ip_output.c revision 1.197 1 /* $NetBSD: ip_output.c,v 1.197 2008/08/06 15:01:23 plunky Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.197 2008/08/06 15:01:23 plunky Exp $");
95
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef FAST_IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131
132 #include <machine/stdarg.h>
133
134 #ifdef IPSEC
135 #include <netinet6/ipsec.h>
136 #include <netinet6/ipsec_private.h>
137 #include <netkey/key.h>
138 #include <netkey/key_debug.h>
139 #endif /*IPSEC*/
140
141 #ifdef FAST_IPSEC
142 #include <netipsec/ipsec.h>
143 #include <netipsec/key.h>
144 #include <netipsec/xform.h>
145 #endif /* FAST_IPSEC*/
146
147 #ifdef IPSEC_NAT_T
148 #include <netinet/udp.h>
149 #endif
150
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155
156 #ifdef PFIL_HOOKS
157 extern struct pfil_head inet_pfil_hook; /* XXX */
158 #endif
159
160 int ip_do_loopback_cksum = 0;
161
162 /*
163 * IP output. The packet in mbuf chain m contains a skeletal IP
164 * header (with len, off, ttl, proto, tos, src, dst).
165 * The mbuf chain containing the packet will be freed.
166 * The mbuf opt, if present, will not be freed.
167 */
168 int
169 ip_output(struct mbuf *m0, ...)
170 {
171 struct rtentry *rt;
172 struct ip *ip;
173 struct ifnet *ifp;
174 struct mbuf *m = m0;
175 int hlen = sizeof (struct ip);
176 int len, error = 0;
177 struct route iproute;
178 const struct sockaddr_in *dst;
179 struct in_ifaddr *ia;
180 struct ifaddr *xifa;
181 struct mbuf *opt;
182 struct route *ro;
183 int flags, sw_csum;
184 int *mtu_p;
185 u_long mtu;
186 struct ip_moptions *imo;
187 struct socket *so;
188 va_list ap;
189 #ifdef IPSEC_NAT_T
190 int natt_frag = 0;
191 #endif
192 #ifdef IPSEC
193 struct secpolicy *sp = NULL;
194 #endif /*IPSEC*/
195 #ifdef FAST_IPSEC
196 struct inpcb *inp;
197 struct secpolicy *sp = NULL;
198 int s;
199 #endif
200 u_int16_t ip_len;
201 union {
202 struct sockaddr dst;
203 struct sockaddr_in dst4;
204 } u;
205 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
206 * to the nexthop
207 */
208
209 len = 0;
210 va_start(ap, m0);
211 opt = va_arg(ap, struct mbuf *);
212 ro = va_arg(ap, struct route *);
213 flags = va_arg(ap, int);
214 imo = va_arg(ap, struct ip_moptions *);
215 so = va_arg(ap, struct socket *);
216 if (flags & IP_RETURNMTU)
217 mtu_p = va_arg(ap, int *);
218 else
219 mtu_p = NULL;
220 va_end(ap);
221
222 MCLAIM(m, &ip_tx_mowner);
223 #ifdef FAST_IPSEC
224 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
225 inp = (struct inpcb *)so->so_pcb;
226 else
227 inp = NULL;
228 #endif /* FAST_IPSEC */
229
230 #ifdef DIAGNOSTIC
231 if ((m->m_flags & M_PKTHDR) == 0)
232 panic("ip_output: no HDR");
233
234 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
235 panic("ip_output: IPv6 checksum offload flags: %d",
236 m->m_pkthdr.csum_flags);
237 }
238
239 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
240 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
241 panic("ip_output: conflicting checksum offload flags: %d",
242 m->m_pkthdr.csum_flags);
243 }
244 #endif
245 if (opt) {
246 m = ip_insertoptions(m, opt, &len);
247 if (len >= sizeof(struct ip))
248 hlen = len;
249 }
250 ip = mtod(m, struct ip *);
251 /*
252 * Fill in IP header.
253 */
254 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
255 ip->ip_v = IPVERSION;
256 ip->ip_off = htons(0);
257 /* ip->ip_id filled in after we find out source ia */
258 ip->ip_hl = hlen >> 2;
259 IP_STATINC(IP_STAT_LOCALOUT);
260 } else {
261 hlen = ip->ip_hl << 2;
262 }
263 /*
264 * Route packet.
265 */
266 memset(&iproute, 0, sizeof(iproute));
267 if (ro == NULL)
268 ro = &iproute;
269 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
270 dst = satocsin(rtcache_getdst(ro));
271 /*
272 * If there is a cached route,
273 * check that it is to the same destination
274 * and is still up. If not, free it and try again.
275 * The address family should also be checked in case of sharing the
276 * cache with IPv6.
277 */
278 if (dst == NULL)
279 ;
280 else if (dst->sin_family != AF_INET ||
281 !in_hosteq(dst->sin_addr, ip->ip_dst))
282 rtcache_free(ro);
283
284 if ((rt = rtcache_validate(ro)) == NULL &&
285 (rt = rtcache_update(ro, 1)) == NULL) {
286 dst = &u.dst4;
287 rtcache_setdst(ro, &u.dst);
288 }
289 /*
290 * If routing to interface only,
291 * short circuit routing lookup.
292 */
293 if (flags & IP_ROUTETOIF) {
294 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
295 IP_STATINC(IP_STAT_NOROUTE);
296 error = ENETUNREACH;
297 goto bad;
298 }
299 ifp = ia->ia_ifp;
300 mtu = ifp->if_mtu;
301 ip->ip_ttl = 1;
302 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
303 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
304 imo != NULL && imo->imo_multicast_ifp != NULL) {
305 ifp = imo->imo_multicast_ifp;
306 mtu = ifp->if_mtu;
307 IFP_TO_IA(ifp, ia);
308 } else {
309 if (rt == NULL)
310 rt = rtcache_init(ro);
311 if (rt == NULL) {
312 IP_STATINC(IP_STAT_NOROUTE);
313 error = EHOSTUNREACH;
314 goto bad;
315 }
316 ia = ifatoia(rt->rt_ifa);
317 ifp = rt->rt_ifp;
318 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
319 mtu = ifp->if_mtu;
320 rt->rt_use++;
321 if (rt->rt_flags & RTF_GATEWAY)
322 dst = satosin(rt->rt_gateway);
323 }
324 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
325 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
326 struct in_multi *inm;
327
328 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
329 M_BCAST : M_MCAST;
330 /*
331 * See if the caller provided any multicast options
332 */
333 if (imo != NULL)
334 ip->ip_ttl = imo->imo_multicast_ttl;
335 else
336 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
337
338 /*
339 * if we don't know the outgoing ifp yet, we can't generate
340 * output
341 */
342 if (!ifp) {
343 IP_STATINC(IP_STAT_NOROUTE);
344 error = ENETUNREACH;
345 goto bad;
346 }
347
348 /*
349 * If the packet is multicast or broadcast, confirm that
350 * the outgoing interface can transmit it.
351 */
352 if (((m->m_flags & M_MCAST) &&
353 (ifp->if_flags & IFF_MULTICAST) == 0) ||
354 ((m->m_flags & M_BCAST) &&
355 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
356 IP_STATINC(IP_STAT_NOROUTE);
357 error = ENETUNREACH;
358 goto bad;
359 }
360 /*
361 * If source address not specified yet, use an address
362 * of outgoing interface.
363 */
364 if (in_nullhost(ip->ip_src)) {
365 struct in_ifaddr *xia;
366
367 IFP_TO_IA(ifp, xia);
368 if (!xia) {
369 error = EADDRNOTAVAIL;
370 goto bad;
371 }
372 xifa = &xia->ia_ifa;
373 if (xifa->ifa_getifa != NULL) {
374 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
375 }
376 ip->ip_src = xia->ia_addr.sin_addr;
377 }
378
379 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
380 if (inm != NULL &&
381 (imo == NULL || imo->imo_multicast_loop)) {
382 /*
383 * If we belong to the destination multicast group
384 * on the outgoing interface, and the caller did not
385 * forbid loopback, loop back a copy.
386 */
387 ip_mloopback(ifp, m, &u.dst4);
388 }
389 #ifdef MROUTING
390 else {
391 /*
392 * If we are acting as a multicast router, perform
393 * multicast forwarding as if the packet had just
394 * arrived on the interface to which we are about
395 * to send. The multicast forwarding function
396 * recursively calls this function, using the
397 * IP_FORWARDING flag to prevent infinite recursion.
398 *
399 * Multicasts that are looped back by ip_mloopback(),
400 * above, will be forwarded by the ip_input() routine,
401 * if necessary.
402 */
403 extern struct socket *ip_mrouter;
404
405 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
406 if (ip_mforward(m, ifp) != 0) {
407 m_freem(m);
408 goto done;
409 }
410 }
411 }
412 #endif
413 /*
414 * Multicasts with a time-to-live of zero may be looped-
415 * back, above, but must not be transmitted on a network.
416 * Also, multicasts addressed to the loopback interface
417 * are not sent -- the above call to ip_mloopback() will
418 * loop back a copy if this host actually belongs to the
419 * destination group on the loopback interface.
420 */
421 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
422 m_freem(m);
423 goto done;
424 }
425
426 goto sendit;
427 }
428 /*
429 * If source address not specified yet, use address
430 * of outgoing interface.
431 */
432 if (in_nullhost(ip->ip_src)) {
433 xifa = &ia->ia_ifa;
434 if (xifa->ifa_getifa != NULL)
435 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
436 ip->ip_src = ia->ia_addr.sin_addr;
437 }
438
439 /*
440 * packets with Class-D address as source are not valid per
441 * RFC 1112
442 */
443 if (IN_MULTICAST(ip->ip_src.s_addr)) {
444 IP_STATINC(IP_STAT_ODROPPED);
445 error = EADDRNOTAVAIL;
446 goto bad;
447 }
448
449 /*
450 * Look for broadcast address and
451 * and verify user is allowed to send
452 * such a packet.
453 */
454 if (in_broadcast(dst->sin_addr, ifp)) {
455 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
456 error = EADDRNOTAVAIL;
457 goto bad;
458 }
459 if ((flags & IP_ALLOWBROADCAST) == 0) {
460 error = EACCES;
461 goto bad;
462 }
463 /* don't allow broadcast messages to be fragmented */
464 if (ntohs(ip->ip_len) > ifp->if_mtu) {
465 error = EMSGSIZE;
466 goto bad;
467 }
468 m->m_flags |= M_BCAST;
469 } else
470 m->m_flags &= ~M_BCAST;
471
472 sendit:
473 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
474 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
475 ip->ip_id = 0;
476 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
477 ip->ip_id = ip_newid(ia);
478 } else {
479
480 /*
481 * TSO capable interfaces (typically?) increment
482 * ip_id for each segment.
483 * "allocate" enough ids here to increase the chance
484 * for them to be unique.
485 *
486 * note that the following calculation is not
487 * needed to be precise. wasting some ip_id is fine.
488 */
489
490 unsigned int segsz = m->m_pkthdr.segsz;
491 unsigned int datasz = ntohs(ip->ip_len) - hlen;
492 unsigned int num = howmany(datasz, segsz);
493
494 ip->ip_id = ip_newid_range(ia, num);
495 }
496 }
497 /*
498 * If we're doing Path MTU Discovery, we need to set DF unless
499 * the route's MTU is locked.
500 */
501 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
502 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
503 ip->ip_off |= htons(IP_DF);
504
505 /* Remember the current ip_len */
506 ip_len = ntohs(ip->ip_len);
507
508 #ifdef IPSEC
509 /* get SP for this packet */
510 if (so == NULL)
511 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
512 flags, &error);
513 else {
514 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
515 IPSEC_DIR_OUTBOUND))
516 goto skip_ipsec;
517 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
518 }
519
520 if (sp == NULL) {
521 IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
522 goto bad;
523 }
524
525 error = 0;
526
527 /* check policy */
528 switch (sp->policy) {
529 case IPSEC_POLICY_DISCARD:
530 /*
531 * This packet is just discarded.
532 */
533 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
534 goto bad;
535
536 case IPSEC_POLICY_BYPASS:
537 case IPSEC_POLICY_NONE:
538 /* no need to do IPsec. */
539 goto skip_ipsec;
540
541 case IPSEC_POLICY_IPSEC:
542 if (sp->req == NULL) {
543 /* XXX should be panic ? */
544 printf("ip_output: No IPsec request specified.\n");
545 error = EINVAL;
546 goto bad;
547 }
548 break;
549
550 case IPSEC_POLICY_ENTRUST:
551 default:
552 printf("ip_output: Invalid policy found. %d\n", sp->policy);
553 }
554
555 #ifdef IPSEC_NAT_T
556 /*
557 * NAT-T ESP fragmentation: don't do IPSec processing now,
558 * we'll do it on each fragmented packet.
559 */
560 if (sp->req->sav &&
561 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
562 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
563 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
564 natt_frag = 1;
565 mtu = sp->req->sav->esp_frag;
566 goto skip_ipsec;
567 }
568 }
569 #endif /* IPSEC_NAT_T */
570
571 /*
572 * ipsec4_output() expects ip_len and ip_off in network
573 * order. They have been set to network order above.
574 */
575
576 {
577 struct ipsec_output_state state;
578 bzero(&state, sizeof(state));
579 state.m = m;
580 if (flags & IP_ROUTETOIF) {
581 state.ro = &iproute;
582 memset(&iproute, 0, sizeof(iproute));
583 } else
584 state.ro = ro;
585 state.dst = sintocsa(dst);
586
587 /*
588 * We can't defer the checksum of payload data if
589 * we're about to encrypt/authenticate it.
590 *
591 * XXX When we support crypto offloading functions of
592 * XXX network interfaces, we need to reconsider this,
593 * XXX since it's likely that they'll support checksumming,
594 * XXX as well.
595 */
596 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
597 in_delayed_cksum(m);
598 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
599 }
600
601 error = ipsec4_output(&state, sp, flags);
602
603 m = state.m;
604 if (flags & IP_ROUTETOIF) {
605 /*
606 * if we have tunnel mode SA, we may need to ignore
607 * IP_ROUTETOIF.
608 */
609 if (state.ro != &iproute ||
610 rtcache_validate(state.ro) != NULL) {
611 flags &= ~IP_ROUTETOIF;
612 ro = state.ro;
613 }
614 } else
615 ro = state.ro;
616 dst = satocsin(state.dst);
617 if (error) {
618 /* mbuf is already reclaimed in ipsec4_output. */
619 m0 = NULL;
620 switch (error) {
621 case EHOSTUNREACH:
622 case ENETUNREACH:
623 case EMSGSIZE:
624 case ENOBUFS:
625 case ENOMEM:
626 break;
627 default:
628 printf("ip4_output (ipsec): error code %d\n", error);
629 /*fall through*/
630 case ENOENT:
631 /* don't show these error codes to the user */
632 error = 0;
633 break;
634 }
635 goto bad;
636 }
637
638 /* be sure to update variables that are affected by ipsec4_output() */
639 ip = mtod(m, struct ip *);
640 hlen = ip->ip_hl << 2;
641 ip_len = ntohs(ip->ip_len);
642
643 if ((rt = rtcache_validate(ro)) == NULL) {
644 if ((flags & IP_ROUTETOIF) == 0) {
645 printf("ip_output: "
646 "can't update route after IPsec processing\n");
647 error = EHOSTUNREACH; /*XXX*/
648 goto bad;
649 }
650 } else {
651 /* nobody uses ia beyond here */
652 if (state.encap) {
653 ifp = rt->rt_ifp;
654 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
655 mtu = ifp->if_mtu;
656 }
657 }
658 }
659 skip_ipsec:
660 #endif /*IPSEC*/
661 #ifdef FAST_IPSEC
662 /*
663 * Check the security policy (SP) for the packet and, if
664 * required, do IPsec-related processing. There are two
665 * cases here; the first time a packet is sent through
666 * it will be untagged and handled by ipsec4_checkpolicy.
667 * If the packet is resubmitted to ip_output (e.g. after
668 * AH, ESP, etc. processing), there will be a tag to bypass
669 * the lookup and related policy checking.
670 */
671 if (!ipsec_outdone(m)) {
672 s = splsoftnet();
673 if (inp != NULL &&
674 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
675 goto spd_done;
676 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
677 &error, inp);
678 /*
679 * There are four return cases:
680 * sp != NULL apply IPsec policy
681 * sp == NULL, error == 0 no IPsec handling needed
682 * sp == NULL, error == -EINVAL discard packet w/o error
683 * sp == NULL, error != 0 discard packet, report error
684 */
685 if (sp != NULL) {
686 #ifdef IPSEC_NAT_T
687 /*
688 * NAT-T ESP fragmentation: don't do IPSec processing now,
689 * we'll do it on each fragmented packet.
690 */
691 if (sp->req->sav &&
692 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
693 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
694 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
695 natt_frag = 1;
696 mtu = sp->req->sav->esp_frag;
697 splx(s);
698 goto spd_done;
699 }
700 }
701 #endif /* IPSEC_NAT_T */
702
703 /*
704 * Do delayed checksums now because we send before
705 * this is done in the normal processing path.
706 */
707 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 in_delayed_cksum(m);
709 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
710 }
711
712 #ifdef __FreeBSD__
713 ip->ip_len = htons(ip->ip_len);
714 ip->ip_off = htons(ip->ip_off);
715 #endif
716
717 /* NB: callee frees mbuf */
718 error = ipsec4_process_packet(m, sp->req, flags, 0);
719 /*
720 * Preserve KAME behaviour: ENOENT can be returned
721 * when an SA acquire is in progress. Don't propagate
722 * this to user-level; it confuses applications.
723 *
724 * XXX this will go away when the SADB is redone.
725 */
726 if (error == ENOENT)
727 error = 0;
728 splx(s);
729 goto done;
730 } else {
731 splx(s);
732
733 if (error != 0) {
734 /*
735 * Hack: -EINVAL is used to signal that a packet
736 * should be silently discarded. This is typically
737 * because we asked key management for an SA and
738 * it was delayed (e.g. kicked up to IKE).
739 */
740 if (error == -EINVAL)
741 error = 0;
742 goto bad;
743 } else {
744 /* No IPsec processing for this packet. */
745 }
746 }
747 }
748 spd_done:
749 #endif /* FAST_IPSEC */
750
751 #ifdef PFIL_HOOKS
752 /*
753 * Run through list of hooks for output packets.
754 */
755 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
756 goto done;
757 if (m == NULL)
758 goto done;
759
760 ip = mtod(m, struct ip *);
761 hlen = ip->ip_hl << 2;
762 ip_len = ntohs(ip->ip_len);
763 #endif /* PFIL_HOOKS */
764
765 m->m_pkthdr.csum_data |= hlen << 16;
766
767 #if IFA_STATS
768 /*
769 * search for the source address structure to
770 * maintain output statistics.
771 */
772 INADDR_TO_IA(ip->ip_src, ia);
773 #endif
774
775 /* Maybe skip checksums on loopback interfaces. */
776 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
777 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
778 }
779 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
780 /*
781 * If small enough for mtu of path, or if using TCP segmentation
782 * offload, can just send directly.
783 */
784 if (ip_len <= mtu ||
785 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
786 #if IFA_STATS
787 if (ia)
788 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
789 #endif
790 /*
791 * Always initialize the sum to 0! Some HW assisted
792 * checksumming requires this.
793 */
794 ip->ip_sum = 0;
795
796 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
797 /*
798 * Perform any checksums that the hardware can't do
799 * for us.
800 *
801 * XXX Does any hardware require the {th,uh}_sum
802 * XXX fields to be 0?
803 */
804 if (sw_csum & M_CSUM_IPv4) {
805 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
806 ip->ip_sum = in_cksum(m, hlen);
807 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
808 }
809 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
810 if (IN_NEED_CHECKSUM(ifp,
811 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
812 in_delayed_cksum(m);
813 }
814 m->m_pkthdr.csum_flags &=
815 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
816 }
817 }
818
819 #ifdef IPSEC
820 /* clean ipsec history once it goes out of the node */
821 ipsec_delaux(m);
822 #endif
823
824 if (__predict_true(
825 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
826 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
827 error =
828 (*ifp->if_output)(ifp, m,
829 (m->m_flags & M_MCAST) ?
830 sintocsa(rdst) : sintocsa(dst),
831 rt);
832 } else {
833 error =
834 ip_tso_output(ifp, m,
835 (m->m_flags & M_MCAST) ?
836 sintocsa(rdst) : sintocsa(dst),
837 rt);
838 }
839 goto done;
840 }
841
842 /*
843 * We can't use HW checksumming if we're about to
844 * to fragment the packet.
845 *
846 * XXX Some hardware can do this.
847 */
848 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
849 if (IN_NEED_CHECKSUM(ifp,
850 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
851 in_delayed_cksum(m);
852 }
853 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
854 }
855
856 /*
857 * Too large for interface; fragment if possible.
858 * Must be able to put at least 8 bytes per fragment.
859 */
860 if (ntohs(ip->ip_off) & IP_DF) {
861 if (flags & IP_RETURNMTU)
862 *mtu_p = mtu;
863 error = EMSGSIZE;
864 IP_STATINC(IP_STAT_CANTFRAG);
865 goto bad;
866 }
867
868 error = ip_fragment(m, ifp, mtu);
869 if (error) {
870 m = NULL;
871 goto bad;
872 }
873
874 for (; m; m = m0) {
875 m0 = m->m_nextpkt;
876 m->m_nextpkt = 0;
877 if (error == 0) {
878 #if IFA_STATS
879 if (ia)
880 ia->ia_ifa.ifa_data.ifad_outbytes +=
881 ntohs(ip->ip_len);
882 #endif
883 #ifdef IPSEC
884 /* clean ipsec history once it goes out of the node */
885 ipsec_delaux(m);
886 #endif /* IPSEC */
887
888 #ifdef IPSEC_NAT_T
889 /*
890 * If we get there, the packet has not been handeld by
891 * IPSec whereas it should have. Now that it has been
892 * fragmented, re-inject it in ip_output so that IPsec
893 * processing can occur.
894 */
895 if (natt_frag) {
896 error = ip_output(m, opt,
897 ro, flags, imo, so, mtu_p);
898 } else
899 #endif /* IPSEC_NAT_T */
900 {
901 KASSERT((m->m_pkthdr.csum_flags &
902 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
903 error = (*ifp->if_output)(ifp, m,
904 (m->m_flags & M_MCAST) ?
905 sintocsa(rdst) : sintocsa(dst),
906 rt);
907 }
908 } else
909 m_freem(m);
910 }
911
912 if (error == 0)
913 IP_STATINC(IP_STAT_FRAGMENTED);
914 done:
915 rtcache_free(&iproute);
916
917 #ifdef IPSEC
918 if (sp != NULL) {
919 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
920 printf("DP ip_output call free SP:%p\n", sp));
921 key_freesp(sp);
922 }
923 #endif /* IPSEC */
924 #ifdef FAST_IPSEC
925 if (sp != NULL)
926 KEY_FREESP(&sp);
927 #endif /* FAST_IPSEC */
928
929 return (error);
930 bad:
931 m_freem(m);
932 goto done;
933 }
934
935 int
936 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
937 {
938 struct ip *ip, *mhip;
939 struct mbuf *m0;
940 int len, hlen, off;
941 int mhlen, firstlen;
942 struct mbuf **mnext;
943 int sw_csum = m->m_pkthdr.csum_flags;
944 int fragments = 0;
945 int s;
946 int error = 0;
947
948 ip = mtod(m, struct ip *);
949 hlen = ip->ip_hl << 2;
950 if (ifp != NULL)
951 sw_csum &= ~ifp->if_csum_flags_tx;
952
953 len = (mtu - hlen) &~ 7;
954 if (len < 8) {
955 m_freem(m);
956 return (EMSGSIZE);
957 }
958
959 firstlen = len;
960 mnext = &m->m_nextpkt;
961
962 /*
963 * Loop through length of segment after first fragment,
964 * make new header and copy data of each part and link onto chain.
965 */
966 m0 = m;
967 mhlen = sizeof (struct ip);
968 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
969 MGETHDR(m, M_DONTWAIT, MT_HEADER);
970 if (m == 0) {
971 error = ENOBUFS;
972 IP_STATINC(IP_STAT_ODROPPED);
973 goto sendorfree;
974 }
975 MCLAIM(m, m0->m_owner);
976 *mnext = m;
977 mnext = &m->m_nextpkt;
978 m->m_data += max_linkhdr;
979 mhip = mtod(m, struct ip *);
980 *mhip = *ip;
981 /* we must inherit MCAST and BCAST flags */
982 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
983 if (hlen > sizeof (struct ip)) {
984 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
985 mhip->ip_hl = mhlen >> 2;
986 }
987 m->m_len = mhlen;
988 mhip->ip_off = ((off - hlen) >> 3) +
989 (ntohs(ip->ip_off) & ~IP_MF);
990 if (ip->ip_off & htons(IP_MF))
991 mhip->ip_off |= IP_MF;
992 if (off + len >= ntohs(ip->ip_len))
993 len = ntohs(ip->ip_len) - off;
994 else
995 mhip->ip_off |= IP_MF;
996 HTONS(mhip->ip_off);
997 mhip->ip_len = htons((u_int16_t)(len + mhlen));
998 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
999 if (m->m_next == 0) {
1000 error = ENOBUFS; /* ??? */
1001 IP_STATINC(IP_STAT_ODROPPED);
1002 goto sendorfree;
1003 }
1004 m->m_pkthdr.len = mhlen + len;
1005 m->m_pkthdr.rcvif = (struct ifnet *)0;
1006 mhip->ip_sum = 0;
1007 if (sw_csum & M_CSUM_IPv4) {
1008 mhip->ip_sum = in_cksum(m, mhlen);
1009 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1010 } else {
1011 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1012 m->m_pkthdr.csum_data |= mhlen << 16;
1013 }
1014 IP_STATINC(IP_STAT_OFRAGMENTS);
1015 fragments++;
1016 }
1017 /*
1018 * Update first fragment by trimming what's been copied out
1019 * and updating header, then send each fragment (in order).
1020 */
1021 m = m0;
1022 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1023 m->m_pkthdr.len = hlen + firstlen;
1024 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1025 ip->ip_off |= htons(IP_MF);
1026 ip->ip_sum = 0;
1027 if (sw_csum & M_CSUM_IPv4) {
1028 ip->ip_sum = in_cksum(m, hlen);
1029 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1030 } else {
1031 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1032 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1033 sizeof(struct ip));
1034 }
1035 sendorfree:
1036 /*
1037 * If there is no room for all the fragments, don't queue
1038 * any of them.
1039 */
1040 if (ifp != NULL) {
1041 s = splnet();
1042 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1043 error == 0) {
1044 error = ENOBUFS;
1045 IP_STATINC(IP_STAT_ODROPPED);
1046 IFQ_INC_DROPS(&ifp->if_snd);
1047 }
1048 splx(s);
1049 }
1050 if (error) {
1051 for (m = m0; m; m = m0) {
1052 m0 = m->m_nextpkt;
1053 m->m_nextpkt = NULL;
1054 m_freem(m);
1055 }
1056 }
1057 return (error);
1058 }
1059
1060 /*
1061 * Process a delayed payload checksum calculation.
1062 */
1063 void
1064 in_delayed_cksum(struct mbuf *m)
1065 {
1066 struct ip *ip;
1067 u_int16_t csum, offset;
1068
1069 ip = mtod(m, struct ip *);
1070 offset = ip->ip_hl << 2;
1071 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1072 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1073 csum = 0xffff;
1074
1075 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1076
1077 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1078 /* This happen when ip options were inserted
1079 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1080 m->m_len, offset, ip->ip_p);
1081 */
1082 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1083 } else
1084 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1085 }
1086
1087 /*
1088 * Determine the maximum length of the options to be inserted;
1089 * we would far rather allocate too much space rather than too little.
1090 */
1091
1092 u_int
1093 ip_optlen(struct inpcb *inp)
1094 {
1095 struct mbuf *m = inp->inp_options;
1096
1097 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1098 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1099 else
1100 return 0;
1101 }
1102
1103
1104 /*
1105 * Insert IP options into preformed packet.
1106 * Adjust IP destination as required for IP source routing,
1107 * as indicated by a non-zero in_addr at the start of the options.
1108 */
1109 static struct mbuf *
1110 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1111 {
1112 struct ipoption *p = mtod(opt, struct ipoption *);
1113 struct mbuf *n;
1114 struct ip *ip = mtod(m, struct ip *);
1115 unsigned optlen;
1116
1117 optlen = opt->m_len - sizeof(p->ipopt_dst);
1118 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1119 return (m); /* XXX should fail */
1120 if (!in_nullhost(p->ipopt_dst))
1121 ip->ip_dst = p->ipopt_dst;
1122 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1123 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1124 if (n == 0)
1125 return (m);
1126 MCLAIM(n, m->m_owner);
1127 M_MOVE_PKTHDR(n, m);
1128 m->m_len -= sizeof(struct ip);
1129 m->m_data += sizeof(struct ip);
1130 n->m_next = m;
1131 m = n;
1132 m->m_len = optlen + sizeof(struct ip);
1133 m->m_data += max_linkhdr;
1134 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1135 } else {
1136 m->m_data -= optlen;
1137 m->m_len += optlen;
1138 memmove(mtod(m, void *), ip, sizeof(struct ip));
1139 }
1140 m->m_pkthdr.len += optlen;
1141 ip = mtod(m, struct ip *);
1142 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1143 *phlen = sizeof(struct ip) + optlen;
1144 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1145 return (m);
1146 }
1147
1148 /*
1149 * Copy options from ip to jp,
1150 * omitting those not copied during fragmentation.
1151 */
1152 int
1153 ip_optcopy(struct ip *ip, struct ip *jp)
1154 {
1155 u_char *cp, *dp;
1156 int opt, optlen, cnt;
1157
1158 cp = (u_char *)(ip + 1);
1159 dp = (u_char *)(jp + 1);
1160 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1161 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1162 opt = cp[0];
1163 if (opt == IPOPT_EOL)
1164 break;
1165 if (opt == IPOPT_NOP) {
1166 /* Preserve for IP mcast tunnel's LSRR alignment. */
1167 *dp++ = IPOPT_NOP;
1168 optlen = 1;
1169 continue;
1170 }
1171 #ifdef DIAGNOSTIC
1172 if (cnt < IPOPT_OLEN + sizeof(*cp))
1173 panic("malformed IPv4 option passed to ip_optcopy");
1174 #endif
1175 optlen = cp[IPOPT_OLEN];
1176 #ifdef DIAGNOSTIC
1177 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1178 panic("malformed IPv4 option passed to ip_optcopy");
1179 #endif
1180 /* bogus lengths should have been caught by ip_dooptions */
1181 if (optlen > cnt)
1182 optlen = cnt;
1183 if (IPOPT_COPIED(opt)) {
1184 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1185 dp += optlen;
1186 }
1187 }
1188 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1189 *dp++ = IPOPT_EOL;
1190 return (optlen);
1191 }
1192
1193 /*
1194 * IP socket option processing.
1195 */
1196 int
1197 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1198 {
1199 struct inpcb *inp = sotoinpcb(so);
1200 int optval = 0;
1201 int error = 0;
1202 #if defined(IPSEC) || defined(FAST_IPSEC)
1203 struct lwp *l = curlwp; /*XXX*/
1204 #endif
1205
1206 if (sopt->sopt_level != IPPROTO_IP) {
1207 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1208 return 0;
1209 return ENOPROTOOPT;
1210 }
1211
1212 switch (op) {
1213 case PRCO_SETOPT:
1214 switch (sopt->sopt_name) {
1215 case IP_OPTIONS:
1216 #ifdef notyet
1217 case IP_RETOPTS:
1218 #endif
1219 {
1220 struct mbuf *m;
1221
1222 m = sockopt_getmbuf(sopt);
1223 if (m == NULL) {
1224 error = ENOBUFS;
1225 break;
1226 }
1227
1228 error = ip_pcbopts(&inp->inp_options, m);
1229 break;
1230 }
1231
1232 case IP_TOS:
1233 case IP_TTL:
1234 case IP_RECVOPTS:
1235 case IP_RECVRETOPTS:
1236 case IP_RECVDSTADDR:
1237 case IP_RECVIF:
1238 error = sockopt_getint(sopt, &optval);
1239 if (error)
1240 break;
1241
1242 switch (sopt->sopt_name) {
1243 case IP_TOS:
1244 inp->inp_ip.ip_tos = optval;
1245 break;
1246
1247 case IP_TTL:
1248 inp->inp_ip.ip_ttl = optval;
1249 break;
1250 #define OPTSET(bit) \
1251 if (optval) \
1252 inp->inp_flags |= bit; \
1253 else \
1254 inp->inp_flags &= ~bit;
1255
1256 case IP_RECVOPTS:
1257 OPTSET(INP_RECVOPTS);
1258 break;
1259
1260 case IP_RECVRETOPTS:
1261 OPTSET(INP_RECVRETOPTS);
1262 break;
1263
1264 case IP_RECVDSTADDR:
1265 OPTSET(INP_RECVDSTADDR);
1266 break;
1267
1268 case IP_RECVIF:
1269 OPTSET(INP_RECVIF);
1270 break;
1271 }
1272 break;
1273 #undef OPTSET
1274
1275 case IP_MULTICAST_IF:
1276 case IP_MULTICAST_TTL:
1277 case IP_MULTICAST_LOOP:
1278 case IP_ADD_MEMBERSHIP:
1279 case IP_DROP_MEMBERSHIP:
1280 error = ip_setmoptions(&inp->inp_moptions, sopt);
1281 break;
1282
1283 case IP_PORTRANGE:
1284 error = sockopt_getint(sopt, &optval);
1285 if (error)
1286 break;
1287
1288 /* INP_LOCK(inp); */
1289 switch (optval) {
1290 case IP_PORTRANGE_DEFAULT:
1291 case IP_PORTRANGE_HIGH:
1292 inp->inp_flags &= ~(INP_LOWPORT);
1293 break;
1294
1295 case IP_PORTRANGE_LOW:
1296 inp->inp_flags |= INP_LOWPORT;
1297 break;
1298
1299 default:
1300 error = EINVAL;
1301 break;
1302 }
1303 /* INP_UNLOCK(inp); */
1304 break;
1305
1306 #if defined(IPSEC) || defined(FAST_IPSEC)
1307 case IP_IPSEC_POLICY:
1308 {
1309 int priv = 0;
1310
1311 #ifdef __NetBSD__
1312 if (l == 0 || kauth_authorize_generic(l->l_cred,
1313 KAUTH_GENERIC_ISSUSER, NULL))
1314 priv = 0;
1315 else
1316 priv = 1;
1317 #else
1318 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1319 #endif
1320
1321 error = ipsec4_set_policy(inp, sopt->sopt_name,
1322 sopt->sopt_data, sopt->sopt_size, priv);
1323 break;
1324 }
1325 #endif /*IPSEC*/
1326
1327 default:
1328 error = ENOPROTOOPT;
1329 break;
1330 }
1331 break;
1332
1333 case PRCO_GETOPT:
1334 switch (sopt->sopt_name) {
1335 case IP_OPTIONS:
1336 case IP_RETOPTS:
1337 if (inp->inp_options) {
1338 struct mbuf *m;
1339
1340 m = m_copym(inp->inp_options, 0, M_COPYALL, M_WAIT);
1341 error = sockopt_setmbuf(sopt, m);
1342 }
1343 break;
1344
1345 case IP_TOS:
1346 case IP_TTL:
1347 case IP_RECVOPTS:
1348 case IP_RECVRETOPTS:
1349 case IP_RECVDSTADDR:
1350 case IP_RECVIF:
1351 case IP_ERRORMTU:
1352 switch (sopt->sopt_name) {
1353 case IP_TOS:
1354 optval = inp->inp_ip.ip_tos;
1355 break;
1356
1357 case IP_TTL:
1358 optval = inp->inp_ip.ip_ttl;
1359 break;
1360
1361 case IP_ERRORMTU:
1362 optval = inp->inp_errormtu;
1363 break;
1364
1365 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1366
1367 case IP_RECVOPTS:
1368 optval = OPTBIT(INP_RECVOPTS);
1369 break;
1370
1371 case IP_RECVRETOPTS:
1372 optval = OPTBIT(INP_RECVRETOPTS);
1373 break;
1374
1375 case IP_RECVDSTADDR:
1376 optval = OPTBIT(INP_RECVDSTADDR);
1377 break;
1378
1379 case IP_RECVIF:
1380 optval = OPTBIT(INP_RECVIF);
1381 break;
1382 }
1383 error = sockopt_setint(sopt, optval);
1384 break;
1385
1386 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1387 case IP_IPSEC_POLICY:
1388 {
1389 struct mbuf *m = NULL;
1390
1391 /* XXX this will return EINVAL as sopt is empty */
1392 error = ipsec4_get_policy(inp, sopt->sopt_data,
1393 sopt->sopt_size, &m);
1394 if (error == 0)
1395 error = sockopt_setmbuf(sopt, m);
1396 break;
1397 }
1398 #endif /*IPSEC*/
1399
1400 case IP_MULTICAST_IF:
1401 case IP_MULTICAST_TTL:
1402 case IP_MULTICAST_LOOP:
1403 case IP_ADD_MEMBERSHIP:
1404 case IP_DROP_MEMBERSHIP:
1405 error = ip_getmoptions(inp->inp_moptions, sopt);
1406 break;
1407
1408 case IP_PORTRANGE:
1409 if (inp->inp_flags & INP_LOWPORT)
1410 optval = IP_PORTRANGE_LOW;
1411 else
1412 optval = IP_PORTRANGE_DEFAULT;
1413
1414 error = sockopt_setint(sopt, optval);
1415
1416 break;
1417
1418 default:
1419 error = ENOPROTOOPT;
1420 break;
1421 }
1422 break;
1423 }
1424 return (error);
1425 }
1426
1427 /*
1428 * Set up IP options in pcb for insertion in output packets.
1429 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1430 * with destination address if source routed.
1431 */
1432 int
1433 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1434 {
1435 int cnt, optlen;
1436 u_char *cp;
1437 u_char opt;
1438
1439 /* turn off any old options */
1440 if (*pcbopt)
1441 (void)m_free(*pcbopt);
1442 *pcbopt = 0;
1443 if (m == (struct mbuf *)0 || m->m_len == 0) {
1444 /*
1445 * Only turning off any previous options.
1446 */
1447 if (m)
1448 (void)m_free(m);
1449 return (0);
1450 }
1451
1452 #ifndef __vax__
1453 if (m->m_len % sizeof(int32_t))
1454 goto bad;
1455 #endif
1456 /*
1457 * IP first-hop destination address will be stored before
1458 * actual options; move other options back
1459 * and clear it when none present.
1460 */
1461 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1462 goto bad;
1463 cnt = m->m_len;
1464 m->m_len += sizeof(struct in_addr);
1465 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1466 memmove(cp, mtod(m, void *), (unsigned)cnt);
1467 bzero(mtod(m, void *), sizeof(struct in_addr));
1468
1469 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1470 opt = cp[IPOPT_OPTVAL];
1471 if (opt == IPOPT_EOL)
1472 break;
1473 if (opt == IPOPT_NOP)
1474 optlen = 1;
1475 else {
1476 if (cnt < IPOPT_OLEN + sizeof(*cp))
1477 goto bad;
1478 optlen = cp[IPOPT_OLEN];
1479 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1480 goto bad;
1481 }
1482 switch (opt) {
1483
1484 default:
1485 break;
1486
1487 case IPOPT_LSRR:
1488 case IPOPT_SSRR:
1489 /*
1490 * user process specifies route as:
1491 * ->A->B->C->D
1492 * D must be our final destination (but we can't
1493 * check that since we may not have connected yet).
1494 * A is first hop destination, which doesn't appear in
1495 * actual IP option, but is stored before the options.
1496 */
1497 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1498 goto bad;
1499 m->m_len -= sizeof(struct in_addr);
1500 cnt -= sizeof(struct in_addr);
1501 optlen -= sizeof(struct in_addr);
1502 cp[IPOPT_OLEN] = optlen;
1503 /*
1504 * Move first hop before start of options.
1505 */
1506 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1507 sizeof(struct in_addr));
1508 /*
1509 * Then copy rest of options back
1510 * to close up the deleted entry.
1511 */
1512 (void)memmove(&cp[IPOPT_OFFSET+1],
1513 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1514 (unsigned)cnt - (IPOPT_MINOFF - 1));
1515 break;
1516 }
1517 }
1518 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1519 goto bad;
1520 *pcbopt = m;
1521 return (0);
1522
1523 bad:
1524 (void)m_free(m);
1525 return (EINVAL);
1526 }
1527
1528 /*
1529 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1530 */
1531 static struct ifnet *
1532 ip_multicast_if(struct in_addr *a, int *ifindexp)
1533 {
1534 int ifindex;
1535 struct ifnet *ifp = NULL;
1536 struct in_ifaddr *ia;
1537
1538 if (ifindexp)
1539 *ifindexp = 0;
1540 if (ntohl(a->s_addr) >> 24 == 0) {
1541 ifindex = ntohl(a->s_addr) & 0xffffff;
1542 if (ifindex < 0 || if_indexlim <= ifindex)
1543 return NULL;
1544 ifp = ifindex2ifnet[ifindex];
1545 if (!ifp)
1546 return NULL;
1547 if (ifindexp)
1548 *ifindexp = ifindex;
1549 } else {
1550 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1551 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1552 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1553 ifp = ia->ia_ifp;
1554 break;
1555 }
1556 }
1557 }
1558 return ifp;
1559 }
1560
1561 static int
1562 ip_getoptval(struct sockopt *sopt, u_int8_t *val, u_int maxval)
1563 {
1564 u_int tval;
1565 u_char cval;
1566 int error;
1567
1568 if (sopt == NULL)
1569 return EINVAL;
1570
1571 switch (sopt->sopt_size) {
1572 case sizeof(u_char):
1573 error = sockopt_get(sopt, &cval, sizeof(u_char));
1574 tval = cval;
1575 break;
1576
1577 case sizeof(u_int):
1578 error = sockopt_get(sopt, &tval, sizeof(u_int));
1579 break;
1580
1581 default:
1582 error = EINVAL;
1583 }
1584
1585 if (error)
1586 return error;
1587
1588 if (tval > maxval)
1589 return EINVAL;
1590
1591 *val = tval;
1592 return 0;
1593 }
1594
1595 /*
1596 * Set the IP multicast options in response to user setsockopt().
1597 */
1598 int
1599 ip_setmoptions(struct ip_moptions **imop, struct sockopt *sopt)
1600 {
1601 int error = 0;
1602 int i;
1603 struct in_addr addr;
1604 struct ip_mreq lmreq, *mreq;
1605 struct ifnet *ifp;
1606 struct ip_moptions *imo = *imop;
1607 int ifindex;
1608
1609 if (imo == NULL) {
1610 /*
1611 * No multicast option buffer attached to the pcb;
1612 * allocate one and initialize to default values.
1613 */
1614 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1615 M_WAITOK);
1616
1617 if (imo == NULL)
1618 return (ENOBUFS);
1619 *imop = imo;
1620 imo->imo_multicast_ifp = NULL;
1621 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1622 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1623 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1624 imo->imo_num_memberships = 0;
1625 }
1626
1627 switch (sopt->sopt_name) {
1628 case IP_MULTICAST_IF:
1629 /*
1630 * Select the interface for outgoing multicast packets.
1631 */
1632 error = sockopt_get(sopt, &addr, sizeof(addr));
1633 if (error)
1634 break;
1635
1636 /*
1637 * INADDR_ANY is used to remove a previous selection.
1638 * When no interface is selected, a default one is
1639 * chosen every time a multicast packet is sent.
1640 */
1641 if (in_nullhost(addr)) {
1642 imo->imo_multicast_ifp = NULL;
1643 break;
1644 }
1645 /*
1646 * The selected interface is identified by its local
1647 * IP address. Find the interface and confirm that
1648 * it supports multicasting.
1649 */
1650 ifp = ip_multicast_if(&addr, &ifindex);
1651 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1652 error = EADDRNOTAVAIL;
1653 break;
1654 }
1655 imo->imo_multicast_ifp = ifp;
1656 if (ifindex)
1657 imo->imo_multicast_addr = addr;
1658 else
1659 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1660 break;
1661
1662 case IP_MULTICAST_TTL:
1663 /*
1664 * Set the IP time-to-live for outgoing multicast packets.
1665 */
1666 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1667 break;
1668
1669 case IP_MULTICAST_LOOP:
1670 /*
1671 * Set the loopback flag for outgoing multicast packets.
1672 * Must be zero or one.
1673 */
1674 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1675 break;
1676
1677 case IP_ADD_MEMBERSHIP:
1678 /*
1679 * Add a multicast group membership.
1680 * Group must be a valid IP multicast address.
1681 */
1682 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1683 if (error)
1684 break;
1685
1686 mreq = &lmreq;
1687
1688 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1689 error = EINVAL;
1690 break;
1691 }
1692 /*
1693 * If no interface address was provided, use the interface of
1694 * the route to the given multicast address.
1695 */
1696 if (in_nullhost(mreq->imr_interface)) {
1697 struct rtentry *rt;
1698 union {
1699 struct sockaddr dst;
1700 struct sockaddr_in dst4;
1701 } u;
1702 struct route ro;
1703
1704 memset(&ro, 0, sizeof(ro));
1705
1706 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1707 rtcache_setdst(&ro, &u.dst);
1708 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1709 : NULL;
1710 rtcache_free(&ro);
1711 } else {
1712 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1713 }
1714 /*
1715 * See if we found an interface, and confirm that it
1716 * supports multicast.
1717 */
1718 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1719 error = EADDRNOTAVAIL;
1720 break;
1721 }
1722 /*
1723 * See if the membership already exists or if all the
1724 * membership slots are full.
1725 */
1726 for (i = 0; i < imo->imo_num_memberships; ++i) {
1727 if (imo->imo_membership[i]->inm_ifp == ifp &&
1728 in_hosteq(imo->imo_membership[i]->inm_addr,
1729 mreq->imr_multiaddr))
1730 break;
1731 }
1732 if (i < imo->imo_num_memberships) {
1733 error = EADDRINUSE;
1734 break;
1735 }
1736 if (i == IP_MAX_MEMBERSHIPS) {
1737 error = ETOOMANYREFS;
1738 break;
1739 }
1740 /*
1741 * Everything looks good; add a new record to the multicast
1742 * address list for the given interface.
1743 */
1744 if ((imo->imo_membership[i] =
1745 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1746 error = ENOBUFS;
1747 break;
1748 }
1749 ++imo->imo_num_memberships;
1750 break;
1751
1752 case IP_DROP_MEMBERSHIP:
1753 /*
1754 * Drop a multicast group membership.
1755 * Group must be a valid IP multicast address.
1756 */
1757 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1758 if (error)
1759 break;
1760
1761 mreq = &lmreq;
1762
1763 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1764 error = EINVAL;
1765 break;
1766 }
1767 /*
1768 * If an interface address was specified, get a pointer
1769 * to its ifnet structure.
1770 */
1771 if (in_nullhost(mreq->imr_interface))
1772 ifp = NULL;
1773 else {
1774 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1775 if (ifp == NULL) {
1776 error = EADDRNOTAVAIL;
1777 break;
1778 }
1779 }
1780 /*
1781 * Find the membership in the membership array.
1782 */
1783 for (i = 0; i < imo->imo_num_memberships; ++i) {
1784 if ((ifp == NULL ||
1785 imo->imo_membership[i]->inm_ifp == ifp) &&
1786 in_hosteq(imo->imo_membership[i]->inm_addr,
1787 mreq->imr_multiaddr))
1788 break;
1789 }
1790 if (i == imo->imo_num_memberships) {
1791 error = EADDRNOTAVAIL;
1792 break;
1793 }
1794 /*
1795 * Give up the multicast address record to which the
1796 * membership points.
1797 */
1798 in_delmulti(imo->imo_membership[i]);
1799 /*
1800 * Remove the gap in the membership array.
1801 */
1802 for (++i; i < imo->imo_num_memberships; ++i)
1803 imo->imo_membership[i-1] = imo->imo_membership[i];
1804 --imo->imo_num_memberships;
1805 break;
1806
1807 default:
1808 error = EOPNOTSUPP;
1809 break;
1810 }
1811
1812 /*
1813 * If all options have default values, no need to keep the mbuf.
1814 */
1815 if (imo->imo_multicast_ifp == NULL &&
1816 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1817 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1818 imo->imo_num_memberships == 0) {
1819 free(*imop, M_IPMOPTS);
1820 *imop = NULL;
1821 }
1822
1823 return (error);
1824 }
1825
1826 /*
1827 * Return the IP multicast options in response to user getsockopt().
1828 */
1829 int
1830 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1831 {
1832 struct in_addr addr;
1833 struct in_ifaddr *ia;
1834 int error;
1835 uint8_t optval;
1836
1837 error = 0;
1838
1839 switch (sopt->sopt_name) {
1840 case IP_MULTICAST_IF:
1841 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1842 addr = zeroin_addr;
1843 else if (imo->imo_multicast_addr.s_addr) {
1844 /* return the value user has set */
1845 addr = imo->imo_multicast_addr;
1846 } else {
1847 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1848 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1849 }
1850 error = sockopt_set(sopt, &addr, sizeof(addr));
1851 break;
1852
1853 case IP_MULTICAST_TTL:
1854 optval = imo ? imo->imo_multicast_ttl
1855 : IP_DEFAULT_MULTICAST_TTL;
1856
1857 error = sockopt_set(sopt, &optval, sizeof(optval));
1858 break;
1859
1860 case IP_MULTICAST_LOOP:
1861 optval = imo ? imo->imo_multicast_loop
1862 : IP_DEFAULT_MULTICAST_LOOP;
1863
1864 error = sockopt_set(sopt, &optval, sizeof(optval));
1865 break;
1866
1867 default:
1868 error = EOPNOTSUPP;
1869 }
1870
1871 return (error);
1872 }
1873
1874 /*
1875 * Discard the IP multicast options.
1876 */
1877 void
1878 ip_freemoptions(struct ip_moptions *imo)
1879 {
1880 int i;
1881
1882 if (imo != NULL) {
1883 for (i = 0; i < imo->imo_num_memberships; ++i)
1884 in_delmulti(imo->imo_membership[i]);
1885 free(imo, M_IPMOPTS);
1886 }
1887 }
1888
1889 /*
1890 * Routine called from ip_output() to loop back a copy of an IP multicast
1891 * packet to the input queue of a specified interface. Note that this
1892 * calls the output routine of the loopback "driver", but with an interface
1893 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1894 */
1895 static void
1896 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1897 {
1898 struct ip *ip;
1899 struct mbuf *copym;
1900
1901 copym = m_copypacket(m, M_DONTWAIT);
1902 if (copym != NULL
1903 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1904 copym = m_pullup(copym, sizeof(struct ip));
1905 if (copym == NULL)
1906 return;
1907 /*
1908 * We don't bother to fragment if the IP length is greater
1909 * than the interface's MTU. Can this possibly matter?
1910 */
1911 ip = mtod(copym, struct ip *);
1912
1913 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1914 in_delayed_cksum(copym);
1915 copym->m_pkthdr.csum_flags &=
1916 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1917 }
1918
1919 ip->ip_sum = 0;
1920 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1921 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1922 }
1923