Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.195
      1 /*	$NetBSD: ip_output.c,v 1.195 2008/04/23 06:09:04 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.195 2008/04/23 06:09:04 thorpej Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #include <sys/kauth.h>
    116 #ifdef FAST_IPSEC
    117 #include <sys/domain.h>
    118 #endif
    119 #include <sys/systm.h>
    120 #include <sys/proc.h>
    121 
    122 #include <net/if.h>
    123 #include <net/route.h>
    124 #include <net/pfil.h>
    125 
    126 #include <netinet/in.h>
    127 #include <netinet/in_systm.h>
    128 #include <netinet/ip.h>
    129 #include <netinet/in_pcb.h>
    130 #include <netinet/in_var.h>
    131 #include <netinet/ip_var.h>
    132 #include <netinet/ip_private.h>
    133 #include <netinet/in_offload.h>
    134 
    135 #ifdef MROUTING
    136 #include <netinet/ip_mroute.h>
    137 #endif
    138 
    139 #include <machine/stdarg.h>
    140 
    141 #ifdef IPSEC
    142 #include <netinet6/ipsec.h>
    143 #include <netinet6/ipsec_private.h>
    144 #include <netkey/key.h>
    145 #include <netkey/key_debug.h>
    146 #endif /*IPSEC*/
    147 
    148 #ifdef FAST_IPSEC
    149 #include <netipsec/ipsec.h>
    150 #include <netipsec/key.h>
    151 #include <netipsec/xform.h>
    152 #endif	/* FAST_IPSEC*/
    153 
    154 #ifdef IPSEC_NAT_T
    155 #include <netinet/udp.h>
    156 #endif
    157 
    158 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    159 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    160 static void ip_mloopback(struct ifnet *, struct mbuf *,
    161     const struct sockaddr_in *);
    162 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
    163 
    164 #ifdef PFIL_HOOKS
    165 extern struct pfil_head inet_pfil_hook;			/* XXX */
    166 #endif
    167 
    168 int	ip_do_loopback_cksum = 0;
    169 
    170 /*
    171  * IP output.  The packet in mbuf chain m contains a skeletal IP
    172  * header (with len, off, ttl, proto, tos, src, dst).
    173  * The mbuf chain containing the packet will be freed.
    174  * The mbuf opt, if present, will not be freed.
    175  */
    176 int
    177 ip_output(struct mbuf *m0, ...)
    178 {
    179 	struct rtentry *rt;
    180 	struct ip *ip;
    181 	struct ifnet *ifp;
    182 	struct mbuf *m = m0;
    183 	int hlen = sizeof (struct ip);
    184 	int len, error = 0;
    185 	struct route iproute;
    186 	const struct sockaddr_in *dst;
    187 	struct in_ifaddr *ia;
    188 	struct ifaddr *xifa;
    189 	struct mbuf *opt;
    190 	struct route *ro;
    191 	int flags, sw_csum;
    192 	int *mtu_p;
    193 	u_long mtu;
    194 	struct ip_moptions *imo;
    195 	struct socket *so;
    196 	va_list ap;
    197 #ifdef IPSEC_NAT_T
    198 	int natt_frag = 0;
    199 #endif
    200 #ifdef IPSEC
    201 	struct secpolicy *sp = NULL;
    202 #endif /*IPSEC*/
    203 #ifdef FAST_IPSEC
    204 	struct inpcb *inp;
    205 	struct secpolicy *sp = NULL;
    206 	int s;
    207 #endif
    208 	u_int16_t ip_len;
    209 	union {
    210 		struct sockaddr		dst;
    211 		struct sockaddr_in	dst4;
    212 	} u;
    213 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    214 					 * to the nexthop
    215 					 */
    216 
    217 	len = 0;
    218 	va_start(ap, m0);
    219 	opt = va_arg(ap, struct mbuf *);
    220 	ro = va_arg(ap, struct route *);
    221 	flags = va_arg(ap, int);
    222 	imo = va_arg(ap, struct ip_moptions *);
    223 	so = va_arg(ap, struct socket *);
    224 	if (flags & IP_RETURNMTU)
    225 		mtu_p = va_arg(ap, int *);
    226 	else
    227 		mtu_p = NULL;
    228 	va_end(ap);
    229 
    230 	MCLAIM(m, &ip_tx_mowner);
    231 #ifdef FAST_IPSEC
    232 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    233 		inp = (struct inpcb *)so->so_pcb;
    234 	else
    235 		inp = NULL;
    236 #endif /* FAST_IPSEC */
    237 
    238 #ifdef	DIAGNOSTIC
    239 	if ((m->m_flags & M_PKTHDR) == 0)
    240 		panic("ip_output: no HDR");
    241 
    242 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    243 		panic("ip_output: IPv6 checksum offload flags: %d",
    244 		    m->m_pkthdr.csum_flags);
    245 	}
    246 
    247 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    248 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    249 		panic("ip_output: conflicting checksum offload flags: %d",
    250 		    m->m_pkthdr.csum_flags);
    251 	}
    252 #endif
    253 	if (opt) {
    254 		m = ip_insertoptions(m, opt, &len);
    255 		if (len >= sizeof(struct ip))
    256 			hlen = len;
    257 	}
    258 	ip = mtod(m, struct ip *);
    259 	/*
    260 	 * Fill in IP header.
    261 	 */
    262 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    263 		ip->ip_v = IPVERSION;
    264 		ip->ip_off = htons(0);
    265 		/* ip->ip_id filled in after we find out source ia */
    266 		ip->ip_hl = hlen >> 2;
    267 		IP_STATINC(IP_STAT_LOCALOUT);
    268 	} else {
    269 		hlen = ip->ip_hl << 2;
    270 	}
    271 	/*
    272 	 * Route packet.
    273 	 */
    274 	memset(&iproute, 0, sizeof(iproute));
    275 	if (ro == NULL)
    276 		ro = &iproute;
    277 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    278 	dst = satocsin(rtcache_getdst(ro));
    279 	/*
    280 	 * If there is a cached route,
    281 	 * check that it is to the same destination
    282 	 * and is still up.  If not, free it and try again.
    283 	 * The address family should also be checked in case of sharing the
    284 	 * cache with IPv6.
    285 	 */
    286 	if (dst == NULL)
    287 		;
    288 	else if (dst->sin_family != AF_INET ||
    289 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
    290 		rtcache_free(ro);
    291 
    292 	if ((rt = rtcache_validate(ro)) == NULL &&
    293 	    (rt = rtcache_update(ro, 1)) == NULL) {
    294 		dst = &u.dst4;
    295 		rtcache_setdst(ro, &u.dst);
    296 	}
    297 	/*
    298 	 * If routing to interface only,
    299 	 * short circuit routing lookup.
    300 	 */
    301 	if (flags & IP_ROUTETOIF) {
    302 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    303 			IP_STATINC(IP_STAT_NOROUTE);
    304 			error = ENETUNREACH;
    305 			goto bad;
    306 		}
    307 		ifp = ia->ia_ifp;
    308 		mtu = ifp->if_mtu;
    309 		ip->ip_ttl = 1;
    310 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    311 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    312 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    313 		ifp = imo->imo_multicast_ifp;
    314 		mtu = ifp->if_mtu;
    315 		IFP_TO_IA(ifp, ia);
    316 	} else {
    317 		if (rt == NULL)
    318 			rt = rtcache_init(ro);
    319 		if (rt == NULL) {
    320 			IP_STATINC(IP_STAT_NOROUTE);
    321 			error = EHOSTUNREACH;
    322 			goto bad;
    323 		}
    324 		ia = ifatoia(rt->rt_ifa);
    325 		ifp = rt->rt_ifp;
    326 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    327 			mtu = ifp->if_mtu;
    328 		rt->rt_use++;
    329 		if (rt->rt_flags & RTF_GATEWAY)
    330 			dst = satosin(rt->rt_gateway);
    331 	}
    332 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    333 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    334 		struct in_multi *inm;
    335 
    336 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    337 			M_BCAST : M_MCAST;
    338 		/*
    339 		 * See if the caller provided any multicast options
    340 		 */
    341 		if (imo != NULL)
    342 			ip->ip_ttl = imo->imo_multicast_ttl;
    343 		else
    344 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    345 
    346 		/*
    347 		 * if we don't know the outgoing ifp yet, we can't generate
    348 		 * output
    349 		 */
    350 		if (!ifp) {
    351 			IP_STATINC(IP_STAT_NOROUTE);
    352 			error = ENETUNREACH;
    353 			goto bad;
    354 		}
    355 
    356 		/*
    357 		 * If the packet is multicast or broadcast, confirm that
    358 		 * the outgoing interface can transmit it.
    359 		 */
    360 		if (((m->m_flags & M_MCAST) &&
    361 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    362 		    ((m->m_flags & M_BCAST) &&
    363 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    364 			IP_STATINC(IP_STAT_NOROUTE);
    365 			error = ENETUNREACH;
    366 			goto bad;
    367 		}
    368 		/*
    369 		 * If source address not specified yet, use an address
    370 		 * of outgoing interface.
    371 		 */
    372 		if (in_nullhost(ip->ip_src)) {
    373 			struct in_ifaddr *xia;
    374 
    375 			IFP_TO_IA(ifp, xia);
    376 			if (!xia) {
    377 				error = EADDRNOTAVAIL;
    378 				goto bad;
    379 			}
    380 			xifa = &xia->ia_ifa;
    381 			if (xifa->ifa_getifa != NULL) {
    382 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    383 			}
    384 			ip->ip_src = xia->ia_addr.sin_addr;
    385 		}
    386 
    387 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    388 		if (inm != NULL &&
    389 		   (imo == NULL || imo->imo_multicast_loop)) {
    390 			/*
    391 			 * If we belong to the destination multicast group
    392 			 * on the outgoing interface, and the caller did not
    393 			 * forbid loopback, loop back a copy.
    394 			 */
    395 			ip_mloopback(ifp, m, &u.dst4);
    396 		}
    397 #ifdef MROUTING
    398 		else {
    399 			/*
    400 			 * If we are acting as a multicast router, perform
    401 			 * multicast forwarding as if the packet had just
    402 			 * arrived on the interface to which we are about
    403 			 * to send.  The multicast forwarding function
    404 			 * recursively calls this function, using the
    405 			 * IP_FORWARDING flag to prevent infinite recursion.
    406 			 *
    407 			 * Multicasts that are looped back by ip_mloopback(),
    408 			 * above, will be forwarded by the ip_input() routine,
    409 			 * if necessary.
    410 			 */
    411 			extern struct socket *ip_mrouter;
    412 
    413 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    414 				if (ip_mforward(m, ifp) != 0) {
    415 					m_freem(m);
    416 					goto done;
    417 				}
    418 			}
    419 		}
    420 #endif
    421 		/*
    422 		 * Multicasts with a time-to-live of zero may be looped-
    423 		 * back, above, but must not be transmitted on a network.
    424 		 * Also, multicasts addressed to the loopback interface
    425 		 * are not sent -- the above call to ip_mloopback() will
    426 		 * loop back a copy if this host actually belongs to the
    427 		 * destination group on the loopback interface.
    428 		 */
    429 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    430 			m_freem(m);
    431 			goto done;
    432 		}
    433 
    434 		goto sendit;
    435 	}
    436 	/*
    437 	 * If source address not specified yet, use address
    438 	 * of outgoing interface.
    439 	 */
    440 	if (in_nullhost(ip->ip_src)) {
    441 		xifa = &ia->ia_ifa;
    442 		if (xifa->ifa_getifa != NULL)
    443 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    444 		ip->ip_src = ia->ia_addr.sin_addr;
    445 	}
    446 
    447 	/*
    448 	 * packets with Class-D address as source are not valid per
    449 	 * RFC 1112
    450 	 */
    451 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    452 		IP_STATINC(IP_STAT_ODROPPED);
    453 		error = EADDRNOTAVAIL;
    454 		goto bad;
    455 	}
    456 
    457 	/*
    458 	 * Look for broadcast address and
    459 	 * and verify user is allowed to send
    460 	 * such a packet.
    461 	 */
    462 	if (in_broadcast(dst->sin_addr, ifp)) {
    463 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    464 			error = EADDRNOTAVAIL;
    465 			goto bad;
    466 		}
    467 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    468 			error = EACCES;
    469 			goto bad;
    470 		}
    471 		/* don't allow broadcast messages to be fragmented */
    472 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    473 			error = EMSGSIZE;
    474 			goto bad;
    475 		}
    476 		m->m_flags |= M_BCAST;
    477 	} else
    478 		m->m_flags &= ~M_BCAST;
    479 
    480 sendit:
    481 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    482 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    483 			ip->ip_id = 0;
    484 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    485 			ip->ip_id = ip_newid(ia);
    486 		} else {
    487 
    488 			/*
    489 			 * TSO capable interfaces (typically?) increment
    490 			 * ip_id for each segment.
    491 			 * "allocate" enough ids here to increase the chance
    492 			 * for them to be unique.
    493 			 *
    494 			 * note that the following calculation is not
    495 			 * needed to be precise.  wasting some ip_id is fine.
    496 			 */
    497 
    498 			unsigned int segsz = m->m_pkthdr.segsz;
    499 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    500 			unsigned int num = howmany(datasz, segsz);
    501 
    502 			ip->ip_id = ip_newid_range(ia, num);
    503 		}
    504 	}
    505 	/*
    506 	 * If we're doing Path MTU Discovery, we need to set DF unless
    507 	 * the route's MTU is locked.
    508 	 */
    509 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    510 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    511 		ip->ip_off |= htons(IP_DF);
    512 
    513 	/* Remember the current ip_len */
    514 	ip_len = ntohs(ip->ip_len);
    515 
    516 #ifdef IPSEC
    517 	/* get SP for this packet */
    518 	if (so == NULL)
    519 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    520 		    flags, &error);
    521 	else {
    522 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    523 					 IPSEC_DIR_OUTBOUND))
    524 			goto skip_ipsec;
    525 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    526 	}
    527 
    528 	if (sp == NULL) {
    529 		IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
    530 		goto bad;
    531 	}
    532 
    533 	error = 0;
    534 
    535 	/* check policy */
    536 	switch (sp->policy) {
    537 	case IPSEC_POLICY_DISCARD:
    538 		/*
    539 		 * This packet is just discarded.
    540 		 */
    541 		IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
    542 		goto bad;
    543 
    544 	case IPSEC_POLICY_BYPASS:
    545 	case IPSEC_POLICY_NONE:
    546 		/* no need to do IPsec. */
    547 		goto skip_ipsec;
    548 
    549 	case IPSEC_POLICY_IPSEC:
    550 		if (sp->req == NULL) {
    551 			/* XXX should be panic ? */
    552 			printf("ip_output: No IPsec request specified.\n");
    553 			error = EINVAL;
    554 			goto bad;
    555 		}
    556 		break;
    557 
    558 	case IPSEC_POLICY_ENTRUST:
    559 	default:
    560 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    561 	}
    562 
    563 #ifdef IPSEC_NAT_T
    564 	/*
    565 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    566 	 * we'll do it on each fragmented packet.
    567 	 */
    568 	if (sp->req->sav &&
    569 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    570 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    571 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    572 			natt_frag = 1;
    573 			mtu = sp->req->sav->esp_frag;
    574 			goto skip_ipsec;
    575 		}
    576 	}
    577 #endif /* IPSEC_NAT_T */
    578 
    579 	/*
    580 	 * ipsec4_output() expects ip_len and ip_off in network
    581 	 * order.  They have been set to network order above.
    582 	 */
    583 
    584     {
    585 	struct ipsec_output_state state;
    586 	bzero(&state, sizeof(state));
    587 	state.m = m;
    588 	if (flags & IP_ROUTETOIF) {
    589 		state.ro = &iproute;
    590 		memset(&iproute, 0, sizeof(iproute));
    591 	} else
    592 		state.ro = ro;
    593 	state.dst = sintocsa(dst);
    594 
    595 	/*
    596 	 * We can't defer the checksum of payload data if
    597 	 * we're about to encrypt/authenticate it.
    598 	 *
    599 	 * XXX When we support crypto offloading functions of
    600 	 * XXX network interfaces, we need to reconsider this,
    601 	 * XXX since it's likely that they'll support checksumming,
    602 	 * XXX as well.
    603 	 */
    604 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    605 		in_delayed_cksum(m);
    606 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    607 	}
    608 
    609 	error = ipsec4_output(&state, sp, flags);
    610 
    611 	m = state.m;
    612 	if (flags & IP_ROUTETOIF) {
    613 		/*
    614 		 * if we have tunnel mode SA, we may need to ignore
    615 		 * IP_ROUTETOIF.
    616 		 */
    617 		if (state.ro != &iproute ||
    618 		    rtcache_validate(state.ro) != NULL) {
    619 			flags &= ~IP_ROUTETOIF;
    620 			ro = state.ro;
    621 		}
    622 	} else
    623 		ro = state.ro;
    624 	dst = satocsin(state.dst);
    625 	if (error) {
    626 		/* mbuf is already reclaimed in ipsec4_output. */
    627 		m0 = NULL;
    628 		switch (error) {
    629 		case EHOSTUNREACH:
    630 		case ENETUNREACH:
    631 		case EMSGSIZE:
    632 		case ENOBUFS:
    633 		case ENOMEM:
    634 			break;
    635 		default:
    636 			printf("ip4_output (ipsec): error code %d\n", error);
    637 			/*fall through*/
    638 		case ENOENT:
    639 			/* don't show these error codes to the user */
    640 			error = 0;
    641 			break;
    642 		}
    643 		goto bad;
    644 	}
    645 
    646 	/* be sure to update variables that are affected by ipsec4_output() */
    647 	ip = mtod(m, struct ip *);
    648 	hlen = ip->ip_hl << 2;
    649 	ip_len = ntohs(ip->ip_len);
    650 
    651 	if ((rt = rtcache_validate(ro)) == NULL) {
    652 		if ((flags & IP_ROUTETOIF) == 0) {
    653 			printf("ip_output: "
    654 				"can't update route after IPsec processing\n");
    655 			error = EHOSTUNREACH;	/*XXX*/
    656 			goto bad;
    657 		}
    658 	} else {
    659 		/* nobody uses ia beyond here */
    660 		if (state.encap) {
    661 			ifp = rt->rt_ifp;
    662 			if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    663 				mtu = ifp->if_mtu;
    664 		}
    665 	}
    666     }
    667 skip_ipsec:
    668 #endif /*IPSEC*/
    669 #ifdef FAST_IPSEC
    670 	/*
    671 	 * Check the security policy (SP) for the packet and, if
    672 	 * required, do IPsec-related processing.  There are two
    673 	 * cases here; the first time a packet is sent through
    674 	 * it will be untagged and handled by ipsec4_checkpolicy.
    675 	 * If the packet is resubmitted to ip_output (e.g. after
    676 	 * AH, ESP, etc. processing), there will be a tag to bypass
    677 	 * the lookup and related policy checking.
    678 	 */
    679 	if (!ipsec_outdone(m)) {
    680 		s = splsoftnet();
    681 		if (inp != NULL &&
    682 				IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    683 			goto spd_done;
    684 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    685 				&error, inp);
    686 		/*
    687 		 * There are four return cases:
    688 		 *    sp != NULL	 	    apply IPsec policy
    689 		 *    sp == NULL, error == 0	    no IPsec handling needed
    690 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
    691 		 *    sp == NULL, error != 0	    discard packet, report error
    692 		 */
    693 		if (sp != NULL) {
    694 #ifdef IPSEC_NAT_T
    695 			/*
    696 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
    697 			 * we'll do it on each fragmented packet.
    698 			 */
    699 			if (sp->req->sav &&
    700 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    701 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    702 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    703 					natt_frag = 1;
    704 					mtu = sp->req->sav->esp_frag;
    705 					splx(s);
    706 					goto spd_done;
    707 				}
    708 			}
    709 #endif /* IPSEC_NAT_T */
    710 
    711 			/*
    712 			 * Do delayed checksums now because we send before
    713 			 * this is done in the normal processing path.
    714 			 */
    715 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    716 				in_delayed_cksum(m);
    717 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    718 			}
    719 
    720 #ifdef __FreeBSD__
    721 			ip->ip_len = htons(ip->ip_len);
    722 			ip->ip_off = htons(ip->ip_off);
    723 #endif
    724 
    725 			/* NB: callee frees mbuf */
    726 			error = ipsec4_process_packet(m, sp->req, flags, 0);
    727 			/*
    728 			 * Preserve KAME behaviour: ENOENT can be returned
    729 			 * when an SA acquire is in progress.  Don't propagate
    730 			 * this to user-level; it confuses applications.
    731 			 *
    732 			 * XXX this will go away when the SADB is redone.
    733 			 */
    734 			if (error == ENOENT)
    735 				error = 0;
    736 			splx(s);
    737 			goto done;
    738 		} else {
    739 			splx(s);
    740 
    741 			if (error != 0) {
    742 				/*
    743 				 * Hack: -EINVAL is used to signal that a packet
    744 				 * should be silently discarded.  This is typically
    745 				 * because we asked key management for an SA and
    746 				 * it was delayed (e.g. kicked up to IKE).
    747 				 */
    748 				if (error == -EINVAL)
    749 					error = 0;
    750 				goto bad;
    751 			} else {
    752 				/* No IPsec processing for this packet. */
    753 			}
    754 		}
    755 	}
    756 spd_done:
    757 #endif /* FAST_IPSEC */
    758 
    759 #ifdef PFIL_HOOKS
    760 	/*
    761 	 * Run through list of hooks for output packets.
    762 	 */
    763 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    764 		goto done;
    765 	if (m == NULL)
    766 		goto done;
    767 
    768 	ip = mtod(m, struct ip *);
    769 	hlen = ip->ip_hl << 2;
    770 	ip_len = ntohs(ip->ip_len);
    771 #endif /* PFIL_HOOKS */
    772 
    773 	m->m_pkthdr.csum_data |= hlen << 16;
    774 
    775 #if IFA_STATS
    776 	/*
    777 	 * search for the source address structure to
    778 	 * maintain output statistics.
    779 	 */
    780 	INADDR_TO_IA(ip->ip_src, ia);
    781 #endif
    782 
    783 	/* Maybe skip checksums on loopback interfaces. */
    784 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    785 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    786 	}
    787 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    788 	/*
    789 	 * If small enough for mtu of path, or if using TCP segmentation
    790 	 * offload, can just send directly.
    791 	 */
    792 	if (ip_len <= mtu ||
    793 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    794 #if IFA_STATS
    795 		if (ia)
    796 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    797 #endif
    798 		/*
    799 		 * Always initialize the sum to 0!  Some HW assisted
    800 		 * checksumming requires this.
    801 		 */
    802 		ip->ip_sum = 0;
    803 
    804 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    805 			/*
    806 			 * Perform any checksums that the hardware can't do
    807 			 * for us.
    808 			 *
    809 			 * XXX Does any hardware require the {th,uh}_sum
    810 			 * XXX fields to be 0?
    811 			 */
    812 			if (sw_csum & M_CSUM_IPv4) {
    813 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    814 				ip->ip_sum = in_cksum(m, hlen);
    815 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    816 			}
    817 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    818 				if (IN_NEED_CHECKSUM(ifp,
    819 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    820 					in_delayed_cksum(m);
    821 				}
    822 				m->m_pkthdr.csum_flags &=
    823 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    824 			}
    825 		}
    826 
    827 #ifdef IPSEC
    828 		/* clean ipsec history once it goes out of the node */
    829 		ipsec_delaux(m);
    830 #endif
    831 
    832 		if (__predict_true(
    833 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    834 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    835 			error =
    836 			    (*ifp->if_output)(ifp, m,
    837 				(m->m_flags & M_MCAST) ?
    838 				    sintocsa(rdst) : sintocsa(dst),
    839 				rt);
    840 		} else {
    841 			error =
    842 			    ip_tso_output(ifp, m,
    843 				(m->m_flags & M_MCAST) ?
    844 				    sintocsa(rdst) : sintocsa(dst),
    845 				rt);
    846 		}
    847 		goto done;
    848 	}
    849 
    850 	/*
    851 	 * We can't use HW checksumming if we're about to
    852 	 * to fragment the packet.
    853 	 *
    854 	 * XXX Some hardware can do this.
    855 	 */
    856 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    857 		if (IN_NEED_CHECKSUM(ifp,
    858 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    859 			in_delayed_cksum(m);
    860 		}
    861 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    862 	}
    863 
    864 	/*
    865 	 * Too large for interface; fragment if possible.
    866 	 * Must be able to put at least 8 bytes per fragment.
    867 	 */
    868 	if (ntohs(ip->ip_off) & IP_DF) {
    869 		if (flags & IP_RETURNMTU)
    870 			*mtu_p = mtu;
    871 		error = EMSGSIZE;
    872 		IP_STATINC(IP_STAT_CANTFRAG);
    873 		goto bad;
    874 	}
    875 
    876 	error = ip_fragment(m, ifp, mtu);
    877 	if (error) {
    878 		m = NULL;
    879 		goto bad;
    880 	}
    881 
    882 	for (; m; m = m0) {
    883 		m0 = m->m_nextpkt;
    884 		m->m_nextpkt = 0;
    885 		if (error == 0) {
    886 #if IFA_STATS
    887 			if (ia)
    888 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    889 				    ntohs(ip->ip_len);
    890 #endif
    891 #ifdef IPSEC
    892 			/* clean ipsec history once it goes out of the node */
    893 			ipsec_delaux(m);
    894 #endif /* IPSEC */
    895 
    896 #ifdef IPSEC_NAT_T
    897 			/*
    898 			 * If we get there, the packet has not been handeld by
    899 			 * IPSec whereas it should have. Now that it has been
    900 			 * fragmented, re-inject it in ip_output so that IPsec
    901 			 * processing can occur.
    902 			 */
    903 			if (natt_frag) {
    904 				error = ip_output(m, opt,
    905 				    ro, flags, imo, so, mtu_p);
    906 			} else
    907 #endif /* IPSEC_NAT_T */
    908 			{
    909 				KASSERT((m->m_pkthdr.csum_flags &
    910 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    911 				error = (*ifp->if_output)(ifp, m,
    912 				    (m->m_flags & M_MCAST) ?
    913 					sintocsa(rdst) : sintocsa(dst),
    914 				    rt);
    915 			}
    916 		} else
    917 			m_freem(m);
    918 	}
    919 
    920 	if (error == 0)
    921 		IP_STATINC(IP_STAT_FRAGMENTED);
    922 done:
    923 	rtcache_free(&iproute);
    924 
    925 #ifdef IPSEC
    926 	if (sp != NULL) {
    927 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    928 			printf("DP ip_output call free SP:%p\n", sp));
    929 		key_freesp(sp);
    930 	}
    931 #endif /* IPSEC */
    932 #ifdef FAST_IPSEC
    933 	if (sp != NULL)
    934 		KEY_FREESP(&sp);
    935 #endif /* FAST_IPSEC */
    936 
    937 	return (error);
    938 bad:
    939 	m_freem(m);
    940 	goto done;
    941 }
    942 
    943 int
    944 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    945 {
    946 	struct ip *ip, *mhip;
    947 	struct mbuf *m0;
    948 	int len, hlen, off;
    949 	int mhlen, firstlen;
    950 	struct mbuf **mnext;
    951 	int sw_csum = m->m_pkthdr.csum_flags;
    952 	int fragments = 0;
    953 	int s;
    954 	int error = 0;
    955 
    956 	ip = mtod(m, struct ip *);
    957 	hlen = ip->ip_hl << 2;
    958 	if (ifp != NULL)
    959 		sw_csum &= ~ifp->if_csum_flags_tx;
    960 
    961 	len = (mtu - hlen) &~ 7;
    962 	if (len < 8) {
    963 		m_freem(m);
    964 		return (EMSGSIZE);
    965 	}
    966 
    967 	firstlen = len;
    968 	mnext = &m->m_nextpkt;
    969 
    970 	/*
    971 	 * Loop through length of segment after first fragment,
    972 	 * make new header and copy data of each part and link onto chain.
    973 	 */
    974 	m0 = m;
    975 	mhlen = sizeof (struct ip);
    976 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    977 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    978 		if (m == 0) {
    979 			error = ENOBUFS;
    980 			IP_STATINC(IP_STAT_ODROPPED);
    981 			goto sendorfree;
    982 		}
    983 		MCLAIM(m, m0->m_owner);
    984 		*mnext = m;
    985 		mnext = &m->m_nextpkt;
    986 		m->m_data += max_linkhdr;
    987 		mhip = mtod(m, struct ip *);
    988 		*mhip = *ip;
    989 		/* we must inherit MCAST and BCAST flags */
    990 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    991 		if (hlen > sizeof (struct ip)) {
    992 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    993 			mhip->ip_hl = mhlen >> 2;
    994 		}
    995 		m->m_len = mhlen;
    996 		mhip->ip_off = ((off - hlen) >> 3) +
    997 		    (ntohs(ip->ip_off) & ~IP_MF);
    998 		if (ip->ip_off & htons(IP_MF))
    999 			mhip->ip_off |= IP_MF;
   1000 		if (off + len >= ntohs(ip->ip_len))
   1001 			len = ntohs(ip->ip_len) - off;
   1002 		else
   1003 			mhip->ip_off |= IP_MF;
   1004 		HTONS(mhip->ip_off);
   1005 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
   1006 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
   1007 		if (m->m_next == 0) {
   1008 			error = ENOBUFS;	/* ??? */
   1009 			IP_STATINC(IP_STAT_ODROPPED);
   1010 			goto sendorfree;
   1011 		}
   1012 		m->m_pkthdr.len = mhlen + len;
   1013 		m->m_pkthdr.rcvif = (struct ifnet *)0;
   1014 		mhip->ip_sum = 0;
   1015 		if (sw_csum & M_CSUM_IPv4) {
   1016 			mhip->ip_sum = in_cksum(m, mhlen);
   1017 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1018 		} else {
   1019 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1020 			m->m_pkthdr.csum_data |= mhlen << 16;
   1021 		}
   1022 		IP_STATINC(IP_STAT_OFRAGMENTS);
   1023 		fragments++;
   1024 	}
   1025 	/*
   1026 	 * Update first fragment by trimming what's been copied out
   1027 	 * and updating header, then send each fragment (in order).
   1028 	 */
   1029 	m = m0;
   1030 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1031 	m->m_pkthdr.len = hlen + firstlen;
   1032 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1033 	ip->ip_off |= htons(IP_MF);
   1034 	ip->ip_sum = 0;
   1035 	if (sw_csum & M_CSUM_IPv4) {
   1036 		ip->ip_sum = in_cksum(m, hlen);
   1037 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1038 	} else {
   1039 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
   1040 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1041 			sizeof(struct ip));
   1042 	}
   1043 sendorfree:
   1044 	/*
   1045 	 * If there is no room for all the fragments, don't queue
   1046 	 * any of them.
   1047 	 */
   1048 	if (ifp != NULL) {
   1049 		s = splnet();
   1050 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1051 		    error == 0) {
   1052 			error = ENOBUFS;
   1053 			IP_STATINC(IP_STAT_ODROPPED);
   1054 			IFQ_INC_DROPS(&ifp->if_snd);
   1055 		}
   1056 		splx(s);
   1057 	}
   1058 	if (error) {
   1059 		for (m = m0; m; m = m0) {
   1060 			m0 = m->m_nextpkt;
   1061 			m->m_nextpkt = NULL;
   1062 			m_freem(m);
   1063 		}
   1064 	}
   1065 	return (error);
   1066 }
   1067 
   1068 /*
   1069  * Process a delayed payload checksum calculation.
   1070  */
   1071 void
   1072 in_delayed_cksum(struct mbuf *m)
   1073 {
   1074 	struct ip *ip;
   1075 	u_int16_t csum, offset;
   1076 
   1077 	ip = mtod(m, struct ip *);
   1078 	offset = ip->ip_hl << 2;
   1079 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1080 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1081 		csum = 0xffff;
   1082 
   1083 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1084 
   1085 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1086 		/* This happen when ip options were inserted
   1087 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1088 		    m->m_len, offset, ip->ip_p);
   1089 		 */
   1090 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
   1091 	} else
   1092 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
   1093 }
   1094 
   1095 /*
   1096  * Determine the maximum length of the options to be inserted;
   1097  * we would far rather allocate too much space rather than too little.
   1098  */
   1099 
   1100 u_int
   1101 ip_optlen(struct inpcb *inp)
   1102 {
   1103 	struct mbuf *m = inp->inp_options;
   1104 
   1105 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1106 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1107 	else
   1108 		return 0;
   1109 }
   1110 
   1111 
   1112 /*
   1113  * Insert IP options into preformed packet.
   1114  * Adjust IP destination as required for IP source routing,
   1115  * as indicated by a non-zero in_addr at the start of the options.
   1116  */
   1117 static struct mbuf *
   1118 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1119 {
   1120 	struct ipoption *p = mtod(opt, struct ipoption *);
   1121 	struct mbuf *n;
   1122 	struct ip *ip = mtod(m, struct ip *);
   1123 	unsigned optlen;
   1124 
   1125 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1126 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1127 		return (m);		/* XXX should fail */
   1128 	if (!in_nullhost(p->ipopt_dst))
   1129 		ip->ip_dst = p->ipopt_dst;
   1130 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1131 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1132 		if (n == 0)
   1133 			return (m);
   1134 		MCLAIM(n, m->m_owner);
   1135 		M_MOVE_PKTHDR(n, m);
   1136 		m->m_len -= sizeof(struct ip);
   1137 		m->m_data += sizeof(struct ip);
   1138 		n->m_next = m;
   1139 		m = n;
   1140 		m->m_len = optlen + sizeof(struct ip);
   1141 		m->m_data += max_linkhdr;
   1142 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1143 	} else {
   1144 		m->m_data -= optlen;
   1145 		m->m_len += optlen;
   1146 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1147 	}
   1148 	m->m_pkthdr.len += optlen;
   1149 	ip = mtod(m, struct ip *);
   1150 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1151 	*phlen = sizeof(struct ip) + optlen;
   1152 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1153 	return (m);
   1154 }
   1155 
   1156 /*
   1157  * Copy options from ip to jp,
   1158  * omitting those not copied during fragmentation.
   1159  */
   1160 int
   1161 ip_optcopy(struct ip *ip, struct ip *jp)
   1162 {
   1163 	u_char *cp, *dp;
   1164 	int opt, optlen, cnt;
   1165 
   1166 	cp = (u_char *)(ip + 1);
   1167 	dp = (u_char *)(jp + 1);
   1168 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1169 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1170 		opt = cp[0];
   1171 		if (opt == IPOPT_EOL)
   1172 			break;
   1173 		if (opt == IPOPT_NOP) {
   1174 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1175 			*dp++ = IPOPT_NOP;
   1176 			optlen = 1;
   1177 			continue;
   1178 		}
   1179 #ifdef DIAGNOSTIC
   1180 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1181 			panic("malformed IPv4 option passed to ip_optcopy");
   1182 #endif
   1183 		optlen = cp[IPOPT_OLEN];
   1184 #ifdef DIAGNOSTIC
   1185 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1186 			panic("malformed IPv4 option passed to ip_optcopy");
   1187 #endif
   1188 		/* bogus lengths should have been caught by ip_dooptions */
   1189 		if (optlen > cnt)
   1190 			optlen = cnt;
   1191 		if (IPOPT_COPIED(opt)) {
   1192 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1193 			dp += optlen;
   1194 		}
   1195 	}
   1196 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1197 		*dp++ = IPOPT_EOL;
   1198 	return (optlen);
   1199 }
   1200 
   1201 /*
   1202  * IP socket option processing.
   1203  */
   1204 int
   1205 ip_ctloutput(int op, struct socket *so, int level, int optname,
   1206     struct mbuf **mp)
   1207 {
   1208 	struct inpcb *inp = sotoinpcb(so);
   1209 	struct mbuf *m = *mp;
   1210 	int optval = 0;
   1211 	int error = 0;
   1212 #if defined(IPSEC) || defined(FAST_IPSEC)
   1213 	struct lwp *l = curlwp;	/*XXX*/
   1214 #endif
   1215 
   1216 	if (level != IPPROTO_IP) {
   1217 		if (op == PRCO_SETOPT && *mp)
   1218 			(void) m_free(*mp);
   1219 		if (level == SOL_SOCKET && optname == SO_NOHEADER)
   1220 			return 0;
   1221 		return ENOPROTOOPT;
   1222 	}
   1223 
   1224 	switch (op) {
   1225 
   1226 	case PRCO_SETOPT:
   1227 		switch (optname) {
   1228 		case IP_OPTIONS:
   1229 #ifdef notyet
   1230 		case IP_RETOPTS:
   1231 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1232 #else
   1233 			return (ip_pcbopts(&inp->inp_options, m));
   1234 #endif
   1235 
   1236 		case IP_TOS:
   1237 		case IP_TTL:
   1238 		case IP_RECVOPTS:
   1239 		case IP_RECVRETOPTS:
   1240 		case IP_RECVDSTADDR:
   1241 		case IP_RECVIF:
   1242 			if (m == NULL || m->m_len != sizeof(int))
   1243 				error = EINVAL;
   1244 			else {
   1245 				optval = *mtod(m, int *);
   1246 				switch (optname) {
   1247 
   1248 				case IP_TOS:
   1249 					inp->inp_ip.ip_tos = optval;
   1250 					break;
   1251 
   1252 				case IP_TTL:
   1253 					inp->inp_ip.ip_ttl = optval;
   1254 					break;
   1255 #define	OPTSET(bit) \
   1256 	if (optval) \
   1257 		inp->inp_flags |= bit; \
   1258 	else \
   1259 		inp->inp_flags &= ~bit;
   1260 
   1261 				case IP_RECVOPTS:
   1262 					OPTSET(INP_RECVOPTS);
   1263 					break;
   1264 
   1265 				case IP_RECVRETOPTS:
   1266 					OPTSET(INP_RECVRETOPTS);
   1267 					break;
   1268 
   1269 				case IP_RECVDSTADDR:
   1270 					OPTSET(INP_RECVDSTADDR);
   1271 					break;
   1272 
   1273 				case IP_RECVIF:
   1274 					OPTSET(INP_RECVIF);
   1275 					break;
   1276 				}
   1277 			}
   1278 			break;
   1279 #undef OPTSET
   1280 
   1281 		case IP_MULTICAST_IF:
   1282 		case IP_MULTICAST_TTL:
   1283 		case IP_MULTICAST_LOOP:
   1284 		case IP_ADD_MEMBERSHIP:
   1285 		case IP_DROP_MEMBERSHIP:
   1286 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1287 			break;
   1288 
   1289 		case IP_PORTRANGE:
   1290 			if (m == 0 || m->m_len != sizeof(int))
   1291 				error = EINVAL;
   1292 			else {
   1293 				optval = *mtod(m, int *);
   1294 
   1295 				switch (optval) {
   1296 
   1297 				case IP_PORTRANGE_DEFAULT:
   1298 				case IP_PORTRANGE_HIGH:
   1299 					inp->inp_flags &= ~(INP_LOWPORT);
   1300 					break;
   1301 
   1302 				case IP_PORTRANGE_LOW:
   1303 					inp->inp_flags |= INP_LOWPORT;
   1304 					break;
   1305 
   1306 				default:
   1307 					error = EINVAL;
   1308 					break;
   1309 				}
   1310 			}
   1311 			break;
   1312 
   1313 #if defined(IPSEC) || defined(FAST_IPSEC)
   1314 		case IP_IPSEC_POLICY:
   1315 		{
   1316 			void *req = NULL;
   1317 			size_t len = 0;
   1318 			int priv = 0;
   1319 
   1320 #ifdef __NetBSD__
   1321 			if (l == 0 || kauth_authorize_generic(l->l_cred,
   1322 			    KAUTH_GENERIC_ISSUSER, NULL))
   1323 				priv = 0;
   1324 			else
   1325 				priv = 1;
   1326 #else
   1327 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1328 #endif
   1329 			if (m) {
   1330 				req = mtod(m, void *);
   1331 				len = m->m_len;
   1332 			}
   1333 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1334 			break;
   1335 		    }
   1336 #endif /*IPSEC*/
   1337 
   1338 		default:
   1339 			error = ENOPROTOOPT;
   1340 			break;
   1341 		}
   1342 		if (m)
   1343 			(void)m_free(m);
   1344 		break;
   1345 
   1346 	case PRCO_GETOPT:
   1347 		switch (optname) {
   1348 		case IP_OPTIONS:
   1349 		case IP_RETOPTS:
   1350 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1351 			MCLAIM(m, so->so_mowner);
   1352 			if (inp->inp_options) {
   1353 				m->m_len = inp->inp_options->m_len;
   1354 				bcopy(mtod(inp->inp_options, void *),
   1355 				    mtod(m, void *), (unsigned)m->m_len);
   1356 			} else
   1357 				m->m_len = 0;
   1358 			break;
   1359 
   1360 		case IP_TOS:
   1361 		case IP_TTL:
   1362 		case IP_RECVOPTS:
   1363 		case IP_RECVRETOPTS:
   1364 		case IP_RECVDSTADDR:
   1365 		case IP_RECVIF:
   1366 		case IP_ERRORMTU:
   1367 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1368 			MCLAIM(m, so->so_mowner);
   1369 			m->m_len = sizeof(int);
   1370 			switch (optname) {
   1371 
   1372 			case IP_TOS:
   1373 				optval = inp->inp_ip.ip_tos;
   1374 				break;
   1375 
   1376 			case IP_TTL:
   1377 				optval = inp->inp_ip.ip_ttl;
   1378 				break;
   1379 
   1380 			case IP_ERRORMTU:
   1381 				optval = inp->inp_errormtu;
   1382 				break;
   1383 
   1384 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1385 
   1386 			case IP_RECVOPTS:
   1387 				optval = OPTBIT(INP_RECVOPTS);
   1388 				break;
   1389 
   1390 			case IP_RECVRETOPTS:
   1391 				optval = OPTBIT(INP_RECVRETOPTS);
   1392 				break;
   1393 
   1394 			case IP_RECVDSTADDR:
   1395 				optval = OPTBIT(INP_RECVDSTADDR);
   1396 				break;
   1397 
   1398 			case IP_RECVIF:
   1399 				optval = OPTBIT(INP_RECVIF);
   1400 				break;
   1401 			}
   1402 			*mtod(m, int *) = optval;
   1403 			break;
   1404 
   1405 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
   1406 		/* XXX: code broken */
   1407 		case IP_IPSEC_POLICY:
   1408 		{
   1409 			void *req = NULL;
   1410 			size_t len = 0;
   1411 
   1412 			if (m) {
   1413 				req = mtod(m, void *);
   1414 				len = m->m_len;
   1415 			}
   1416 			error = ipsec4_get_policy(inp, req, len, mp);
   1417 			break;
   1418 		}
   1419 #endif /*IPSEC*/
   1420 
   1421 		case IP_MULTICAST_IF:
   1422 		case IP_MULTICAST_TTL:
   1423 		case IP_MULTICAST_LOOP:
   1424 		case IP_ADD_MEMBERSHIP:
   1425 		case IP_DROP_MEMBERSHIP:
   1426 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1427 			if (*mp)
   1428 				MCLAIM(*mp, so->so_mowner);
   1429 			break;
   1430 
   1431 		case IP_PORTRANGE:
   1432 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1433 			MCLAIM(m, so->so_mowner);
   1434 			m->m_len = sizeof(int);
   1435 
   1436 			if (inp->inp_flags & INP_LOWPORT)
   1437 				optval = IP_PORTRANGE_LOW;
   1438 			else
   1439 				optval = IP_PORTRANGE_DEFAULT;
   1440 
   1441 			*mtod(m, int *) = optval;
   1442 			break;
   1443 
   1444 		default:
   1445 			error = ENOPROTOOPT;
   1446 			break;
   1447 		}
   1448 		break;
   1449 	}
   1450 	return (error);
   1451 }
   1452 
   1453 /*
   1454  * Set up IP options in pcb for insertion in output packets.
   1455  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1456  * with destination address if source routed.
   1457  */
   1458 int
   1459 #ifdef notyet
   1460 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
   1461 #else
   1462 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
   1463 #endif
   1464 {
   1465 	int cnt, optlen;
   1466 	u_char *cp;
   1467 	u_char opt;
   1468 
   1469 	/* turn off any old options */
   1470 	if (*pcbopt)
   1471 		(void)m_free(*pcbopt);
   1472 	*pcbopt = 0;
   1473 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1474 		/*
   1475 		 * Only turning off any previous options.
   1476 		 */
   1477 		if (m)
   1478 			(void)m_free(m);
   1479 		return (0);
   1480 	}
   1481 
   1482 #ifndef	__vax__
   1483 	if (m->m_len % sizeof(int32_t))
   1484 		goto bad;
   1485 #endif
   1486 	/*
   1487 	 * IP first-hop destination address will be stored before
   1488 	 * actual options; move other options back
   1489 	 * and clear it when none present.
   1490 	 */
   1491 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1492 		goto bad;
   1493 	cnt = m->m_len;
   1494 	m->m_len += sizeof(struct in_addr);
   1495 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1496 	memmove(cp, mtod(m, void *), (unsigned)cnt);
   1497 	bzero(mtod(m, void *), sizeof(struct in_addr));
   1498 
   1499 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1500 		opt = cp[IPOPT_OPTVAL];
   1501 		if (opt == IPOPT_EOL)
   1502 			break;
   1503 		if (opt == IPOPT_NOP)
   1504 			optlen = 1;
   1505 		else {
   1506 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1507 				goto bad;
   1508 			optlen = cp[IPOPT_OLEN];
   1509 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1510 				goto bad;
   1511 		}
   1512 		switch (opt) {
   1513 
   1514 		default:
   1515 			break;
   1516 
   1517 		case IPOPT_LSRR:
   1518 		case IPOPT_SSRR:
   1519 			/*
   1520 			 * user process specifies route as:
   1521 			 *	->A->B->C->D
   1522 			 * D must be our final destination (but we can't
   1523 			 * check that since we may not have connected yet).
   1524 			 * A is first hop destination, which doesn't appear in
   1525 			 * actual IP option, but is stored before the options.
   1526 			 */
   1527 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1528 				goto bad;
   1529 			m->m_len -= sizeof(struct in_addr);
   1530 			cnt -= sizeof(struct in_addr);
   1531 			optlen -= sizeof(struct in_addr);
   1532 			cp[IPOPT_OLEN] = optlen;
   1533 			/*
   1534 			 * Move first hop before start of options.
   1535 			 */
   1536 			bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
   1537 			    sizeof(struct in_addr));
   1538 			/*
   1539 			 * Then copy rest of options back
   1540 			 * to close up the deleted entry.
   1541 			 */
   1542 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1543 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1544 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1545 			break;
   1546 		}
   1547 	}
   1548 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1549 		goto bad;
   1550 	*pcbopt = m;
   1551 	return (0);
   1552 
   1553 bad:
   1554 	(void)m_free(m);
   1555 	return (EINVAL);
   1556 }
   1557 
   1558 /*
   1559  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1560  */
   1561 static struct ifnet *
   1562 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1563 {
   1564 	int ifindex;
   1565 	struct ifnet *ifp = NULL;
   1566 	struct in_ifaddr *ia;
   1567 
   1568 	if (ifindexp)
   1569 		*ifindexp = 0;
   1570 	if (ntohl(a->s_addr) >> 24 == 0) {
   1571 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1572 		if (ifindex < 0 || if_indexlim <= ifindex)
   1573 			return NULL;
   1574 		ifp = ifindex2ifnet[ifindex];
   1575 		if (!ifp)
   1576 			return NULL;
   1577 		if (ifindexp)
   1578 			*ifindexp = ifindex;
   1579 	} else {
   1580 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1581 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1582 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1583 				ifp = ia->ia_ifp;
   1584 				break;
   1585 			}
   1586 		}
   1587 	}
   1588 	return ifp;
   1589 }
   1590 
   1591 static int
   1592 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
   1593 {
   1594 	u_int tval;
   1595 
   1596 	if (m == NULL)
   1597 		return EINVAL;
   1598 
   1599 	switch (m->m_len) {
   1600 	case sizeof(u_char):
   1601 		tval = *(mtod(m, u_char *));
   1602 		break;
   1603 	case sizeof(u_int):
   1604 		tval = *(mtod(m, u_int *));
   1605 		break;
   1606 	default:
   1607 		return EINVAL;
   1608 	}
   1609 
   1610 	if (tval > maxval)
   1611 		return EINVAL;
   1612 
   1613 	*val = tval;
   1614 	return 0;
   1615 }
   1616 
   1617 /*
   1618  * Set the IP multicast options in response to user setsockopt().
   1619  */
   1620 int
   1621 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
   1622 {
   1623 	int error = 0;
   1624 	int i;
   1625 	struct in_addr addr;
   1626 	struct ip_mreq *mreq;
   1627 	struct ifnet *ifp;
   1628 	struct ip_moptions *imo = *imop;
   1629 	int ifindex;
   1630 
   1631 	if (imo == NULL) {
   1632 		/*
   1633 		 * No multicast option buffer attached to the pcb;
   1634 		 * allocate one and initialize to default values.
   1635 		 */
   1636 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1637 		    M_WAITOK);
   1638 
   1639 		if (imo == NULL)
   1640 			return (ENOBUFS);
   1641 		*imop = imo;
   1642 		imo->imo_multicast_ifp = NULL;
   1643 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1644 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1645 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1646 		imo->imo_num_memberships = 0;
   1647 	}
   1648 
   1649 	switch (optname) {
   1650 
   1651 	case IP_MULTICAST_IF:
   1652 		/*
   1653 		 * Select the interface for outgoing multicast packets.
   1654 		 */
   1655 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1656 			error = EINVAL;
   1657 			break;
   1658 		}
   1659 		addr = *(mtod(m, struct in_addr *));
   1660 		/*
   1661 		 * INADDR_ANY is used to remove a previous selection.
   1662 		 * When no interface is selected, a default one is
   1663 		 * chosen every time a multicast packet is sent.
   1664 		 */
   1665 		if (in_nullhost(addr)) {
   1666 			imo->imo_multicast_ifp = NULL;
   1667 			break;
   1668 		}
   1669 		/*
   1670 		 * The selected interface is identified by its local
   1671 		 * IP address.  Find the interface and confirm that
   1672 		 * it supports multicasting.
   1673 		 */
   1674 		ifp = ip_multicast_if(&addr, &ifindex);
   1675 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1676 			error = EADDRNOTAVAIL;
   1677 			break;
   1678 		}
   1679 		imo->imo_multicast_ifp = ifp;
   1680 		if (ifindex)
   1681 			imo->imo_multicast_addr = addr;
   1682 		else
   1683 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1684 		break;
   1685 
   1686 	case IP_MULTICAST_TTL:
   1687 		/*
   1688 		 * Set the IP time-to-live for outgoing multicast packets.
   1689 		 */
   1690 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
   1691 		break;
   1692 
   1693 	case IP_MULTICAST_LOOP:
   1694 		/*
   1695 		 * Set the loopback flag for outgoing multicast packets.
   1696 		 * Must be zero or one.
   1697 		 */
   1698 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
   1699 		break;
   1700 
   1701 	case IP_ADD_MEMBERSHIP:
   1702 		/*
   1703 		 * Add a multicast group membership.
   1704 		 * Group must be a valid IP multicast address.
   1705 		 */
   1706 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1707 			error = EINVAL;
   1708 			break;
   1709 		}
   1710 		mreq = mtod(m, struct ip_mreq *);
   1711 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1712 			error = EINVAL;
   1713 			break;
   1714 		}
   1715 		/*
   1716 		 * If no interface address was provided, use the interface of
   1717 		 * the route to the given multicast address.
   1718 		 */
   1719 		if (in_nullhost(mreq->imr_interface)) {
   1720 			struct rtentry *rt;
   1721 			union {
   1722 				struct sockaddr		dst;
   1723 				struct sockaddr_in	dst4;
   1724 			} u;
   1725 			struct route ro;
   1726 
   1727 			memset(&ro, 0, sizeof(ro));
   1728 
   1729 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1730 			rtcache_setdst(&ro, &u.dst);
   1731 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1732 			                                        : NULL;
   1733 			rtcache_free(&ro);
   1734 		} else {
   1735 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1736 		}
   1737 		/*
   1738 		 * See if we found an interface, and confirm that it
   1739 		 * supports multicast.
   1740 		 */
   1741 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1742 			error = EADDRNOTAVAIL;
   1743 			break;
   1744 		}
   1745 		/*
   1746 		 * See if the membership already exists or if all the
   1747 		 * membership slots are full.
   1748 		 */
   1749 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1750 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1751 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1752 				      mreq->imr_multiaddr))
   1753 				break;
   1754 		}
   1755 		if (i < imo->imo_num_memberships) {
   1756 			error = EADDRINUSE;
   1757 			break;
   1758 		}
   1759 		if (i == IP_MAX_MEMBERSHIPS) {
   1760 			error = ETOOMANYREFS;
   1761 			break;
   1762 		}
   1763 		/*
   1764 		 * Everything looks good; add a new record to the multicast
   1765 		 * address list for the given interface.
   1766 		 */
   1767 		if ((imo->imo_membership[i] =
   1768 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1769 			error = ENOBUFS;
   1770 			break;
   1771 		}
   1772 		++imo->imo_num_memberships;
   1773 		break;
   1774 
   1775 	case IP_DROP_MEMBERSHIP:
   1776 		/*
   1777 		 * Drop a multicast group membership.
   1778 		 * Group must be a valid IP multicast address.
   1779 		 */
   1780 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1781 			error = EINVAL;
   1782 			break;
   1783 		}
   1784 		mreq = mtod(m, struct ip_mreq *);
   1785 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1786 			error = EINVAL;
   1787 			break;
   1788 		}
   1789 		/*
   1790 		 * If an interface address was specified, get a pointer
   1791 		 * to its ifnet structure.
   1792 		 */
   1793 		if (in_nullhost(mreq->imr_interface))
   1794 			ifp = NULL;
   1795 		else {
   1796 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1797 			if (ifp == NULL) {
   1798 				error = EADDRNOTAVAIL;
   1799 				break;
   1800 			}
   1801 		}
   1802 		/*
   1803 		 * Find the membership in the membership array.
   1804 		 */
   1805 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1806 			if ((ifp == NULL ||
   1807 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1808 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1809 				       mreq->imr_multiaddr))
   1810 				break;
   1811 		}
   1812 		if (i == imo->imo_num_memberships) {
   1813 			error = EADDRNOTAVAIL;
   1814 			break;
   1815 		}
   1816 		/*
   1817 		 * Give up the multicast address record to which the
   1818 		 * membership points.
   1819 		 */
   1820 		in_delmulti(imo->imo_membership[i]);
   1821 		/*
   1822 		 * Remove the gap in the membership array.
   1823 		 */
   1824 		for (++i; i < imo->imo_num_memberships; ++i)
   1825 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1826 		--imo->imo_num_memberships;
   1827 		break;
   1828 
   1829 	default:
   1830 		error = EOPNOTSUPP;
   1831 		break;
   1832 	}
   1833 
   1834 	/*
   1835 	 * If all options have default values, no need to keep the mbuf.
   1836 	 */
   1837 	if (imo->imo_multicast_ifp == NULL &&
   1838 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1839 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1840 	    imo->imo_num_memberships == 0) {
   1841 		free(*imop, M_IPMOPTS);
   1842 		*imop = NULL;
   1843 	}
   1844 
   1845 	return (error);
   1846 }
   1847 
   1848 /*
   1849  * Return the IP multicast options in response to user getsockopt().
   1850  */
   1851 int
   1852 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
   1853 {
   1854 	u_char *ttl;
   1855 	u_char *loop;
   1856 	struct in_addr *addr;
   1857 	struct in_ifaddr *ia;
   1858 
   1859 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1860 
   1861 	switch (optname) {
   1862 
   1863 	case IP_MULTICAST_IF:
   1864 		addr = mtod(*mp, struct in_addr *);
   1865 		(*mp)->m_len = sizeof(struct in_addr);
   1866 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1867 			*addr = zeroin_addr;
   1868 		else if (imo->imo_multicast_addr.s_addr) {
   1869 			/* return the value user has set */
   1870 			*addr = imo->imo_multicast_addr;
   1871 		} else {
   1872 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1873 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1874 		}
   1875 		return (0);
   1876 
   1877 	case IP_MULTICAST_TTL:
   1878 		ttl = mtod(*mp, u_char *);
   1879 		(*mp)->m_len = 1;
   1880 		*ttl = imo ? imo->imo_multicast_ttl
   1881 			   : IP_DEFAULT_MULTICAST_TTL;
   1882 		return (0);
   1883 
   1884 	case IP_MULTICAST_LOOP:
   1885 		loop = mtod(*mp, u_char *);
   1886 		(*mp)->m_len = 1;
   1887 		*loop = imo ? imo->imo_multicast_loop
   1888 			    : IP_DEFAULT_MULTICAST_LOOP;
   1889 		return (0);
   1890 
   1891 	default:
   1892 		return (EOPNOTSUPP);
   1893 	}
   1894 }
   1895 
   1896 /*
   1897  * Discard the IP multicast options.
   1898  */
   1899 void
   1900 ip_freemoptions(struct ip_moptions *imo)
   1901 {
   1902 	int i;
   1903 
   1904 	if (imo != NULL) {
   1905 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1906 			in_delmulti(imo->imo_membership[i]);
   1907 		free(imo, M_IPMOPTS);
   1908 	}
   1909 }
   1910 
   1911 /*
   1912  * Routine called from ip_output() to loop back a copy of an IP multicast
   1913  * packet to the input queue of a specified interface.  Note that this
   1914  * calls the output routine of the loopback "driver", but with an interface
   1915  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1916  */
   1917 static void
   1918 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1919 {
   1920 	struct ip *ip;
   1921 	struct mbuf *copym;
   1922 
   1923 	copym = m_copypacket(m, M_DONTWAIT);
   1924 	if (copym != NULL
   1925 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1926 		copym = m_pullup(copym, sizeof(struct ip));
   1927 	if (copym == NULL)
   1928 		return;
   1929 	/*
   1930 	 * We don't bother to fragment if the IP length is greater
   1931 	 * than the interface's MTU.  Can this possibly matter?
   1932 	 */
   1933 	ip = mtod(copym, struct ip *);
   1934 
   1935 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1936 		in_delayed_cksum(copym);
   1937 		copym->m_pkthdr.csum_flags &=
   1938 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1939 	}
   1940 
   1941 	ip->ip_sum = 0;
   1942 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1943 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1944 }
   1945