ip_output.c revision 1.192 1 /* $NetBSD: ip_output.c,v 1.192 2008/02/06 03:20:51 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.192 2008/02/06 03:20:51 matt Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *,
159 const struct sockaddr_in *);
160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
161
162 #ifdef PFIL_HOOKS
163 extern struct pfil_head inet_pfil_hook; /* XXX */
164 #endif
165
166 int ip_do_loopback_cksum = 0;
167
168 /*
169 * IP output. The packet in mbuf chain m contains a skeletal IP
170 * header (with len, off, ttl, proto, tos, src, dst).
171 * The mbuf chain containing the packet will be freed.
172 * The mbuf opt, if present, will not be freed.
173 */
174 int
175 ip_output(struct mbuf *m0, ...)
176 {
177 struct rtentry *rt;
178 struct ip *ip;
179 struct ifnet *ifp;
180 struct mbuf *m = m0;
181 int hlen = sizeof (struct ip);
182 int len, error = 0;
183 struct route iproute;
184 const struct sockaddr_in *dst;
185 struct in_ifaddr *ia;
186 struct ifaddr *xifa;
187 struct mbuf *opt;
188 struct route *ro;
189 int flags, sw_csum;
190 int *mtu_p;
191 u_long mtu;
192 struct ip_moptions *imo;
193 struct socket *so;
194 va_list ap;
195 #ifdef IPSEC_NAT_T
196 int natt_frag = 0;
197 #endif
198 #ifdef IPSEC
199 struct secpolicy *sp = NULL;
200 #endif /*IPSEC*/
201 #ifdef FAST_IPSEC
202 struct inpcb *inp;
203 struct secpolicy *sp = NULL;
204 int s;
205 #endif
206 u_int16_t ip_len;
207 union {
208 struct sockaddr dst;
209 struct sockaddr_in dst4;
210 } u;
211 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
212 * to the nexthop
213 */
214
215 len = 0;
216 va_start(ap, m0);
217 opt = va_arg(ap, struct mbuf *);
218 ro = va_arg(ap, struct route *);
219 flags = va_arg(ap, int);
220 imo = va_arg(ap, struct ip_moptions *);
221 so = va_arg(ap, struct socket *);
222 if (flags & IP_RETURNMTU)
223 mtu_p = va_arg(ap, int *);
224 else
225 mtu_p = NULL;
226 va_end(ap);
227
228 MCLAIM(m, &ip_tx_mowner);
229 #ifdef FAST_IPSEC
230 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
231 inp = (struct inpcb *)so->so_pcb;
232 else
233 inp = NULL;
234 #endif /* FAST_IPSEC */
235
236 #ifdef DIAGNOSTIC
237 if ((m->m_flags & M_PKTHDR) == 0)
238 panic("ip_output: no HDR");
239
240 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
241 panic("ip_output: IPv6 checksum offload flags: %d",
242 m->m_pkthdr.csum_flags);
243 }
244
245 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
246 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
247 panic("ip_output: conflicting checksum offload flags: %d",
248 m->m_pkthdr.csum_flags);
249 }
250 #endif
251 if (opt) {
252 m = ip_insertoptions(m, opt, &len);
253 if (len >= sizeof(struct ip))
254 hlen = len;
255 }
256 ip = mtod(m, struct ip *);
257 /*
258 * Fill in IP header.
259 */
260 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
261 ip->ip_v = IPVERSION;
262 ip->ip_off = htons(0);
263 /* ip->ip_id filled in after we find out source ia */
264 ip->ip_hl = hlen >> 2;
265 ipstat.ips_localout++;
266 } else {
267 hlen = ip->ip_hl << 2;
268 }
269 /*
270 * Route packet.
271 */
272 memset(&iproute, 0, sizeof(iproute));
273 if (ro == NULL)
274 ro = &iproute;
275 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
276 dst = satocsin(rtcache_getdst(ro));
277 /*
278 * If there is a cached route,
279 * check that it is to the same destination
280 * and is still up. If not, free it and try again.
281 * The address family should also be checked in case of sharing the
282 * cache with IPv6.
283 */
284 if (dst == NULL)
285 ;
286 else if (dst->sin_family != AF_INET ||
287 !in_hosteq(dst->sin_addr, ip->ip_dst))
288 rtcache_free(ro);
289
290 if ((rt = rtcache_validate(ro)) == NULL &&
291 (rt = rtcache_update(ro, 1)) == NULL) {
292 dst = &u.dst4;
293 rtcache_setdst(ro, &u.dst);
294 }
295 /*
296 * If routing to interface only,
297 * short circuit routing lookup.
298 */
299 if (flags & IP_ROUTETOIF) {
300 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
301 ipstat.ips_noroute++;
302 error = ENETUNREACH;
303 goto bad;
304 }
305 ifp = ia->ia_ifp;
306 mtu = ifp->if_mtu;
307 ip->ip_ttl = 1;
308 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
309 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
310 imo != NULL && imo->imo_multicast_ifp != NULL) {
311 ifp = imo->imo_multicast_ifp;
312 mtu = ifp->if_mtu;
313 IFP_TO_IA(ifp, ia);
314 } else {
315 if (rt == NULL)
316 rt = rtcache_init(ro);
317 if (rt == NULL) {
318 ipstat.ips_noroute++;
319 error = EHOSTUNREACH;
320 goto bad;
321 }
322 ia = ifatoia(rt->rt_ifa);
323 ifp = rt->rt_ifp;
324 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
325 mtu = ifp->if_mtu;
326 rt->rt_use++;
327 if (rt->rt_flags & RTF_GATEWAY)
328 dst = satosin(rt->rt_gateway);
329 }
330 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
331 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
332 struct in_multi *inm;
333
334 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
335 M_BCAST : M_MCAST;
336 /*
337 * See if the caller provided any multicast options
338 */
339 if (imo != NULL)
340 ip->ip_ttl = imo->imo_multicast_ttl;
341 else
342 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
343
344 /*
345 * if we don't know the outgoing ifp yet, we can't generate
346 * output
347 */
348 if (!ifp) {
349 ipstat.ips_noroute++;
350 error = ENETUNREACH;
351 goto bad;
352 }
353
354 /*
355 * If the packet is multicast or broadcast, confirm that
356 * the outgoing interface can transmit it.
357 */
358 if (((m->m_flags & M_MCAST) &&
359 (ifp->if_flags & IFF_MULTICAST) == 0) ||
360 ((m->m_flags & M_BCAST) &&
361 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
362 ipstat.ips_noroute++;
363 error = ENETUNREACH;
364 goto bad;
365 }
366 /*
367 * If source address not specified yet, use an address
368 * of outgoing interface.
369 */
370 if (in_nullhost(ip->ip_src)) {
371 struct in_ifaddr *xia;
372
373 IFP_TO_IA(ifp, xia);
374 if (!xia) {
375 error = EADDRNOTAVAIL;
376 goto bad;
377 }
378 xifa = &xia->ia_ifa;
379 if (xifa->ifa_getifa != NULL) {
380 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
381 }
382 ip->ip_src = xia->ia_addr.sin_addr;
383 }
384
385 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
386 if (inm != NULL &&
387 (imo == NULL || imo->imo_multicast_loop)) {
388 /*
389 * If we belong to the destination multicast group
390 * on the outgoing interface, and the caller did not
391 * forbid loopback, loop back a copy.
392 */
393 ip_mloopback(ifp, m, &u.dst4);
394 }
395 #ifdef MROUTING
396 else {
397 /*
398 * If we are acting as a multicast router, perform
399 * multicast forwarding as if the packet had just
400 * arrived on the interface to which we are about
401 * to send. The multicast forwarding function
402 * recursively calls this function, using the
403 * IP_FORWARDING flag to prevent infinite recursion.
404 *
405 * Multicasts that are looped back by ip_mloopback(),
406 * above, will be forwarded by the ip_input() routine,
407 * if necessary.
408 */
409 extern struct socket *ip_mrouter;
410
411 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
412 if (ip_mforward(m, ifp) != 0) {
413 m_freem(m);
414 goto done;
415 }
416 }
417 }
418 #endif
419 /*
420 * Multicasts with a time-to-live of zero may be looped-
421 * back, above, but must not be transmitted on a network.
422 * Also, multicasts addressed to the loopback interface
423 * are not sent -- the above call to ip_mloopback() will
424 * loop back a copy if this host actually belongs to the
425 * destination group on the loopback interface.
426 */
427 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
428 m_freem(m);
429 goto done;
430 }
431
432 goto sendit;
433 }
434 /*
435 * If source address not specified yet, use address
436 * of outgoing interface.
437 */
438 if (in_nullhost(ip->ip_src)) {
439 xifa = &ia->ia_ifa;
440 if (xifa->ifa_getifa != NULL)
441 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
442 ip->ip_src = ia->ia_addr.sin_addr;
443 }
444
445 /*
446 * packets with Class-D address as source are not valid per
447 * RFC 1112
448 */
449 if (IN_MULTICAST(ip->ip_src.s_addr)) {
450 ipstat.ips_odropped++;
451 error = EADDRNOTAVAIL;
452 goto bad;
453 }
454
455 /*
456 * Look for broadcast address and
457 * and verify user is allowed to send
458 * such a packet.
459 */
460 if (in_broadcast(dst->sin_addr, ifp)) {
461 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 if ((flags & IP_ALLOWBROADCAST) == 0) {
466 error = EACCES;
467 goto bad;
468 }
469 /* don't allow broadcast messages to be fragmented */
470 if (ntohs(ip->ip_len) > ifp->if_mtu) {
471 error = EMSGSIZE;
472 goto bad;
473 }
474 m->m_flags |= M_BCAST;
475 } else
476 m->m_flags &= ~M_BCAST;
477
478 sendit:
479 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
480 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
481 ip->ip_id = 0;
482 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
483 ip->ip_id = ip_newid(ia);
484 } else {
485
486 /*
487 * TSO capable interfaces (typically?) increment
488 * ip_id for each segment.
489 * "allocate" enough ids here to increase the chance
490 * for them to be unique.
491 *
492 * note that the following calculation is not
493 * needed to be precise. wasting some ip_id is fine.
494 */
495
496 unsigned int segsz = m->m_pkthdr.segsz;
497 unsigned int datasz = ntohs(ip->ip_len) - hlen;
498 unsigned int num = howmany(datasz, segsz);
499
500 ip->ip_id = ip_newid_range(ia, num);
501 }
502 }
503 /*
504 * If we're doing Path MTU Discovery, we need to set DF unless
505 * the route's MTU is locked.
506 */
507 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
508 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
509 ip->ip_off |= htons(IP_DF);
510
511 /* Remember the current ip_len */
512 ip_len = ntohs(ip->ip_len);
513
514 #ifdef IPSEC
515 /* get SP for this packet */
516 if (so == NULL)
517 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
518 flags, &error);
519 else {
520 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
521 IPSEC_DIR_OUTBOUND))
522 goto skip_ipsec;
523 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
524 }
525
526 if (sp == NULL) {
527 ipsecstat.out_inval++;
528 goto bad;
529 }
530
531 error = 0;
532
533 /* check policy */
534 switch (sp->policy) {
535 case IPSEC_POLICY_DISCARD:
536 /*
537 * This packet is just discarded.
538 */
539 ipsecstat.out_polvio++;
540 goto bad;
541
542 case IPSEC_POLICY_BYPASS:
543 case IPSEC_POLICY_NONE:
544 /* no need to do IPsec. */
545 goto skip_ipsec;
546
547 case IPSEC_POLICY_IPSEC:
548 if (sp->req == NULL) {
549 /* XXX should be panic ? */
550 printf("ip_output: No IPsec request specified.\n");
551 error = EINVAL;
552 goto bad;
553 }
554 break;
555
556 case IPSEC_POLICY_ENTRUST:
557 default:
558 printf("ip_output: Invalid policy found. %d\n", sp->policy);
559 }
560
561 #ifdef IPSEC_NAT_T
562 /*
563 * NAT-T ESP fragmentation: don't do IPSec processing now,
564 * we'll do it on each fragmented packet.
565 */
566 if (sp->req->sav &&
567 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
568 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
569 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
570 natt_frag = 1;
571 mtu = sp->req->sav->esp_frag;
572 goto skip_ipsec;
573 }
574 }
575 #endif /* IPSEC_NAT_T */
576
577 /*
578 * ipsec4_output() expects ip_len and ip_off in network
579 * order. They have been set to network order above.
580 */
581
582 {
583 struct ipsec_output_state state;
584 bzero(&state, sizeof(state));
585 state.m = m;
586 if (flags & IP_ROUTETOIF) {
587 state.ro = &iproute;
588 memset(&iproute, 0, sizeof(iproute));
589 } else
590 state.ro = ro;
591 state.dst = sintocsa(dst);
592
593 /*
594 * We can't defer the checksum of payload data if
595 * we're about to encrypt/authenticate it.
596 *
597 * XXX When we support crypto offloading functions of
598 * XXX network interfaces, we need to reconsider this,
599 * XXX since it's likely that they'll support checksumming,
600 * XXX as well.
601 */
602 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
603 in_delayed_cksum(m);
604 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
605 }
606
607 error = ipsec4_output(&state, sp, flags);
608
609 m = state.m;
610 if (flags & IP_ROUTETOIF) {
611 /*
612 * if we have tunnel mode SA, we may need to ignore
613 * IP_ROUTETOIF.
614 */
615 if (state.ro != &iproute ||
616 rtcache_validate(state.ro) != NULL) {
617 flags &= ~IP_ROUTETOIF;
618 ro = state.ro;
619 }
620 } else
621 ro = state.ro;
622 dst = satocsin(state.dst);
623 if (error) {
624 /* mbuf is already reclaimed in ipsec4_output. */
625 m0 = NULL;
626 switch (error) {
627 case EHOSTUNREACH:
628 case ENETUNREACH:
629 case EMSGSIZE:
630 case ENOBUFS:
631 case ENOMEM:
632 break;
633 default:
634 printf("ip4_output (ipsec): error code %d\n", error);
635 /*fall through*/
636 case ENOENT:
637 /* don't show these error codes to the user */
638 error = 0;
639 break;
640 }
641 goto bad;
642 }
643
644 /* be sure to update variables that are affected by ipsec4_output() */
645 ip = mtod(m, struct ip *);
646 hlen = ip->ip_hl << 2;
647 ip_len = ntohs(ip->ip_len);
648
649 if ((rt = rtcache_validate(ro)) == NULL) {
650 if ((flags & IP_ROUTETOIF) == 0) {
651 printf("ip_output: "
652 "can't update route after IPsec processing\n");
653 error = EHOSTUNREACH; /*XXX*/
654 goto bad;
655 }
656 } else {
657 /* nobody uses ia beyond here */
658 if (state.encap) {
659 ifp = rt->rt_ifp;
660 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
661 mtu = ifp->if_mtu;
662 }
663 }
664 }
665 skip_ipsec:
666 #endif /*IPSEC*/
667 #ifdef FAST_IPSEC
668 /*
669 * Check the security policy (SP) for the packet and, if
670 * required, do IPsec-related processing. There are two
671 * cases here; the first time a packet is sent through
672 * it will be untagged and handled by ipsec4_checkpolicy.
673 * If the packet is resubmitted to ip_output (e.g. after
674 * AH, ESP, etc. processing), there will be a tag to bypass
675 * the lookup and related policy checking.
676 */
677 if (!ipsec_outdone(m)) {
678 s = splsoftnet();
679 if (inp != NULL &&
680 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
681 goto spd_done;
682 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
683 &error, inp);
684 /*
685 * There are four return cases:
686 * sp != NULL apply IPsec policy
687 * sp == NULL, error == 0 no IPsec handling needed
688 * sp == NULL, error == -EINVAL discard packet w/o error
689 * sp == NULL, error != 0 discard packet, report error
690 */
691 if (sp != NULL) {
692 #ifdef IPSEC_NAT_T
693 /*
694 * NAT-T ESP fragmentation: don't do IPSec processing now,
695 * we'll do it on each fragmented packet.
696 */
697 if (sp->req->sav &&
698 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
699 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
700 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
701 natt_frag = 1;
702 mtu = sp->req->sav->esp_frag;
703 splx(s);
704 goto spd_done;
705 }
706 }
707 #endif /* IPSEC_NAT_T */
708
709 /*
710 * Do delayed checksums now because we send before
711 * this is done in the normal processing path.
712 */
713 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
714 in_delayed_cksum(m);
715 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
716 }
717
718 #ifdef __FreeBSD__
719 ip->ip_len = htons(ip->ip_len);
720 ip->ip_off = htons(ip->ip_off);
721 #endif
722
723 /* NB: callee frees mbuf */
724 error = ipsec4_process_packet(m, sp->req, flags, 0);
725 /*
726 * Preserve KAME behaviour: ENOENT can be returned
727 * when an SA acquire is in progress. Don't propagate
728 * this to user-level; it confuses applications.
729 *
730 * XXX this will go away when the SADB is redone.
731 */
732 if (error == ENOENT)
733 error = 0;
734 splx(s);
735 goto done;
736 } else {
737 splx(s);
738
739 if (error != 0) {
740 /*
741 * Hack: -EINVAL is used to signal that a packet
742 * should be silently discarded. This is typically
743 * because we asked key management for an SA and
744 * it was delayed (e.g. kicked up to IKE).
745 */
746 if (error == -EINVAL)
747 error = 0;
748 goto bad;
749 } else {
750 /* No IPsec processing for this packet. */
751 }
752 }
753 }
754 spd_done:
755 #endif /* FAST_IPSEC */
756
757 #ifdef PFIL_HOOKS
758 /*
759 * Run through list of hooks for output packets.
760 */
761 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
762 goto done;
763 if (m == NULL)
764 goto done;
765
766 ip = mtod(m, struct ip *);
767 hlen = ip->ip_hl << 2;
768 ip_len = ntohs(ip->ip_len);
769 #endif /* PFIL_HOOKS */
770
771 m->m_pkthdr.csum_data |= hlen << 16;
772
773 #if IFA_STATS
774 /*
775 * search for the source address structure to
776 * maintain output statistics.
777 */
778 INADDR_TO_IA(ip->ip_src, ia);
779 #endif
780
781 /* Maybe skip checksums on loopback interfaces. */
782 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
783 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
784 }
785 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
786 /*
787 * If small enough for mtu of path, or if using TCP segmentation
788 * offload, can just send directly.
789 */
790 if (ip_len <= mtu ||
791 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
792 #if IFA_STATS
793 if (ia)
794 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
795 #endif
796 /*
797 * Always initialize the sum to 0! Some HW assisted
798 * checksumming requires this.
799 */
800 ip->ip_sum = 0;
801
802 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
803 /*
804 * Perform any checksums that the hardware can't do
805 * for us.
806 *
807 * XXX Does any hardware require the {th,uh}_sum
808 * XXX fields to be 0?
809 */
810 if (sw_csum & M_CSUM_IPv4) {
811 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
812 ip->ip_sum = in_cksum(m, hlen);
813 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
814 }
815 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
816 if (IN_NEED_CHECKSUM(ifp,
817 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
818 in_delayed_cksum(m);
819 }
820 m->m_pkthdr.csum_flags &=
821 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
822 }
823 }
824
825 #ifdef IPSEC
826 /* clean ipsec history once it goes out of the node */
827 ipsec_delaux(m);
828 #endif
829
830 if (__predict_true(
831 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
832 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
833 error =
834 (*ifp->if_output)(ifp, m,
835 (m->m_flags & M_MCAST) ?
836 sintocsa(rdst) : sintocsa(dst),
837 rt);
838 } else {
839 error =
840 ip_tso_output(ifp, m,
841 (m->m_flags & M_MCAST) ?
842 sintocsa(rdst) : sintocsa(dst),
843 rt);
844 }
845 goto done;
846 }
847
848 /*
849 * We can't use HW checksumming if we're about to
850 * to fragment the packet.
851 *
852 * XXX Some hardware can do this.
853 */
854 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
855 if (IN_NEED_CHECKSUM(ifp,
856 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
857 in_delayed_cksum(m);
858 }
859 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
860 }
861
862 /*
863 * Too large for interface; fragment if possible.
864 * Must be able to put at least 8 bytes per fragment.
865 */
866 if (ntohs(ip->ip_off) & IP_DF) {
867 if (flags & IP_RETURNMTU)
868 *mtu_p = mtu;
869 error = EMSGSIZE;
870 ipstat.ips_cantfrag++;
871 goto bad;
872 }
873
874 error = ip_fragment(m, ifp, mtu);
875 if (error) {
876 m = NULL;
877 goto bad;
878 }
879
880 for (; m; m = m0) {
881 m0 = m->m_nextpkt;
882 m->m_nextpkt = 0;
883 if (error == 0) {
884 #if IFA_STATS
885 if (ia)
886 ia->ia_ifa.ifa_data.ifad_outbytes +=
887 ntohs(ip->ip_len);
888 #endif
889 #ifdef IPSEC
890 /* clean ipsec history once it goes out of the node */
891 ipsec_delaux(m);
892 #endif /* IPSEC */
893
894 #ifdef IPSEC_NAT_T
895 /*
896 * If we get there, the packet has not been handeld by
897 * IPSec whereas it should have. Now that it has been
898 * fragmented, re-inject it in ip_output so that IPsec
899 * processing can occur.
900 */
901 if (natt_frag) {
902 error = ip_output(m, opt,
903 ro, flags, imo, so, mtu_p);
904 } else
905 #endif /* IPSEC_NAT_T */
906 {
907 KASSERT((m->m_pkthdr.csum_flags &
908 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
909 error = (*ifp->if_output)(ifp, m,
910 (m->m_flags & M_MCAST) ?
911 sintocsa(rdst) : sintocsa(dst),
912 rt);
913 }
914 } else
915 m_freem(m);
916 }
917
918 if (error == 0)
919 ipstat.ips_fragmented++;
920 done:
921 rtcache_free(&iproute);
922
923 #ifdef IPSEC
924 if (sp != NULL) {
925 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
926 printf("DP ip_output call free SP:%p\n", sp));
927 key_freesp(sp);
928 }
929 #endif /* IPSEC */
930 #ifdef FAST_IPSEC
931 if (sp != NULL)
932 KEY_FREESP(&sp);
933 #endif /* FAST_IPSEC */
934
935 return (error);
936 bad:
937 m_freem(m);
938 goto done;
939 }
940
941 int
942 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
943 {
944 struct ip *ip, *mhip;
945 struct mbuf *m0;
946 int len, hlen, off;
947 int mhlen, firstlen;
948 struct mbuf **mnext;
949 int sw_csum = m->m_pkthdr.csum_flags;
950 int fragments = 0;
951 int s;
952 int error = 0;
953
954 ip = mtod(m, struct ip *);
955 hlen = ip->ip_hl << 2;
956 if (ifp != NULL)
957 sw_csum &= ~ifp->if_csum_flags_tx;
958
959 len = (mtu - hlen) &~ 7;
960 if (len < 8) {
961 m_freem(m);
962 return (EMSGSIZE);
963 }
964
965 firstlen = len;
966 mnext = &m->m_nextpkt;
967
968 /*
969 * Loop through length of segment after first fragment,
970 * make new header and copy data of each part and link onto chain.
971 */
972 m0 = m;
973 mhlen = sizeof (struct ip);
974 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
975 MGETHDR(m, M_DONTWAIT, MT_HEADER);
976 if (m == 0) {
977 error = ENOBUFS;
978 ipstat.ips_odropped++;
979 goto sendorfree;
980 }
981 MCLAIM(m, m0->m_owner);
982 *mnext = m;
983 mnext = &m->m_nextpkt;
984 m->m_data += max_linkhdr;
985 mhip = mtod(m, struct ip *);
986 *mhip = *ip;
987 /* we must inherit MCAST and BCAST flags */
988 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
989 if (hlen > sizeof (struct ip)) {
990 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
991 mhip->ip_hl = mhlen >> 2;
992 }
993 m->m_len = mhlen;
994 mhip->ip_off = ((off - hlen) >> 3) +
995 (ntohs(ip->ip_off) & ~IP_MF);
996 if (ip->ip_off & htons(IP_MF))
997 mhip->ip_off |= IP_MF;
998 if (off + len >= ntohs(ip->ip_len))
999 len = ntohs(ip->ip_len) - off;
1000 else
1001 mhip->ip_off |= IP_MF;
1002 HTONS(mhip->ip_off);
1003 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1004 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1005 if (m->m_next == 0) {
1006 error = ENOBUFS; /* ??? */
1007 ipstat.ips_odropped++;
1008 goto sendorfree;
1009 }
1010 m->m_pkthdr.len = mhlen + len;
1011 m->m_pkthdr.rcvif = (struct ifnet *)0;
1012 mhip->ip_sum = 0;
1013 if (sw_csum & M_CSUM_IPv4) {
1014 mhip->ip_sum = in_cksum(m, mhlen);
1015 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1016 } else {
1017 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1018 m->m_pkthdr.csum_data |= mhlen << 16;
1019 }
1020 ipstat.ips_ofragments++;
1021 fragments++;
1022 }
1023 /*
1024 * Update first fragment by trimming what's been copied out
1025 * and updating header, then send each fragment (in order).
1026 */
1027 m = m0;
1028 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1029 m->m_pkthdr.len = hlen + firstlen;
1030 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1031 ip->ip_off |= htons(IP_MF);
1032 ip->ip_sum = 0;
1033 if (sw_csum & M_CSUM_IPv4) {
1034 ip->ip_sum = in_cksum(m, hlen);
1035 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1036 } else {
1037 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1038 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1039 sizeof(struct ip));
1040 }
1041 sendorfree:
1042 /*
1043 * If there is no room for all the fragments, don't queue
1044 * any of them.
1045 */
1046 if (ifp != NULL) {
1047 s = splnet();
1048 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1049 error == 0) {
1050 error = ENOBUFS;
1051 ipstat.ips_odropped++;
1052 IFQ_INC_DROPS(&ifp->if_snd);
1053 }
1054 splx(s);
1055 }
1056 if (error) {
1057 for (m = m0; m; m = m0) {
1058 m0 = m->m_nextpkt;
1059 m->m_nextpkt = NULL;
1060 m_freem(m);
1061 }
1062 }
1063 return (error);
1064 }
1065
1066 /*
1067 * Process a delayed payload checksum calculation.
1068 */
1069 void
1070 in_delayed_cksum(struct mbuf *m)
1071 {
1072 struct ip *ip;
1073 u_int16_t csum, offset;
1074
1075 ip = mtod(m, struct ip *);
1076 offset = ip->ip_hl << 2;
1077 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1078 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1079 csum = 0xffff;
1080
1081 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1082
1083 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1084 /* This happen when ip options were inserted
1085 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1086 m->m_len, offset, ip->ip_p);
1087 */
1088 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1089 } else
1090 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1091 }
1092
1093 /*
1094 * Determine the maximum length of the options to be inserted;
1095 * we would far rather allocate too much space rather than too little.
1096 */
1097
1098 u_int
1099 ip_optlen(struct inpcb *inp)
1100 {
1101 struct mbuf *m = inp->inp_options;
1102
1103 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1104 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1105 else
1106 return 0;
1107 }
1108
1109
1110 /*
1111 * Insert IP options into preformed packet.
1112 * Adjust IP destination as required for IP source routing,
1113 * as indicated by a non-zero in_addr at the start of the options.
1114 */
1115 static struct mbuf *
1116 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1117 {
1118 struct ipoption *p = mtod(opt, struct ipoption *);
1119 struct mbuf *n;
1120 struct ip *ip = mtod(m, struct ip *);
1121 unsigned optlen;
1122
1123 optlen = opt->m_len - sizeof(p->ipopt_dst);
1124 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1125 return (m); /* XXX should fail */
1126 if (!in_nullhost(p->ipopt_dst))
1127 ip->ip_dst = p->ipopt_dst;
1128 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1129 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1130 if (n == 0)
1131 return (m);
1132 MCLAIM(n, m->m_owner);
1133 M_MOVE_PKTHDR(n, m);
1134 m->m_len -= sizeof(struct ip);
1135 m->m_data += sizeof(struct ip);
1136 n->m_next = m;
1137 m = n;
1138 m->m_len = optlen + sizeof(struct ip);
1139 m->m_data += max_linkhdr;
1140 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1141 } else {
1142 m->m_data -= optlen;
1143 m->m_len += optlen;
1144 memmove(mtod(m, void *), ip, sizeof(struct ip));
1145 }
1146 m->m_pkthdr.len += optlen;
1147 ip = mtod(m, struct ip *);
1148 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1149 *phlen = sizeof(struct ip) + optlen;
1150 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1151 return (m);
1152 }
1153
1154 /*
1155 * Copy options from ip to jp,
1156 * omitting those not copied during fragmentation.
1157 */
1158 int
1159 ip_optcopy(struct ip *ip, struct ip *jp)
1160 {
1161 u_char *cp, *dp;
1162 int opt, optlen, cnt;
1163
1164 cp = (u_char *)(ip + 1);
1165 dp = (u_char *)(jp + 1);
1166 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1167 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1168 opt = cp[0];
1169 if (opt == IPOPT_EOL)
1170 break;
1171 if (opt == IPOPT_NOP) {
1172 /* Preserve for IP mcast tunnel's LSRR alignment. */
1173 *dp++ = IPOPT_NOP;
1174 optlen = 1;
1175 continue;
1176 }
1177 #ifdef DIAGNOSTIC
1178 if (cnt < IPOPT_OLEN + sizeof(*cp))
1179 panic("malformed IPv4 option passed to ip_optcopy");
1180 #endif
1181 optlen = cp[IPOPT_OLEN];
1182 #ifdef DIAGNOSTIC
1183 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1184 panic("malformed IPv4 option passed to ip_optcopy");
1185 #endif
1186 /* bogus lengths should have been caught by ip_dooptions */
1187 if (optlen > cnt)
1188 optlen = cnt;
1189 if (IPOPT_COPIED(opt)) {
1190 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1191 dp += optlen;
1192 }
1193 }
1194 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1195 *dp++ = IPOPT_EOL;
1196 return (optlen);
1197 }
1198
1199 /*
1200 * IP socket option processing.
1201 */
1202 int
1203 ip_ctloutput(int op, struct socket *so, int level, int optname,
1204 struct mbuf **mp)
1205 {
1206 struct inpcb *inp = sotoinpcb(so);
1207 struct mbuf *m = *mp;
1208 int optval = 0;
1209 int error = 0;
1210 #if defined(IPSEC) || defined(FAST_IPSEC)
1211 struct lwp *l = curlwp; /*XXX*/
1212 #endif
1213
1214 if (level != IPPROTO_IP) {
1215 if (op == PRCO_SETOPT && *mp)
1216 (void) m_free(*mp);
1217 if (level == SOL_SOCKET && optname == SO_NOHEADER)
1218 return 0;
1219 return ENOPROTOOPT;
1220 }
1221
1222 switch (op) {
1223
1224 case PRCO_SETOPT:
1225 switch (optname) {
1226 case IP_OPTIONS:
1227 #ifdef notyet
1228 case IP_RETOPTS:
1229 return (ip_pcbopts(optname, &inp->inp_options, m));
1230 #else
1231 return (ip_pcbopts(&inp->inp_options, m));
1232 #endif
1233
1234 case IP_TOS:
1235 case IP_TTL:
1236 case IP_RECVOPTS:
1237 case IP_RECVRETOPTS:
1238 case IP_RECVDSTADDR:
1239 case IP_RECVIF:
1240 if (m == NULL || m->m_len != sizeof(int))
1241 error = EINVAL;
1242 else {
1243 optval = *mtod(m, int *);
1244 switch (optname) {
1245
1246 case IP_TOS:
1247 inp->inp_ip.ip_tos = optval;
1248 break;
1249
1250 case IP_TTL:
1251 inp->inp_ip.ip_ttl = optval;
1252 break;
1253 #define OPTSET(bit) \
1254 if (optval) \
1255 inp->inp_flags |= bit; \
1256 else \
1257 inp->inp_flags &= ~bit;
1258
1259 case IP_RECVOPTS:
1260 OPTSET(INP_RECVOPTS);
1261 break;
1262
1263 case IP_RECVRETOPTS:
1264 OPTSET(INP_RECVRETOPTS);
1265 break;
1266
1267 case IP_RECVDSTADDR:
1268 OPTSET(INP_RECVDSTADDR);
1269 break;
1270
1271 case IP_RECVIF:
1272 OPTSET(INP_RECVIF);
1273 break;
1274 }
1275 }
1276 break;
1277 #undef OPTSET
1278
1279 case IP_MULTICAST_IF:
1280 case IP_MULTICAST_TTL:
1281 case IP_MULTICAST_LOOP:
1282 case IP_ADD_MEMBERSHIP:
1283 case IP_DROP_MEMBERSHIP:
1284 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1285 break;
1286
1287 case IP_PORTRANGE:
1288 if (m == 0 || m->m_len != sizeof(int))
1289 error = EINVAL;
1290 else {
1291 optval = *mtod(m, int *);
1292
1293 switch (optval) {
1294
1295 case IP_PORTRANGE_DEFAULT:
1296 case IP_PORTRANGE_HIGH:
1297 inp->inp_flags &= ~(INP_LOWPORT);
1298 break;
1299
1300 case IP_PORTRANGE_LOW:
1301 inp->inp_flags |= INP_LOWPORT;
1302 break;
1303
1304 default:
1305 error = EINVAL;
1306 break;
1307 }
1308 }
1309 break;
1310
1311 #if defined(IPSEC) || defined(FAST_IPSEC)
1312 case IP_IPSEC_POLICY:
1313 {
1314 void *req = NULL;
1315 size_t len = 0;
1316 int priv = 0;
1317
1318 #ifdef __NetBSD__
1319 if (l == 0 || kauth_authorize_generic(l->l_cred,
1320 KAUTH_GENERIC_ISSUSER, NULL))
1321 priv = 0;
1322 else
1323 priv = 1;
1324 #else
1325 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1326 #endif
1327 if (m) {
1328 req = mtod(m, void *);
1329 len = m->m_len;
1330 }
1331 error = ipsec4_set_policy(inp, optname, req, len, priv);
1332 break;
1333 }
1334 #endif /*IPSEC*/
1335
1336 default:
1337 error = ENOPROTOOPT;
1338 break;
1339 }
1340 if (m)
1341 (void)m_free(m);
1342 break;
1343
1344 case PRCO_GETOPT:
1345 switch (optname) {
1346 case IP_OPTIONS:
1347 case IP_RETOPTS:
1348 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1349 MCLAIM(m, so->so_mowner);
1350 if (inp->inp_options) {
1351 m->m_len = inp->inp_options->m_len;
1352 bcopy(mtod(inp->inp_options, void *),
1353 mtod(m, void *), (unsigned)m->m_len);
1354 } else
1355 m->m_len = 0;
1356 break;
1357
1358 case IP_TOS:
1359 case IP_TTL:
1360 case IP_RECVOPTS:
1361 case IP_RECVRETOPTS:
1362 case IP_RECVDSTADDR:
1363 case IP_RECVIF:
1364 case IP_ERRORMTU:
1365 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1366 MCLAIM(m, so->so_mowner);
1367 m->m_len = sizeof(int);
1368 switch (optname) {
1369
1370 case IP_TOS:
1371 optval = inp->inp_ip.ip_tos;
1372 break;
1373
1374 case IP_TTL:
1375 optval = inp->inp_ip.ip_ttl;
1376 break;
1377
1378 case IP_ERRORMTU:
1379 optval = inp->inp_errormtu;
1380 break;
1381
1382 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1383
1384 case IP_RECVOPTS:
1385 optval = OPTBIT(INP_RECVOPTS);
1386 break;
1387
1388 case IP_RECVRETOPTS:
1389 optval = OPTBIT(INP_RECVRETOPTS);
1390 break;
1391
1392 case IP_RECVDSTADDR:
1393 optval = OPTBIT(INP_RECVDSTADDR);
1394 break;
1395
1396 case IP_RECVIF:
1397 optval = OPTBIT(INP_RECVIF);
1398 break;
1399 }
1400 *mtod(m, int *) = optval;
1401 break;
1402
1403 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1404 /* XXX: code broken */
1405 case IP_IPSEC_POLICY:
1406 {
1407 void *req = NULL;
1408 size_t len = 0;
1409
1410 if (m) {
1411 req = mtod(m, void *);
1412 len = m->m_len;
1413 }
1414 error = ipsec4_get_policy(inp, req, len, mp);
1415 break;
1416 }
1417 #endif /*IPSEC*/
1418
1419 case IP_MULTICAST_IF:
1420 case IP_MULTICAST_TTL:
1421 case IP_MULTICAST_LOOP:
1422 case IP_ADD_MEMBERSHIP:
1423 case IP_DROP_MEMBERSHIP:
1424 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1425 if (*mp)
1426 MCLAIM(*mp, so->so_mowner);
1427 break;
1428
1429 case IP_PORTRANGE:
1430 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1431 MCLAIM(m, so->so_mowner);
1432 m->m_len = sizeof(int);
1433
1434 if (inp->inp_flags & INP_LOWPORT)
1435 optval = IP_PORTRANGE_LOW;
1436 else
1437 optval = IP_PORTRANGE_DEFAULT;
1438
1439 *mtod(m, int *) = optval;
1440 break;
1441
1442 default:
1443 error = ENOPROTOOPT;
1444 break;
1445 }
1446 break;
1447 }
1448 return (error);
1449 }
1450
1451 /*
1452 * Set up IP options in pcb for insertion in output packets.
1453 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1454 * with destination address if source routed.
1455 */
1456 int
1457 #ifdef notyet
1458 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1459 #else
1460 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1461 #endif
1462 {
1463 int cnt, optlen;
1464 u_char *cp;
1465 u_char opt;
1466
1467 /* turn off any old options */
1468 if (*pcbopt)
1469 (void)m_free(*pcbopt);
1470 *pcbopt = 0;
1471 if (m == (struct mbuf *)0 || m->m_len == 0) {
1472 /*
1473 * Only turning off any previous options.
1474 */
1475 if (m)
1476 (void)m_free(m);
1477 return (0);
1478 }
1479
1480 #ifndef __vax__
1481 if (m->m_len % sizeof(int32_t))
1482 goto bad;
1483 #endif
1484 /*
1485 * IP first-hop destination address will be stored before
1486 * actual options; move other options back
1487 * and clear it when none present.
1488 */
1489 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1490 goto bad;
1491 cnt = m->m_len;
1492 m->m_len += sizeof(struct in_addr);
1493 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1494 memmove(cp, mtod(m, void *), (unsigned)cnt);
1495 bzero(mtod(m, void *), sizeof(struct in_addr));
1496
1497 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1498 opt = cp[IPOPT_OPTVAL];
1499 if (opt == IPOPT_EOL)
1500 break;
1501 if (opt == IPOPT_NOP)
1502 optlen = 1;
1503 else {
1504 if (cnt < IPOPT_OLEN + sizeof(*cp))
1505 goto bad;
1506 optlen = cp[IPOPT_OLEN];
1507 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1508 goto bad;
1509 }
1510 switch (opt) {
1511
1512 default:
1513 break;
1514
1515 case IPOPT_LSRR:
1516 case IPOPT_SSRR:
1517 /*
1518 * user process specifies route as:
1519 * ->A->B->C->D
1520 * D must be our final destination (but we can't
1521 * check that since we may not have connected yet).
1522 * A is first hop destination, which doesn't appear in
1523 * actual IP option, but is stored before the options.
1524 */
1525 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1526 goto bad;
1527 m->m_len -= sizeof(struct in_addr);
1528 cnt -= sizeof(struct in_addr);
1529 optlen -= sizeof(struct in_addr);
1530 cp[IPOPT_OLEN] = optlen;
1531 /*
1532 * Move first hop before start of options.
1533 */
1534 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1535 sizeof(struct in_addr));
1536 /*
1537 * Then copy rest of options back
1538 * to close up the deleted entry.
1539 */
1540 (void)memmove(&cp[IPOPT_OFFSET+1],
1541 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1542 (unsigned)cnt - (IPOPT_MINOFF - 1));
1543 break;
1544 }
1545 }
1546 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1547 goto bad;
1548 *pcbopt = m;
1549 return (0);
1550
1551 bad:
1552 (void)m_free(m);
1553 return (EINVAL);
1554 }
1555
1556 /*
1557 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1558 */
1559 static struct ifnet *
1560 ip_multicast_if(struct in_addr *a, int *ifindexp)
1561 {
1562 int ifindex;
1563 struct ifnet *ifp = NULL;
1564 struct in_ifaddr *ia;
1565
1566 if (ifindexp)
1567 *ifindexp = 0;
1568 if (ntohl(a->s_addr) >> 24 == 0) {
1569 ifindex = ntohl(a->s_addr) & 0xffffff;
1570 if (ifindex < 0 || if_indexlim <= ifindex)
1571 return NULL;
1572 ifp = ifindex2ifnet[ifindex];
1573 if (!ifp)
1574 return NULL;
1575 if (ifindexp)
1576 *ifindexp = ifindex;
1577 } else {
1578 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1579 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1580 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1581 ifp = ia->ia_ifp;
1582 break;
1583 }
1584 }
1585 }
1586 return ifp;
1587 }
1588
1589 static int
1590 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1591 {
1592 u_int tval;
1593
1594 if (m == NULL)
1595 return EINVAL;
1596
1597 switch (m->m_len) {
1598 case sizeof(u_char):
1599 tval = *(mtod(m, u_char *));
1600 break;
1601 case sizeof(u_int):
1602 tval = *(mtod(m, u_int *));
1603 break;
1604 default:
1605 return EINVAL;
1606 }
1607
1608 if (tval > maxval)
1609 return EINVAL;
1610
1611 *val = tval;
1612 return 0;
1613 }
1614
1615 /*
1616 * Set the IP multicast options in response to user setsockopt().
1617 */
1618 int
1619 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1620 {
1621 int error = 0;
1622 int i;
1623 struct in_addr addr;
1624 struct ip_mreq *mreq;
1625 struct ifnet *ifp;
1626 struct ip_moptions *imo = *imop;
1627 int ifindex;
1628
1629 if (imo == NULL) {
1630 /*
1631 * No multicast option buffer attached to the pcb;
1632 * allocate one and initialize to default values.
1633 */
1634 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1635 M_WAITOK);
1636
1637 if (imo == NULL)
1638 return (ENOBUFS);
1639 *imop = imo;
1640 imo->imo_multicast_ifp = NULL;
1641 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1642 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1643 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1644 imo->imo_num_memberships = 0;
1645 }
1646
1647 switch (optname) {
1648
1649 case IP_MULTICAST_IF:
1650 /*
1651 * Select the interface for outgoing multicast packets.
1652 */
1653 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1654 error = EINVAL;
1655 break;
1656 }
1657 addr = *(mtod(m, struct in_addr *));
1658 /*
1659 * INADDR_ANY is used to remove a previous selection.
1660 * When no interface is selected, a default one is
1661 * chosen every time a multicast packet is sent.
1662 */
1663 if (in_nullhost(addr)) {
1664 imo->imo_multicast_ifp = NULL;
1665 break;
1666 }
1667 /*
1668 * The selected interface is identified by its local
1669 * IP address. Find the interface and confirm that
1670 * it supports multicasting.
1671 */
1672 ifp = ip_multicast_if(&addr, &ifindex);
1673 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1674 error = EADDRNOTAVAIL;
1675 break;
1676 }
1677 imo->imo_multicast_ifp = ifp;
1678 if (ifindex)
1679 imo->imo_multicast_addr = addr;
1680 else
1681 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1682 break;
1683
1684 case IP_MULTICAST_TTL:
1685 /*
1686 * Set the IP time-to-live for outgoing multicast packets.
1687 */
1688 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1689 break;
1690
1691 case IP_MULTICAST_LOOP:
1692 /*
1693 * Set the loopback flag for outgoing multicast packets.
1694 * Must be zero or one.
1695 */
1696 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1697 break;
1698
1699 case IP_ADD_MEMBERSHIP:
1700 /*
1701 * Add a multicast group membership.
1702 * Group must be a valid IP multicast address.
1703 */
1704 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1705 error = EINVAL;
1706 break;
1707 }
1708 mreq = mtod(m, struct ip_mreq *);
1709 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1710 error = EINVAL;
1711 break;
1712 }
1713 /*
1714 * If no interface address was provided, use the interface of
1715 * the route to the given multicast address.
1716 */
1717 if (in_nullhost(mreq->imr_interface)) {
1718 struct rtentry *rt;
1719 union {
1720 struct sockaddr dst;
1721 struct sockaddr_in dst4;
1722 } u;
1723 struct route ro;
1724
1725 memset(&ro, 0, sizeof(ro));
1726
1727 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1728 rtcache_setdst(&ro, &u.dst);
1729 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1730 : NULL;
1731 rtcache_free(&ro);
1732 } else {
1733 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1734 }
1735 /*
1736 * See if we found an interface, and confirm that it
1737 * supports multicast.
1738 */
1739 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1740 error = EADDRNOTAVAIL;
1741 break;
1742 }
1743 /*
1744 * See if the membership already exists or if all the
1745 * membership slots are full.
1746 */
1747 for (i = 0; i < imo->imo_num_memberships; ++i) {
1748 if (imo->imo_membership[i]->inm_ifp == ifp &&
1749 in_hosteq(imo->imo_membership[i]->inm_addr,
1750 mreq->imr_multiaddr))
1751 break;
1752 }
1753 if (i < imo->imo_num_memberships) {
1754 error = EADDRINUSE;
1755 break;
1756 }
1757 if (i == IP_MAX_MEMBERSHIPS) {
1758 error = ETOOMANYREFS;
1759 break;
1760 }
1761 /*
1762 * Everything looks good; add a new record to the multicast
1763 * address list for the given interface.
1764 */
1765 if ((imo->imo_membership[i] =
1766 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1767 error = ENOBUFS;
1768 break;
1769 }
1770 ++imo->imo_num_memberships;
1771 break;
1772
1773 case IP_DROP_MEMBERSHIP:
1774 /*
1775 * Drop a multicast group membership.
1776 * Group must be a valid IP multicast address.
1777 */
1778 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1779 error = EINVAL;
1780 break;
1781 }
1782 mreq = mtod(m, struct ip_mreq *);
1783 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1784 error = EINVAL;
1785 break;
1786 }
1787 /*
1788 * If an interface address was specified, get a pointer
1789 * to its ifnet structure.
1790 */
1791 if (in_nullhost(mreq->imr_interface))
1792 ifp = NULL;
1793 else {
1794 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1795 if (ifp == NULL) {
1796 error = EADDRNOTAVAIL;
1797 break;
1798 }
1799 }
1800 /*
1801 * Find the membership in the membership array.
1802 */
1803 for (i = 0; i < imo->imo_num_memberships; ++i) {
1804 if ((ifp == NULL ||
1805 imo->imo_membership[i]->inm_ifp == ifp) &&
1806 in_hosteq(imo->imo_membership[i]->inm_addr,
1807 mreq->imr_multiaddr))
1808 break;
1809 }
1810 if (i == imo->imo_num_memberships) {
1811 error = EADDRNOTAVAIL;
1812 break;
1813 }
1814 /*
1815 * Give up the multicast address record to which the
1816 * membership points.
1817 */
1818 in_delmulti(imo->imo_membership[i]);
1819 /*
1820 * Remove the gap in the membership array.
1821 */
1822 for (++i; i < imo->imo_num_memberships; ++i)
1823 imo->imo_membership[i-1] = imo->imo_membership[i];
1824 --imo->imo_num_memberships;
1825 break;
1826
1827 default:
1828 error = EOPNOTSUPP;
1829 break;
1830 }
1831
1832 /*
1833 * If all options have default values, no need to keep the mbuf.
1834 */
1835 if (imo->imo_multicast_ifp == NULL &&
1836 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1837 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1838 imo->imo_num_memberships == 0) {
1839 free(*imop, M_IPMOPTS);
1840 *imop = NULL;
1841 }
1842
1843 return (error);
1844 }
1845
1846 /*
1847 * Return the IP multicast options in response to user getsockopt().
1848 */
1849 int
1850 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1851 {
1852 u_char *ttl;
1853 u_char *loop;
1854 struct in_addr *addr;
1855 struct in_ifaddr *ia;
1856
1857 *mp = m_get(M_WAIT, MT_SOOPTS);
1858
1859 switch (optname) {
1860
1861 case IP_MULTICAST_IF:
1862 addr = mtod(*mp, struct in_addr *);
1863 (*mp)->m_len = sizeof(struct in_addr);
1864 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1865 *addr = zeroin_addr;
1866 else if (imo->imo_multicast_addr.s_addr) {
1867 /* return the value user has set */
1868 *addr = imo->imo_multicast_addr;
1869 } else {
1870 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1871 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1872 }
1873 return (0);
1874
1875 case IP_MULTICAST_TTL:
1876 ttl = mtod(*mp, u_char *);
1877 (*mp)->m_len = 1;
1878 *ttl = imo ? imo->imo_multicast_ttl
1879 : IP_DEFAULT_MULTICAST_TTL;
1880 return (0);
1881
1882 case IP_MULTICAST_LOOP:
1883 loop = mtod(*mp, u_char *);
1884 (*mp)->m_len = 1;
1885 *loop = imo ? imo->imo_multicast_loop
1886 : IP_DEFAULT_MULTICAST_LOOP;
1887 return (0);
1888
1889 default:
1890 return (EOPNOTSUPP);
1891 }
1892 }
1893
1894 /*
1895 * Discard the IP multicast options.
1896 */
1897 void
1898 ip_freemoptions(struct ip_moptions *imo)
1899 {
1900 int i;
1901
1902 if (imo != NULL) {
1903 for (i = 0; i < imo->imo_num_memberships; ++i)
1904 in_delmulti(imo->imo_membership[i]);
1905 free(imo, M_IPMOPTS);
1906 }
1907 }
1908
1909 /*
1910 * Routine called from ip_output() to loop back a copy of an IP multicast
1911 * packet to the input queue of a specified interface. Note that this
1912 * calls the output routine of the loopback "driver", but with an interface
1913 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1914 */
1915 static void
1916 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1917 {
1918 struct ip *ip;
1919 struct mbuf *copym;
1920
1921 copym = m_copypacket(m, M_DONTWAIT);
1922 if (copym != NULL
1923 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1924 copym = m_pullup(copym, sizeof(struct ip));
1925 if (copym == NULL)
1926 return;
1927 /*
1928 * We don't bother to fragment if the IP length is greater
1929 * than the interface's MTU. Can this possibly matter?
1930 */
1931 ip = mtod(copym, struct ip *);
1932
1933 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1934 in_delayed_cksum(copym);
1935 copym->m_pkthdr.csum_flags &=
1936 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1937 }
1938
1939 ip->ip_sum = 0;
1940 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1941 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1942 }
1943