, struct socket *);
222 if (flags & IP_RETURNMTU)
223 mtu_p = va_arg(ap, int *);
224 else
225 mtu_p = NULL;
226 va_end(ap);
227
228 MCLAIM(m, &ip_tx_mowner);
229 #ifdef FAST_IPSEC
230 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
231 inp = (struct inpcb *)so->so_pcb;
232 else
233 inp = NULL;
234 #endif /* FAST_IPSEC */
235
236 #ifdef DIAGNOSTIC
237 if ((m->m_flags & M_PKTHDR) == 0)
238 panic("ip_output: no HDR");
239
240 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
241 panic("ip_output: IPv6 checksum offload flags: %d",
242 m->m_pkthdr.csum_flags);
243 }
244
245 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
246 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
247 panic("ip_output: conflicting checksum offload flags: %d",
248 m->m_pkthdr.csum_flags);
249 }
250 #endif
251 if (opt) {
252 m = ip_insertoptions(m, opt, &len);
253 if (len >= sizeof(struct ip))
254 hlen = len;
255 }
256 ip = mtod(m, struct ip *);
257 /*
258 * Fill in IP header.
259 */
260 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
261 ip->ip_v = IPVERSION;
262 ip->ip_off = htons(0);
263 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
264 ip->ip_id = 0;
265 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
266 ip->ip_id = ip_newid();
267 } else {
268
269 /*
270 * TSO capable interfaces (typically?) increment
271 * ip_id for each segment.
272 * "allocate" enough ids here to increase the chance
273 * for them to be unique.
274 *
275 * note that the following calculation is not
276 * needed to be precise. wasting some ip_id is fine.
277 */
278
279 unsigned int segsz = m->m_pkthdr.segsz;
280 unsigned int datasz = ntohs(ip->ip_len) - hlen;
281 unsigned int num = howmany(datasz, segsz);
282
283 ip->ip_id = ip_newid_range(num);
284 }
285 ip->ip_hl = hlen >> 2;
286 ipstat.ips_localout++;
287 } else {
288 hlen = ip->ip_hl << 2;
289 }
290 /*
291 * Route packet.
292 */
293 memset(&iproute, 0, sizeof(iproute));
294 if (ro == NULL)
295 ro = &iproute;
296 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
297 dst = satocsin(rtcache_getdst(ro));
298 /*
299 * If there is a cached route,
300 * check that it is to the same destination
301 * and is still up. If not, free it and try again.
302 * The address family should also be checked in case of sharing the
303 * cache with IPv6.
304 */
305 if (dst == NULL)
306 ;
307 else if (dst->sin_family != AF_INET ||
308 !in_hosteq(dst->sin_addr, ip->ip_dst))
309 rtcache_free(ro);
310 else
311 rtcache_check(ro);
312 if ((rt = rtcache_getrt(ro)) == NULL) {
313 dst = &u.dst4;
314 rtcache_setdst(ro, &u.dst);
315 }
316 /*
317 * If routing to interface only,
318 * short circuit routing lookup.
319 */
320 if (flags & IP_ROUTETOIF) {
321 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
322 ipstat.ips_noroute++;
323 error = ENETUNREACH;
324 goto bad;
325 }
326 ifp = ia->ia_ifp;
327 mtu = ifp->if_mtu;
328 ip->ip_ttl = 1;
329 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
330 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
331 imo != NULL && imo->imo_multicast_ifp != NULL) {
332 ifp = imo->imo_multicast_ifp;
333 mtu = ifp->if_mtu;
334 IFP_TO_IA(ifp, ia);
335 } else {
336 if (rt == NULL)
337 rtcache_init(ro);
338 if ((rt = rtcache_getrt(ro)) == NULL) {
339 ipstat.ips_noroute++;
340 error = EHOSTUNREACH;
341 goto bad;
342 }
343 ia = ifatoia(rt->rt_ifa);
344 ifp = rt->rt_ifp;
345 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
346 mtu = ifp->if_mtu;
347 rt->rt_use++;
348 if (rt->rt_flags & RTF_GATEWAY)
349 dst = satosin(rt->rt_gateway);
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
353 struct in_multi *inm;
354
355 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
356 M_BCAST : M_MCAST;
357 /*
358 * See if the caller provided any multicast options
359 */
360 if (imo != NULL)
361 ip->ip_ttl = imo->imo_multicast_ttl;
362 else
363 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
364
365 /*
366 * if we don't know the outgoing ifp yet, we can't generate
367 * output
368 */
369 if (!ifp) {
370 ipstat.ips_noroute++;
371 error = ENETUNREACH;
372 goto bad;
373 }
374
375 /*
376 * If the packet is multicast or broadcast, confirm that
377 * the outgoing interface can transmit it.
378 */
379 if (((m->m_flags & M_MCAST) &&
380 (ifp->if_flags & IFF_MULTICAST) == 0) ||
381 ((m->m_flags & M_BCAST) &&
382 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
383 ipstat.ips_noroute++;
384 error = ENETUNREACH;
385 goto bad;
386 }
387 /*
388 * If source address not specified yet, use an address
389 * of outgoing interface.
390 */
391 if (in_nullhost(ip->ip_src)) {
392 struct in_ifaddr *xia;
393
394 IFP_TO_IA(ifp, xia);
395 if (!xia) {
396 error = EADDRNOTAVAIL;
397 goto bad;
398 }
399 xifa = &xia->ia_ifa;
400 if (xifa->ifa_getifa != NULL) {
401 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
402 }
403 ip->ip_src = xia->ia_addr.sin_addr;
404 }
405
406 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
407 if (inm != NULL &&
408 (imo == NULL || imo->imo_multicast_loop)) {
409 /*
410 * If we belong to the destination multicast group
411 * on the outgoing interface, and the caller did not
412 * forbid loopback, loop back a copy.
413 */
414 ip_mloopback(ifp, m, &u.dst4);
415 }
416 #ifdef MROUTING
417 else {
418 /*
419 * If we are acting as a multicast router, perform
420 * multicast forwarding as if the packet had just
421 * arrived on the interface to which we are about
422 * to send. The multicast forwarding function
423 * recursively calls this function, using the
424 * IP_FORWARDING flag to prevent infinite recursion.
425 *
426 * Multicasts that are looped back by ip_mloopback(),
427 * above, will be forwarded by the ip_input() routine,
428 * if necessary.
429 */
430 extern struct socket *ip_mrouter;
431
432 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
433 if (ip_mforward(m, ifp) != 0) {
434 m_freem(m);
435 goto done;
436 }
437 }
438 }
439 #endif
440 /*
441 * Multicasts with a time-to-live of zero may be looped-
442 * back, above, but must not be transmitted on a network.
443 * Also, multicasts addressed to the loopback interface
444 * are not sent -- the above call to ip_mloopback() will
445 * loop back a copy if this host actually belongs to the
446 * destination group on the loopback interface.
447 */
448 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
449 m_freem(m);
450 goto done;
451 }
452
453 goto sendit;
454 }
455 /*
456 * If source address not specified yet, use address
457 * of outgoing interface.
458 */
459 if (in_nullhost(ip->ip_src)) {
460 xifa = &ia->ia_ifa;
461 if (xifa->ifa_getifa != NULL)
462 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
463 ip->ip_src = ia->ia_addr.sin_addr;
464 }
465
466 /*
467 * packets with Class-D address as source are not valid per
468 * RFC 1112
469 */
470 if (IN_MULTICAST(ip->ip_src.s_addr)) {
471 ipstat.ips_odropped++;
472 error = EADDRNOTAVAIL;
473 goto bad;
474 }
475
476 /*
477 * Look for broadcast address and
478 * and verify user is allowed to send
479 * such a packet.
480 */
481 if (in_broadcast(dst->sin_addr, ifp)) {
482 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
483 error = EADDRNOTAVAIL;
484 goto bad;
485 }
486 if ((flags & IP_ALLOWBROADCAST) == 0) {
487 error = EACCES;
488 goto bad;
489 }
490 /* don't allow broadcast messages to be fragmented */
491 if (ntohs(ip->ip_len) > ifp->if_mtu) {
492 error = EMSGSIZE;
493 goto bad;
494 }
495 m->m_flags |= M_BCAST;
496 } else
497 m->m_flags &= ~M_BCAST;
498
499 sendit:
500 /*
501 * If we're doing Path MTU Discovery, we need to set DF unless
502 * the route's MTU is locked.
503 */
504 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
505 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
506 ip->ip_off |= htons(IP_DF);
507
508 /* Remember the current ip_len */
509 ip_len = ntohs(ip->ip_len);
510
511 #ifdef IPSEC
512 /* get SP for this packet */
513 if (so == NULL)
514 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
515 flags, &error);
516 else {
517 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
518 IPSEC_DIR_OUTBOUND))
519 goto skip_ipsec;
520 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
521 }
522
523 if (sp == NULL) {
524 ipsecstat.out_inval++;
525 goto bad;
526 }
527
528 error = 0;
529
530 /* check policy */
531 switch (sp->policy) {
532 case IPSEC_POLICY_DISCARD:
533 /*
534 * This packet is just discarded.
535 */
536 ipsecstat.out_polvio++;
537 goto bad;
538
539 case IPSEC_POLICY_BYPASS:
540 case IPSEC_POLICY_NONE:
541 /* no need to do IPsec. */
542 goto skip_ipsec;
543
544 case IPSEC_POLICY_IPSEC:
545 if (sp->req == NULL) {
546 /* XXX should be panic ? */
547 printf("ip_output: No IPsec request specified.\n");
548 error = EINVAL;
549 goto bad;
550 }
551 break;
552
553 case IPSEC_POLICY_ENTRUST:
554 default:
555 printf("ip_output: Invalid policy found. %d\n", sp->policy);
556 }
557
558 #ifdef IPSEC_NAT_T
559 /*
560 * NAT-T ESP fragmentation: don't do IPSec processing now,
561 * we'll do it on each fragmented packet.
562 */
563 if (sp->req->sav &&
564 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
565 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
566 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
567 natt_frag = 1;
568 mtu = sp->req->sav->esp_frag;
569 goto skip_ipsec;
570 }
571 }
572 #endif /* IPSEC_NAT_T */
573
574 /*
575 * ipsec4_output() expects ip_len and ip_off in network
576 * order. They have been set to network order above.
577 */
578
579 {
580 struct ipsec_output_state state;
581 bzero(&state, sizeof(state));
582 state.m = m;
583 if (flags & IP_ROUTETOIF) {
584 state.ro = &iproute;
585 memset(&iproute, 0, sizeof(iproute));
586 } else
587 state.ro = ro;
588 state.dst = sintocsa(dst);
589
590 /*
591 * We can't defer the checksum of payload data if
592 * we're about to encrypt/authenticate it.
593 *
594 * XXX When we support crypto offloading functions of
595 * XXX network interfaces, we need to reconsider this,
596 * XXX since it's likely that they'll support checksumming,
597 * XXX as well.
598 */
599 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
600 in_delayed_cksum(m);
601 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
602 }
603
604 error = ipsec4_output(&state, sp, flags);
605
606 m = state.m;
607 if (flags & IP_ROUTETOIF) {
608 /*
609 * if we have tunnel mode SA, we may need to ignore
610 * IP_ROUTETOIF.
611 */
612 if (state.ro != &iproute || rtcache_getrt(state.ro) != NULL) {
613 flags &= ~IP_ROUTETOIF;
614 ro = state.ro;
615 }
616 } else
617 ro = state.ro;
618 rt = rtcache_getrt(ro);
619 dst = satocsin(state.dst);
620 if (error) {
621 /* mbuf is already reclaimed in ipsec4_output. */
622 m0 = NULL;
623 switch (error) {
624 case EHOSTUNREACH:
625 case ENETUNREACH:
626 case EMSGSIZE:
627 case ENOBUFS:
628 case ENOMEM:
629 break;
630 default:
631 printf("ip4_output (ipsec): error code %d\n", error);
632 /*fall through*/
633 case ENOENT:
634 /* don't show these error codes to the user */
635 error = 0;
636 break;
637 }
638 goto bad;
639 }
640
641 /* be sure to update variables that are affected by ipsec4_output() */
642 ip = mtod(m, struct ip *);
643 hlen = ip->ip_hl << 2;
644 ip_len = ntohs(ip->ip_len);
645
646 if (rt == NULL) {
647 if ((flags & IP_ROUTETOIF) == 0) {
648 printf("ip_output: "
649 "can't update route after IPsec processing\n");
650 error = EHOSTUNREACH; /*XXX*/
651 goto bad;
652 }
653 } else {
654 /* nobody uses ia beyond here */
655 if (state.encap) {
656 ifp = rt->rt_ifp;
657 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
658 mtu = ifp->if_mtu;
659 }
660 }
661 }
662 skip_ipsec:
663 #endif /*IPSEC*/
664 #ifdef FAST_IPSEC
665 /*
666 * Check the security policy (SP) for the packet and, if
667 * required, do IPsec-related processing. There are two
668 * cases here; the first time a packet is sent through
669 * it will be untagged and handled by ipsec4_checkpolicy.
670 * If the packet is resubmitted to ip_output (e.g. after
671 * AH, ESP, etc. processing), there will be a tag to bypass
672 * the lookup and related policy checking.
673 */
674 if (!ipsec_outdone(m)) {
675 s = splsoftnet();
676 if (inp != NULL &&
677 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
678 goto spd_done;
679 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
680 &error, inp);
681 /*
682 * There are four return cases:
683 * sp != NULL apply IPsec policy
684 * sp == NULL, error == 0 no IPsec handling needed
685 * sp == NULL, error == -EINVAL discard packet w/o error
686 * sp == NULL, error != 0 discard packet, report error
687 */
688 if (sp != NULL) {
689 #ifdef IPSEC_NAT_T
690 /*
691 * NAT-T ESP fragmentation: don't do IPSec processing now,
692 * we'll do it on each fragmented packet.
693 */
694 if (sp->req->sav &&
695 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
696 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
697 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
698 natt_frag = 1;
699 mtu = sp->req->sav->esp_frag;
700 goto spd_done;
701 }
702 }
703 #endif /* IPSEC_NAT_T */
704
705 /*
706 * Do delayed checksums now because we send before
707 * this is done in the normal processing path.
708 */
709 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
710 in_delayed_cksum(m);
711 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
712 }
713
714 #ifdef __FreeBSD__
715 ip->ip_len = htons(ip->ip_len);
716 ip->ip_off = htons(ip->ip_off);
717 #endif
718
719 /* NB: callee frees mbuf */
720 error = ipsec4_process_packet(m, sp->req, flags, 0);
721 /*
722 * Preserve KAME behaviour: ENOENT can be returned
723 * when an SA acquire is in progress. Don't propagate
724 * this to user-level; it confuses applications.
725 *
726 * XXX this will go away when the SADB is redone.
727 */
728 if (error == ENOENT)
729 error = 0;
730 splx(s);
731 goto done;
732 } else {
733 splx(s);
734
735 if (error != 0) {
736 /*
737 * Hack: -EINVAL is used to signal that a packet
738 * should be silently discarded. This is typically
739 * because we asked key management for an SA and
740 * it was delayed (e.g. kicked up to IKE).
741 */
742 if (error == -EINVAL)
743 error = 0;
744 goto bad;
745 } else {
746 /* No IPsec processing for this packet. */
747 }
748 }
749 }
750 spd_done:
751 #endif /* FAST_IPSEC */
752
753 #ifdef PFIL_HOOKS
754 /*
755 * Run through list of hooks for output packets.
756 */
757 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
758 goto done;
759 if (m == NULL)
760 goto done;
761
762 ip = mtod(m, struct ip *);
763 hlen = ip->ip_hl << 2;
764 ip_len = ntohs(ip->ip_len);
765 #endif /* PFIL_HOOKS */
766
767 m->m_pkthdr.csum_data |= hlen << 16;
768
769 #if IFA_STATS
770 /*
771 * search for the source address structure to
772 * maintain output statistics.
773 */
774 INADDR_TO_IA(ip->ip_src, ia);
775 #endif
776
777 /* Maybe skip checksums on loopback interfaces. */
778 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
779 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
780 }
781 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
782 /*
783 * If small enough for mtu of path, or if using TCP segmentation
784 * offload, can just send directly.
785 */
786 if (ip_len <= mtu ||
787 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
788 #if IFA_STATS
789 if (ia)
790 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
791 #endif
792 /*
793 * Always initialize the sum to 0! Some HW assisted
794 * checksumming requires this.
795 */
796 ip->ip_sum = 0;
797
798 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
799 /*
800 * Perform any checksums that the hardware can't do
801 * for us.
802 *
803 * XXX Does any hardware require the {th,uh}_sum
804 * XXX fields to be 0?
805 */
806 if (sw_csum & M_CSUM_IPv4) {
807 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
808 ip->ip_sum = in_cksum(m, hlen);
809 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
810 }
811 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
812 if (IN_NEED_CHECKSUM(ifp,
813 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
814 in_delayed_cksum(m);
815 }
816 m->m_pkthdr.csum_flags &=
817 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
818 }
819 }
820
821 #ifdef IPSEC
822 /* clean ipsec history once it goes out of the node */
823 ipsec_delaux(m);
824 #endif
825
826 if (__predict_true(
827 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
828 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
829 error =
830 (*ifp->if_output)(ifp, m,
831 (m->m_flags & M_MCAST) ?
832 sintocsa(rdst) : sintocsa(dst),
833 rt);
834 } else {
835 error =
836 ip_tso_output(ifp, m,
837 (m->m_flags & M_MCAST) ?
838 sintocsa(rdst) : sintocsa(dst),
839 rt);
840 }
841 goto done;
842 }
843
844 /*
845 * We can't use HW checksumming if we're about to
846 * to fragment the packet.
847 *
848 * XXX Some hardware can do this.
849 */
850 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
851 if (IN_NEED_CHECKSUM(ifp,
852 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
853 in_delayed_cksum(m);
854 }
855 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
856 }
857
858 /*
859 * Too large for interface; fragment if possible.
860 * Must be able to put at least 8 bytes per fragment.
861 */
862 if (ntohs(ip->ip_off) & IP_DF) {
863 if (flags & IP_RETURNMTU)
864 *mtu_p = mtu;
865 error = EMSGSIZE;
866 ipstat.ips_cantfrag++;
867 goto bad;
868 }
869
870 error = ip_fragment(m, ifp, mtu);
871 if (error) {
872 m = NULL;
873 goto bad;
874 }
875
876 for (; m; m = m0) {
877 m0 = m->m_nextpkt;
878 m->m_nextpkt = 0;
879 if (error == 0) {
880 #if IFA_STATS
881 if (ia)
882 ia->ia_ifa.ifa_data.ifad_outbytes +=
883 ntohs(ip->ip_len);
884 #endif
885 #ifdef IPSEC
886 /* clean ipsec history once it goes out of the node */
887 ipsec_delaux(m);
888 #endif /* IPSEC */
889
890 #ifdef IPSEC_NAT_T
891 /*
892 * If we get there, the packet has not been handeld by
893 * IPSec whereas it should have. Now that it has been
894 * fragmented, re-inject it in ip_output so that IPsec
895 * processing can occur.
896 */
897 if (natt_frag) {
898 error = ip_output(m, opt,
899 ro, flags, imo, so, mtu_p);
900 } else
901 #endif /* IPSEC_NAT_T */
902 {
903 KASSERT((m->m_pkthdr.csum_flags &
904 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
905 error = (*ifp->if_output)(ifp, m,
906 (m->m_flags & M_MCAST) ?
907 sintocsa(rdst) : sintocsa(dst),
908 rt);
909 }
910 } else
911 m_freem(m);
912 }
913
914 if (error == 0)
915 ipstat.ips_fragmented++;
916 done:
917 rtcache_free(&iproute);
918
919 #ifdef IPSEC
920 if (sp != NULL) {
921 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
922 printf("DP ip_output call free SP:%p\n", sp));
923 key_freesp(sp);
924 }
925 #endif /* IPSEC */
926 #ifdef FAST_IPSEC
927 if (sp != NULL)
928 KEY_FREESP(&sp);
929 #endif /* FAST_IPSEC */
930
931 return (error);
932 bad:
933 m_freem(m);
934 goto done;
935 }
936
937 int
938 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
939 {
940 struct ip *ip, *mhip;
941 struct mbuf *m0;
942 int len, hlen, off;
943 int mhlen, firstlen;
944 struct mbuf **mnext;
945 int sw_csum = m->m_pkthdr.csum_flags;
946 int fragments = 0;
947 int s;
948 int error = 0;
949
950 ip = mtod(m, struct ip *);
951 hlen = ip->ip_hl << 2;
952 if (ifp != NULL)
953 sw_csum &= ~ifp->if_csum_flags_tx;
954
955 len = (mtu - hlen) &~ 7;
956 if (len < 8) {
957 m_freem(m);
958 return (EMSGSIZE);
959 }
960
961 firstlen = len;
962 mnext = &m->m_nextpkt;
963
964 /*
965 * Loop through length of segment after first fragment,
966 * make new header and copy data of each part and link onto chain.
967 */
968 m0 = m;
969 mhlen = sizeof (struct ip);
970 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
971 MGETHDR(m, M_DONTWAIT, MT_HEADER);
972 if (m == 0) {
973 error = ENOBUFS;
974 ipstat.ips_odropped++;
975 goto sendorfree;
976 }
977 MCLAIM(m, m0->m_owner);
978 *mnext = m;
979 mnext = &m->m_nextpkt;
980 m->m_data += max_linkhdr;
981 mhip = mtod(m, struct ip *);
982 *mhip = *ip;
983 /* we must inherit MCAST and BCAST flags */
984 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
985 if (hlen > sizeof (struct ip)) {
986 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
987 mhip->ip_hl = mhlen >> 2;
988 }
989 m->m_len = mhlen;
990 mhip->ip_off = ((off - hlen) >> 3) +
991 (ntohs(ip->ip_off) & ~IP_MF);
992 if (ip->ip_off & htons(IP_MF))
993 mhip->ip_off |= IP_MF;
994 if (off + len >= ntohs(ip->ip_len))
995 len = ntohs(ip->ip_len) - off;
996 else
997 mhip->ip_off |= IP_MF;
998 HTONS(mhip->ip_off);
999 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1000 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1001 if (m->m_next == 0) {
1002 error = ENOBUFS; /* ??? */
1003 ipstat.ips_odropped++;
1004 goto sendorfree;
1005 }
1006 m->m_pkthdr.len = mhlen + len;
1007 m->m_pkthdr.rcvif = (struct ifnet *)0;
1008 mhip->ip_sum = 0;
1009 if (sw_csum & M_CSUM_IPv4) {
1010 mhip->ip_sum = in_cksum(m, mhlen);
1011 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1012 } else {
1013 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1014 m->m_pkthdr.csum_data |= mhlen << 16;
1015 }
1016 ipstat.ips_ofragments++;
1017 fragments++;
1018 }
1019 /*
1020 * Update first fragment by trimming what's been copied out
1021 * and updating header, then send each fragment (in order).
1022 */
1023 m = m0;
1024 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1025 m->m_pkthdr.len = hlen + firstlen;
1026 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1027 ip->ip_off |= htons(IP_MF);
1028 ip->ip_sum = 0;
1029 if (sw_csum & M_CSUM_IPv4) {
1030 ip->ip_sum = in_cksum(m, hlen);
1031 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1032 } else {
1033 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1034 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1035 sizeof(struct ip));
1036 }
1037 sendorfree:
1038 /*
1039 * If there is no room for all the fragments, don't queue
1040 * any of them.
1041 */
1042 if (ifp != NULL) {
1043 s = splnet();
1044 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1045 error == 0) {
1046 error = ENOBUFS;
1047 ipstat.ips_odropped++;
1048 IFQ_INC_DROPS(&ifp->if_snd);
1049 }
1050 splx(s);
1051 }
1052 if (error) {
1053 for (m = m0; m; m = m0) {
1054 m0 = m->m_nextpkt;
1055 m->m_nextpkt = NULL;
1056 m_freem(m);
1057 }
1058 }
1059 return (error);
1060 }
1061
1062 /*
1063 * Process a delayed payload checksum calculation.
1064 */
1065 void
1066 in_delayed_cksum(struct mbuf *m)
1067 {
1068 struct ip *ip;
1069 u_int16_t csum, offset;
1070
1071 ip = mtod(m, struct ip *);
1072 offset = ip->ip_hl << 2;
1073 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1074 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1075 csum = 0xffff;
1076
1077 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1078
1079 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1080 /* This happen when ip options were inserted
1081 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1082 m->m_len, offset, ip->ip_p);
1083 */
1084 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1085 } else
1086 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1087 }
1088
1089 /*
1090 * Determine the maximum length of the options to be inserted;
1091 * we would far rather allocate too much space rather than too little.
1092 */
1093
1094 u_int
1095 ip_optlen(struct inpcb *inp)
1096 {
1097 struct mbuf *m = inp->inp_options;
1098
1099 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1100 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1101 else
1102 return 0;
1103 }
1104
1105
1106 /*
1107 * Insert IP options into preformed packet.
1108 * Adjust IP destination as required for IP source routing,
1109 * as indicated by a non-zero in_addr at the start of the options.
1110 */
1111 static struct mbuf *
1112 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1113 {
1114 struct ipoption *p = mtod(opt, struct ipoption *);
1115 struct mbuf *n;
1116 struct ip *ip = mtod(m, struct ip *);
1117 unsigned optlen;
1118
1119 optlen = opt->m_len - sizeof(p->ipopt_dst);
1120 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1121 return (m); /* XXX should fail */
1122 if (!in_nullhost(p->ipopt_dst))
1123 ip->ip_dst = p->ipopt_dst;
1124 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1125 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1126 if (n == 0)
1127 return (m);
1128 MCLAIM(n, m->m_owner);
1129 M_MOVE_PKTHDR(n, m);
1130 m->m_len -= sizeof(struct ip);
1131 m->m_data += sizeof(struct ip);
1132 n->m_next = m;
1133 m = n;
1134 m->m_len = optlen + sizeof(struct ip);
1135 m->m_data += max_linkhdr;
1136 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1137 } else {
1138 m->m_data -= optlen;
1139 m->m_len += optlen;
1140 memmove(mtod(m, void *), ip, sizeof(struct ip));
1141 }
1142 m->m_pkthdr.len += optlen;
1143 ip = mtod(m, struct ip *);
1144 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1145 *phlen = sizeof(struct ip) + optlen;
1146 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1147 return (m);
1148 }
1149
1150 /*
1151 * Copy options from ip to jp,
1152 * omitting those not copied during fragmentation.
1153 */
1154 int
1155 ip_optcopy(struct ip *ip, struct ip *jp)
1156 {
1157 u_char *cp, *dp;
1158 int opt, optlen, cnt;
1159
1160 cp = (u_char *)(ip + 1);
1161 dp = (u_char *)(jp + 1);
1162 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1163 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1164 opt = cp[0];
1165 if (opt == IPOPT_EOL)
1166 break;
1167 if (opt == IPOPT_NOP) {
1168 /* Preserve for IP mcast tunnel's LSRR alignment. */
1169 *dp++ = IPOPT_NOP;
1170 optlen = 1;
1171 continue;
1172 }
1173 #ifdef DIAGNOSTIC
1174 if (cnt < IPOPT_OLEN + sizeof(*cp))
1175 panic("malformed IPv4 option passed to ip_optcopy");
1176 #endif
1177 optlen = cp[IPOPT_OLEN];
1178 #ifdef DIAGNOSTIC
1179 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1180 panic("malformed IPv4 option passed to ip_optcopy");
1181 #endif
1182 /* bogus lengths should have been caught by ip_dooptions */
1183 if (optlen > cnt)
1184 optlen = cnt;
1185 if (IPOPT_COPIED(opt)) {
1186 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1187 dp += optlen;
1188 }
1189 }
1190 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1191 *dp++ = IPOPT_EOL;
1192 return (optlen);
1193 }
1194
1195 /*
1196 * IP socket option processing.
1197 */
1198 int
1199 ip_ctloutput(int op, struct socket *so, int level, int optname,
1200 struct mbuf **mp)
1201 {
1202 struct inpcb *inp = sotoinpcb(so);
1203 struct mbuf *m = *mp;
1204 int optval = 0;
1205 int error = 0;
1206 #if defined(IPSEC) || defined(FAST_IPSEC)
1207 struct lwp *l = curlwp; /*XXX*/
1208 #endif
1209
1210 if (level != IPPROTO_IP) {
1211 if (op == PRCO_SETOPT && *mp)
1212 (void) m_free(*mp);
1213 if (level == SOL_SOCKET && optname == SO_NOHEADER)
1214 return 0;
1215 return ENOPROTOOPT;
1216 }
1217
1218 switch (op) {
1219
1220 case PRCO_SETOPT:
1221 switch (optname) {
1222 case IP_OPTIONS:
1223 #ifdef notyet
1224 case IP_RETOPTS:
1225 return (ip_pcbopts(optname, &inp->inp_options, m));
1226 #else
1227 return (ip_pcbopts(&inp->inp_options, m));
1228 #endif
1229
1230 case IP_TOS:
1231 case IP_TTL:
1232 case IP_RECVOPTS:
1233 case IP_RECVRETOPTS:
1234 case IP_RECVDSTADDR:
1235 case IP_RECVIF:
1236 if (m == NULL || m->m_len != sizeof(int))
1237 error = EINVAL;
1238 else {
1239 optval = *mtod(m, int *);
1240 switch (optname) {
1241
1242 case IP_TOS:
1243 inp->inp_ip.ip_tos = optval;
1244 break;
1245
1246 case IP_TTL:
1247 inp->inp_ip.ip_ttl = optval;
1248 break;
1249 #define OPTSET(bit) \
1250 if (optval) \
1251 inp->inp_flags |= bit; \
1252 else \
1253 inp->inp_flags &= ~bit;
1254
1255 case IP_RECVOPTS:
1256 OPTSET(INP_RECVOPTS);
1257 break;
1258
1259 case IP_RECVRETOPTS:
1260 OPTSET(INP_RECVRETOPTS);
1261 break;
1262
1263 case IP_RECVDSTADDR:
1264 OPTSET(INP_RECVDSTADDR);
1265 break;
1266
1267 case IP_RECVIF:
1268 OPTSET(INP_RECVIF);
1269 break;
1270 }
1271 }
1272 break;
1273 #undef OPTSET
1274
1275 case IP_MULTICAST_IF:
1276 case IP_MULTICAST_TTL:
1277 case IP_MULTICAST_LOOP:
1278 case IP_ADD_MEMBERSHIP:
1279 case IP_DROP_MEMBERSHIP:
1280 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1281 break;
1282
1283 case IP_PORTRANGE:
1284 if (m == 0 || m->m_len != sizeof(int))
1285 error = EINVAL;
1286 else {
1287 optval = *mtod(m, int *);
1288
1289 switch (optval) {
1290
1291 case IP_PORTRANGE_DEFAULT:
1292 case IP_PORTRANGE_HIGH:
1293 inp->inp_flags &= ~(INP_LOWPORT);
1294 break;
1295
1296 case IP_PORTRANGE_LOW:
1297 inp->inp_flags |= INP_LOWPORT;
1298 break;
1299
1300 default:
1301 error = EINVAL;
1302 break;
1303 }
1304 }
1305 break;
1306
1307 #if defined(IPSEC) || defined(FAST_IPSEC)
1308 case IP_IPSEC_POLICY:
1309 {
1310 void *req = NULL;
1311 size_t len = 0;
1312 int priv = 0;
1313
1314 #ifdef __NetBSD__
1315 if (l == 0 || kauth_authorize_generic(l->l_cred,
1316 KAUTH_GENERIC_ISSUSER, NULL))
1317 priv = 0;
1318 else
1319 priv = 1;
1320 #else
1321 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1322 #endif
1323 if (m) {
1324 req = mtod(m, void *);
1325 len = m->m_len;
1326 }
1327 error = ipsec4_set_policy(inp, optname, req, len, priv);
1328 break;
1329 }
1330 #endif /*IPSEC*/
1331
1332 default:
1333 error = ENOPROTOOPT;
1334 break;
1335 }
1336 if (m)
1337 (void)m_free(m);
1338 break;
1339
1340 case PRCO_GETOPT:
1341 switch (optname) {
1342 case IP_OPTIONS:
1343 case IP_RETOPTS:
1344 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1345 MCLAIM(m, so->so_mowner);
1346 if (inp->inp_options) {
1347 m->m_len = inp->inp_options->m_len;
1348 bcopy(mtod(inp->inp_options, void *),
1349 mtod(m, void *), (unsigned)m->m_len);
1350 } else
1351 m->m_len = 0;
1352 break;
1353
1354 case IP_TOS:
1355 case IP_TTL:
1356 case IP_RECVOPTS:
1357 case IP_RECVRETOPTS:
1358 case IP_RECVDSTADDR:
1359 case IP_RECVIF:
1360 case IP_ERRORMTU:
1361 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1362 MCLAIM(m, so->so_mowner);
1363 m->m_len = sizeof(int);
1364 switch (optname) {
1365
1366 case IP_TOS:
1367 optval = inp->inp_ip.ip_tos;
1368 break;
1369
1370 case IP_TTL:
1371 optval = inp->inp_ip.ip_ttl;
1372 break;
1373
1374 case IP_ERRORMTU:
1375 optval = inp->inp_errormtu;
1376 break;
1377
1378 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1379
1380 case IP_RECVOPTS:
1381 optval = OPTBIT(INP_RECVOPTS);
1382 break;
1383
1384 case IP_RECVRETOPTS:
1385 optval = OPTBIT(INP_RECVRETOPTS);
1386 break;
1387
1388 case IP_RECVDSTADDR:
1389 optval = OPTBIT(INP_RECVDSTADDR);
1390 break;
1391
1392 case IP_RECVIF:
1393 optval = OPTBIT(INP_RECVIF);
1394 break;
1395 }
1396 *mtod(m, int *) = optval;
1397 break;
1398
1399 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1400 /* XXX: code broken */
1401 case IP_IPSEC_POLICY:
1402 {
1403 void *req = NULL;
1404 size_t len = 0;
1405
1406 if (m) {
1407 req = mtod(m, void *);
1408 len = m->m_len;
1409 }
1410 error = ipsec4_get_policy(inp, req, len, mp);
1411 break;
1412 }
1413 #endif /*IPSEC*/
1414
1415 case IP_MULTICAST_IF:
1416 case IP_MULTICAST_TTL:
1417 case IP_MULTICAST_LOOP:
1418 case IP_ADD_MEMBERSHIP:
1419 case IP_DROP_MEMBERSHIP:
1420 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1421 if (*mp)
1422 MCLAIM(*mp, so->so_mowner);
1423 break;
1424
1425 case IP_PORTRANGE:
1426 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1427 MCLAIM(m, so->so_mowner);
1428 m->m_len = sizeof(int);
1429
1430 if (inp->inp_flags & INP_LOWPORT)
1431 optval = IP_PORTRANGE_LOW;
1432 else
1433 optval = IP_PORTRANGE_DEFAULT;
1434
1435 *mtod(m, int *) = optval;
1436 break;
1437
1438 default:
1439 error = ENOPROTOOPT;
1440 break;
1441 }
1442 break;
1443 }
1444 return (error);
1445 }
1446
1447 /*
1448 * Set up IP options in pcb for insertion in output packets.
1449 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1450 * with destination address if source routed.
1451 */
1452 int
1453 #ifdef notyet
1454 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1455 #else
1456 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1457 #endif
1458 {
1459 int cnt, optlen;
1460 u_char *cp;
1461 u_char opt;
1462
1463 /* turn off any old options */
1464 if (*pcbopt)
1465 (void)m_free(*pcbopt);
1466 *pcbopt = 0;
1467 if (m == (struct mbuf *)0 || m->m_len == 0) {
1468 /*
1469 * Only turning off any previous options.
1470 */
1471 if (m)
1472 (void)m_free(m);
1473 return (0);
1474 }
1475
1476 #ifndef __vax__
1477 if (m->m_len % sizeof(int32_t))
1478 goto bad;
1479 #endif
1480 /*
1481 * IP first-hop destination address will be stored before
1482 * actual options; move other options back
1483 * and clear it when none present.
1484 */
1485 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1486 goto bad;
1487 cnt = m->m_len;
1488 m->m_len += sizeof(struct in_addr);
1489 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1490 memmove(cp, mtod(m, void *), (unsigned)cnt);
1491 bzero(mtod(m, void *), sizeof(struct in_addr));
1492
1493 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1494 opt = cp[IPOPT_OPTVAL];
1495 if (opt == IPOPT_EOL)
1496 break;
1497 if (opt == IPOPT_NOP)
1498 optlen = 1;
1499 else {
1500 if (cnt < IPOPT_OLEN + sizeof(*cp))
1501 goto bad;
1502 optlen = cp[IPOPT_OLEN];
1503 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1504 goto bad;
1505 }
1506 switch (opt) {
1507
1508 default:
1509 break;
1510
1511 case IPOPT_LSRR:
1512 case IPOPT_SSRR:
1513 /*
1514 * user process specifies route as:
1515 * ->A->B->C->D
1516 * D must be our final destination (but we can't
1517 * check that since we may not have connected yet).
1518 * A is first hop destination, which doesn't appear in
1519 * actual IP option, but is stored before the options.
1520 */
1521 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1522 goto bad;
1523 m->m_len -= sizeof(struct in_addr);
1524 cnt -= sizeof(struct in_addr);
1525 optlen -= sizeof(struct in_addr);
1526 cp[IPOPT_OLEN] = optlen;
1527 /*
1528 * Move first hop before start of options.
1529 */
1530 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1531 sizeof(struct in_addr));
1532 /*
1533 * Then copy rest of options back
1534 * to close up the deleted entry.
1535 */
1536 (void)memmove(&cp[IPOPT_OFFSET+1],
1537 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1538 (unsigned)cnt - (IPOPT_MINOFF - 1));
1539 break;
1540 }
1541 }
1542 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1543 goto bad;
1544 *pcbopt = m;
1545 return (0);
1546
1547 bad:
1548 (void)m_free(m);
1549 return (EINVAL);
1550 }
1551
1552 /*
1553 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1554 */
1555 static struct ifnet *
1556 ip_multicast_if(struct in_addr *a, int *ifindexp)
1557 {
1558 int ifindex;
1559 struct ifnet *ifp = NULL;
1560 struct in_ifaddr *ia;
1561
1562 if (ifindexp)
1563 *ifindexp = 0;
1564 if (ntohl(a->s_addr) >> 24 == 0) {
1565 ifindex = ntohl(a->s_addr) & 0xffffff;
1566 if (ifindex < 0 || if_indexlim <= ifindex)
1567 return NULL;
1568 ifp = ifindex2ifnet[ifindex];
1569 if (!ifp)
1570 return NULL;
1571 if (ifindexp)
1572 *ifindexp = ifindex;
1573 } else {
1574 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1575 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1576 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1577 ifp = ia->ia_ifp;
1578 break;
1579 }
1580 }
1581 }
1582 return ifp;
1583 }
1584
1585 static int
1586 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1587 {
1588 u_int tval;
1589
1590 if (m == NULL)
1591 return EINVAL;
1592
1593 switch (m->m_len) {
1594 case sizeof(u_char):
1595 tval = *(mtod(m, u_char *));
1596 break;
1597 case sizeof(u_int):
1598 tval = *(mtod(m, u_int *));
1599 break;
1600 default:
1601 return EINVAL;
1602 }
1603
1604 if (tval > maxval)
1605 return EINVAL;
1606
1607 *val = tval;
1608 return 0;
1609 }
1610
1611 /*
1612 * Set the IP multicast options in response to user setsockopt().
1613 */
1614 int
1615 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1616 {
1617 int error = 0;
1618 int i;
1619 struct in_addr addr;
1620 struct ip_mreq *mreq;
1621 struct ifnet *ifp;
1622 struct ip_moptions *imo = *imop;
1623 int ifindex;
1624
1625 if (imo == NULL) {
1626 /*
1627 * No multicast option buffer attached to the pcb;
1628 * allocate one and initialize to default values.
1629 */
1630 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1631 M_WAITOK);
1632
1633 if (imo == NULL)
1634 return (ENOBUFS);
1635 *imop = imo;
1636 imo->imo_multicast_ifp = NULL;
1637 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1638 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1639 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1640 imo->imo_num_memberships = 0;
1641 }
1642
1643 switch (optname) {
1644
1645 case IP_MULTICAST_IF:
1646 /*
1647 * Select the interface for outgoing multicast packets.
1648 */
1649 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1650 error = EINVAL;
1651 break;
1652 }
1653 addr = *(mtod(m, struct in_addr *));
1654 /*
1655 * INADDR_ANY is used to remove a previous selection.
1656 * When no interface is selected, a default one is
1657 * chosen every time a multicast packet is sent.
1658 */
1659 if (in_nullhost(addr)) {
1660 imo->imo_multicast_ifp = NULL;
1661 break;
1662 }
1663 /*
1664 * The selected interface is identified by its local
1665 * IP address. Find the interface and confirm that
1666 * it supports multicasting.
1667 */
1668 ifp = ip_multicast_if(&addr, &ifindex);
1669 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1670 error = EADDRNOTAVAIL;
1671 break;
1672 }
1673 imo->imo_multicast_ifp = ifp;
1674 if (ifindex)
1675 imo->imo_multicast_addr = addr;
1676 else
1677 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1678 break;
1679
1680 case IP_MULTICAST_TTL:
1681 /*
1682 * Set the IP time-to-live for outgoing multicast packets.
1683 */
1684 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1685 break;
1686
1687 case IP_MULTICAST_LOOP:
1688 /*
1689 * Set the loopback flag for outgoing multicast packets.
1690 * Must be zero or one.
1691 */
1692 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1693 break;
1694
1695 case IP_ADD_MEMBERSHIP:
1696 /*
1697 * Add a multicast group membership.
1698 * Group must be a valid IP multicast address.
1699 */
1700 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1701 error = EINVAL;
1702 break;
1703 }
1704 mreq = mtod(m, struct ip_mreq *);
1705 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1706 error = EINVAL;
1707 break;
1708 }
1709 /*
1710 * If no interface address was provided, use the interface of
1711 * the route to the given multicast address.
1712 */
1713 if (in_nullhost(mreq->imr_interface)) {
1714 struct rtentry *rt;
1715 union {
1716 struct sockaddr dst;
1717 struct sockaddr_in dst4;
1718 } u;
1719 struct route ro;
1720
1721 memset(&ro, 0, sizeof(ro));
1722
1723 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1724 rtcache_setdst(&ro, &u.dst);
1725 rtcache_init(&ro);
1726 ifp = (rt = rtcache_getrt(&ro)) != NULL ? rt->rt_ifp
1727 : NULL;
1728 rtcache_free(&ro);
1729 } else {
1730 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1731 }
1732 /*
1733 * See if we found an interface, and confirm that it
1734 * supports multicast.
1735 */
1736 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1737 error = EADDRNOTAVAIL;
1738 break;
1739 }
1740 /*
1741 * See if the membership already exists or if all the
1742 * membership slots are full.
1743 */
1744 for (i = 0; i < imo->imo_num_memberships; ++i) {
1745 if (imo->imo_membership[i]->inm_ifp == ifp &&
1746 in_hosteq(imo->imo_membership[i]->inm_addr,
1747 mreq->imr_multiaddr))
1748 break;
1749 }
1750 if (i < imo->imo_num_memberships) {
1751 error = EADDRINUSE;
1752 break;
1753 }
1754 if (i == IP_MAX_MEMBERSHIPS) {
1755 error = ETOOMANYREFS;
1756 break;
1757 }
1758 /*
1759 * Everything looks good; add a new record to the multicast
1760 * address list for the given interface.
1761 */
1762 if ((imo->imo_membership[i] =
1763 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1764 error = ENOBUFS;
1765 break;
1766 }
1767 ++imo->imo_num_memberships;
1768 break;
1769
1770 case IP_DROP_MEMBERSHIP:
1771 /*
1772 * Drop a multicast group membership.
1773 * Group must be a valid IP multicast address.
1774 */
1775 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1776 error = EINVAL;
1777 break;
1778 }
1779 mreq = mtod(m, struct ip_mreq *);
1780 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1781 error = EINVAL;
1782 break;
1783 }
1784 /*
1785 * If an interface address was specified, get a pointer
1786 * to its ifnet structure.
1787 */
1788 if (in_nullhost(mreq->imr_interface))
1789 ifp = NULL;
1790 else {
1791 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1792 if (ifp == NULL) {
1793 error = EADDRNOTAVAIL;
1794 break;
1795 }
1796 }
1797 /*
1798 * Find the membership in the membership array.
1799 */
1800 for (i = 0; i < imo->imo_num_memberships; ++i) {
1801 if ((ifp == NULL ||
1802 imo->imo_membership[i]->inm_ifp == ifp) &&
1803 in_hosteq(imo->imo_membership[i]->inm_addr,
1804 mreq->imr_multiaddr))
1805 break;
1806 }
1807 if (i == imo->imo_num_memberships) {
1808 error = EADDRNOTAVAIL;
1809 break;
1810 }
1811 /*
1812 * Give up the multicast address record to which the
1813 * membership points.
1814 */
1815 in_delmulti(imo->imo_membership[i]);
1816 /*
1817 * Remove the gap in the membership array.
1818 */
1819 for (++i; i < imo->imo_num_memberships; ++i)
1820 imo->imo_membership[i-1] = imo->imo_membership[i];
1821 --imo->imo_num_memberships;
1822 break;
1823
1824 default:
1825 error = EOPNOTSUPP;
1826 break;
1827 }
1828
1829 /*
1830 * If all options have default values, no need to keep the mbuf.
1831 */
1832 if (imo->imo_multicast_ifp == NULL &&
1833 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1834 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1835 imo->imo_num_memberships == 0) {
1836 free(*imop, M_IPMOPTS);
1837 *imop = NULL;
1838 }
1839
1840 return (error);
1841 }
1842
1843 /*
1844 * Return the IP multicast options in response to user getsockopt().
1845 */
1846 int
1847 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1848 {
1849 u_char *ttl;
1850 u_char *loop;
1851 struct in_addr *addr;
1852 struct in_ifaddr *ia;
1853
1854 *mp = m_get(M_WAIT, MT_SOOPTS);
1855
1856 switch (optname) {
1857
1858 case IP_MULTICAST_IF:
1859 addr = mtod(*mp, struct in_addr *);
1860 (*mp)->m_len = sizeof(struct in_addr);
1861 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1862 *addr = zeroin_addr;
1863 else if (imo->imo_multicast_addr.s_addr) {
1864 /* return the value user has set */
1865 *addr = imo->imo_multicast_addr;
1866 } else {
1867 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1868 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1869 }
1870 return (0);
1871
1872 case IP_MULTICAST_TTL:
1873 ttl = mtod(*mp, u_char *);
1874 (*mp)->m_len = 1;
1875 *ttl = imo ? imo->imo_multicast_ttl
1876 : IP_DEFAULT_MULTICAST_TTL;
1877 return (0);
1878
1879 case IP_MULTICAST_LOOP:
1880 loop = mtod(*mp, u_char *);
1881 (*mp)->m_len = 1;
1882 *loop = imo ? imo->imo_multicast_loop
1883 : IP_DEFAULT_MULTICAST_LOOP;
1884 return (0);
1885
1886 default:
1887 return (EOPNOTSUPP);
1888 }
1889 }
1890
1891 /*
1892 * Discard the IP multicast options.
1893 */
1894 void
1895 ip_freemoptions(struct ip_moptions *imo)
1896 {
1897 int i;
1898
1899 if (imo != NULL) {
1900 for (i = 0; i < imo->imo_num_memberships; ++i)
1901 in_delmulti(imo->imo_membership[i]);
1902 free(imo, M_IPMOPTS);
1903 }
1904 }
1905
1906 /*
1907 * Routine called from ip_output() to loop back a copy of an IP multicast
1908 * packet to the input queue of a specified interface. Note that this
1909 * calls the output routine of the loopback "driver", but with an interface
1910 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1911 */
1912 static void
1913 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1914 {
1915 struct ip *ip;
1916 struct mbuf *copym;
1917
1918 copym = m_copypacket(m, M_DONTWAIT);
1919 if (copym != NULL
1920 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1921 copym = m_pullup(copym, sizeof(struct ip));
1922 if (copym == NULL)
1923 return;
1924 /*
1925 * We don't bother to fragment if the IP length is greater
1926 * than the interface's MTU. Can this possibly matter?
1927 */
1928 ip = mtod(copym, struct ip *);
1929
1930 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1931 in_delayed_cksum(copym);
1932 copym->m_pkthdr.csum_flags &=
1933 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1934 }
1935
1936 ip->ip_sum = 0;
1937 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1938 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1939 }
1940