ip_output.c revision 1.207 1 /* $NetBSD: ip_output.c,v 1.207 2011/04/09 21:00:53 martin Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.207 2011/04/09 21:00:53 martin Exp $");
95
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef FAST_IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131
132 #include <machine/stdarg.h>
133
134 #ifdef IPSEC
135 #include <netinet6/ipsec.h>
136 #include <netinet6/ipsec_private.h>
137 #include <netkey/key.h>
138 #include <netkey/key_debug.h>
139 #endif /*IPSEC*/
140
141 #ifdef FAST_IPSEC
142 #include <netipsec/ipsec.h>
143 #include <netipsec/key.h>
144 #include <netipsec/xform.h>
145 #endif /* FAST_IPSEC*/
146
147 #ifdef IPSEC_NAT_T
148 #include <netinet/udp.h>
149 #endif
150
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155
156 #ifdef PFIL_HOOKS
157 extern struct pfil_head inet_pfil_hook; /* XXX */
158 #endif
159
160 int ip_do_loopback_cksum = 0;
161
162 /*
163 * IP output. The packet in mbuf chain m contains a skeletal IP
164 * header (with len, off, ttl, proto, tos, src, dst).
165 * The mbuf chain containing the packet will be freed.
166 * The mbuf opt, if present, will not be freed.
167 */
168 int
169 ip_output(struct mbuf *m0, ...)
170 {
171 struct rtentry *rt;
172 struct ip *ip;
173 struct ifnet *ifp;
174 struct mbuf *m = m0;
175 int hlen = sizeof (struct ip);
176 int len, error = 0;
177 struct route iproute;
178 const struct sockaddr_in *dst;
179 struct in_ifaddr *ia;
180 struct ifaddr *xifa;
181 struct mbuf *opt;
182 struct route *ro;
183 int flags, sw_csum;
184 int *mtu_p;
185 u_long mtu;
186 struct ip_moptions *imo;
187 struct socket *so;
188 va_list ap;
189 #ifdef IPSEC_NAT_T
190 int natt_frag = 0;
191 #endif
192 #ifdef IPSEC
193 struct secpolicy *sp = NULL;
194 #endif /*IPSEC*/
195 #ifdef FAST_IPSEC
196 struct inpcb *inp;
197 struct secpolicy *sp = NULL;
198 int s;
199 #endif
200 u_int16_t ip_len;
201 union {
202 struct sockaddr dst;
203 struct sockaddr_in dst4;
204 } u;
205 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
206 * to the nexthop
207 */
208
209 len = 0;
210 va_start(ap, m0);
211 opt = va_arg(ap, struct mbuf *);
212 ro = va_arg(ap, struct route *);
213 flags = va_arg(ap, int);
214 imo = va_arg(ap, struct ip_moptions *);
215 so = va_arg(ap, struct socket *);
216 if (flags & IP_RETURNMTU)
217 mtu_p = va_arg(ap, int *);
218 else
219 mtu_p = NULL;
220 va_end(ap);
221
222 MCLAIM(m, &ip_tx_mowner);
223 #ifdef FAST_IPSEC
224 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
225 inp = (struct inpcb *)so->so_pcb;
226 else
227 inp = NULL;
228 #endif /* FAST_IPSEC */
229
230 #ifdef DIAGNOSTIC
231 if ((m->m_flags & M_PKTHDR) == 0)
232 panic("ip_output: no HDR");
233
234 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
235 panic("ip_output: IPv6 checksum offload flags: %d",
236 m->m_pkthdr.csum_flags);
237 }
238
239 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
240 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
241 panic("ip_output: conflicting checksum offload flags: %d",
242 m->m_pkthdr.csum_flags);
243 }
244 #endif
245 if (opt) {
246 m = ip_insertoptions(m, opt, &len);
247 if (len >= sizeof(struct ip))
248 hlen = len;
249 }
250 ip = mtod(m, struct ip *);
251 /*
252 * Fill in IP header.
253 */
254 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
255 ip->ip_v = IPVERSION;
256 ip->ip_off = htons(0);
257 /* ip->ip_id filled in after we find out source ia */
258 ip->ip_hl = hlen >> 2;
259 IP_STATINC(IP_STAT_LOCALOUT);
260 } else {
261 hlen = ip->ip_hl << 2;
262 }
263 /*
264 * Route packet.
265 */
266 memset(&iproute, 0, sizeof(iproute));
267 if (ro == NULL)
268 ro = &iproute;
269 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
270 dst = satocsin(rtcache_getdst(ro));
271 /*
272 * If there is a cached route,
273 * check that it is to the same destination
274 * and is still up. If not, free it and try again.
275 * The address family should also be checked in case of sharing the
276 * cache with IPv6.
277 */
278 if (dst == NULL)
279 ;
280 else if (dst->sin_family != AF_INET ||
281 !in_hosteq(dst->sin_addr, ip->ip_dst))
282 rtcache_free(ro);
283
284 if ((rt = rtcache_validate(ro)) == NULL &&
285 (rt = rtcache_update(ro, 1)) == NULL) {
286 dst = &u.dst4;
287 rtcache_setdst(ro, &u.dst);
288 }
289 /*
290 * If routing to interface only,
291 * short circuit routing lookup.
292 */
293 if (flags & IP_ROUTETOIF) {
294 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
295 IP_STATINC(IP_STAT_NOROUTE);
296 error = ENETUNREACH;
297 goto bad;
298 }
299 ifp = ia->ia_ifp;
300 mtu = ifp->if_mtu;
301 ip->ip_ttl = 1;
302 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
303 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
304 imo != NULL && imo->imo_multicast_ifp != NULL) {
305 ifp = imo->imo_multicast_ifp;
306 mtu = ifp->if_mtu;
307 IFP_TO_IA(ifp, ia);
308 } else {
309 if (rt == NULL)
310 rt = rtcache_init(ro);
311 if (rt == NULL) {
312 IP_STATINC(IP_STAT_NOROUTE);
313 error = EHOSTUNREACH;
314 goto bad;
315 }
316 ia = ifatoia(rt->rt_ifa);
317 ifp = rt->rt_ifp;
318 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
319 mtu = ifp->if_mtu;
320 rt->rt_use++;
321 if (rt->rt_flags & RTF_GATEWAY)
322 dst = satosin(rt->rt_gateway);
323 }
324 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
325 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
326 struct in_multi *inm;
327
328 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
329 M_BCAST : M_MCAST;
330 /*
331 * See if the caller provided any multicast options
332 */
333 if (imo != NULL)
334 ip->ip_ttl = imo->imo_multicast_ttl;
335 else
336 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
337
338 /*
339 * if we don't know the outgoing ifp yet, we can't generate
340 * output
341 */
342 if (!ifp) {
343 IP_STATINC(IP_STAT_NOROUTE);
344 error = ENETUNREACH;
345 goto bad;
346 }
347
348 /*
349 * If the packet is multicast or broadcast, confirm that
350 * the outgoing interface can transmit it.
351 */
352 if (((m->m_flags & M_MCAST) &&
353 (ifp->if_flags & IFF_MULTICAST) == 0) ||
354 ((m->m_flags & M_BCAST) &&
355 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
356 IP_STATINC(IP_STAT_NOROUTE);
357 error = ENETUNREACH;
358 goto bad;
359 }
360 /*
361 * If source address not specified yet, use an address
362 * of outgoing interface.
363 */
364 if (in_nullhost(ip->ip_src)) {
365 struct in_ifaddr *xia;
366
367 IFP_TO_IA(ifp, xia);
368 if (!xia) {
369 error = EADDRNOTAVAIL;
370 goto bad;
371 }
372 xifa = &xia->ia_ifa;
373 if (xifa->ifa_getifa != NULL) {
374 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
375 }
376 ip->ip_src = xia->ia_addr.sin_addr;
377 }
378
379 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
380 if (inm != NULL &&
381 (imo == NULL || imo->imo_multicast_loop)) {
382 /*
383 * If we belong to the destination multicast group
384 * on the outgoing interface, and the caller did not
385 * forbid loopback, loop back a copy.
386 */
387 ip_mloopback(ifp, m, &u.dst4);
388 }
389 #ifdef MROUTING
390 else {
391 /*
392 * If we are acting as a multicast router, perform
393 * multicast forwarding as if the packet had just
394 * arrived on the interface to which we are about
395 * to send. The multicast forwarding function
396 * recursively calls this function, using the
397 * IP_FORWARDING flag to prevent infinite recursion.
398 *
399 * Multicasts that are looped back by ip_mloopback(),
400 * above, will be forwarded by the ip_input() routine,
401 * if necessary.
402 */
403 extern struct socket *ip_mrouter;
404
405 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
406 if (ip_mforward(m, ifp) != 0) {
407 m_freem(m);
408 goto done;
409 }
410 }
411 }
412 #endif
413 /*
414 * Multicasts with a time-to-live of zero may be looped-
415 * back, above, but must not be transmitted on a network.
416 * Also, multicasts addressed to the loopback interface
417 * are not sent -- the above call to ip_mloopback() will
418 * loop back a copy if this host actually belongs to the
419 * destination group on the loopback interface.
420 */
421 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
422 m_freem(m);
423 goto done;
424 }
425
426 goto sendit;
427 }
428 /*
429 * If source address not specified yet, use address
430 * of outgoing interface.
431 */
432 if (in_nullhost(ip->ip_src)) {
433 xifa = &ia->ia_ifa;
434 if (xifa->ifa_getifa != NULL)
435 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
436 ip->ip_src = ia->ia_addr.sin_addr;
437 }
438
439 /*
440 * packets with Class-D address as source are not valid per
441 * RFC 1112
442 */
443 if (IN_MULTICAST(ip->ip_src.s_addr)) {
444 IP_STATINC(IP_STAT_ODROPPED);
445 error = EADDRNOTAVAIL;
446 goto bad;
447 }
448
449 /*
450 * Look for broadcast address and
451 * and verify user is allowed to send
452 * such a packet.
453 */
454 if (in_broadcast(dst->sin_addr, ifp)) {
455 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
456 error = EADDRNOTAVAIL;
457 goto bad;
458 }
459 if ((flags & IP_ALLOWBROADCAST) == 0) {
460 error = EACCES;
461 goto bad;
462 }
463 /* don't allow broadcast messages to be fragmented */
464 if (ntohs(ip->ip_len) > ifp->if_mtu) {
465 error = EMSGSIZE;
466 goto bad;
467 }
468 m->m_flags |= M_BCAST;
469 } else
470 m->m_flags &= ~M_BCAST;
471
472 sendit:
473 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
474 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
475 ip->ip_id = 0;
476 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
477 ip->ip_id = ip_newid(ia);
478 } else {
479
480 /*
481 * TSO capable interfaces (typically?) increment
482 * ip_id for each segment.
483 * "allocate" enough ids here to increase the chance
484 * for them to be unique.
485 *
486 * note that the following calculation is not
487 * needed to be precise. wasting some ip_id is fine.
488 */
489
490 unsigned int segsz = m->m_pkthdr.segsz;
491 unsigned int datasz = ntohs(ip->ip_len) - hlen;
492 unsigned int num = howmany(datasz, segsz);
493
494 ip->ip_id = ip_newid_range(ia, num);
495 }
496 }
497 /*
498 * If we're doing Path MTU Discovery, we need to set DF unless
499 * the route's MTU is locked.
500 */
501 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
502 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
503 ip->ip_off |= htons(IP_DF);
504
505 /* Remember the current ip_len */
506 ip_len = ntohs(ip->ip_len);
507
508 #ifdef IPSEC
509 /* get SP for this packet */
510 if (so == NULL)
511 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
512 flags, &error);
513 else {
514 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
515 IPSEC_DIR_OUTBOUND))
516 goto skip_ipsec;
517 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
518 }
519
520 if (sp == NULL) {
521 IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
522 goto bad;
523 }
524
525 error = 0;
526
527 /* check policy */
528 switch (sp->policy) {
529 case IPSEC_POLICY_DISCARD:
530 /*
531 * This packet is just discarded.
532 */
533 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
534 goto bad;
535
536 case IPSEC_POLICY_BYPASS:
537 case IPSEC_POLICY_NONE:
538 /* no need to do IPsec. */
539 goto skip_ipsec;
540
541 case IPSEC_POLICY_IPSEC:
542 if (sp->req == NULL) {
543 /* XXX should be panic ? */
544 printf("ip_output: No IPsec request specified.\n");
545 error = EINVAL;
546 goto bad;
547 }
548 break;
549
550 case IPSEC_POLICY_ENTRUST:
551 default:
552 printf("ip_output: Invalid policy found. %d\n", sp->policy);
553 }
554
555 #ifdef IPSEC_NAT_T
556 /*
557 * NAT-T ESP fragmentation: don't do IPSec processing now,
558 * we'll do it on each fragmented packet.
559 */
560 if (sp->req->sav &&
561 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
562 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
563 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
564 natt_frag = 1;
565 mtu = sp->req->sav->esp_frag;
566 goto skip_ipsec;
567 }
568 }
569 #endif /* IPSEC_NAT_T */
570
571 /*
572 * ipsec4_output() expects ip_len and ip_off in network
573 * order. They have been set to network order above.
574 */
575
576 {
577 struct ipsec_output_state state;
578 memset(&state, 0, sizeof(state));
579 state.m = m;
580 if (flags & IP_ROUTETOIF) {
581 state.ro = &iproute;
582 memset(&iproute, 0, sizeof(iproute));
583 } else
584 state.ro = ro;
585 state.dst = sintocsa(dst);
586
587 /*
588 * We can't defer the checksum of payload data if
589 * we're about to encrypt/authenticate it.
590 *
591 * XXX When we support crypto offloading functions of
592 * XXX network interfaces, we need to reconsider this,
593 * XXX since it's likely that they'll support checksumming,
594 * XXX as well.
595 */
596 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
597 in_delayed_cksum(m);
598 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
599 }
600
601 error = ipsec4_output(&state, sp, flags);
602
603 m = state.m;
604 if (flags & IP_ROUTETOIF) {
605 /*
606 * if we have tunnel mode SA, we may need to ignore
607 * IP_ROUTETOIF.
608 */
609 if (state.ro != &iproute ||
610 rtcache_validate(state.ro) != NULL) {
611 flags &= ~IP_ROUTETOIF;
612 ro = state.ro;
613 }
614 } else
615 ro = state.ro;
616 dst = satocsin(state.dst);
617 if (error) {
618 /* mbuf is already reclaimed in ipsec4_output. */
619 m0 = NULL;
620 switch (error) {
621 case EHOSTUNREACH:
622 case ENETUNREACH:
623 case EMSGSIZE:
624 case ENOBUFS:
625 case ENOMEM:
626 break;
627 default:
628 printf("ip4_output (ipsec): error code %d\n", error);
629 /*fall through*/
630 case ENOENT:
631 /* don't show these error codes to the user */
632 error = 0;
633 break;
634 }
635 goto bad;
636 }
637
638 /* be sure to update variables that are affected by ipsec4_output() */
639 ip = mtod(m, struct ip *);
640 hlen = ip->ip_hl << 2;
641 ip_len = ntohs(ip->ip_len);
642
643 if ((rt = rtcache_validate(ro)) == NULL) {
644 if ((flags & IP_ROUTETOIF) == 0) {
645 printf("ip_output: "
646 "can't update route after IPsec processing\n");
647 error = EHOSTUNREACH; /*XXX*/
648 goto bad;
649 }
650 } else {
651 /* nobody uses ia beyond here */
652 if (state.encap) {
653 ifp = rt->rt_ifp;
654 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
655 mtu = ifp->if_mtu;
656 }
657 }
658 }
659 skip_ipsec:
660 #endif /*IPSEC*/
661 #ifdef FAST_IPSEC
662 /*
663 * Check the security policy (SP) for the packet and, if
664 * required, do IPsec-related processing. There are two
665 * cases here; the first time a packet is sent through
666 * it will be untagged and handled by ipsec4_checkpolicy.
667 * If the packet is resubmitted to ip_output (e.g. after
668 * AH, ESP, etc. processing), there will be a tag to bypass
669 * the lookup and related policy checking.
670 */
671 if (!ipsec_outdone(m)) {
672 s = splsoftnet();
673 if (inp != NULL &&
674 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
675 splx(s);
676 goto spd_done;
677 }
678 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
679 &error, inp);
680 /*
681 * There are four return cases:
682 * sp != NULL apply IPsec policy
683 * sp == NULL, error == 0 no IPsec handling needed
684 * sp == NULL, error == -EINVAL discard packet w/o error
685 * sp == NULL, error != 0 discard packet, report error
686 */
687 if (sp != NULL) {
688 #ifdef IPSEC_NAT_T
689 /*
690 * NAT-T ESP fragmentation: don't do IPSec processing now,
691 * we'll do it on each fragmented packet.
692 */
693 if (sp->req->sav &&
694 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
695 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
696 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
697 natt_frag = 1;
698 mtu = sp->req->sav->esp_frag;
699 splx(s);
700 goto spd_done;
701 }
702 }
703 #endif /* IPSEC_NAT_T */
704
705 /*
706 * Do delayed checksums now because we send before
707 * this is done in the normal processing path.
708 */
709 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
710 in_delayed_cksum(m);
711 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
712 }
713
714 #ifdef __FreeBSD__
715 ip->ip_len = htons(ip->ip_len);
716 ip->ip_off = htons(ip->ip_off);
717 #endif
718
719 /* NB: callee frees mbuf */
720 error = ipsec4_process_packet(m, sp->req, flags, 0);
721 /*
722 * Preserve KAME behaviour: ENOENT can be returned
723 * when an SA acquire is in progress. Don't propagate
724 * this to user-level; it confuses applications.
725 *
726 * XXX this will go away when the SADB is redone.
727 */
728 if (error == ENOENT)
729 error = 0;
730 splx(s);
731 goto done;
732 } else {
733 splx(s);
734
735 if (error != 0) {
736 /*
737 * Hack: -EINVAL is used to signal that a packet
738 * should be silently discarded. This is typically
739 * because we asked key management for an SA and
740 * it was delayed (e.g. kicked up to IKE).
741 */
742 if (error == -EINVAL)
743 error = 0;
744 goto bad;
745 } else {
746 /* No IPsec processing for this packet. */
747 }
748 }
749 }
750 spd_done:
751 #endif /* FAST_IPSEC */
752
753 #ifdef PFIL_HOOKS
754 /*
755 * Run through list of hooks for output packets.
756 */
757 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
758 goto done;
759 if (m == NULL)
760 goto done;
761
762 ip = mtod(m, struct ip *);
763 hlen = ip->ip_hl << 2;
764 ip_len = ntohs(ip->ip_len);
765 #endif /* PFIL_HOOKS */
766
767 m->m_pkthdr.csum_data |= hlen << 16;
768
769 #if IFA_STATS
770 /*
771 * search for the source address structure to
772 * maintain output statistics.
773 */
774 INADDR_TO_IA(ip->ip_src, ia);
775 #endif
776
777 /* Maybe skip checksums on loopback interfaces. */
778 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
779 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
780 }
781 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
782 /*
783 * If small enough for mtu of path, or if using TCP segmentation
784 * offload, can just send directly.
785 */
786 if (ip_len <= mtu ||
787 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
788 #if IFA_STATS
789 if (ia)
790 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
791 #endif
792 /*
793 * Always initialize the sum to 0! Some HW assisted
794 * checksumming requires this.
795 */
796 ip->ip_sum = 0;
797
798 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
799 /*
800 * Perform any checksums that the hardware can't do
801 * for us.
802 *
803 * XXX Does any hardware require the {th,uh}_sum
804 * XXX fields to be 0?
805 */
806 if (sw_csum & M_CSUM_IPv4) {
807 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
808 ip->ip_sum = in_cksum(m, hlen);
809 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
810 }
811 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
812 if (IN_NEED_CHECKSUM(ifp,
813 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
814 in_delayed_cksum(m);
815 }
816 m->m_pkthdr.csum_flags &=
817 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
818 }
819 }
820
821 #ifdef IPSEC
822 /* clean ipsec history once it goes out of the node */
823 ipsec_delaux(m);
824 #endif
825
826 if (__predict_true(
827 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
828 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
829 error =
830 (*ifp->if_output)(ifp, m,
831 (m->m_flags & M_MCAST) ?
832 sintocsa(rdst) : sintocsa(dst),
833 rt);
834 } else {
835 error =
836 ip_tso_output(ifp, m,
837 (m->m_flags & M_MCAST) ?
838 sintocsa(rdst) : sintocsa(dst),
839 rt);
840 }
841 goto done;
842 }
843
844 /*
845 * We can't use HW checksumming if we're about to
846 * to fragment the packet.
847 *
848 * XXX Some hardware can do this.
849 */
850 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
851 if (IN_NEED_CHECKSUM(ifp,
852 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
853 in_delayed_cksum(m);
854 }
855 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
856 }
857
858 /*
859 * Too large for interface; fragment if possible.
860 * Must be able to put at least 8 bytes per fragment.
861 */
862 if (ntohs(ip->ip_off) & IP_DF) {
863 if (flags & IP_RETURNMTU)
864 *mtu_p = mtu;
865 error = EMSGSIZE;
866 IP_STATINC(IP_STAT_CANTFRAG);
867 goto bad;
868 }
869
870 error = ip_fragment(m, ifp, mtu);
871 if (error) {
872 m = NULL;
873 goto bad;
874 }
875
876 for (; m; m = m0) {
877 m0 = m->m_nextpkt;
878 m->m_nextpkt = 0;
879 if (error == 0) {
880 #if IFA_STATS
881 if (ia)
882 ia->ia_ifa.ifa_data.ifad_outbytes +=
883 ntohs(ip->ip_len);
884 #endif
885 #ifdef IPSEC
886 /* clean ipsec history once it goes out of the node */
887 ipsec_delaux(m);
888 #endif /* IPSEC */
889
890 #ifdef IPSEC_NAT_T
891 /*
892 * If we get there, the packet has not been handeld by
893 * IPSec whereas it should have. Now that it has been
894 * fragmented, re-inject it in ip_output so that IPsec
895 * processing can occur.
896 */
897 if (natt_frag) {
898 error = ip_output(m, opt,
899 ro, flags, imo, so, mtu_p);
900 } else
901 #endif /* IPSEC_NAT_T */
902 {
903 KASSERT((m->m_pkthdr.csum_flags &
904 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
905 error = (*ifp->if_output)(ifp, m,
906 (m->m_flags & M_MCAST) ?
907 sintocsa(rdst) : sintocsa(dst),
908 rt);
909 }
910 } else
911 m_freem(m);
912 }
913
914 if (error == 0)
915 IP_STATINC(IP_STAT_FRAGMENTED);
916 done:
917 rtcache_free(&iproute);
918
919 #ifdef IPSEC
920 if (sp != NULL) {
921 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
922 printf("DP ip_output call free SP:%p\n", sp));
923 key_freesp(sp);
924 }
925 #endif /* IPSEC */
926 #ifdef FAST_IPSEC
927 if (sp != NULL)
928 KEY_FREESP(&sp);
929 #endif /* FAST_IPSEC */
930
931 return (error);
932 bad:
933 m_freem(m);
934 goto done;
935 }
936
937 int
938 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
939 {
940 struct ip *ip, *mhip;
941 struct mbuf *m0;
942 int len, hlen, off;
943 int mhlen, firstlen;
944 struct mbuf **mnext;
945 int sw_csum = m->m_pkthdr.csum_flags;
946 int fragments = 0;
947 int s;
948 int error = 0;
949
950 ip = mtod(m, struct ip *);
951 hlen = ip->ip_hl << 2;
952 if (ifp != NULL)
953 sw_csum &= ~ifp->if_csum_flags_tx;
954
955 len = (mtu - hlen) &~ 7;
956 if (len < 8) {
957 m_freem(m);
958 return (EMSGSIZE);
959 }
960
961 firstlen = len;
962 mnext = &m->m_nextpkt;
963
964 /*
965 * Loop through length of segment after first fragment,
966 * make new header and copy data of each part and link onto chain.
967 */
968 m0 = m;
969 mhlen = sizeof (struct ip);
970 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
971 MGETHDR(m, M_DONTWAIT, MT_HEADER);
972 if (m == 0) {
973 error = ENOBUFS;
974 IP_STATINC(IP_STAT_ODROPPED);
975 goto sendorfree;
976 }
977 MCLAIM(m, m0->m_owner);
978 *mnext = m;
979 mnext = &m->m_nextpkt;
980 m->m_data += max_linkhdr;
981 mhip = mtod(m, struct ip *);
982 *mhip = *ip;
983 /* we must inherit MCAST and BCAST flags */
984 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
985 if (hlen > sizeof (struct ip)) {
986 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
987 mhip->ip_hl = mhlen >> 2;
988 }
989 m->m_len = mhlen;
990 mhip->ip_off = ((off - hlen) >> 3) +
991 (ntohs(ip->ip_off) & ~IP_MF);
992 if (ip->ip_off & htons(IP_MF))
993 mhip->ip_off |= IP_MF;
994 if (off + len >= ntohs(ip->ip_len))
995 len = ntohs(ip->ip_len) - off;
996 else
997 mhip->ip_off |= IP_MF;
998 HTONS(mhip->ip_off);
999 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1000 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1001 if (m->m_next == 0) {
1002 error = ENOBUFS; /* ??? */
1003 IP_STATINC(IP_STAT_ODROPPED);
1004 goto sendorfree;
1005 }
1006 m->m_pkthdr.len = mhlen + len;
1007 m->m_pkthdr.rcvif = (struct ifnet *)0;
1008 mhip->ip_sum = 0;
1009 if (sw_csum & M_CSUM_IPv4) {
1010 mhip->ip_sum = in_cksum(m, mhlen);
1011 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1012 } else {
1013 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1014 m->m_pkthdr.csum_data |= mhlen << 16;
1015 }
1016 IP_STATINC(IP_STAT_OFRAGMENTS);
1017 fragments++;
1018 }
1019 /*
1020 * Update first fragment by trimming what's been copied out
1021 * and updating header, then send each fragment (in order).
1022 */
1023 m = m0;
1024 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1025 m->m_pkthdr.len = hlen + firstlen;
1026 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1027 ip->ip_off |= htons(IP_MF);
1028 ip->ip_sum = 0;
1029 /*
1030 * We may not use checksums on loopback interfaces
1031 */
1032 if (__predict_false(ifp == NULL) ||
1033 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
1034 if (sw_csum & M_CSUM_IPv4) {
1035 ip->ip_sum = in_cksum(m, hlen);
1036 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1037 } else {
1038 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1039 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1040 sizeof(struct ip));
1041 }
1042 }
1043 sendorfree:
1044 /*
1045 * If there is no room for all the fragments, don't queue
1046 * any of them.
1047 */
1048 if (ifp != NULL) {
1049 s = splnet();
1050 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1051 error == 0) {
1052 error = ENOBUFS;
1053 IP_STATINC(IP_STAT_ODROPPED);
1054 IFQ_INC_DROPS(&ifp->if_snd);
1055 }
1056 splx(s);
1057 }
1058 if (error) {
1059 for (m = m0; m; m = m0) {
1060 m0 = m->m_nextpkt;
1061 m->m_nextpkt = NULL;
1062 m_freem(m);
1063 }
1064 }
1065 return (error);
1066 }
1067
1068 /*
1069 * Process a delayed payload checksum calculation.
1070 */
1071 void
1072 in_delayed_cksum(struct mbuf *m)
1073 {
1074 struct ip *ip;
1075 u_int16_t csum, offset;
1076
1077 ip = mtod(m, struct ip *);
1078 offset = ip->ip_hl << 2;
1079 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1080 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1081 csum = 0xffff;
1082
1083 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1084
1085 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1086 /* This happen when ip options were inserted
1087 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1088 m->m_len, offset, ip->ip_p);
1089 */
1090 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1091 } else
1092 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1093 }
1094
1095 /*
1096 * Determine the maximum length of the options to be inserted;
1097 * we would far rather allocate too much space rather than too little.
1098 */
1099
1100 u_int
1101 ip_optlen(struct inpcb *inp)
1102 {
1103 struct mbuf *m = inp->inp_options;
1104
1105 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1106 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1107 else
1108 return 0;
1109 }
1110
1111
1112 /*
1113 * Insert IP options into preformed packet.
1114 * Adjust IP destination as required for IP source routing,
1115 * as indicated by a non-zero in_addr at the start of the options.
1116 */
1117 static struct mbuf *
1118 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1119 {
1120 struct ipoption *p = mtod(opt, struct ipoption *);
1121 struct mbuf *n;
1122 struct ip *ip = mtod(m, struct ip *);
1123 unsigned optlen;
1124
1125 optlen = opt->m_len - sizeof(p->ipopt_dst);
1126 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1127 return (m); /* XXX should fail */
1128 if (!in_nullhost(p->ipopt_dst))
1129 ip->ip_dst = p->ipopt_dst;
1130 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1131 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1132 if (n == 0)
1133 return (m);
1134 MCLAIM(n, m->m_owner);
1135 M_MOVE_PKTHDR(n, m);
1136 m->m_len -= sizeof(struct ip);
1137 m->m_data += sizeof(struct ip);
1138 n->m_next = m;
1139 m = n;
1140 m->m_len = optlen + sizeof(struct ip);
1141 m->m_data += max_linkhdr;
1142 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1143 } else {
1144 m->m_data -= optlen;
1145 m->m_len += optlen;
1146 memmove(mtod(m, void *), ip, sizeof(struct ip));
1147 }
1148 m->m_pkthdr.len += optlen;
1149 ip = mtod(m, struct ip *);
1150 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1151 *phlen = sizeof(struct ip) + optlen;
1152 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1153 return (m);
1154 }
1155
1156 /*
1157 * Copy options from ip to jp,
1158 * omitting those not copied during fragmentation.
1159 */
1160 int
1161 ip_optcopy(struct ip *ip, struct ip *jp)
1162 {
1163 u_char *cp, *dp;
1164 int opt, optlen, cnt;
1165
1166 cp = (u_char *)(ip + 1);
1167 dp = (u_char *)(jp + 1);
1168 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1169 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1170 opt = cp[0];
1171 if (opt == IPOPT_EOL)
1172 break;
1173 if (opt == IPOPT_NOP) {
1174 /* Preserve for IP mcast tunnel's LSRR alignment. */
1175 *dp++ = IPOPT_NOP;
1176 optlen = 1;
1177 continue;
1178 }
1179 #ifdef DIAGNOSTIC
1180 if (cnt < IPOPT_OLEN + sizeof(*cp))
1181 panic("malformed IPv4 option passed to ip_optcopy");
1182 #endif
1183 optlen = cp[IPOPT_OLEN];
1184 #ifdef DIAGNOSTIC
1185 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1186 panic("malformed IPv4 option passed to ip_optcopy");
1187 #endif
1188 /* bogus lengths should have been caught by ip_dooptions */
1189 if (optlen > cnt)
1190 optlen = cnt;
1191 if (IPOPT_COPIED(opt)) {
1192 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1193 dp += optlen;
1194 }
1195 }
1196 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1197 *dp++ = IPOPT_EOL;
1198 return (optlen);
1199 }
1200
1201 /*
1202 * IP socket option processing.
1203 */
1204 int
1205 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1206 {
1207 struct inpcb *inp = sotoinpcb(so);
1208 int optval = 0;
1209 int error = 0;
1210 #if defined(IPSEC) || defined(FAST_IPSEC)
1211 struct lwp *l = curlwp; /*XXX*/
1212 #endif
1213
1214 if (sopt->sopt_level != IPPROTO_IP) {
1215 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1216 return 0;
1217 return ENOPROTOOPT;
1218 }
1219
1220 switch (op) {
1221 case PRCO_SETOPT:
1222 switch (sopt->sopt_name) {
1223 case IP_OPTIONS:
1224 #ifdef notyet
1225 case IP_RETOPTS:
1226 #endif
1227 error = ip_pcbopts(&inp->inp_options, sopt);
1228 break;
1229
1230 case IP_TOS:
1231 case IP_TTL:
1232 case IP_MINTTL:
1233 case IP_RECVOPTS:
1234 case IP_RECVRETOPTS:
1235 case IP_RECVDSTADDR:
1236 case IP_RECVIF:
1237 case IP_RECVTTL:
1238 error = sockopt_getint(sopt, &optval);
1239 if (error)
1240 break;
1241
1242 switch (sopt->sopt_name) {
1243 case IP_TOS:
1244 inp->inp_ip.ip_tos = optval;
1245 break;
1246
1247 case IP_TTL:
1248 inp->inp_ip.ip_ttl = optval;
1249 break;
1250
1251 case IP_MINTTL:
1252 if (optval > 0 && optval <= MAXTTL)
1253 inp->inp_ip_minttl = optval;
1254 else
1255 error = EINVAL;
1256 break;
1257 #define OPTSET(bit) \
1258 if (optval) \
1259 inp->inp_flags |= bit; \
1260 else \
1261 inp->inp_flags &= ~bit;
1262
1263 case IP_RECVOPTS:
1264 OPTSET(INP_RECVOPTS);
1265 break;
1266
1267 case IP_RECVRETOPTS:
1268 OPTSET(INP_RECVRETOPTS);
1269 break;
1270
1271 case IP_RECVDSTADDR:
1272 OPTSET(INP_RECVDSTADDR);
1273 break;
1274
1275 case IP_RECVIF:
1276 OPTSET(INP_RECVIF);
1277 break;
1278
1279 case IP_RECVTTL:
1280 OPTSET(INP_RECVTTL);
1281 break;
1282 }
1283 break;
1284 #undef OPTSET
1285
1286 case IP_MULTICAST_IF:
1287 case IP_MULTICAST_TTL:
1288 case IP_MULTICAST_LOOP:
1289 case IP_ADD_MEMBERSHIP:
1290 case IP_DROP_MEMBERSHIP:
1291 error = ip_setmoptions(&inp->inp_moptions, sopt);
1292 break;
1293
1294 case IP_PORTRANGE:
1295 error = sockopt_getint(sopt, &optval);
1296 if (error)
1297 break;
1298
1299 /* INP_LOCK(inp); */
1300 switch (optval) {
1301 case IP_PORTRANGE_DEFAULT:
1302 case IP_PORTRANGE_HIGH:
1303 inp->inp_flags &= ~(INP_LOWPORT);
1304 break;
1305
1306 case IP_PORTRANGE_LOW:
1307 inp->inp_flags |= INP_LOWPORT;
1308 break;
1309
1310 default:
1311 error = EINVAL;
1312 break;
1313 }
1314 /* INP_UNLOCK(inp); */
1315 break;
1316
1317 #if defined(IPSEC) || defined(FAST_IPSEC)
1318 case IP_IPSEC_POLICY:
1319 {
1320 error = ipsec4_set_policy(inp, sopt->sopt_name,
1321 sopt->sopt_data, sopt->sopt_size, l->l_cred);
1322 break;
1323 }
1324 #endif /*IPSEC*/
1325
1326 default:
1327 error = ENOPROTOOPT;
1328 break;
1329 }
1330 break;
1331
1332 case PRCO_GETOPT:
1333 switch (sopt->sopt_name) {
1334 case IP_OPTIONS:
1335 case IP_RETOPTS:
1336 if (inp->inp_options) {
1337 struct mbuf *m;
1338
1339 m = m_copym(inp->inp_options, 0, M_COPYALL,
1340 M_DONTWAIT);
1341 if (m == NULL) {
1342 error = ENOBUFS;
1343 break;
1344 }
1345
1346 error = sockopt_setmbuf(sopt, m);
1347 }
1348 break;
1349
1350 case IP_TOS:
1351 case IP_TTL:
1352 case IP_MINTTL:
1353 case IP_RECVOPTS:
1354 case IP_RECVRETOPTS:
1355 case IP_RECVDSTADDR:
1356 case IP_RECVIF:
1357 case IP_RECVTTL:
1358 case IP_ERRORMTU:
1359 switch (sopt->sopt_name) {
1360 case IP_TOS:
1361 optval = inp->inp_ip.ip_tos;
1362 break;
1363
1364 case IP_TTL:
1365 optval = inp->inp_ip.ip_ttl;
1366 break;
1367
1368 case IP_MINTTL:
1369 optval = inp->inp_ip_minttl;
1370 break;
1371
1372 case IP_ERRORMTU:
1373 optval = inp->inp_errormtu;
1374 break;
1375
1376 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1377
1378 case IP_RECVOPTS:
1379 optval = OPTBIT(INP_RECVOPTS);
1380 break;
1381
1382 case IP_RECVRETOPTS:
1383 optval = OPTBIT(INP_RECVRETOPTS);
1384 break;
1385
1386 case IP_RECVDSTADDR:
1387 optval = OPTBIT(INP_RECVDSTADDR);
1388 break;
1389
1390 case IP_RECVIF:
1391 optval = OPTBIT(INP_RECVIF);
1392 break;
1393
1394 case IP_RECVTTL:
1395 optval = OPTBIT(INP_RECVTTL);
1396 break;
1397 }
1398 error = sockopt_setint(sopt, optval);
1399 break;
1400
1401 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1402 case IP_IPSEC_POLICY:
1403 {
1404 struct mbuf *m = NULL;
1405
1406 /* XXX this will return EINVAL as sopt is empty */
1407 error = ipsec4_get_policy(inp, sopt->sopt_data,
1408 sopt->sopt_size, &m);
1409 if (error == 0)
1410 error = sockopt_setmbuf(sopt, m);
1411 break;
1412 }
1413 #endif /*IPSEC*/
1414
1415 case IP_MULTICAST_IF:
1416 case IP_MULTICAST_TTL:
1417 case IP_MULTICAST_LOOP:
1418 case IP_ADD_MEMBERSHIP:
1419 case IP_DROP_MEMBERSHIP:
1420 error = ip_getmoptions(inp->inp_moptions, sopt);
1421 break;
1422
1423 case IP_PORTRANGE:
1424 if (inp->inp_flags & INP_LOWPORT)
1425 optval = IP_PORTRANGE_LOW;
1426 else
1427 optval = IP_PORTRANGE_DEFAULT;
1428
1429 error = sockopt_setint(sopt, optval);
1430
1431 break;
1432
1433 default:
1434 error = ENOPROTOOPT;
1435 break;
1436 }
1437 break;
1438 }
1439 return (error);
1440 }
1441
1442 /*
1443 * Set up IP options in pcb for insertion in output packets.
1444 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1445 * with destination address if source routed.
1446 */
1447 int
1448 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1449 {
1450 struct mbuf *m;
1451 const u_char *cp;
1452 u_char *dp;
1453 int cnt;
1454 uint8_t optval, olen, offset;
1455
1456 /* turn off any old options */
1457 if (*pcbopt)
1458 (void)m_free(*pcbopt);
1459 *pcbopt = NULL;
1460
1461 cp = sopt->sopt_data;
1462 cnt = sopt->sopt_size;
1463
1464 if (cnt == 0)
1465 return (0); /* Only turning off any previous options */
1466
1467 #ifndef __vax__
1468 if (cnt % sizeof(int32_t))
1469 return (EINVAL);
1470 #endif
1471
1472 m = m_get(M_DONTWAIT, MT_SOOPTS);
1473 if (m == NULL)
1474 return (ENOBUFS);
1475
1476 dp = mtod(m, u_char *);
1477 memset(dp, 0, sizeof(struct in_addr));
1478 dp += sizeof(struct in_addr);
1479 m->m_len = sizeof(struct in_addr);
1480
1481 /*
1482 * IP option list according to RFC791. Each option is of the form
1483 *
1484 * [optval] [olen] [(olen - 2) data bytes]
1485 *
1486 * we validate the list and copy options to an mbuf for prepending
1487 * to data packets. The IP first-hop destination address will be
1488 * stored before actual options and is zero if unset.
1489 */
1490 while (cnt > 0) {
1491 optval = cp[IPOPT_OPTVAL];
1492
1493 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1494 olen = 1;
1495 } else {
1496 if (cnt < IPOPT_OLEN + 1)
1497 goto bad;
1498
1499 olen = cp[IPOPT_OLEN];
1500 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1501 goto bad;
1502 }
1503
1504 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1505 /*
1506 * user process specifies route as:
1507 * ->A->B->C->D
1508 * D must be our final destination (but we can't
1509 * check that since we may not have connected yet).
1510 * A is first hop destination, which doesn't appear in
1511 * actual IP option, but is stored before the options.
1512 */
1513 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1514 goto bad;
1515
1516 offset = cp[IPOPT_OFFSET];
1517 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1518 sizeof(struct in_addr));
1519
1520 cp += sizeof(struct in_addr);
1521 cnt -= sizeof(struct in_addr);
1522 olen -= sizeof(struct in_addr);
1523
1524 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1525 goto bad;
1526
1527 memcpy(dp, cp, olen);
1528 dp[IPOPT_OPTVAL] = optval;
1529 dp[IPOPT_OLEN] = olen;
1530 dp[IPOPT_OFFSET] = offset;
1531 break;
1532 } else {
1533 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1534 goto bad;
1535
1536 memcpy(dp, cp, olen);
1537 break;
1538 }
1539
1540 dp += olen;
1541 m->m_len += olen;
1542
1543 if (optval == IPOPT_EOL)
1544 break;
1545
1546 cp += olen;
1547 cnt -= olen;
1548 }
1549
1550 *pcbopt = m;
1551 return (0);
1552
1553 bad:
1554 (void)m_free(m);
1555 return (EINVAL);
1556 }
1557
1558 /*
1559 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1560 */
1561 static struct ifnet *
1562 ip_multicast_if(struct in_addr *a, int *ifindexp)
1563 {
1564 int ifindex;
1565 struct ifnet *ifp = NULL;
1566 struct in_ifaddr *ia;
1567
1568 if (ifindexp)
1569 *ifindexp = 0;
1570 if (ntohl(a->s_addr) >> 24 == 0) {
1571 ifindex = ntohl(a->s_addr) & 0xffffff;
1572 if (ifindex < 0 || if_indexlim <= ifindex)
1573 return NULL;
1574 ifp = ifindex2ifnet[ifindex];
1575 if (!ifp)
1576 return NULL;
1577 if (ifindexp)
1578 *ifindexp = ifindex;
1579 } else {
1580 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1581 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1582 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1583 ifp = ia->ia_ifp;
1584 break;
1585 }
1586 }
1587 }
1588 return ifp;
1589 }
1590
1591 static int
1592 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1593 {
1594 u_int tval;
1595 u_char cval;
1596 int error;
1597
1598 if (sopt == NULL)
1599 return EINVAL;
1600
1601 switch (sopt->sopt_size) {
1602 case sizeof(u_char):
1603 error = sockopt_get(sopt, &cval, sizeof(u_char));
1604 tval = cval;
1605 break;
1606
1607 case sizeof(u_int):
1608 error = sockopt_get(sopt, &tval, sizeof(u_int));
1609 break;
1610
1611 default:
1612 error = EINVAL;
1613 }
1614
1615 if (error)
1616 return error;
1617
1618 if (tval > maxval)
1619 return EINVAL;
1620
1621 *val = tval;
1622 return 0;
1623 }
1624
1625 /*
1626 * Set the IP multicast options in response to user setsockopt().
1627 */
1628 int
1629 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1630 {
1631 int error = 0;
1632 int i;
1633 struct in_addr addr;
1634 struct ip_mreq lmreq, *mreq;
1635 struct ifnet *ifp;
1636 struct ip_moptions *imo = *imop;
1637 int ifindex;
1638
1639 if (imo == NULL) {
1640 /*
1641 * No multicast option buffer attached to the pcb;
1642 * allocate one and initialize to default values.
1643 */
1644 imo = malloc(sizeof(*imo), M_IPMOPTS, M_NOWAIT);
1645 if (imo == NULL)
1646 return (ENOBUFS);
1647
1648 *imop = imo;
1649 imo->imo_multicast_ifp = NULL;
1650 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1651 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1652 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1653 imo->imo_num_memberships = 0;
1654 }
1655
1656 switch (sopt->sopt_name) {
1657 case IP_MULTICAST_IF:
1658 /*
1659 * Select the interface for outgoing multicast packets.
1660 */
1661 error = sockopt_get(sopt, &addr, sizeof(addr));
1662 if (error)
1663 break;
1664
1665 /*
1666 * INADDR_ANY is used to remove a previous selection.
1667 * When no interface is selected, a default one is
1668 * chosen every time a multicast packet is sent.
1669 */
1670 if (in_nullhost(addr)) {
1671 imo->imo_multicast_ifp = NULL;
1672 break;
1673 }
1674 /*
1675 * The selected interface is identified by its local
1676 * IP address. Find the interface and confirm that
1677 * it supports multicasting.
1678 */
1679 ifp = ip_multicast_if(&addr, &ifindex);
1680 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1681 error = EADDRNOTAVAIL;
1682 break;
1683 }
1684 imo->imo_multicast_ifp = ifp;
1685 if (ifindex)
1686 imo->imo_multicast_addr = addr;
1687 else
1688 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1689 break;
1690
1691 case IP_MULTICAST_TTL:
1692 /*
1693 * Set the IP time-to-live for outgoing multicast packets.
1694 */
1695 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1696 break;
1697
1698 case IP_MULTICAST_LOOP:
1699 /*
1700 * Set the loopback flag for outgoing multicast packets.
1701 * Must be zero or one.
1702 */
1703 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1704 break;
1705
1706 case IP_ADD_MEMBERSHIP:
1707 /*
1708 * Add a multicast group membership.
1709 * Group must be a valid IP multicast address.
1710 */
1711 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1712 if (error)
1713 break;
1714
1715 mreq = &lmreq;
1716
1717 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1718 error = EINVAL;
1719 break;
1720 }
1721 /*
1722 * If no interface address was provided, use the interface of
1723 * the route to the given multicast address.
1724 */
1725 if (in_nullhost(mreq->imr_interface)) {
1726 struct rtentry *rt;
1727 union {
1728 struct sockaddr dst;
1729 struct sockaddr_in dst4;
1730 } u;
1731 struct route ro;
1732
1733 memset(&ro, 0, sizeof(ro));
1734
1735 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1736 rtcache_setdst(&ro, &u.dst);
1737 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1738 : NULL;
1739 rtcache_free(&ro);
1740 } else {
1741 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1742 }
1743 /*
1744 * See if we found an interface, and confirm that it
1745 * supports multicast.
1746 */
1747 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1748 error = EADDRNOTAVAIL;
1749 break;
1750 }
1751 /*
1752 * See if the membership already exists or if all the
1753 * membership slots are full.
1754 */
1755 for (i = 0; i < imo->imo_num_memberships; ++i) {
1756 if (imo->imo_membership[i]->inm_ifp == ifp &&
1757 in_hosteq(imo->imo_membership[i]->inm_addr,
1758 mreq->imr_multiaddr))
1759 break;
1760 }
1761 if (i < imo->imo_num_memberships) {
1762 error = EADDRINUSE;
1763 break;
1764 }
1765 if (i == IP_MAX_MEMBERSHIPS) {
1766 error = ETOOMANYREFS;
1767 break;
1768 }
1769 /*
1770 * Everything looks good; add a new record to the multicast
1771 * address list for the given interface.
1772 */
1773 if ((imo->imo_membership[i] =
1774 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1775 error = ENOBUFS;
1776 break;
1777 }
1778 ++imo->imo_num_memberships;
1779 break;
1780
1781 case IP_DROP_MEMBERSHIP:
1782 /*
1783 * Drop a multicast group membership.
1784 * Group must be a valid IP multicast address.
1785 */
1786 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1787 if (error)
1788 break;
1789
1790 mreq = &lmreq;
1791
1792 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1793 error = EINVAL;
1794 break;
1795 }
1796 /*
1797 * If an interface address was specified, get a pointer
1798 * to its ifnet structure.
1799 */
1800 if (in_nullhost(mreq->imr_interface))
1801 ifp = NULL;
1802 else {
1803 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1804 if (ifp == NULL) {
1805 error = EADDRNOTAVAIL;
1806 break;
1807 }
1808 }
1809 /*
1810 * Find the membership in the membership array.
1811 */
1812 for (i = 0; i < imo->imo_num_memberships; ++i) {
1813 if ((ifp == NULL ||
1814 imo->imo_membership[i]->inm_ifp == ifp) &&
1815 in_hosteq(imo->imo_membership[i]->inm_addr,
1816 mreq->imr_multiaddr))
1817 break;
1818 }
1819 if (i == imo->imo_num_memberships) {
1820 error = EADDRNOTAVAIL;
1821 break;
1822 }
1823 /*
1824 * Give up the multicast address record to which the
1825 * membership points.
1826 */
1827 in_delmulti(imo->imo_membership[i]);
1828 /*
1829 * Remove the gap in the membership array.
1830 */
1831 for (++i; i < imo->imo_num_memberships; ++i)
1832 imo->imo_membership[i-1] = imo->imo_membership[i];
1833 --imo->imo_num_memberships;
1834 break;
1835
1836 default:
1837 error = EOPNOTSUPP;
1838 break;
1839 }
1840
1841 /*
1842 * If all options have default values, no need to keep the mbuf.
1843 */
1844 if (imo->imo_multicast_ifp == NULL &&
1845 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1846 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1847 imo->imo_num_memberships == 0) {
1848 free(*imop, M_IPMOPTS);
1849 *imop = NULL;
1850 }
1851
1852 return (error);
1853 }
1854
1855 /*
1856 * Return the IP multicast options in response to user getsockopt().
1857 */
1858 int
1859 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1860 {
1861 struct in_addr addr;
1862 struct in_ifaddr *ia;
1863 int error;
1864 uint8_t optval;
1865
1866 error = 0;
1867
1868 switch (sopt->sopt_name) {
1869 case IP_MULTICAST_IF:
1870 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1871 addr = zeroin_addr;
1872 else if (imo->imo_multicast_addr.s_addr) {
1873 /* return the value user has set */
1874 addr = imo->imo_multicast_addr;
1875 } else {
1876 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1877 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1878 }
1879 error = sockopt_set(sopt, &addr, sizeof(addr));
1880 break;
1881
1882 case IP_MULTICAST_TTL:
1883 optval = imo ? imo->imo_multicast_ttl
1884 : IP_DEFAULT_MULTICAST_TTL;
1885
1886 error = sockopt_set(sopt, &optval, sizeof(optval));
1887 break;
1888
1889 case IP_MULTICAST_LOOP:
1890 optval = imo ? imo->imo_multicast_loop
1891 : IP_DEFAULT_MULTICAST_LOOP;
1892
1893 error = sockopt_set(sopt, &optval, sizeof(optval));
1894 break;
1895
1896 default:
1897 error = EOPNOTSUPP;
1898 }
1899
1900 return (error);
1901 }
1902
1903 /*
1904 * Discard the IP multicast options.
1905 */
1906 void
1907 ip_freemoptions(struct ip_moptions *imo)
1908 {
1909 int i;
1910
1911 if (imo != NULL) {
1912 for (i = 0; i < imo->imo_num_memberships; ++i)
1913 in_delmulti(imo->imo_membership[i]);
1914 free(imo, M_IPMOPTS);
1915 }
1916 }
1917
1918 /*
1919 * Routine called from ip_output() to loop back a copy of an IP multicast
1920 * packet to the input queue of a specified interface. Note that this
1921 * calls the output routine of the loopback "driver", but with an interface
1922 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1923 */
1924 static void
1925 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1926 {
1927 struct ip *ip;
1928 struct mbuf *copym;
1929
1930 copym = m_copypacket(m, M_DONTWAIT);
1931 if (copym != NULL
1932 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1933 copym = m_pullup(copym, sizeof(struct ip));
1934 if (copym == NULL)
1935 return;
1936 /*
1937 * We don't bother to fragment if the IP length is greater
1938 * than the interface's MTU. Can this possibly matter?
1939 */
1940 ip = mtod(copym, struct ip *);
1941
1942 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1943 in_delayed_cksum(copym);
1944 copym->m_pkthdr.csum_flags &=
1945 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1946 }
1947
1948 ip->ip_sum = 0;
1949 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1950 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1951 }
1952