ip_output.c revision 1.210.2.1 1 /* $NetBSD: ip_output.c,v 1.210.2.1 2012/04/17 00:08:41 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.210.2.1 2012/04/17 00:08:41 yamt Exp $");
95
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef FAST_IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131
132 #ifdef FAST_IPSEC
133 #include <netipsec/ipsec.h>
134 #include <netipsec/key.h>
135 #include <netipsec/xform.h>
136 #endif /* FAST_IPSEC*/
137
138 #ifdef IPSEC_NAT_T
139 #include <netinet/udp.h>
140 #endif
141
142 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
143 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
144 static void ip_mloopback(struct ifnet *, struct mbuf *,
145 const struct sockaddr_in *);
146
147 #ifdef PFIL_HOOKS
148 extern struct pfil_head inet_pfil_hook; /* XXX */
149 #endif
150
151 int ip_do_loopback_cksum = 0;
152
153 /*
154 * IP output. The packet in mbuf chain m contains a skeletal IP
155 * header (with len, off, ttl, proto, tos, src, dst).
156 * The mbuf chain containing the packet will be freed.
157 * The mbuf opt, if present, will not be freed.
158 */
159 int
160 ip_output(struct mbuf *m0, ...)
161 {
162 struct rtentry *rt;
163 struct ip *ip;
164 struct ifnet *ifp;
165 struct mbuf *m = m0;
166 int hlen = sizeof (struct ip);
167 int len, error = 0;
168 struct route iproute;
169 const struct sockaddr_in *dst;
170 struct in_ifaddr *ia;
171 struct ifaddr *xifa;
172 struct mbuf *opt;
173 struct route *ro;
174 int flags, sw_csum;
175 int *mtu_p;
176 u_long mtu;
177 struct ip_moptions *imo;
178 struct socket *so;
179 va_list ap;
180 #ifdef IPSEC_NAT_T
181 int natt_frag = 0;
182 #endif
183 #ifdef FAST_IPSEC
184 struct inpcb *inp;
185 struct secpolicy *sp = NULL;
186 int s;
187 #endif
188 u_int16_t ip_len;
189 union {
190 struct sockaddr dst;
191 struct sockaddr_in dst4;
192 } u;
193 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
194 * to the nexthop
195 */
196
197 len = 0;
198 va_start(ap, m0);
199 opt = va_arg(ap, struct mbuf *);
200 ro = va_arg(ap, struct route *);
201 flags = va_arg(ap, int);
202 imo = va_arg(ap, struct ip_moptions *);
203 so = va_arg(ap, struct socket *);
204 if (flags & IP_RETURNMTU)
205 mtu_p = va_arg(ap, int *);
206 else
207 mtu_p = NULL;
208 va_end(ap);
209
210 MCLAIM(m, &ip_tx_mowner);
211 #ifdef FAST_IPSEC
212 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
213 inp = (struct inpcb *)so->so_pcb;
214 else
215 inp = NULL;
216 #endif /* FAST_IPSEC */
217
218 #ifdef DIAGNOSTIC
219 if ((m->m_flags & M_PKTHDR) == 0)
220 panic("ip_output: no HDR");
221
222 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
223 panic("ip_output: IPv6 checksum offload flags: %d",
224 m->m_pkthdr.csum_flags);
225 }
226
227 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
228 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
229 panic("ip_output: conflicting checksum offload flags: %d",
230 m->m_pkthdr.csum_flags);
231 }
232 #endif
233 if (opt) {
234 m = ip_insertoptions(m, opt, &len);
235 if (len >= sizeof(struct ip))
236 hlen = len;
237 }
238 ip = mtod(m, struct ip *);
239 /*
240 * Fill in IP header.
241 */
242 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
243 ip->ip_v = IPVERSION;
244 ip->ip_off = htons(0);
245 /* ip->ip_id filled in after we find out source ia */
246 ip->ip_hl = hlen >> 2;
247 IP_STATINC(IP_STAT_LOCALOUT);
248 } else {
249 hlen = ip->ip_hl << 2;
250 }
251 /*
252 * Route packet.
253 */
254 memset(&iproute, 0, sizeof(iproute));
255 if (ro == NULL)
256 ro = &iproute;
257 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
258 dst = satocsin(rtcache_getdst(ro));
259 /*
260 * If there is a cached route,
261 * check that it is to the same destination
262 * and is still up. If not, free it and try again.
263 * The address family should also be checked in case of sharing the
264 * cache with IPv6.
265 */
266 if (dst == NULL)
267 ;
268 else if (dst->sin_family != AF_INET ||
269 !in_hosteq(dst->sin_addr, ip->ip_dst))
270 rtcache_free(ro);
271
272 if ((rt = rtcache_validate(ro)) == NULL &&
273 (rt = rtcache_update(ro, 1)) == NULL) {
274 dst = &u.dst4;
275 rtcache_setdst(ro, &u.dst);
276 }
277 /*
278 * If routing to interface only,
279 * short circuit routing lookup.
280 */
281 if (flags & IP_ROUTETOIF) {
282 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
283 IP_STATINC(IP_STAT_NOROUTE);
284 error = ENETUNREACH;
285 goto bad;
286 }
287 ifp = ia->ia_ifp;
288 mtu = ifp->if_mtu;
289 ip->ip_ttl = 1;
290 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
291 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
292 imo != NULL && imo->imo_multicast_ifp != NULL) {
293 ifp = imo->imo_multicast_ifp;
294 mtu = ifp->if_mtu;
295 IFP_TO_IA(ifp, ia);
296 } else {
297 if (rt == NULL)
298 rt = rtcache_init(ro);
299 if (rt == NULL) {
300 IP_STATINC(IP_STAT_NOROUTE);
301 error = EHOSTUNREACH;
302 goto bad;
303 }
304 ia = ifatoia(rt->rt_ifa);
305 ifp = rt->rt_ifp;
306 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
307 mtu = ifp->if_mtu;
308 rt->rt_use++;
309 if (rt->rt_flags & RTF_GATEWAY)
310 dst = satosin(rt->rt_gateway);
311 }
312 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
313 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
314 struct in_multi *inm;
315
316 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
317 M_BCAST : M_MCAST;
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 IP_STATINC(IP_STAT_NOROUTE);
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 IP_STATINC(IP_STAT_NOROUTE);
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *xia;
354
355 IFP_TO_IA(ifp, xia);
356 if (!xia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 xifa = &xia->ia_ifa;
361 if (xifa->ifa_getifa != NULL) {
362 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
363 }
364 ip->ip_src = xia->ia_addr.sin_addr;
365 }
366
367 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
368 if (inm != NULL &&
369 (imo == NULL || imo->imo_multicast_loop)) {
370 /*
371 * If we belong to the destination multicast group
372 * on the outgoing interface, and the caller did not
373 * forbid loopback, loop back a copy.
374 */
375 ip_mloopback(ifp, m, &u.dst4);
376 }
377 #ifdef MROUTING
378 else {
379 /*
380 * If we are acting as a multicast router, perform
381 * multicast forwarding as if the packet had just
382 * arrived on the interface to which we are about
383 * to send. The multicast forwarding function
384 * recursively calls this function, using the
385 * IP_FORWARDING flag to prevent infinite recursion.
386 *
387 * Multicasts that are looped back by ip_mloopback(),
388 * above, will be forwarded by the ip_input() routine,
389 * if necessary.
390 */
391 extern struct socket *ip_mrouter;
392
393 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
394 if (ip_mforward(m, ifp) != 0) {
395 m_freem(m);
396 goto done;
397 }
398 }
399 }
400 #endif
401 /*
402 * Multicasts with a time-to-live of zero may be looped-
403 * back, above, but must not be transmitted on a network.
404 * Also, multicasts addressed to the loopback interface
405 * are not sent -- the above call to ip_mloopback() will
406 * loop back a copy if this host actually belongs to the
407 * destination group on the loopback interface.
408 */
409 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
410 m_freem(m);
411 goto done;
412 }
413
414 goto sendit;
415 }
416 /*
417 * If source address not specified yet, use address
418 * of outgoing interface.
419 */
420 if (in_nullhost(ip->ip_src)) {
421 xifa = &ia->ia_ifa;
422 if (xifa->ifa_getifa != NULL)
423 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
424 ip->ip_src = ia->ia_addr.sin_addr;
425 }
426
427 /*
428 * packets with Class-D address as source are not valid per
429 * RFC 1112
430 */
431 if (IN_MULTICAST(ip->ip_src.s_addr)) {
432 IP_STATINC(IP_STAT_ODROPPED);
433 error = EADDRNOTAVAIL;
434 goto bad;
435 }
436
437 /*
438 * Look for broadcast address and
439 * and verify user is allowed to send
440 * such a packet.
441 */
442 if (in_broadcast(dst->sin_addr, ifp)) {
443 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
444 error = EADDRNOTAVAIL;
445 goto bad;
446 }
447 if ((flags & IP_ALLOWBROADCAST) == 0) {
448 error = EACCES;
449 goto bad;
450 }
451 /* don't allow broadcast messages to be fragmented */
452 if (ntohs(ip->ip_len) > ifp->if_mtu) {
453 error = EMSGSIZE;
454 goto bad;
455 }
456 m->m_flags |= M_BCAST;
457 } else
458 m->m_flags &= ~M_BCAST;
459
460 sendit:
461 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
462 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
463 ip->ip_id = 0;
464 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
465 ip->ip_id = ip_newid(ia);
466 } else {
467
468 /*
469 * TSO capable interfaces (typically?) increment
470 * ip_id for each segment.
471 * "allocate" enough ids here to increase the chance
472 * for them to be unique.
473 *
474 * note that the following calculation is not
475 * needed to be precise. wasting some ip_id is fine.
476 */
477
478 unsigned int segsz = m->m_pkthdr.segsz;
479 unsigned int datasz = ntohs(ip->ip_len) - hlen;
480 unsigned int num = howmany(datasz, segsz);
481
482 ip->ip_id = ip_newid_range(ia, num);
483 }
484 }
485 /*
486 * If we're doing Path MTU Discovery, we need to set DF unless
487 * the route's MTU is locked.
488 */
489 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
490 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
491 ip->ip_off |= htons(IP_DF);
492
493 /* Remember the current ip_len */
494 ip_len = ntohs(ip->ip_len);
495
496 #ifdef FAST_IPSEC
497 /*
498 * Check the security policy (SP) for the packet and, if
499 * required, do IPsec-related processing. There are two
500 * cases here; the first time a packet is sent through
501 * it will be untagged and handled by ipsec4_checkpolicy.
502 * If the packet is resubmitted to ip_output (e.g. after
503 * AH, ESP, etc. processing), there will be a tag to bypass
504 * the lookup and related policy checking.
505 */
506 if (!ipsec_outdone(m)) {
507 s = splsoftnet();
508 if (inp != NULL &&
509 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
510 splx(s);
511 goto spd_done;
512 }
513 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
514 &error, inp);
515 /*
516 * There are four return cases:
517 * sp != NULL apply IPsec policy
518 * sp == NULL, error == 0 no IPsec handling needed
519 * sp == NULL, error == -EINVAL discard packet w/o error
520 * sp == NULL, error != 0 discard packet, report error
521 */
522 if (sp != NULL) {
523 #ifdef IPSEC_NAT_T
524 /*
525 * NAT-T ESP fragmentation: don't do IPSec processing now,
526 * we'll do it on each fragmented packet.
527 */
528 if (sp->req->sav &&
529 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
530 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
531 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
532 natt_frag = 1;
533 mtu = sp->req->sav->esp_frag;
534 splx(s);
535 goto spd_done;
536 }
537 }
538 #endif /* IPSEC_NAT_T */
539
540 /*
541 * Do delayed checksums now because we send before
542 * this is done in the normal processing path.
543 */
544 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
545 in_delayed_cksum(m);
546 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
547 }
548
549 #ifdef __FreeBSD__
550 ip->ip_len = htons(ip->ip_len);
551 ip->ip_off = htons(ip->ip_off);
552 #endif
553
554 /* NB: callee frees mbuf */
555 error = ipsec4_process_packet(m, sp->req, flags, 0);
556 /*
557 * Preserve KAME behaviour: ENOENT can be returned
558 * when an SA acquire is in progress. Don't propagate
559 * this to user-level; it confuses applications.
560 *
561 * XXX this will go away when the SADB is redone.
562 */
563 if (error == ENOENT)
564 error = 0;
565 splx(s);
566 goto done;
567 } else {
568 splx(s);
569
570 if (error != 0) {
571 /*
572 * Hack: -EINVAL is used to signal that a packet
573 * should be silently discarded. This is typically
574 * because we asked key management for an SA and
575 * it was delayed (e.g. kicked up to IKE).
576 */
577 if (error == -EINVAL)
578 error = 0;
579 goto bad;
580 } else {
581 /* No IPsec processing for this packet. */
582 }
583 }
584 }
585 spd_done:
586 #endif /* FAST_IPSEC */
587
588 #ifdef PFIL_HOOKS
589 /*
590 * Run through list of hooks for output packets.
591 */
592 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
593 goto done;
594 if (m == NULL)
595 goto done;
596
597 ip = mtod(m, struct ip *);
598 hlen = ip->ip_hl << 2;
599 ip_len = ntohs(ip->ip_len);
600 #endif /* PFIL_HOOKS */
601
602 m->m_pkthdr.csum_data |= hlen << 16;
603
604 #if IFA_STATS
605 /*
606 * search for the source address structure to
607 * maintain output statistics.
608 */
609 INADDR_TO_IA(ip->ip_src, ia);
610 #endif
611
612 /* Maybe skip checksums on loopback interfaces. */
613 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
614 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
615 }
616 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
617 /*
618 * If small enough for mtu of path, or if using TCP segmentation
619 * offload, can just send directly.
620 */
621 if (ip_len <= mtu ||
622 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
623 #if IFA_STATS
624 if (ia)
625 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
626 #endif
627 /*
628 * Always initialize the sum to 0! Some HW assisted
629 * checksumming requires this.
630 */
631 ip->ip_sum = 0;
632
633 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
634 /*
635 * Perform any checksums that the hardware can't do
636 * for us.
637 *
638 * XXX Does any hardware require the {th,uh}_sum
639 * XXX fields to be 0?
640 */
641 if (sw_csum & M_CSUM_IPv4) {
642 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
643 ip->ip_sum = in_cksum(m, hlen);
644 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
645 }
646 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
647 if (IN_NEED_CHECKSUM(ifp,
648 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
649 in_delayed_cksum(m);
650 }
651 m->m_pkthdr.csum_flags &=
652 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
653 }
654 }
655
656 if (__predict_true(
657 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
658 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
659 KERNEL_LOCK(1, NULL);
660 error =
661 (*ifp->if_output)(ifp, m,
662 (m->m_flags & M_MCAST) ?
663 sintocsa(rdst) : sintocsa(dst),
664 rt);
665 KERNEL_UNLOCK_ONE(NULL);
666 } else {
667 error =
668 ip_tso_output(ifp, m,
669 (m->m_flags & M_MCAST) ?
670 sintocsa(rdst) : sintocsa(dst),
671 rt);
672 }
673 goto done;
674 }
675
676 /*
677 * We can't use HW checksumming if we're about to
678 * to fragment the packet.
679 *
680 * XXX Some hardware can do this.
681 */
682 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
683 if (IN_NEED_CHECKSUM(ifp,
684 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
685 in_delayed_cksum(m);
686 }
687 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
688 }
689
690 /*
691 * Too large for interface; fragment if possible.
692 * Must be able to put at least 8 bytes per fragment.
693 */
694 if (ntohs(ip->ip_off) & IP_DF) {
695 if (flags & IP_RETURNMTU)
696 *mtu_p = mtu;
697 error = EMSGSIZE;
698 IP_STATINC(IP_STAT_CANTFRAG);
699 goto bad;
700 }
701
702 error = ip_fragment(m, ifp, mtu);
703 if (error) {
704 m = NULL;
705 goto bad;
706 }
707
708 for (; m; m = m0) {
709 m0 = m->m_nextpkt;
710 m->m_nextpkt = 0;
711 if (error == 0) {
712 #if IFA_STATS
713 if (ia)
714 ia->ia_ifa.ifa_data.ifad_outbytes +=
715 ntohs(ip->ip_len);
716 #endif
717 #ifdef IPSEC_NAT_T
718 /*
719 * If we get there, the packet has not been handeld by
720 * IPSec whereas it should have. Now that it has been
721 * fragmented, re-inject it in ip_output so that IPsec
722 * processing can occur.
723 */
724 if (natt_frag) {
725 error = ip_output(m, opt,
726 ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
727 } else
728 #endif /* IPSEC_NAT_T */
729 {
730 KASSERT((m->m_pkthdr.csum_flags &
731 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
732 KERNEL_LOCK(1, NULL);
733 error = (*ifp->if_output)(ifp, m,
734 (m->m_flags & M_MCAST) ?
735 sintocsa(rdst) : sintocsa(dst),
736 rt);
737 KERNEL_UNLOCK_ONE(NULL);
738 }
739 } else
740 m_freem(m);
741 }
742
743 if (error == 0)
744 IP_STATINC(IP_STAT_FRAGMENTED);
745 done:
746 rtcache_free(&iproute);
747
748 #ifdef FAST_IPSEC
749 if (sp != NULL)
750 KEY_FREESP(&sp);
751 #endif /* FAST_IPSEC */
752
753 return (error);
754 bad:
755 m_freem(m);
756 goto done;
757 }
758
759 int
760 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
761 {
762 struct ip *ip, *mhip;
763 struct mbuf *m0;
764 int len, hlen, off;
765 int mhlen, firstlen;
766 struct mbuf **mnext;
767 int sw_csum = m->m_pkthdr.csum_flags;
768 int fragments = 0;
769 int s;
770 int error = 0;
771
772 ip = mtod(m, struct ip *);
773 hlen = ip->ip_hl << 2;
774 if (ifp != NULL)
775 sw_csum &= ~ifp->if_csum_flags_tx;
776
777 len = (mtu - hlen) &~ 7;
778 if (len < 8) {
779 m_freem(m);
780 return (EMSGSIZE);
781 }
782
783 firstlen = len;
784 mnext = &m->m_nextpkt;
785
786 /*
787 * Loop through length of segment after first fragment,
788 * make new header and copy data of each part and link onto chain.
789 */
790 m0 = m;
791 mhlen = sizeof (struct ip);
792 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
793 MGETHDR(m, M_DONTWAIT, MT_HEADER);
794 if (m == 0) {
795 error = ENOBUFS;
796 IP_STATINC(IP_STAT_ODROPPED);
797 goto sendorfree;
798 }
799 MCLAIM(m, m0->m_owner);
800 *mnext = m;
801 mnext = &m->m_nextpkt;
802 m->m_data += max_linkhdr;
803 mhip = mtod(m, struct ip *);
804 *mhip = *ip;
805 /* we must inherit MCAST and BCAST flags */
806 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
807 if (hlen > sizeof (struct ip)) {
808 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
809 mhip->ip_hl = mhlen >> 2;
810 }
811 m->m_len = mhlen;
812 mhip->ip_off = ((off - hlen) >> 3) +
813 (ntohs(ip->ip_off) & ~IP_MF);
814 if (ip->ip_off & htons(IP_MF))
815 mhip->ip_off |= IP_MF;
816 if (off + len >= ntohs(ip->ip_len))
817 len = ntohs(ip->ip_len) - off;
818 else
819 mhip->ip_off |= IP_MF;
820 HTONS(mhip->ip_off);
821 mhip->ip_len = htons((u_int16_t)(len + mhlen));
822 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
823 if (m->m_next == 0) {
824 error = ENOBUFS; /* ??? */
825 IP_STATINC(IP_STAT_ODROPPED);
826 goto sendorfree;
827 }
828 m->m_pkthdr.len = mhlen + len;
829 m->m_pkthdr.rcvif = NULL;
830 mhip->ip_sum = 0;
831 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
832 if (sw_csum & M_CSUM_IPv4) {
833 mhip->ip_sum = in_cksum(m, mhlen);
834 } else {
835 /*
836 * checksum is hw-offloaded or not necessary.
837 */
838 m->m_pkthdr.csum_flags |=
839 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
840 m->m_pkthdr.csum_data |= mhlen << 16;
841 KASSERT(!(ifp != NULL &&
842 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
843 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
844 }
845 IP_STATINC(IP_STAT_OFRAGMENTS);
846 fragments++;
847 }
848 /*
849 * Update first fragment by trimming what's been copied out
850 * and updating header, then send each fragment (in order).
851 */
852 m = m0;
853 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
854 m->m_pkthdr.len = hlen + firstlen;
855 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
856 ip->ip_off |= htons(IP_MF);
857 ip->ip_sum = 0;
858 if (sw_csum & M_CSUM_IPv4) {
859 ip->ip_sum = in_cksum(m, hlen);
860 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
861 } else {
862 /*
863 * checksum is hw-offloaded or not necessary.
864 */
865 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
866 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
867 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
868 sizeof(struct ip));
869 }
870 sendorfree:
871 /*
872 * If there is no room for all the fragments, don't queue
873 * any of them.
874 */
875 if (ifp != NULL) {
876 s = splnet();
877 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
878 error == 0) {
879 error = ENOBUFS;
880 IP_STATINC(IP_STAT_ODROPPED);
881 IFQ_INC_DROPS(&ifp->if_snd);
882 }
883 splx(s);
884 }
885 if (error) {
886 for (m = m0; m; m = m0) {
887 m0 = m->m_nextpkt;
888 m->m_nextpkt = NULL;
889 m_freem(m);
890 }
891 }
892 return (error);
893 }
894
895 /*
896 * Process a delayed payload checksum calculation.
897 */
898 void
899 in_delayed_cksum(struct mbuf *m)
900 {
901 struct ip *ip;
902 u_int16_t csum, offset;
903
904 ip = mtod(m, struct ip *);
905 offset = ip->ip_hl << 2;
906 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
907 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
908 csum = 0xffff;
909
910 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
911
912 if ((offset + sizeof(u_int16_t)) > m->m_len) {
913 /* This happen when ip options were inserted
914 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
915 m->m_len, offset, ip->ip_p);
916 */
917 m_copyback(m, offset, sizeof(csum), (void *) &csum);
918 } else
919 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
920 }
921
922 /*
923 * Determine the maximum length of the options to be inserted;
924 * we would far rather allocate too much space rather than too little.
925 */
926
927 u_int
928 ip_optlen(struct inpcb *inp)
929 {
930 struct mbuf *m = inp->inp_options;
931
932 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
933 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
934 else
935 return 0;
936 }
937
938
939 /*
940 * Insert IP options into preformed packet.
941 * Adjust IP destination as required for IP source routing,
942 * as indicated by a non-zero in_addr at the start of the options.
943 */
944 static struct mbuf *
945 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
946 {
947 struct ipoption *p = mtod(opt, struct ipoption *);
948 struct mbuf *n;
949 struct ip *ip = mtod(m, struct ip *);
950 unsigned optlen;
951
952 optlen = opt->m_len - sizeof(p->ipopt_dst);
953 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
954 return (m); /* XXX should fail */
955 if (!in_nullhost(p->ipopt_dst))
956 ip->ip_dst = p->ipopt_dst;
957 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
958 MGETHDR(n, M_DONTWAIT, MT_HEADER);
959 if (n == 0)
960 return (m);
961 MCLAIM(n, m->m_owner);
962 M_MOVE_PKTHDR(n, m);
963 m->m_len -= sizeof(struct ip);
964 m->m_data += sizeof(struct ip);
965 n->m_next = m;
966 m = n;
967 m->m_len = optlen + sizeof(struct ip);
968 m->m_data += max_linkhdr;
969 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
970 } else {
971 m->m_data -= optlen;
972 m->m_len += optlen;
973 memmove(mtod(m, void *), ip, sizeof(struct ip));
974 }
975 m->m_pkthdr.len += optlen;
976 ip = mtod(m, struct ip *);
977 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
978 *phlen = sizeof(struct ip) + optlen;
979 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
980 return (m);
981 }
982
983 /*
984 * Copy options from ip to jp,
985 * omitting those not copied during fragmentation.
986 */
987 int
988 ip_optcopy(struct ip *ip, struct ip *jp)
989 {
990 u_char *cp, *dp;
991 int opt, optlen, cnt;
992
993 cp = (u_char *)(ip + 1);
994 dp = (u_char *)(jp + 1);
995 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
996 for (; cnt > 0; cnt -= optlen, cp += optlen) {
997 opt = cp[0];
998 if (opt == IPOPT_EOL)
999 break;
1000 if (opt == IPOPT_NOP) {
1001 /* Preserve for IP mcast tunnel's LSRR alignment. */
1002 *dp++ = IPOPT_NOP;
1003 optlen = 1;
1004 continue;
1005 }
1006 #ifdef DIAGNOSTIC
1007 if (cnt < IPOPT_OLEN + sizeof(*cp))
1008 panic("malformed IPv4 option passed to ip_optcopy");
1009 #endif
1010 optlen = cp[IPOPT_OLEN];
1011 #ifdef DIAGNOSTIC
1012 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1013 panic("malformed IPv4 option passed to ip_optcopy");
1014 #endif
1015 /* bogus lengths should have been caught by ip_dooptions */
1016 if (optlen > cnt)
1017 optlen = cnt;
1018 if (IPOPT_COPIED(opt)) {
1019 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1020 dp += optlen;
1021 }
1022 }
1023 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1024 *dp++ = IPOPT_EOL;
1025 return (optlen);
1026 }
1027
1028 /*
1029 * IP socket option processing.
1030 */
1031 int
1032 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1033 {
1034 struct inpcb *inp = sotoinpcb(so);
1035 int optval = 0;
1036 int error = 0;
1037 #if defined(FAST_IPSEC)
1038 struct lwp *l = curlwp; /*XXX*/
1039 #endif
1040
1041 if (sopt->sopt_level != IPPROTO_IP) {
1042 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1043 return 0;
1044 return ENOPROTOOPT;
1045 }
1046
1047 switch (op) {
1048 case PRCO_SETOPT:
1049 switch (sopt->sopt_name) {
1050 case IP_OPTIONS:
1051 #ifdef notyet
1052 case IP_RETOPTS:
1053 #endif
1054 error = ip_pcbopts(&inp->inp_options, sopt);
1055 break;
1056
1057 case IP_TOS:
1058 case IP_TTL:
1059 case IP_MINTTL:
1060 case IP_RECVOPTS:
1061 case IP_RECVRETOPTS:
1062 case IP_RECVDSTADDR:
1063 case IP_RECVIF:
1064 case IP_RECVTTL:
1065 error = sockopt_getint(sopt, &optval);
1066 if (error)
1067 break;
1068
1069 switch (sopt->sopt_name) {
1070 case IP_TOS:
1071 inp->inp_ip.ip_tos = optval;
1072 break;
1073
1074 case IP_TTL:
1075 inp->inp_ip.ip_ttl = optval;
1076 break;
1077
1078 case IP_MINTTL:
1079 if (optval > 0 && optval <= MAXTTL)
1080 inp->inp_ip_minttl = optval;
1081 else
1082 error = EINVAL;
1083 break;
1084 #define OPTSET(bit) \
1085 if (optval) \
1086 inp->inp_flags |= bit; \
1087 else \
1088 inp->inp_flags &= ~bit;
1089
1090 case IP_RECVOPTS:
1091 OPTSET(INP_RECVOPTS);
1092 break;
1093
1094 case IP_RECVRETOPTS:
1095 OPTSET(INP_RECVRETOPTS);
1096 break;
1097
1098 case IP_RECVDSTADDR:
1099 OPTSET(INP_RECVDSTADDR);
1100 break;
1101
1102 case IP_RECVIF:
1103 OPTSET(INP_RECVIF);
1104 break;
1105
1106 case IP_RECVTTL:
1107 OPTSET(INP_RECVTTL);
1108 break;
1109 }
1110 break;
1111 #undef OPTSET
1112
1113 case IP_MULTICAST_IF:
1114 case IP_MULTICAST_TTL:
1115 case IP_MULTICAST_LOOP:
1116 case IP_ADD_MEMBERSHIP:
1117 case IP_DROP_MEMBERSHIP:
1118 error = ip_setmoptions(&inp->inp_moptions, sopt);
1119 break;
1120
1121 case IP_PORTRANGE:
1122 error = sockopt_getint(sopt, &optval);
1123 if (error)
1124 break;
1125
1126 /* INP_LOCK(inp); */
1127 switch (optval) {
1128 case IP_PORTRANGE_DEFAULT:
1129 case IP_PORTRANGE_HIGH:
1130 inp->inp_flags &= ~(INP_LOWPORT);
1131 break;
1132
1133 case IP_PORTRANGE_LOW:
1134 inp->inp_flags |= INP_LOWPORT;
1135 break;
1136
1137 default:
1138 error = EINVAL;
1139 break;
1140 }
1141 /* INP_UNLOCK(inp); */
1142 break;
1143
1144 #if defined(FAST_IPSEC)
1145 case IP_IPSEC_POLICY:
1146 {
1147 error = ipsec4_set_policy(inp, sopt->sopt_name,
1148 sopt->sopt_data, sopt->sopt_size, l->l_cred);
1149 break;
1150 }
1151 #endif /*IPSEC*/
1152
1153 default:
1154 error = ENOPROTOOPT;
1155 break;
1156 }
1157 break;
1158
1159 case PRCO_GETOPT:
1160 switch (sopt->sopt_name) {
1161 case IP_OPTIONS:
1162 case IP_RETOPTS:
1163 if (inp->inp_options) {
1164 struct mbuf *m;
1165
1166 m = m_copym(inp->inp_options, 0, M_COPYALL,
1167 M_DONTWAIT);
1168 if (m == NULL) {
1169 error = ENOBUFS;
1170 break;
1171 }
1172
1173 error = sockopt_setmbuf(sopt, m);
1174 }
1175 break;
1176
1177 case IP_TOS:
1178 case IP_TTL:
1179 case IP_MINTTL:
1180 case IP_RECVOPTS:
1181 case IP_RECVRETOPTS:
1182 case IP_RECVDSTADDR:
1183 case IP_RECVIF:
1184 case IP_RECVTTL:
1185 case IP_ERRORMTU:
1186 switch (sopt->sopt_name) {
1187 case IP_TOS:
1188 optval = inp->inp_ip.ip_tos;
1189 break;
1190
1191 case IP_TTL:
1192 optval = inp->inp_ip.ip_ttl;
1193 break;
1194
1195 case IP_MINTTL:
1196 optval = inp->inp_ip_minttl;
1197 break;
1198
1199 case IP_ERRORMTU:
1200 optval = inp->inp_errormtu;
1201 break;
1202
1203 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1204
1205 case IP_RECVOPTS:
1206 optval = OPTBIT(INP_RECVOPTS);
1207 break;
1208
1209 case IP_RECVRETOPTS:
1210 optval = OPTBIT(INP_RECVRETOPTS);
1211 break;
1212
1213 case IP_RECVDSTADDR:
1214 optval = OPTBIT(INP_RECVDSTADDR);
1215 break;
1216
1217 case IP_RECVIF:
1218 optval = OPTBIT(INP_RECVIF);
1219 break;
1220
1221 case IP_RECVTTL:
1222 optval = OPTBIT(INP_RECVTTL);
1223 break;
1224 }
1225 error = sockopt_setint(sopt, optval);
1226 break;
1227
1228 #if 0 /* defined(FAST_IPSEC) */
1229 case IP_IPSEC_POLICY:
1230 {
1231 struct mbuf *m = NULL;
1232
1233 /* XXX this will return EINVAL as sopt is empty */
1234 error = ipsec4_get_policy(inp, sopt->sopt_data,
1235 sopt->sopt_size, &m);
1236 if (error == 0)
1237 error = sockopt_setmbuf(sopt, m);
1238 break;
1239 }
1240 #endif /*IPSEC*/
1241
1242 case IP_MULTICAST_IF:
1243 case IP_MULTICAST_TTL:
1244 case IP_MULTICAST_LOOP:
1245 case IP_ADD_MEMBERSHIP:
1246 case IP_DROP_MEMBERSHIP:
1247 error = ip_getmoptions(inp->inp_moptions, sopt);
1248 break;
1249
1250 case IP_PORTRANGE:
1251 if (inp->inp_flags & INP_LOWPORT)
1252 optval = IP_PORTRANGE_LOW;
1253 else
1254 optval = IP_PORTRANGE_DEFAULT;
1255
1256 error = sockopt_setint(sopt, optval);
1257
1258 break;
1259
1260 default:
1261 error = ENOPROTOOPT;
1262 break;
1263 }
1264 break;
1265 }
1266 return (error);
1267 }
1268
1269 /*
1270 * Set up IP options in pcb for insertion in output packets.
1271 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1272 * with destination address if source routed.
1273 */
1274 int
1275 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1276 {
1277 struct mbuf *m;
1278 const u_char *cp;
1279 u_char *dp;
1280 int cnt;
1281 uint8_t optval, olen, offset;
1282
1283 /* turn off any old options */
1284 if (*pcbopt)
1285 (void)m_free(*pcbopt);
1286 *pcbopt = NULL;
1287
1288 cp = sopt->sopt_data;
1289 cnt = sopt->sopt_size;
1290
1291 if (cnt == 0)
1292 return (0); /* Only turning off any previous options */
1293
1294 #ifndef __vax__
1295 if (cnt % sizeof(int32_t))
1296 return (EINVAL);
1297 #endif
1298
1299 m = m_get(M_DONTWAIT, MT_SOOPTS);
1300 if (m == NULL)
1301 return (ENOBUFS);
1302
1303 dp = mtod(m, u_char *);
1304 memset(dp, 0, sizeof(struct in_addr));
1305 dp += sizeof(struct in_addr);
1306 m->m_len = sizeof(struct in_addr);
1307
1308 /*
1309 * IP option list according to RFC791. Each option is of the form
1310 *
1311 * [optval] [olen] [(olen - 2) data bytes]
1312 *
1313 * we validate the list and copy options to an mbuf for prepending
1314 * to data packets. The IP first-hop destination address will be
1315 * stored before actual options and is zero if unset.
1316 */
1317 while (cnt > 0) {
1318 optval = cp[IPOPT_OPTVAL];
1319
1320 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1321 olen = 1;
1322 } else {
1323 if (cnt < IPOPT_OLEN + 1)
1324 goto bad;
1325
1326 olen = cp[IPOPT_OLEN];
1327 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1328 goto bad;
1329 }
1330
1331 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1332 /*
1333 * user process specifies route as:
1334 * ->A->B->C->D
1335 * D must be our final destination (but we can't
1336 * check that since we may not have connected yet).
1337 * A is first hop destination, which doesn't appear in
1338 * actual IP option, but is stored before the options.
1339 */
1340 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1341 goto bad;
1342
1343 offset = cp[IPOPT_OFFSET];
1344 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1345 sizeof(struct in_addr));
1346
1347 cp += sizeof(struct in_addr);
1348 cnt -= sizeof(struct in_addr);
1349 olen -= sizeof(struct in_addr);
1350
1351 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1352 goto bad;
1353
1354 memcpy(dp, cp, olen);
1355 dp[IPOPT_OPTVAL] = optval;
1356 dp[IPOPT_OLEN] = olen;
1357 dp[IPOPT_OFFSET] = offset;
1358 break;
1359 } else {
1360 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1361 goto bad;
1362
1363 memcpy(dp, cp, olen);
1364 break;
1365 }
1366
1367 dp += olen;
1368 m->m_len += olen;
1369
1370 if (optval == IPOPT_EOL)
1371 break;
1372
1373 cp += olen;
1374 cnt -= olen;
1375 }
1376
1377 *pcbopt = m;
1378 return (0);
1379
1380 bad:
1381 (void)m_free(m);
1382 return (EINVAL);
1383 }
1384
1385 /*
1386 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1387 */
1388 static struct ifnet *
1389 ip_multicast_if(struct in_addr *a, int *ifindexp)
1390 {
1391 int ifindex;
1392 struct ifnet *ifp = NULL;
1393 struct in_ifaddr *ia;
1394
1395 if (ifindexp)
1396 *ifindexp = 0;
1397 if (ntohl(a->s_addr) >> 24 == 0) {
1398 ifindex = ntohl(a->s_addr) & 0xffffff;
1399 if (ifindex < 0 || if_indexlim <= ifindex)
1400 return NULL;
1401 ifp = ifindex2ifnet[ifindex];
1402 if (!ifp)
1403 return NULL;
1404 if (ifindexp)
1405 *ifindexp = ifindex;
1406 } else {
1407 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1408 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1409 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1410 ifp = ia->ia_ifp;
1411 break;
1412 }
1413 }
1414 }
1415 return ifp;
1416 }
1417
1418 static int
1419 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1420 {
1421 u_int tval;
1422 u_char cval;
1423 int error;
1424
1425 if (sopt == NULL)
1426 return EINVAL;
1427
1428 switch (sopt->sopt_size) {
1429 case sizeof(u_char):
1430 error = sockopt_get(sopt, &cval, sizeof(u_char));
1431 tval = cval;
1432 break;
1433
1434 case sizeof(u_int):
1435 error = sockopt_get(sopt, &tval, sizeof(u_int));
1436 break;
1437
1438 default:
1439 error = EINVAL;
1440 }
1441
1442 if (error)
1443 return error;
1444
1445 if (tval > maxval)
1446 return EINVAL;
1447
1448 *val = tval;
1449 return 0;
1450 }
1451
1452 /*
1453 * Set the IP multicast options in response to user setsockopt().
1454 */
1455 int
1456 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1457 {
1458 int error = 0;
1459 int i;
1460 struct in_addr addr;
1461 struct ip_mreq lmreq, *mreq;
1462 struct ifnet *ifp;
1463 struct ip_moptions *imo = *imop;
1464 int ifindex;
1465
1466 if (imo == NULL) {
1467 /*
1468 * No multicast option buffer attached to the pcb;
1469 * allocate one and initialize to default values.
1470 */
1471 imo = malloc(sizeof(*imo), M_IPMOPTS, M_NOWAIT);
1472 if (imo == NULL)
1473 return (ENOBUFS);
1474
1475 *imop = imo;
1476 imo->imo_multicast_ifp = NULL;
1477 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1478 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1479 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1480 imo->imo_num_memberships = 0;
1481 }
1482
1483 switch (sopt->sopt_name) {
1484 case IP_MULTICAST_IF:
1485 /*
1486 * Select the interface for outgoing multicast packets.
1487 */
1488 error = sockopt_get(sopt, &addr, sizeof(addr));
1489 if (error)
1490 break;
1491
1492 /*
1493 * INADDR_ANY is used to remove a previous selection.
1494 * When no interface is selected, a default one is
1495 * chosen every time a multicast packet is sent.
1496 */
1497 if (in_nullhost(addr)) {
1498 imo->imo_multicast_ifp = NULL;
1499 break;
1500 }
1501 /*
1502 * The selected interface is identified by its local
1503 * IP address. Find the interface and confirm that
1504 * it supports multicasting.
1505 */
1506 ifp = ip_multicast_if(&addr, &ifindex);
1507 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1508 error = EADDRNOTAVAIL;
1509 break;
1510 }
1511 imo->imo_multicast_ifp = ifp;
1512 if (ifindex)
1513 imo->imo_multicast_addr = addr;
1514 else
1515 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1516 break;
1517
1518 case IP_MULTICAST_TTL:
1519 /*
1520 * Set the IP time-to-live for outgoing multicast packets.
1521 */
1522 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1523 break;
1524
1525 case IP_MULTICAST_LOOP:
1526 /*
1527 * Set the loopback flag for outgoing multicast packets.
1528 * Must be zero or one.
1529 */
1530 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1531 break;
1532
1533 case IP_ADD_MEMBERSHIP:
1534 /*
1535 * Add a multicast group membership.
1536 * Group must be a valid IP multicast address.
1537 */
1538 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1539 if (error)
1540 break;
1541
1542 mreq = &lmreq;
1543
1544 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1545 error = EINVAL;
1546 break;
1547 }
1548 /*
1549 * If no interface address was provided, use the interface of
1550 * the route to the given multicast address.
1551 */
1552 if (in_nullhost(mreq->imr_interface)) {
1553 struct rtentry *rt;
1554 union {
1555 struct sockaddr dst;
1556 struct sockaddr_in dst4;
1557 } u;
1558 struct route ro;
1559
1560 memset(&ro, 0, sizeof(ro));
1561
1562 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1563 rtcache_setdst(&ro, &u.dst);
1564 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1565 : NULL;
1566 rtcache_free(&ro);
1567 } else {
1568 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1569 }
1570 /*
1571 * See if we found an interface, and confirm that it
1572 * supports multicast.
1573 */
1574 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1575 error = EADDRNOTAVAIL;
1576 break;
1577 }
1578 /*
1579 * See if the membership already exists or if all the
1580 * membership slots are full.
1581 */
1582 for (i = 0; i < imo->imo_num_memberships; ++i) {
1583 if (imo->imo_membership[i]->inm_ifp == ifp &&
1584 in_hosteq(imo->imo_membership[i]->inm_addr,
1585 mreq->imr_multiaddr))
1586 break;
1587 }
1588 if (i < imo->imo_num_memberships) {
1589 error = EADDRINUSE;
1590 break;
1591 }
1592 if (i == IP_MAX_MEMBERSHIPS) {
1593 error = ETOOMANYREFS;
1594 break;
1595 }
1596 /*
1597 * Everything looks good; add a new record to the multicast
1598 * address list for the given interface.
1599 */
1600 if ((imo->imo_membership[i] =
1601 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1602 error = ENOBUFS;
1603 break;
1604 }
1605 ++imo->imo_num_memberships;
1606 break;
1607
1608 case IP_DROP_MEMBERSHIP:
1609 /*
1610 * Drop a multicast group membership.
1611 * Group must be a valid IP multicast address.
1612 */
1613 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1614 if (error)
1615 break;
1616
1617 mreq = &lmreq;
1618
1619 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1620 error = EINVAL;
1621 break;
1622 }
1623 /*
1624 * If an interface address was specified, get a pointer
1625 * to its ifnet structure.
1626 */
1627 if (in_nullhost(mreq->imr_interface))
1628 ifp = NULL;
1629 else {
1630 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1631 if (ifp == NULL) {
1632 error = EADDRNOTAVAIL;
1633 break;
1634 }
1635 }
1636 /*
1637 * Find the membership in the membership array.
1638 */
1639 for (i = 0; i < imo->imo_num_memberships; ++i) {
1640 if ((ifp == NULL ||
1641 imo->imo_membership[i]->inm_ifp == ifp) &&
1642 in_hosteq(imo->imo_membership[i]->inm_addr,
1643 mreq->imr_multiaddr))
1644 break;
1645 }
1646 if (i == imo->imo_num_memberships) {
1647 error = EADDRNOTAVAIL;
1648 break;
1649 }
1650 /*
1651 * Give up the multicast address record to which the
1652 * membership points.
1653 */
1654 in_delmulti(imo->imo_membership[i]);
1655 /*
1656 * Remove the gap in the membership array.
1657 */
1658 for (++i; i < imo->imo_num_memberships; ++i)
1659 imo->imo_membership[i-1] = imo->imo_membership[i];
1660 --imo->imo_num_memberships;
1661 break;
1662
1663 default:
1664 error = EOPNOTSUPP;
1665 break;
1666 }
1667
1668 /*
1669 * If all options have default values, no need to keep the mbuf.
1670 */
1671 if (imo->imo_multicast_ifp == NULL &&
1672 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1673 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1674 imo->imo_num_memberships == 0) {
1675 free(*imop, M_IPMOPTS);
1676 *imop = NULL;
1677 }
1678
1679 return (error);
1680 }
1681
1682 /*
1683 * Return the IP multicast options in response to user getsockopt().
1684 */
1685 int
1686 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1687 {
1688 struct in_addr addr;
1689 struct in_ifaddr *ia;
1690 int error;
1691 uint8_t optval;
1692
1693 error = 0;
1694
1695 switch (sopt->sopt_name) {
1696 case IP_MULTICAST_IF:
1697 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1698 addr = zeroin_addr;
1699 else if (imo->imo_multicast_addr.s_addr) {
1700 /* return the value user has set */
1701 addr = imo->imo_multicast_addr;
1702 } else {
1703 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1704 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1705 }
1706 error = sockopt_set(sopt, &addr, sizeof(addr));
1707 break;
1708
1709 case IP_MULTICAST_TTL:
1710 optval = imo ? imo->imo_multicast_ttl
1711 : IP_DEFAULT_MULTICAST_TTL;
1712
1713 error = sockopt_set(sopt, &optval, sizeof(optval));
1714 break;
1715
1716 case IP_MULTICAST_LOOP:
1717 optval = imo ? imo->imo_multicast_loop
1718 : IP_DEFAULT_MULTICAST_LOOP;
1719
1720 error = sockopt_set(sopt, &optval, sizeof(optval));
1721 break;
1722
1723 default:
1724 error = EOPNOTSUPP;
1725 }
1726
1727 return (error);
1728 }
1729
1730 /*
1731 * Discard the IP multicast options.
1732 */
1733 void
1734 ip_freemoptions(struct ip_moptions *imo)
1735 {
1736 int i;
1737
1738 if (imo != NULL) {
1739 for (i = 0; i < imo->imo_num_memberships; ++i)
1740 in_delmulti(imo->imo_membership[i]);
1741 free(imo, M_IPMOPTS);
1742 }
1743 }
1744
1745 /*
1746 * Routine called from ip_output() to loop back a copy of an IP multicast
1747 * packet to the input queue of a specified interface. Note that this
1748 * calls the output routine of the loopback "driver", but with an interface
1749 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1750 */
1751 static void
1752 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1753 {
1754 struct ip *ip;
1755 struct mbuf *copym;
1756
1757 copym = m_copypacket(m, M_DONTWAIT);
1758 if (copym != NULL
1759 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1760 copym = m_pullup(copym, sizeof(struct ip));
1761 if (copym == NULL)
1762 return;
1763 /*
1764 * We don't bother to fragment if the IP length is greater
1765 * than the interface's MTU. Can this possibly matter?
1766 */
1767 ip = mtod(copym, struct ip *);
1768
1769 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1770 in_delayed_cksum(copym);
1771 copym->m_pkthdr.csum_flags &=
1772 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1773 }
1774
1775 ip->ip_sum = 0;
1776 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1777 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1778 }
1779