Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.192.6.1
      1 /*	$NetBSD: ip_output.c,v 1.192.6.1 2008/06/02 13:24:24 mjf Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.192.6.1 2008/06/02 13:24:24 mjf Exp $");
     95 
     96 #include "opt_pfil_hooks.h"
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 
    101 #include <sys/param.h>
    102 #include <sys/malloc.h>
    103 #include <sys/mbuf.h>
    104 #include <sys/errno.h>
    105 #include <sys/protosw.h>
    106 #include <sys/socket.h>
    107 #include <sys/socketvar.h>
    108 #include <sys/kauth.h>
    109 #ifdef FAST_IPSEC
    110 #include <sys/domain.h>
    111 #endif
    112 #include <sys/systm.h>
    113 #include <sys/proc.h>
    114 
    115 #include <net/if.h>
    116 #include <net/route.h>
    117 #include <net/pfil.h>
    118 
    119 #include <netinet/in.h>
    120 #include <netinet/in_systm.h>
    121 #include <netinet/ip.h>
    122 #include <netinet/in_pcb.h>
    123 #include <netinet/in_var.h>
    124 #include <netinet/ip_var.h>
    125 #include <netinet/ip_private.h>
    126 #include <netinet/in_offload.h>
    127 
    128 #ifdef MROUTING
    129 #include <netinet/ip_mroute.h>
    130 #endif
    131 
    132 #include <machine/stdarg.h>
    133 
    134 #ifdef IPSEC
    135 #include <netinet6/ipsec.h>
    136 #include <netinet6/ipsec_private.h>
    137 #include <netkey/key.h>
    138 #include <netkey/key_debug.h>
    139 #endif /*IPSEC*/
    140 
    141 #ifdef FAST_IPSEC
    142 #include <netipsec/ipsec.h>
    143 #include <netipsec/key.h>
    144 #include <netipsec/xform.h>
    145 #endif	/* FAST_IPSEC*/
    146 
    147 #ifdef IPSEC_NAT_T
    148 #include <netinet/udp.h>
    149 #endif
    150 
    151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    153 static void ip_mloopback(struct ifnet *, struct mbuf *,
    154     const struct sockaddr_in *);
    155 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
    156 
    157 #ifdef PFIL_HOOKS
    158 extern struct pfil_head inet_pfil_hook;			/* XXX */
    159 #endif
    160 
    161 int	ip_do_loopback_cksum = 0;
    162 
    163 /*
    164  * IP output.  The packet in mbuf chain m contains a skeletal IP
    165  * header (with len, off, ttl, proto, tos, src, dst).
    166  * The mbuf chain containing the packet will be freed.
    167  * The mbuf opt, if present, will not be freed.
    168  */
    169 int
    170 ip_output(struct mbuf *m0, ...)
    171 {
    172 	struct rtentry *rt;
    173 	struct ip *ip;
    174 	struct ifnet *ifp;
    175 	struct mbuf *m = m0;
    176 	int hlen = sizeof (struct ip);
    177 	int len, error = 0;
    178 	struct route iproute;
    179 	const struct sockaddr_in *dst;
    180 	struct in_ifaddr *ia;
    181 	struct ifaddr *xifa;
    182 	struct mbuf *opt;
    183 	struct route *ro;
    184 	int flags, sw_csum;
    185 	int *mtu_p;
    186 	u_long mtu;
    187 	struct ip_moptions *imo;
    188 	struct socket *so;
    189 	va_list ap;
    190 #ifdef IPSEC_NAT_T
    191 	int natt_frag = 0;
    192 #endif
    193 #ifdef IPSEC
    194 	struct secpolicy *sp = NULL;
    195 #endif /*IPSEC*/
    196 #ifdef FAST_IPSEC
    197 	struct inpcb *inp;
    198 	struct secpolicy *sp = NULL;
    199 	int s;
    200 #endif
    201 	u_int16_t ip_len;
    202 	union {
    203 		struct sockaddr		dst;
    204 		struct sockaddr_in	dst4;
    205 	} u;
    206 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    207 					 * to the nexthop
    208 					 */
    209 
    210 	len = 0;
    211 	va_start(ap, m0);
    212 	opt = va_arg(ap, struct mbuf *);
    213 	ro = va_arg(ap, struct route *);
    214 	flags = va_arg(ap, int);
    215 	imo = va_arg(ap, struct ip_moptions *);
    216 	so = va_arg(ap, struct socket *);
    217 	if (flags & IP_RETURNMTU)
    218 		mtu_p = va_arg(ap, int *);
    219 	else
    220 		mtu_p = NULL;
    221 	va_end(ap);
    222 
    223 	MCLAIM(m, &ip_tx_mowner);
    224 #ifdef FAST_IPSEC
    225 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    226 		inp = (struct inpcb *)so->so_pcb;
    227 	else
    228 		inp = NULL;
    229 #endif /* FAST_IPSEC */
    230 
    231 #ifdef	DIAGNOSTIC
    232 	if ((m->m_flags & M_PKTHDR) == 0)
    233 		panic("ip_output: no HDR");
    234 
    235 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    236 		panic("ip_output: IPv6 checksum offload flags: %d",
    237 		    m->m_pkthdr.csum_flags);
    238 	}
    239 
    240 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    241 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    242 		panic("ip_output: conflicting checksum offload flags: %d",
    243 		    m->m_pkthdr.csum_flags);
    244 	}
    245 #endif
    246 	if (opt) {
    247 		m = ip_insertoptions(m, opt, &len);
    248 		if (len >= sizeof(struct ip))
    249 			hlen = len;
    250 	}
    251 	ip = mtod(m, struct ip *);
    252 	/*
    253 	 * Fill in IP header.
    254 	 */
    255 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    256 		ip->ip_v = IPVERSION;
    257 		ip->ip_off = htons(0);
    258 		/* ip->ip_id filled in after we find out source ia */
    259 		ip->ip_hl = hlen >> 2;
    260 		IP_STATINC(IP_STAT_LOCALOUT);
    261 	} else {
    262 		hlen = ip->ip_hl << 2;
    263 	}
    264 	/*
    265 	 * Route packet.
    266 	 */
    267 	memset(&iproute, 0, sizeof(iproute));
    268 	if (ro == NULL)
    269 		ro = &iproute;
    270 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    271 	dst = satocsin(rtcache_getdst(ro));
    272 	/*
    273 	 * If there is a cached route,
    274 	 * check that it is to the same destination
    275 	 * and is still up.  If not, free it and try again.
    276 	 * The address family should also be checked in case of sharing the
    277 	 * cache with IPv6.
    278 	 */
    279 	if (dst == NULL)
    280 		;
    281 	else if (dst->sin_family != AF_INET ||
    282 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
    283 		rtcache_free(ro);
    284 
    285 	if ((rt = rtcache_validate(ro)) == NULL &&
    286 	    (rt = rtcache_update(ro, 1)) == NULL) {
    287 		dst = &u.dst4;
    288 		rtcache_setdst(ro, &u.dst);
    289 	}
    290 	/*
    291 	 * If routing to interface only,
    292 	 * short circuit routing lookup.
    293 	 */
    294 	if (flags & IP_ROUTETOIF) {
    295 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    296 			IP_STATINC(IP_STAT_NOROUTE);
    297 			error = ENETUNREACH;
    298 			goto bad;
    299 		}
    300 		ifp = ia->ia_ifp;
    301 		mtu = ifp->if_mtu;
    302 		ip->ip_ttl = 1;
    303 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    304 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    305 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    306 		ifp = imo->imo_multicast_ifp;
    307 		mtu = ifp->if_mtu;
    308 		IFP_TO_IA(ifp, ia);
    309 	} else {
    310 		if (rt == NULL)
    311 			rt = rtcache_init(ro);
    312 		if (rt == NULL) {
    313 			IP_STATINC(IP_STAT_NOROUTE);
    314 			error = EHOSTUNREACH;
    315 			goto bad;
    316 		}
    317 		ia = ifatoia(rt->rt_ifa);
    318 		ifp = rt->rt_ifp;
    319 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    320 			mtu = ifp->if_mtu;
    321 		rt->rt_use++;
    322 		if (rt->rt_flags & RTF_GATEWAY)
    323 			dst = satosin(rt->rt_gateway);
    324 	}
    325 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    326 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    327 		struct in_multi *inm;
    328 
    329 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    330 			M_BCAST : M_MCAST;
    331 		/*
    332 		 * See if the caller provided any multicast options
    333 		 */
    334 		if (imo != NULL)
    335 			ip->ip_ttl = imo->imo_multicast_ttl;
    336 		else
    337 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    338 
    339 		/*
    340 		 * if we don't know the outgoing ifp yet, we can't generate
    341 		 * output
    342 		 */
    343 		if (!ifp) {
    344 			IP_STATINC(IP_STAT_NOROUTE);
    345 			error = ENETUNREACH;
    346 			goto bad;
    347 		}
    348 
    349 		/*
    350 		 * If the packet is multicast or broadcast, confirm that
    351 		 * the outgoing interface can transmit it.
    352 		 */
    353 		if (((m->m_flags & M_MCAST) &&
    354 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    355 		    ((m->m_flags & M_BCAST) &&
    356 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    357 			IP_STATINC(IP_STAT_NOROUTE);
    358 			error = ENETUNREACH;
    359 			goto bad;
    360 		}
    361 		/*
    362 		 * If source address not specified yet, use an address
    363 		 * of outgoing interface.
    364 		 */
    365 		if (in_nullhost(ip->ip_src)) {
    366 			struct in_ifaddr *xia;
    367 
    368 			IFP_TO_IA(ifp, xia);
    369 			if (!xia) {
    370 				error = EADDRNOTAVAIL;
    371 				goto bad;
    372 			}
    373 			xifa = &xia->ia_ifa;
    374 			if (xifa->ifa_getifa != NULL) {
    375 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    376 			}
    377 			ip->ip_src = xia->ia_addr.sin_addr;
    378 		}
    379 
    380 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    381 		if (inm != NULL &&
    382 		   (imo == NULL || imo->imo_multicast_loop)) {
    383 			/*
    384 			 * If we belong to the destination multicast group
    385 			 * on the outgoing interface, and the caller did not
    386 			 * forbid loopback, loop back a copy.
    387 			 */
    388 			ip_mloopback(ifp, m, &u.dst4);
    389 		}
    390 #ifdef MROUTING
    391 		else {
    392 			/*
    393 			 * If we are acting as a multicast router, perform
    394 			 * multicast forwarding as if the packet had just
    395 			 * arrived on the interface to which we are about
    396 			 * to send.  The multicast forwarding function
    397 			 * recursively calls this function, using the
    398 			 * IP_FORWARDING flag to prevent infinite recursion.
    399 			 *
    400 			 * Multicasts that are looped back by ip_mloopback(),
    401 			 * above, will be forwarded by the ip_input() routine,
    402 			 * if necessary.
    403 			 */
    404 			extern struct socket *ip_mrouter;
    405 
    406 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    407 				if (ip_mforward(m, ifp) != 0) {
    408 					m_freem(m);
    409 					goto done;
    410 				}
    411 			}
    412 		}
    413 #endif
    414 		/*
    415 		 * Multicasts with a time-to-live of zero may be looped-
    416 		 * back, above, but must not be transmitted on a network.
    417 		 * Also, multicasts addressed to the loopback interface
    418 		 * are not sent -- the above call to ip_mloopback() will
    419 		 * loop back a copy if this host actually belongs to the
    420 		 * destination group on the loopback interface.
    421 		 */
    422 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    423 			m_freem(m);
    424 			goto done;
    425 		}
    426 
    427 		goto sendit;
    428 	}
    429 	/*
    430 	 * If source address not specified yet, use address
    431 	 * of outgoing interface.
    432 	 */
    433 	if (in_nullhost(ip->ip_src)) {
    434 		xifa = &ia->ia_ifa;
    435 		if (xifa->ifa_getifa != NULL)
    436 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    437 		ip->ip_src = ia->ia_addr.sin_addr;
    438 	}
    439 
    440 	/*
    441 	 * packets with Class-D address as source are not valid per
    442 	 * RFC 1112
    443 	 */
    444 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    445 		IP_STATINC(IP_STAT_ODROPPED);
    446 		error = EADDRNOTAVAIL;
    447 		goto bad;
    448 	}
    449 
    450 	/*
    451 	 * Look for broadcast address and
    452 	 * and verify user is allowed to send
    453 	 * such a packet.
    454 	 */
    455 	if (in_broadcast(dst->sin_addr, ifp)) {
    456 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    457 			error = EADDRNOTAVAIL;
    458 			goto bad;
    459 		}
    460 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    461 			error = EACCES;
    462 			goto bad;
    463 		}
    464 		/* don't allow broadcast messages to be fragmented */
    465 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    466 			error = EMSGSIZE;
    467 			goto bad;
    468 		}
    469 		m->m_flags |= M_BCAST;
    470 	} else
    471 		m->m_flags &= ~M_BCAST;
    472 
    473 sendit:
    474 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    475 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    476 			ip->ip_id = 0;
    477 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    478 			ip->ip_id = ip_newid(ia);
    479 		} else {
    480 
    481 			/*
    482 			 * TSO capable interfaces (typically?) increment
    483 			 * ip_id for each segment.
    484 			 * "allocate" enough ids here to increase the chance
    485 			 * for them to be unique.
    486 			 *
    487 			 * note that the following calculation is not
    488 			 * needed to be precise.  wasting some ip_id is fine.
    489 			 */
    490 
    491 			unsigned int segsz = m->m_pkthdr.segsz;
    492 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    493 			unsigned int num = howmany(datasz, segsz);
    494 
    495 			ip->ip_id = ip_newid_range(ia, num);
    496 		}
    497 	}
    498 	/*
    499 	 * If we're doing Path MTU Discovery, we need to set DF unless
    500 	 * the route's MTU is locked.
    501 	 */
    502 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    503 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    504 		ip->ip_off |= htons(IP_DF);
    505 
    506 	/* Remember the current ip_len */
    507 	ip_len = ntohs(ip->ip_len);
    508 
    509 #ifdef IPSEC
    510 	/* get SP for this packet */
    511 	if (so == NULL)
    512 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    513 		    flags, &error);
    514 	else {
    515 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    516 					 IPSEC_DIR_OUTBOUND))
    517 			goto skip_ipsec;
    518 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    519 	}
    520 
    521 	if (sp == NULL) {
    522 		IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
    523 		goto bad;
    524 	}
    525 
    526 	error = 0;
    527 
    528 	/* check policy */
    529 	switch (sp->policy) {
    530 	case IPSEC_POLICY_DISCARD:
    531 		/*
    532 		 * This packet is just discarded.
    533 		 */
    534 		IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
    535 		goto bad;
    536 
    537 	case IPSEC_POLICY_BYPASS:
    538 	case IPSEC_POLICY_NONE:
    539 		/* no need to do IPsec. */
    540 		goto skip_ipsec;
    541 
    542 	case IPSEC_POLICY_IPSEC:
    543 		if (sp->req == NULL) {
    544 			/* XXX should be panic ? */
    545 			printf("ip_output: No IPsec request specified.\n");
    546 			error = EINVAL;
    547 			goto bad;
    548 		}
    549 		break;
    550 
    551 	case IPSEC_POLICY_ENTRUST:
    552 	default:
    553 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    554 	}
    555 
    556 #ifdef IPSEC_NAT_T
    557 	/*
    558 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    559 	 * we'll do it on each fragmented packet.
    560 	 */
    561 	if (sp->req->sav &&
    562 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    563 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    564 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    565 			natt_frag = 1;
    566 			mtu = sp->req->sav->esp_frag;
    567 			goto skip_ipsec;
    568 		}
    569 	}
    570 #endif /* IPSEC_NAT_T */
    571 
    572 	/*
    573 	 * ipsec4_output() expects ip_len and ip_off in network
    574 	 * order.  They have been set to network order above.
    575 	 */
    576 
    577     {
    578 	struct ipsec_output_state state;
    579 	bzero(&state, sizeof(state));
    580 	state.m = m;
    581 	if (flags & IP_ROUTETOIF) {
    582 		state.ro = &iproute;
    583 		memset(&iproute, 0, sizeof(iproute));
    584 	} else
    585 		state.ro = ro;
    586 	state.dst = sintocsa(dst);
    587 
    588 	/*
    589 	 * We can't defer the checksum of payload data if
    590 	 * we're about to encrypt/authenticate it.
    591 	 *
    592 	 * XXX When we support crypto offloading functions of
    593 	 * XXX network interfaces, we need to reconsider this,
    594 	 * XXX since it's likely that they'll support checksumming,
    595 	 * XXX as well.
    596 	 */
    597 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    598 		in_delayed_cksum(m);
    599 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    600 	}
    601 
    602 	error = ipsec4_output(&state, sp, flags);
    603 
    604 	m = state.m;
    605 	if (flags & IP_ROUTETOIF) {
    606 		/*
    607 		 * if we have tunnel mode SA, we may need to ignore
    608 		 * IP_ROUTETOIF.
    609 		 */
    610 		if (state.ro != &iproute ||
    611 		    rtcache_validate(state.ro) != NULL) {
    612 			flags &= ~IP_ROUTETOIF;
    613 			ro = state.ro;
    614 		}
    615 	} else
    616 		ro = state.ro;
    617 	dst = satocsin(state.dst);
    618 	if (error) {
    619 		/* mbuf is already reclaimed in ipsec4_output. */
    620 		m0 = NULL;
    621 		switch (error) {
    622 		case EHOSTUNREACH:
    623 		case ENETUNREACH:
    624 		case EMSGSIZE:
    625 		case ENOBUFS:
    626 		case ENOMEM:
    627 			break;
    628 		default:
    629 			printf("ip4_output (ipsec): error code %d\n", error);
    630 			/*fall through*/
    631 		case ENOENT:
    632 			/* don't show these error codes to the user */
    633 			error = 0;
    634 			break;
    635 		}
    636 		goto bad;
    637 	}
    638 
    639 	/* be sure to update variables that are affected by ipsec4_output() */
    640 	ip = mtod(m, struct ip *);
    641 	hlen = ip->ip_hl << 2;
    642 	ip_len = ntohs(ip->ip_len);
    643 
    644 	if ((rt = rtcache_validate(ro)) == NULL) {
    645 		if ((flags & IP_ROUTETOIF) == 0) {
    646 			printf("ip_output: "
    647 				"can't update route after IPsec processing\n");
    648 			error = EHOSTUNREACH;	/*XXX*/
    649 			goto bad;
    650 		}
    651 	} else {
    652 		/* nobody uses ia beyond here */
    653 		if (state.encap) {
    654 			ifp = rt->rt_ifp;
    655 			if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    656 				mtu = ifp->if_mtu;
    657 		}
    658 	}
    659     }
    660 skip_ipsec:
    661 #endif /*IPSEC*/
    662 #ifdef FAST_IPSEC
    663 	/*
    664 	 * Check the security policy (SP) for the packet and, if
    665 	 * required, do IPsec-related processing.  There are two
    666 	 * cases here; the first time a packet is sent through
    667 	 * it will be untagged and handled by ipsec4_checkpolicy.
    668 	 * If the packet is resubmitted to ip_output (e.g. after
    669 	 * AH, ESP, etc. processing), there will be a tag to bypass
    670 	 * the lookup and related policy checking.
    671 	 */
    672 	if (!ipsec_outdone(m)) {
    673 		s = splsoftnet();
    674 		if (inp != NULL &&
    675 				IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    676 			goto spd_done;
    677 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    678 				&error, inp);
    679 		/*
    680 		 * There are four return cases:
    681 		 *    sp != NULL	 	    apply IPsec policy
    682 		 *    sp == NULL, error == 0	    no IPsec handling needed
    683 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
    684 		 *    sp == NULL, error != 0	    discard packet, report error
    685 		 */
    686 		if (sp != NULL) {
    687 #ifdef IPSEC_NAT_T
    688 			/*
    689 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
    690 			 * we'll do it on each fragmented packet.
    691 			 */
    692 			if (sp->req->sav &&
    693 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    694 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    695 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    696 					natt_frag = 1;
    697 					mtu = sp->req->sav->esp_frag;
    698 					splx(s);
    699 					goto spd_done;
    700 				}
    701 			}
    702 #endif /* IPSEC_NAT_T */
    703 
    704 			/*
    705 			 * Do delayed checksums now because we send before
    706 			 * this is done in the normal processing path.
    707 			 */
    708 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    709 				in_delayed_cksum(m);
    710 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    711 			}
    712 
    713 #ifdef __FreeBSD__
    714 			ip->ip_len = htons(ip->ip_len);
    715 			ip->ip_off = htons(ip->ip_off);
    716 #endif
    717 
    718 			/* NB: callee frees mbuf */
    719 			error = ipsec4_process_packet(m, sp->req, flags, 0);
    720 			/*
    721 			 * Preserve KAME behaviour: ENOENT can be returned
    722 			 * when an SA acquire is in progress.  Don't propagate
    723 			 * this to user-level; it confuses applications.
    724 			 *
    725 			 * XXX this will go away when the SADB is redone.
    726 			 */
    727 			if (error == ENOENT)
    728 				error = 0;
    729 			splx(s);
    730 			goto done;
    731 		} else {
    732 			splx(s);
    733 
    734 			if (error != 0) {
    735 				/*
    736 				 * Hack: -EINVAL is used to signal that a packet
    737 				 * should be silently discarded.  This is typically
    738 				 * because we asked key management for an SA and
    739 				 * it was delayed (e.g. kicked up to IKE).
    740 				 */
    741 				if (error == -EINVAL)
    742 					error = 0;
    743 				goto bad;
    744 			} else {
    745 				/* No IPsec processing for this packet. */
    746 			}
    747 		}
    748 	}
    749 spd_done:
    750 #endif /* FAST_IPSEC */
    751 
    752 #ifdef PFIL_HOOKS
    753 	/*
    754 	 * Run through list of hooks for output packets.
    755 	 */
    756 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    757 		goto done;
    758 	if (m == NULL)
    759 		goto done;
    760 
    761 	ip = mtod(m, struct ip *);
    762 	hlen = ip->ip_hl << 2;
    763 	ip_len = ntohs(ip->ip_len);
    764 #endif /* PFIL_HOOKS */
    765 
    766 	m->m_pkthdr.csum_data |= hlen << 16;
    767 
    768 #if IFA_STATS
    769 	/*
    770 	 * search for the source address structure to
    771 	 * maintain output statistics.
    772 	 */
    773 	INADDR_TO_IA(ip->ip_src, ia);
    774 #endif
    775 
    776 	/* Maybe skip checksums on loopback interfaces. */
    777 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    778 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    779 	}
    780 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    781 	/*
    782 	 * If small enough for mtu of path, or if using TCP segmentation
    783 	 * offload, can just send directly.
    784 	 */
    785 	if (ip_len <= mtu ||
    786 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    787 #if IFA_STATS
    788 		if (ia)
    789 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    790 #endif
    791 		/*
    792 		 * Always initialize the sum to 0!  Some HW assisted
    793 		 * checksumming requires this.
    794 		 */
    795 		ip->ip_sum = 0;
    796 
    797 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    798 			/*
    799 			 * Perform any checksums that the hardware can't do
    800 			 * for us.
    801 			 *
    802 			 * XXX Does any hardware require the {th,uh}_sum
    803 			 * XXX fields to be 0?
    804 			 */
    805 			if (sw_csum & M_CSUM_IPv4) {
    806 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    807 				ip->ip_sum = in_cksum(m, hlen);
    808 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    809 			}
    810 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    811 				if (IN_NEED_CHECKSUM(ifp,
    812 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    813 					in_delayed_cksum(m);
    814 				}
    815 				m->m_pkthdr.csum_flags &=
    816 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    817 			}
    818 		}
    819 
    820 #ifdef IPSEC
    821 		/* clean ipsec history once it goes out of the node */
    822 		ipsec_delaux(m);
    823 #endif
    824 
    825 		if (__predict_true(
    826 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    827 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    828 			error =
    829 			    (*ifp->if_output)(ifp, m,
    830 				(m->m_flags & M_MCAST) ?
    831 				    sintocsa(rdst) : sintocsa(dst),
    832 				rt);
    833 		} else {
    834 			error =
    835 			    ip_tso_output(ifp, m,
    836 				(m->m_flags & M_MCAST) ?
    837 				    sintocsa(rdst) : sintocsa(dst),
    838 				rt);
    839 		}
    840 		goto done;
    841 	}
    842 
    843 	/*
    844 	 * We can't use HW checksumming if we're about to
    845 	 * to fragment the packet.
    846 	 *
    847 	 * XXX Some hardware can do this.
    848 	 */
    849 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    850 		if (IN_NEED_CHECKSUM(ifp,
    851 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    852 			in_delayed_cksum(m);
    853 		}
    854 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    855 	}
    856 
    857 	/*
    858 	 * Too large for interface; fragment if possible.
    859 	 * Must be able to put at least 8 bytes per fragment.
    860 	 */
    861 	if (ntohs(ip->ip_off) & IP_DF) {
    862 		if (flags & IP_RETURNMTU)
    863 			*mtu_p = mtu;
    864 		error = EMSGSIZE;
    865 		IP_STATINC(IP_STAT_CANTFRAG);
    866 		goto bad;
    867 	}
    868 
    869 	error = ip_fragment(m, ifp, mtu);
    870 	if (error) {
    871 		m = NULL;
    872 		goto bad;
    873 	}
    874 
    875 	for (; m; m = m0) {
    876 		m0 = m->m_nextpkt;
    877 		m->m_nextpkt = 0;
    878 		if (error == 0) {
    879 #if IFA_STATS
    880 			if (ia)
    881 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    882 				    ntohs(ip->ip_len);
    883 #endif
    884 #ifdef IPSEC
    885 			/* clean ipsec history once it goes out of the node */
    886 			ipsec_delaux(m);
    887 #endif /* IPSEC */
    888 
    889 #ifdef IPSEC_NAT_T
    890 			/*
    891 			 * If we get there, the packet has not been handeld by
    892 			 * IPSec whereas it should have. Now that it has been
    893 			 * fragmented, re-inject it in ip_output so that IPsec
    894 			 * processing can occur.
    895 			 */
    896 			if (natt_frag) {
    897 				error = ip_output(m, opt,
    898 				    ro, flags, imo, so, mtu_p);
    899 			} else
    900 #endif /* IPSEC_NAT_T */
    901 			{
    902 				KASSERT((m->m_pkthdr.csum_flags &
    903 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    904 				error = (*ifp->if_output)(ifp, m,
    905 				    (m->m_flags & M_MCAST) ?
    906 					sintocsa(rdst) : sintocsa(dst),
    907 				    rt);
    908 			}
    909 		} else
    910 			m_freem(m);
    911 	}
    912 
    913 	if (error == 0)
    914 		IP_STATINC(IP_STAT_FRAGMENTED);
    915 done:
    916 	rtcache_free(&iproute);
    917 
    918 #ifdef IPSEC
    919 	if (sp != NULL) {
    920 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    921 			printf("DP ip_output call free SP:%p\n", sp));
    922 		key_freesp(sp);
    923 	}
    924 #endif /* IPSEC */
    925 #ifdef FAST_IPSEC
    926 	if (sp != NULL)
    927 		KEY_FREESP(&sp);
    928 #endif /* FAST_IPSEC */
    929 
    930 	return (error);
    931 bad:
    932 	m_freem(m);
    933 	goto done;
    934 }
    935 
    936 int
    937 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    938 {
    939 	struct ip *ip, *mhip;
    940 	struct mbuf *m0;
    941 	int len, hlen, off;
    942 	int mhlen, firstlen;
    943 	struct mbuf **mnext;
    944 	int sw_csum = m->m_pkthdr.csum_flags;
    945 	int fragments = 0;
    946 	int s;
    947 	int error = 0;
    948 
    949 	ip = mtod(m, struct ip *);
    950 	hlen = ip->ip_hl << 2;
    951 	if (ifp != NULL)
    952 		sw_csum &= ~ifp->if_csum_flags_tx;
    953 
    954 	len = (mtu - hlen) &~ 7;
    955 	if (len < 8) {
    956 		m_freem(m);
    957 		return (EMSGSIZE);
    958 	}
    959 
    960 	firstlen = len;
    961 	mnext = &m->m_nextpkt;
    962 
    963 	/*
    964 	 * Loop through length of segment after first fragment,
    965 	 * make new header and copy data of each part and link onto chain.
    966 	 */
    967 	m0 = m;
    968 	mhlen = sizeof (struct ip);
    969 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    970 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    971 		if (m == 0) {
    972 			error = ENOBUFS;
    973 			IP_STATINC(IP_STAT_ODROPPED);
    974 			goto sendorfree;
    975 		}
    976 		MCLAIM(m, m0->m_owner);
    977 		*mnext = m;
    978 		mnext = &m->m_nextpkt;
    979 		m->m_data += max_linkhdr;
    980 		mhip = mtod(m, struct ip *);
    981 		*mhip = *ip;
    982 		/* we must inherit MCAST and BCAST flags */
    983 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    984 		if (hlen > sizeof (struct ip)) {
    985 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    986 			mhip->ip_hl = mhlen >> 2;
    987 		}
    988 		m->m_len = mhlen;
    989 		mhip->ip_off = ((off - hlen) >> 3) +
    990 		    (ntohs(ip->ip_off) & ~IP_MF);
    991 		if (ip->ip_off & htons(IP_MF))
    992 			mhip->ip_off |= IP_MF;
    993 		if (off + len >= ntohs(ip->ip_len))
    994 			len = ntohs(ip->ip_len) - off;
    995 		else
    996 			mhip->ip_off |= IP_MF;
    997 		HTONS(mhip->ip_off);
    998 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    999 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
   1000 		if (m->m_next == 0) {
   1001 			error = ENOBUFS;	/* ??? */
   1002 			IP_STATINC(IP_STAT_ODROPPED);
   1003 			goto sendorfree;
   1004 		}
   1005 		m->m_pkthdr.len = mhlen + len;
   1006 		m->m_pkthdr.rcvif = (struct ifnet *)0;
   1007 		mhip->ip_sum = 0;
   1008 		if (sw_csum & M_CSUM_IPv4) {
   1009 			mhip->ip_sum = in_cksum(m, mhlen);
   1010 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1011 		} else {
   1012 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1013 			m->m_pkthdr.csum_data |= mhlen << 16;
   1014 		}
   1015 		IP_STATINC(IP_STAT_OFRAGMENTS);
   1016 		fragments++;
   1017 	}
   1018 	/*
   1019 	 * Update first fragment by trimming what's been copied out
   1020 	 * and updating header, then send each fragment (in order).
   1021 	 */
   1022 	m = m0;
   1023 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1024 	m->m_pkthdr.len = hlen + firstlen;
   1025 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1026 	ip->ip_off |= htons(IP_MF);
   1027 	ip->ip_sum = 0;
   1028 	if (sw_csum & M_CSUM_IPv4) {
   1029 		ip->ip_sum = in_cksum(m, hlen);
   1030 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1031 	} else {
   1032 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
   1033 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1034 			sizeof(struct ip));
   1035 	}
   1036 sendorfree:
   1037 	/*
   1038 	 * If there is no room for all the fragments, don't queue
   1039 	 * any of them.
   1040 	 */
   1041 	if (ifp != NULL) {
   1042 		s = splnet();
   1043 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1044 		    error == 0) {
   1045 			error = ENOBUFS;
   1046 			IP_STATINC(IP_STAT_ODROPPED);
   1047 			IFQ_INC_DROPS(&ifp->if_snd);
   1048 		}
   1049 		splx(s);
   1050 	}
   1051 	if (error) {
   1052 		for (m = m0; m; m = m0) {
   1053 			m0 = m->m_nextpkt;
   1054 			m->m_nextpkt = NULL;
   1055 			m_freem(m);
   1056 		}
   1057 	}
   1058 	return (error);
   1059 }
   1060 
   1061 /*
   1062  * Process a delayed payload checksum calculation.
   1063  */
   1064 void
   1065 in_delayed_cksum(struct mbuf *m)
   1066 {
   1067 	struct ip *ip;
   1068 	u_int16_t csum, offset;
   1069 
   1070 	ip = mtod(m, struct ip *);
   1071 	offset = ip->ip_hl << 2;
   1072 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1073 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1074 		csum = 0xffff;
   1075 
   1076 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1077 
   1078 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1079 		/* This happen when ip options were inserted
   1080 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1081 		    m->m_len, offset, ip->ip_p);
   1082 		 */
   1083 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
   1084 	} else
   1085 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
   1086 }
   1087 
   1088 /*
   1089  * Determine the maximum length of the options to be inserted;
   1090  * we would far rather allocate too much space rather than too little.
   1091  */
   1092 
   1093 u_int
   1094 ip_optlen(struct inpcb *inp)
   1095 {
   1096 	struct mbuf *m = inp->inp_options;
   1097 
   1098 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1099 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1100 	else
   1101 		return 0;
   1102 }
   1103 
   1104 
   1105 /*
   1106  * Insert IP options into preformed packet.
   1107  * Adjust IP destination as required for IP source routing,
   1108  * as indicated by a non-zero in_addr at the start of the options.
   1109  */
   1110 static struct mbuf *
   1111 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1112 {
   1113 	struct ipoption *p = mtod(opt, struct ipoption *);
   1114 	struct mbuf *n;
   1115 	struct ip *ip = mtod(m, struct ip *);
   1116 	unsigned optlen;
   1117 
   1118 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1119 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1120 		return (m);		/* XXX should fail */
   1121 	if (!in_nullhost(p->ipopt_dst))
   1122 		ip->ip_dst = p->ipopt_dst;
   1123 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1124 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1125 		if (n == 0)
   1126 			return (m);
   1127 		MCLAIM(n, m->m_owner);
   1128 		M_MOVE_PKTHDR(n, m);
   1129 		m->m_len -= sizeof(struct ip);
   1130 		m->m_data += sizeof(struct ip);
   1131 		n->m_next = m;
   1132 		m = n;
   1133 		m->m_len = optlen + sizeof(struct ip);
   1134 		m->m_data += max_linkhdr;
   1135 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1136 	} else {
   1137 		m->m_data -= optlen;
   1138 		m->m_len += optlen;
   1139 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1140 	}
   1141 	m->m_pkthdr.len += optlen;
   1142 	ip = mtod(m, struct ip *);
   1143 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1144 	*phlen = sizeof(struct ip) + optlen;
   1145 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1146 	return (m);
   1147 }
   1148 
   1149 /*
   1150  * Copy options from ip to jp,
   1151  * omitting those not copied during fragmentation.
   1152  */
   1153 int
   1154 ip_optcopy(struct ip *ip, struct ip *jp)
   1155 {
   1156 	u_char *cp, *dp;
   1157 	int opt, optlen, cnt;
   1158 
   1159 	cp = (u_char *)(ip + 1);
   1160 	dp = (u_char *)(jp + 1);
   1161 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1162 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1163 		opt = cp[0];
   1164 		if (opt == IPOPT_EOL)
   1165 			break;
   1166 		if (opt == IPOPT_NOP) {
   1167 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1168 			*dp++ = IPOPT_NOP;
   1169 			optlen = 1;
   1170 			continue;
   1171 		}
   1172 #ifdef DIAGNOSTIC
   1173 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1174 			panic("malformed IPv4 option passed to ip_optcopy");
   1175 #endif
   1176 		optlen = cp[IPOPT_OLEN];
   1177 #ifdef DIAGNOSTIC
   1178 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1179 			panic("malformed IPv4 option passed to ip_optcopy");
   1180 #endif
   1181 		/* bogus lengths should have been caught by ip_dooptions */
   1182 		if (optlen > cnt)
   1183 			optlen = cnt;
   1184 		if (IPOPT_COPIED(opt)) {
   1185 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1186 			dp += optlen;
   1187 		}
   1188 	}
   1189 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1190 		*dp++ = IPOPT_EOL;
   1191 	return (optlen);
   1192 }
   1193 
   1194 /*
   1195  * IP socket option processing.
   1196  */
   1197 int
   1198 ip_ctloutput(int op, struct socket *so, int level, int optname,
   1199     struct mbuf **mp)
   1200 {
   1201 	struct inpcb *inp = sotoinpcb(so);
   1202 	struct mbuf *m = *mp;
   1203 	int optval = 0;
   1204 	int error = 0;
   1205 #if defined(IPSEC) || defined(FAST_IPSEC)
   1206 	struct lwp *l = curlwp;	/*XXX*/
   1207 #endif
   1208 
   1209 	if (level != IPPROTO_IP) {
   1210 		if (op == PRCO_SETOPT && *mp)
   1211 			(void) m_free(*mp);
   1212 		if (level == SOL_SOCKET && optname == SO_NOHEADER)
   1213 			return 0;
   1214 		return ENOPROTOOPT;
   1215 	}
   1216 
   1217 	switch (op) {
   1218 
   1219 	case PRCO_SETOPT:
   1220 		switch (optname) {
   1221 		case IP_OPTIONS:
   1222 #ifdef notyet
   1223 		case IP_RETOPTS:
   1224 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1225 #else
   1226 			return (ip_pcbopts(&inp->inp_options, m));
   1227 #endif
   1228 
   1229 		case IP_TOS:
   1230 		case IP_TTL:
   1231 		case IP_RECVOPTS:
   1232 		case IP_RECVRETOPTS:
   1233 		case IP_RECVDSTADDR:
   1234 		case IP_RECVIF:
   1235 			if (m == NULL || m->m_len != sizeof(int))
   1236 				error = EINVAL;
   1237 			else {
   1238 				optval = *mtod(m, int *);
   1239 				switch (optname) {
   1240 
   1241 				case IP_TOS:
   1242 					inp->inp_ip.ip_tos = optval;
   1243 					break;
   1244 
   1245 				case IP_TTL:
   1246 					inp->inp_ip.ip_ttl = optval;
   1247 					break;
   1248 #define	OPTSET(bit) \
   1249 	if (optval) \
   1250 		inp->inp_flags |= bit; \
   1251 	else \
   1252 		inp->inp_flags &= ~bit;
   1253 
   1254 				case IP_RECVOPTS:
   1255 					OPTSET(INP_RECVOPTS);
   1256 					break;
   1257 
   1258 				case IP_RECVRETOPTS:
   1259 					OPTSET(INP_RECVRETOPTS);
   1260 					break;
   1261 
   1262 				case IP_RECVDSTADDR:
   1263 					OPTSET(INP_RECVDSTADDR);
   1264 					break;
   1265 
   1266 				case IP_RECVIF:
   1267 					OPTSET(INP_RECVIF);
   1268 					break;
   1269 				}
   1270 			}
   1271 			break;
   1272 #undef OPTSET
   1273 
   1274 		case IP_MULTICAST_IF:
   1275 		case IP_MULTICAST_TTL:
   1276 		case IP_MULTICAST_LOOP:
   1277 		case IP_ADD_MEMBERSHIP:
   1278 		case IP_DROP_MEMBERSHIP:
   1279 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1280 			break;
   1281 
   1282 		case IP_PORTRANGE:
   1283 			if (m == 0 || m->m_len != sizeof(int))
   1284 				error = EINVAL;
   1285 			else {
   1286 				optval = *mtod(m, int *);
   1287 
   1288 				switch (optval) {
   1289 
   1290 				case IP_PORTRANGE_DEFAULT:
   1291 				case IP_PORTRANGE_HIGH:
   1292 					inp->inp_flags &= ~(INP_LOWPORT);
   1293 					break;
   1294 
   1295 				case IP_PORTRANGE_LOW:
   1296 					inp->inp_flags |= INP_LOWPORT;
   1297 					break;
   1298 
   1299 				default:
   1300 					error = EINVAL;
   1301 					break;
   1302 				}
   1303 			}
   1304 			break;
   1305 
   1306 #if defined(IPSEC) || defined(FAST_IPSEC)
   1307 		case IP_IPSEC_POLICY:
   1308 		{
   1309 			void *req = NULL;
   1310 			size_t len = 0;
   1311 			int priv = 0;
   1312 
   1313 #ifdef __NetBSD__
   1314 			if (l == 0 || kauth_authorize_generic(l->l_cred,
   1315 			    KAUTH_GENERIC_ISSUSER, NULL))
   1316 				priv = 0;
   1317 			else
   1318 				priv = 1;
   1319 #else
   1320 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1321 #endif
   1322 			if (m) {
   1323 				req = mtod(m, void *);
   1324 				len = m->m_len;
   1325 			}
   1326 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1327 			break;
   1328 		    }
   1329 #endif /*IPSEC*/
   1330 
   1331 		default:
   1332 			error = ENOPROTOOPT;
   1333 			break;
   1334 		}
   1335 		if (m)
   1336 			(void)m_free(m);
   1337 		break;
   1338 
   1339 	case PRCO_GETOPT:
   1340 		switch (optname) {
   1341 		case IP_OPTIONS:
   1342 		case IP_RETOPTS:
   1343 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1344 			MCLAIM(m, so->so_mowner);
   1345 			if (inp->inp_options) {
   1346 				m->m_len = inp->inp_options->m_len;
   1347 				bcopy(mtod(inp->inp_options, void *),
   1348 				    mtod(m, void *), (unsigned)m->m_len);
   1349 			} else
   1350 				m->m_len = 0;
   1351 			break;
   1352 
   1353 		case IP_TOS:
   1354 		case IP_TTL:
   1355 		case IP_RECVOPTS:
   1356 		case IP_RECVRETOPTS:
   1357 		case IP_RECVDSTADDR:
   1358 		case IP_RECVIF:
   1359 		case IP_ERRORMTU:
   1360 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1361 			MCLAIM(m, so->so_mowner);
   1362 			m->m_len = sizeof(int);
   1363 			switch (optname) {
   1364 
   1365 			case IP_TOS:
   1366 				optval = inp->inp_ip.ip_tos;
   1367 				break;
   1368 
   1369 			case IP_TTL:
   1370 				optval = inp->inp_ip.ip_ttl;
   1371 				break;
   1372 
   1373 			case IP_ERRORMTU:
   1374 				optval = inp->inp_errormtu;
   1375 				break;
   1376 
   1377 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1378 
   1379 			case IP_RECVOPTS:
   1380 				optval = OPTBIT(INP_RECVOPTS);
   1381 				break;
   1382 
   1383 			case IP_RECVRETOPTS:
   1384 				optval = OPTBIT(INP_RECVRETOPTS);
   1385 				break;
   1386 
   1387 			case IP_RECVDSTADDR:
   1388 				optval = OPTBIT(INP_RECVDSTADDR);
   1389 				break;
   1390 
   1391 			case IP_RECVIF:
   1392 				optval = OPTBIT(INP_RECVIF);
   1393 				break;
   1394 			}
   1395 			*mtod(m, int *) = optval;
   1396 			break;
   1397 
   1398 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
   1399 		/* XXX: code broken */
   1400 		case IP_IPSEC_POLICY:
   1401 		{
   1402 			void *req = NULL;
   1403 			size_t len = 0;
   1404 
   1405 			if (m) {
   1406 				req = mtod(m, void *);
   1407 				len = m->m_len;
   1408 			}
   1409 			error = ipsec4_get_policy(inp, req, len, mp);
   1410 			break;
   1411 		}
   1412 #endif /*IPSEC*/
   1413 
   1414 		case IP_MULTICAST_IF:
   1415 		case IP_MULTICAST_TTL:
   1416 		case IP_MULTICAST_LOOP:
   1417 		case IP_ADD_MEMBERSHIP:
   1418 		case IP_DROP_MEMBERSHIP:
   1419 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1420 			if (*mp)
   1421 				MCLAIM(*mp, so->so_mowner);
   1422 			break;
   1423 
   1424 		case IP_PORTRANGE:
   1425 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1426 			MCLAIM(m, so->so_mowner);
   1427 			m->m_len = sizeof(int);
   1428 
   1429 			if (inp->inp_flags & INP_LOWPORT)
   1430 				optval = IP_PORTRANGE_LOW;
   1431 			else
   1432 				optval = IP_PORTRANGE_DEFAULT;
   1433 
   1434 			*mtod(m, int *) = optval;
   1435 			break;
   1436 
   1437 		default:
   1438 			error = ENOPROTOOPT;
   1439 			break;
   1440 		}
   1441 		break;
   1442 	}
   1443 	return (error);
   1444 }
   1445 
   1446 /*
   1447  * Set up IP options in pcb for insertion in output packets.
   1448  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1449  * with destination address if source routed.
   1450  */
   1451 int
   1452 #ifdef notyet
   1453 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
   1454 #else
   1455 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
   1456 #endif
   1457 {
   1458 	int cnt, optlen;
   1459 	u_char *cp;
   1460 	u_char opt;
   1461 
   1462 	/* turn off any old options */
   1463 	if (*pcbopt)
   1464 		(void)m_free(*pcbopt);
   1465 	*pcbopt = 0;
   1466 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1467 		/*
   1468 		 * Only turning off any previous options.
   1469 		 */
   1470 		if (m)
   1471 			(void)m_free(m);
   1472 		return (0);
   1473 	}
   1474 
   1475 #ifndef	__vax__
   1476 	if (m->m_len % sizeof(int32_t))
   1477 		goto bad;
   1478 #endif
   1479 	/*
   1480 	 * IP first-hop destination address will be stored before
   1481 	 * actual options; move other options back
   1482 	 * and clear it when none present.
   1483 	 */
   1484 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1485 		goto bad;
   1486 	cnt = m->m_len;
   1487 	m->m_len += sizeof(struct in_addr);
   1488 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1489 	memmove(cp, mtod(m, void *), (unsigned)cnt);
   1490 	bzero(mtod(m, void *), sizeof(struct in_addr));
   1491 
   1492 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1493 		opt = cp[IPOPT_OPTVAL];
   1494 		if (opt == IPOPT_EOL)
   1495 			break;
   1496 		if (opt == IPOPT_NOP)
   1497 			optlen = 1;
   1498 		else {
   1499 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1500 				goto bad;
   1501 			optlen = cp[IPOPT_OLEN];
   1502 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1503 				goto bad;
   1504 		}
   1505 		switch (opt) {
   1506 
   1507 		default:
   1508 			break;
   1509 
   1510 		case IPOPT_LSRR:
   1511 		case IPOPT_SSRR:
   1512 			/*
   1513 			 * user process specifies route as:
   1514 			 *	->A->B->C->D
   1515 			 * D must be our final destination (but we can't
   1516 			 * check that since we may not have connected yet).
   1517 			 * A is first hop destination, which doesn't appear in
   1518 			 * actual IP option, but is stored before the options.
   1519 			 */
   1520 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1521 				goto bad;
   1522 			m->m_len -= sizeof(struct in_addr);
   1523 			cnt -= sizeof(struct in_addr);
   1524 			optlen -= sizeof(struct in_addr);
   1525 			cp[IPOPT_OLEN] = optlen;
   1526 			/*
   1527 			 * Move first hop before start of options.
   1528 			 */
   1529 			bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
   1530 			    sizeof(struct in_addr));
   1531 			/*
   1532 			 * Then copy rest of options back
   1533 			 * to close up the deleted entry.
   1534 			 */
   1535 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1536 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1537 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1538 			break;
   1539 		}
   1540 	}
   1541 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1542 		goto bad;
   1543 	*pcbopt = m;
   1544 	return (0);
   1545 
   1546 bad:
   1547 	(void)m_free(m);
   1548 	return (EINVAL);
   1549 }
   1550 
   1551 /*
   1552  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1553  */
   1554 static struct ifnet *
   1555 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1556 {
   1557 	int ifindex;
   1558 	struct ifnet *ifp = NULL;
   1559 	struct in_ifaddr *ia;
   1560 
   1561 	if (ifindexp)
   1562 		*ifindexp = 0;
   1563 	if (ntohl(a->s_addr) >> 24 == 0) {
   1564 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1565 		if (ifindex < 0 || if_indexlim <= ifindex)
   1566 			return NULL;
   1567 		ifp = ifindex2ifnet[ifindex];
   1568 		if (!ifp)
   1569 			return NULL;
   1570 		if (ifindexp)
   1571 			*ifindexp = ifindex;
   1572 	} else {
   1573 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1574 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1575 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1576 				ifp = ia->ia_ifp;
   1577 				break;
   1578 			}
   1579 		}
   1580 	}
   1581 	return ifp;
   1582 }
   1583 
   1584 static int
   1585 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
   1586 {
   1587 	u_int tval;
   1588 
   1589 	if (m == NULL)
   1590 		return EINVAL;
   1591 
   1592 	switch (m->m_len) {
   1593 	case sizeof(u_char):
   1594 		tval = *(mtod(m, u_char *));
   1595 		break;
   1596 	case sizeof(u_int):
   1597 		tval = *(mtod(m, u_int *));
   1598 		break;
   1599 	default:
   1600 		return EINVAL;
   1601 	}
   1602 
   1603 	if (tval > maxval)
   1604 		return EINVAL;
   1605 
   1606 	*val = tval;
   1607 	return 0;
   1608 }
   1609 
   1610 /*
   1611  * Set the IP multicast options in response to user setsockopt().
   1612  */
   1613 int
   1614 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
   1615 {
   1616 	int error = 0;
   1617 	int i;
   1618 	struct in_addr addr;
   1619 	struct ip_mreq *mreq;
   1620 	struct ifnet *ifp;
   1621 	struct ip_moptions *imo = *imop;
   1622 	int ifindex;
   1623 
   1624 	if (imo == NULL) {
   1625 		/*
   1626 		 * No multicast option buffer attached to the pcb;
   1627 		 * allocate one and initialize to default values.
   1628 		 */
   1629 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1630 		    M_WAITOK);
   1631 
   1632 		if (imo == NULL)
   1633 			return (ENOBUFS);
   1634 		*imop = imo;
   1635 		imo->imo_multicast_ifp = NULL;
   1636 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1637 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1638 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1639 		imo->imo_num_memberships = 0;
   1640 	}
   1641 
   1642 	switch (optname) {
   1643 
   1644 	case IP_MULTICAST_IF:
   1645 		/*
   1646 		 * Select the interface for outgoing multicast packets.
   1647 		 */
   1648 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1649 			error = EINVAL;
   1650 			break;
   1651 		}
   1652 		addr = *(mtod(m, struct in_addr *));
   1653 		/*
   1654 		 * INADDR_ANY is used to remove a previous selection.
   1655 		 * When no interface is selected, a default one is
   1656 		 * chosen every time a multicast packet is sent.
   1657 		 */
   1658 		if (in_nullhost(addr)) {
   1659 			imo->imo_multicast_ifp = NULL;
   1660 			break;
   1661 		}
   1662 		/*
   1663 		 * The selected interface is identified by its local
   1664 		 * IP address.  Find the interface and confirm that
   1665 		 * it supports multicasting.
   1666 		 */
   1667 		ifp = ip_multicast_if(&addr, &ifindex);
   1668 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1669 			error = EADDRNOTAVAIL;
   1670 			break;
   1671 		}
   1672 		imo->imo_multicast_ifp = ifp;
   1673 		if (ifindex)
   1674 			imo->imo_multicast_addr = addr;
   1675 		else
   1676 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1677 		break;
   1678 
   1679 	case IP_MULTICAST_TTL:
   1680 		/*
   1681 		 * Set the IP time-to-live for outgoing multicast packets.
   1682 		 */
   1683 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
   1684 		break;
   1685 
   1686 	case IP_MULTICAST_LOOP:
   1687 		/*
   1688 		 * Set the loopback flag for outgoing multicast packets.
   1689 		 * Must be zero or one.
   1690 		 */
   1691 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
   1692 		break;
   1693 
   1694 	case IP_ADD_MEMBERSHIP:
   1695 		/*
   1696 		 * Add a multicast group membership.
   1697 		 * Group must be a valid IP multicast address.
   1698 		 */
   1699 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1700 			error = EINVAL;
   1701 			break;
   1702 		}
   1703 		mreq = mtod(m, struct ip_mreq *);
   1704 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1705 			error = EINVAL;
   1706 			break;
   1707 		}
   1708 		/*
   1709 		 * If no interface address was provided, use the interface of
   1710 		 * the route to the given multicast address.
   1711 		 */
   1712 		if (in_nullhost(mreq->imr_interface)) {
   1713 			struct rtentry *rt;
   1714 			union {
   1715 				struct sockaddr		dst;
   1716 				struct sockaddr_in	dst4;
   1717 			} u;
   1718 			struct route ro;
   1719 
   1720 			memset(&ro, 0, sizeof(ro));
   1721 
   1722 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1723 			rtcache_setdst(&ro, &u.dst);
   1724 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1725 			                                        : NULL;
   1726 			rtcache_free(&ro);
   1727 		} else {
   1728 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1729 		}
   1730 		/*
   1731 		 * See if we found an interface, and confirm that it
   1732 		 * supports multicast.
   1733 		 */
   1734 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1735 			error = EADDRNOTAVAIL;
   1736 			break;
   1737 		}
   1738 		/*
   1739 		 * See if the membership already exists or if all the
   1740 		 * membership slots are full.
   1741 		 */
   1742 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1743 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1744 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1745 				      mreq->imr_multiaddr))
   1746 				break;
   1747 		}
   1748 		if (i < imo->imo_num_memberships) {
   1749 			error = EADDRINUSE;
   1750 			break;
   1751 		}
   1752 		if (i == IP_MAX_MEMBERSHIPS) {
   1753 			error = ETOOMANYREFS;
   1754 			break;
   1755 		}
   1756 		/*
   1757 		 * Everything looks good; add a new record to the multicast
   1758 		 * address list for the given interface.
   1759 		 */
   1760 		if ((imo->imo_membership[i] =
   1761 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1762 			error = ENOBUFS;
   1763 			break;
   1764 		}
   1765 		++imo->imo_num_memberships;
   1766 		break;
   1767 
   1768 	case IP_DROP_MEMBERSHIP:
   1769 		/*
   1770 		 * Drop a multicast group membership.
   1771 		 * Group must be a valid IP multicast address.
   1772 		 */
   1773 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1774 			error = EINVAL;
   1775 			break;
   1776 		}
   1777 		mreq = mtod(m, struct ip_mreq *);
   1778 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1779 			error = EINVAL;
   1780 			break;
   1781 		}
   1782 		/*
   1783 		 * If an interface address was specified, get a pointer
   1784 		 * to its ifnet structure.
   1785 		 */
   1786 		if (in_nullhost(mreq->imr_interface))
   1787 			ifp = NULL;
   1788 		else {
   1789 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1790 			if (ifp == NULL) {
   1791 				error = EADDRNOTAVAIL;
   1792 				break;
   1793 			}
   1794 		}
   1795 		/*
   1796 		 * Find the membership in the membership array.
   1797 		 */
   1798 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1799 			if ((ifp == NULL ||
   1800 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1801 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1802 				       mreq->imr_multiaddr))
   1803 				break;
   1804 		}
   1805 		if (i == imo->imo_num_memberships) {
   1806 			error = EADDRNOTAVAIL;
   1807 			break;
   1808 		}
   1809 		/*
   1810 		 * Give up the multicast address record to which the
   1811 		 * membership points.
   1812 		 */
   1813 		in_delmulti(imo->imo_membership[i]);
   1814 		/*
   1815 		 * Remove the gap in the membership array.
   1816 		 */
   1817 		for (++i; i < imo->imo_num_memberships; ++i)
   1818 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1819 		--imo->imo_num_memberships;
   1820 		break;
   1821 
   1822 	default:
   1823 		error = EOPNOTSUPP;
   1824 		break;
   1825 	}
   1826 
   1827 	/*
   1828 	 * If all options have default values, no need to keep the mbuf.
   1829 	 */
   1830 	if (imo->imo_multicast_ifp == NULL &&
   1831 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1832 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1833 	    imo->imo_num_memberships == 0) {
   1834 		free(*imop, M_IPMOPTS);
   1835 		*imop = NULL;
   1836 	}
   1837 
   1838 	return (error);
   1839 }
   1840 
   1841 /*
   1842  * Return the IP multicast options in response to user getsockopt().
   1843  */
   1844 int
   1845 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
   1846 {
   1847 	u_char *ttl;
   1848 	u_char *loop;
   1849 	struct in_addr *addr;
   1850 	struct in_ifaddr *ia;
   1851 
   1852 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1853 
   1854 	switch (optname) {
   1855 
   1856 	case IP_MULTICAST_IF:
   1857 		addr = mtod(*mp, struct in_addr *);
   1858 		(*mp)->m_len = sizeof(struct in_addr);
   1859 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1860 			*addr = zeroin_addr;
   1861 		else if (imo->imo_multicast_addr.s_addr) {
   1862 			/* return the value user has set */
   1863 			*addr = imo->imo_multicast_addr;
   1864 		} else {
   1865 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1866 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1867 		}
   1868 		return (0);
   1869 
   1870 	case IP_MULTICAST_TTL:
   1871 		ttl = mtod(*mp, u_char *);
   1872 		(*mp)->m_len = 1;
   1873 		*ttl = imo ? imo->imo_multicast_ttl
   1874 			   : IP_DEFAULT_MULTICAST_TTL;
   1875 		return (0);
   1876 
   1877 	case IP_MULTICAST_LOOP:
   1878 		loop = mtod(*mp, u_char *);
   1879 		(*mp)->m_len = 1;
   1880 		*loop = imo ? imo->imo_multicast_loop
   1881 			    : IP_DEFAULT_MULTICAST_LOOP;
   1882 		return (0);
   1883 
   1884 	default:
   1885 		return (EOPNOTSUPP);
   1886 	}
   1887 }
   1888 
   1889 /*
   1890  * Discard the IP multicast options.
   1891  */
   1892 void
   1893 ip_freemoptions(struct ip_moptions *imo)
   1894 {
   1895 	int i;
   1896 
   1897 	if (imo != NULL) {
   1898 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1899 			in_delmulti(imo->imo_membership[i]);
   1900 		free(imo, M_IPMOPTS);
   1901 	}
   1902 }
   1903 
   1904 /*
   1905  * Routine called from ip_output() to loop back a copy of an IP multicast
   1906  * packet to the input queue of a specified interface.  Note that this
   1907  * calls the output routine of the loopback "driver", but with an interface
   1908  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1909  */
   1910 static void
   1911 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1912 {
   1913 	struct ip *ip;
   1914 	struct mbuf *copym;
   1915 
   1916 	copym = m_copypacket(m, M_DONTWAIT);
   1917 	if (copym != NULL
   1918 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1919 		copym = m_pullup(copym, sizeof(struct ip));
   1920 	if (copym == NULL)
   1921 		return;
   1922 	/*
   1923 	 * We don't bother to fragment if the IP length is greater
   1924 	 * than the interface's MTU.  Can this possibly matter?
   1925 	 */
   1926 	ip = mtod(copym, struct ip *);
   1927 
   1928 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1929 		in_delayed_cksum(copym);
   1930 		copym->m_pkthdr.csum_flags &=
   1931 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1932 	}
   1933 
   1934 	ip->ip_sum = 0;
   1935 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1936 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1937 }
   1938