Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.210.6.3
      1 /*	$NetBSD: ip_output.c,v 1.210.6.3 2012/06/02 11:09:38 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.210.6.3 2012/06/02 11:09:38 mrg Exp $");
     95 
     96 #include "opt_pfil_hooks.h"
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 
    101 #include <sys/param.h>
    102 #include <sys/malloc.h>
    103 #include <sys/kmem.h>
    104 #include <sys/mbuf.h>
    105 #include <sys/errno.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/kauth.h>
    110 #ifdef FAST_IPSEC
    111 #include <sys/domain.h>
    112 #endif
    113 #include <sys/systm.h>
    114 #include <sys/proc.h>
    115 
    116 #include <net/if.h>
    117 #include <net/route.h>
    118 #include <net/pfil.h>
    119 
    120 #include <netinet/in.h>
    121 #include <netinet/in_systm.h>
    122 #include <netinet/ip.h>
    123 #include <netinet/in_pcb.h>
    124 #include <netinet/in_var.h>
    125 #include <netinet/ip_var.h>
    126 #include <netinet/ip_private.h>
    127 #include <netinet/in_offload.h>
    128 
    129 #ifdef MROUTING
    130 #include <netinet/ip_mroute.h>
    131 #endif
    132 
    133 #ifdef FAST_IPSEC
    134 #include <netipsec/ipsec.h>
    135 #include <netipsec/key.h>
    136 #include <netipsec/xform.h>
    137 #endif	/* FAST_IPSEC*/
    138 
    139 #ifdef IPSEC_NAT_T
    140 #include <netinet/udp.h>
    141 #endif
    142 
    143 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    144 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    145 static void ip_mloopback(struct ifnet *, struct mbuf *,
    146     const struct sockaddr_in *);
    147 
    148 #ifdef PFIL_HOOKS
    149 extern struct pfil_head inet_pfil_hook;			/* XXX */
    150 #endif
    151 
    152 int	ip_do_loopback_cksum = 0;
    153 
    154 /*
    155  * IP output.  The packet in mbuf chain m contains a skeletal IP
    156  * header (with len, off, ttl, proto, tos, src, dst).
    157  * The mbuf chain containing the packet will be freed.
    158  * The mbuf opt, if present, will not be freed.
    159  */
    160 int
    161 ip_output(struct mbuf *m0, ...)
    162 {
    163 	struct rtentry *rt;
    164 	struct ip *ip;
    165 	struct ifnet *ifp;
    166 	struct mbuf *m = m0;
    167 	int hlen = sizeof (struct ip);
    168 	int len, error = 0;
    169 	struct route iproute;
    170 	const struct sockaddr_in *dst;
    171 	struct in_ifaddr *ia;
    172 	struct ifaddr *xifa;
    173 	struct mbuf *opt;
    174 	struct route *ro;
    175 	int flags, sw_csum;
    176 	int *mtu_p;
    177 	u_long mtu;
    178 	struct ip_moptions *imo;
    179 	struct socket *so;
    180 	va_list ap;
    181 #ifdef IPSEC_NAT_T
    182 	int natt_frag = 0;
    183 #endif
    184 #ifdef FAST_IPSEC
    185 	struct inpcb *inp;
    186 	struct secpolicy *sp = NULL;
    187 	int s;
    188 #endif
    189 	u_int16_t ip_len;
    190 	union {
    191 		struct sockaddr		dst;
    192 		struct sockaddr_in	dst4;
    193 	} u;
    194 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    195 					 * to the nexthop
    196 					 */
    197 
    198 	len = 0;
    199 	va_start(ap, m0);
    200 	opt = va_arg(ap, struct mbuf *);
    201 	ro = va_arg(ap, struct route *);
    202 	flags = va_arg(ap, int);
    203 	imo = va_arg(ap, struct ip_moptions *);
    204 	so = va_arg(ap, struct socket *);
    205 	if (flags & IP_RETURNMTU)
    206 		mtu_p = va_arg(ap, int *);
    207 	else
    208 		mtu_p = NULL;
    209 	va_end(ap);
    210 
    211 	MCLAIM(m, &ip_tx_mowner);
    212 #ifdef FAST_IPSEC
    213 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    214 		inp = (struct inpcb *)so->so_pcb;
    215 	else
    216 		inp = NULL;
    217 #endif /* FAST_IPSEC */
    218 
    219 #ifdef	DIAGNOSTIC
    220 	if ((m->m_flags & M_PKTHDR) == 0)
    221 		panic("ip_output: no HDR");
    222 
    223 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    224 		panic("ip_output: IPv6 checksum offload flags: %d",
    225 		    m->m_pkthdr.csum_flags);
    226 	}
    227 
    228 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    229 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    230 		panic("ip_output: conflicting checksum offload flags: %d",
    231 		    m->m_pkthdr.csum_flags);
    232 	}
    233 #endif
    234 	if (opt) {
    235 		m = ip_insertoptions(m, opt, &len);
    236 		if (len >= sizeof(struct ip))
    237 			hlen = len;
    238 	}
    239 	ip = mtod(m, struct ip *);
    240 	/*
    241 	 * Fill in IP header.
    242 	 */
    243 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    244 		ip->ip_v = IPVERSION;
    245 		ip->ip_off = htons(0);
    246 		/* ip->ip_id filled in after we find out source ia */
    247 		ip->ip_hl = hlen >> 2;
    248 		IP_STATINC(IP_STAT_LOCALOUT);
    249 	} else {
    250 		hlen = ip->ip_hl << 2;
    251 	}
    252 	/*
    253 	 * Route packet.
    254 	 */
    255 	memset(&iproute, 0, sizeof(iproute));
    256 	if (ro == NULL)
    257 		ro = &iproute;
    258 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    259 	dst = satocsin(rtcache_getdst(ro));
    260 	/*
    261 	 * If there is a cached route,
    262 	 * check that it is to the same destination
    263 	 * and is still up.  If not, free it and try again.
    264 	 * The address family should also be checked in case of sharing the
    265 	 * cache with IPv6.
    266 	 */
    267 	if (dst == NULL)
    268 		;
    269 	else if (dst->sin_family != AF_INET ||
    270 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
    271 		rtcache_free(ro);
    272 
    273 	if ((rt = rtcache_validate(ro)) == NULL &&
    274 	    (rt = rtcache_update(ro, 1)) == NULL) {
    275 		dst = &u.dst4;
    276 		rtcache_setdst(ro, &u.dst);
    277 	}
    278 	/*
    279 	 * If routing to interface only,
    280 	 * short circuit routing lookup.
    281 	 */
    282 	if (flags & IP_ROUTETOIF) {
    283 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    284 			IP_STATINC(IP_STAT_NOROUTE);
    285 			error = ENETUNREACH;
    286 			goto bad;
    287 		}
    288 		ifp = ia->ia_ifp;
    289 		mtu = ifp->if_mtu;
    290 		ip->ip_ttl = 1;
    291 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    292 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    293 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    294 		ifp = imo->imo_multicast_ifp;
    295 		mtu = ifp->if_mtu;
    296 		IFP_TO_IA(ifp, ia);
    297 	} else {
    298 		if (rt == NULL)
    299 			rt = rtcache_init(ro);
    300 		if (rt == NULL) {
    301 			IP_STATINC(IP_STAT_NOROUTE);
    302 			error = EHOSTUNREACH;
    303 			goto bad;
    304 		}
    305 		ia = ifatoia(rt->rt_ifa);
    306 		ifp = rt->rt_ifp;
    307 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    308 			mtu = ifp->if_mtu;
    309 		rt->rt_use++;
    310 		if (rt->rt_flags & RTF_GATEWAY)
    311 			dst = satosin(rt->rt_gateway);
    312 	}
    313 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    314 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    315 		struct in_multi *inm;
    316 
    317 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    318 			M_BCAST : M_MCAST;
    319 		/*
    320 		 * See if the caller provided any multicast options
    321 		 */
    322 		if (imo != NULL)
    323 			ip->ip_ttl = imo->imo_multicast_ttl;
    324 		else
    325 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    326 
    327 		/*
    328 		 * if we don't know the outgoing ifp yet, we can't generate
    329 		 * output
    330 		 */
    331 		if (!ifp) {
    332 			IP_STATINC(IP_STAT_NOROUTE);
    333 			error = ENETUNREACH;
    334 			goto bad;
    335 		}
    336 
    337 		/*
    338 		 * If the packet is multicast or broadcast, confirm that
    339 		 * the outgoing interface can transmit it.
    340 		 */
    341 		if (((m->m_flags & M_MCAST) &&
    342 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    343 		    ((m->m_flags & M_BCAST) &&
    344 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    345 			IP_STATINC(IP_STAT_NOROUTE);
    346 			error = ENETUNREACH;
    347 			goto bad;
    348 		}
    349 		/*
    350 		 * If source address not specified yet, use an address
    351 		 * of outgoing interface.
    352 		 */
    353 		if (in_nullhost(ip->ip_src)) {
    354 			struct in_ifaddr *xia;
    355 
    356 			IFP_TO_IA(ifp, xia);
    357 			if (!xia) {
    358 				error = EADDRNOTAVAIL;
    359 				goto bad;
    360 			}
    361 			xifa = &xia->ia_ifa;
    362 			if (xifa->ifa_getifa != NULL) {
    363 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    364 			}
    365 			ip->ip_src = xia->ia_addr.sin_addr;
    366 		}
    367 
    368 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    369 		if (inm != NULL &&
    370 		   (imo == NULL || imo->imo_multicast_loop)) {
    371 			/*
    372 			 * If we belong to the destination multicast group
    373 			 * on the outgoing interface, and the caller did not
    374 			 * forbid loopback, loop back a copy.
    375 			 */
    376 			ip_mloopback(ifp, m, &u.dst4);
    377 		}
    378 #ifdef MROUTING
    379 		else {
    380 			/*
    381 			 * If we are acting as a multicast router, perform
    382 			 * multicast forwarding as if the packet had just
    383 			 * arrived on the interface to which we are about
    384 			 * to send.  The multicast forwarding function
    385 			 * recursively calls this function, using the
    386 			 * IP_FORWARDING flag to prevent infinite recursion.
    387 			 *
    388 			 * Multicasts that are looped back by ip_mloopback(),
    389 			 * above, will be forwarded by the ip_input() routine,
    390 			 * if necessary.
    391 			 */
    392 			extern struct socket *ip_mrouter;
    393 
    394 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    395 				if (ip_mforward(m, ifp) != 0) {
    396 					m_freem(m);
    397 					goto done;
    398 				}
    399 			}
    400 		}
    401 #endif
    402 		/*
    403 		 * Multicasts with a time-to-live of zero may be looped-
    404 		 * back, above, but must not be transmitted on a network.
    405 		 * Also, multicasts addressed to the loopback interface
    406 		 * are not sent -- the above call to ip_mloopback() will
    407 		 * loop back a copy if this host actually belongs to the
    408 		 * destination group on the loopback interface.
    409 		 */
    410 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    411 			m_freem(m);
    412 			goto done;
    413 		}
    414 
    415 		goto sendit;
    416 	}
    417 	/*
    418 	 * If source address not specified yet, use address
    419 	 * of outgoing interface.
    420 	 */
    421 	if (in_nullhost(ip->ip_src)) {
    422 		xifa = &ia->ia_ifa;
    423 		if (xifa->ifa_getifa != NULL)
    424 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    425 		ip->ip_src = ia->ia_addr.sin_addr;
    426 	}
    427 
    428 	/*
    429 	 * packets with Class-D address as source are not valid per
    430 	 * RFC 1112
    431 	 */
    432 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    433 		IP_STATINC(IP_STAT_ODROPPED);
    434 		error = EADDRNOTAVAIL;
    435 		goto bad;
    436 	}
    437 
    438 	/*
    439 	 * Look for broadcast address and
    440 	 * and verify user is allowed to send
    441 	 * such a packet.
    442 	 */
    443 	if (in_broadcast(dst->sin_addr, ifp)) {
    444 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    445 			error = EADDRNOTAVAIL;
    446 			goto bad;
    447 		}
    448 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    449 			error = EACCES;
    450 			goto bad;
    451 		}
    452 		/* don't allow broadcast messages to be fragmented */
    453 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    454 			error = EMSGSIZE;
    455 			goto bad;
    456 		}
    457 		m->m_flags |= M_BCAST;
    458 	} else
    459 		m->m_flags &= ~M_BCAST;
    460 
    461 sendit:
    462 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    463 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    464 			ip->ip_id = 0;
    465 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    466 			ip->ip_id = ip_newid(ia);
    467 		} else {
    468 
    469 			/*
    470 			 * TSO capable interfaces (typically?) increment
    471 			 * ip_id for each segment.
    472 			 * "allocate" enough ids here to increase the chance
    473 			 * for them to be unique.
    474 			 *
    475 			 * note that the following calculation is not
    476 			 * needed to be precise.  wasting some ip_id is fine.
    477 			 */
    478 
    479 			unsigned int segsz = m->m_pkthdr.segsz;
    480 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    481 			unsigned int num = howmany(datasz, segsz);
    482 
    483 			ip->ip_id = ip_newid_range(ia, num);
    484 		}
    485 	}
    486 	/*
    487 	 * If we're doing Path MTU Discovery, we need to set DF unless
    488 	 * the route's MTU is locked.
    489 	 */
    490 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    491 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    492 		ip->ip_off |= htons(IP_DF);
    493 
    494 	/* Remember the current ip_len */
    495 	ip_len = ntohs(ip->ip_len);
    496 
    497 #ifdef FAST_IPSEC
    498 	/*
    499 	 * Check the security policy (SP) for the packet and, if
    500 	 * required, do IPsec-related processing.  There are two
    501 	 * cases here; the first time a packet is sent through
    502 	 * it will be untagged and handled by ipsec4_checkpolicy.
    503 	 * If the packet is resubmitted to ip_output (e.g. after
    504 	 * AH, ESP, etc. processing), there will be a tag to bypass
    505 	 * the lookup and related policy checking.
    506 	 */
    507 	if (!ipsec_outdone(m)) {
    508 		s = splsoftnet();
    509 		if (inp != NULL &&
    510 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
    511 			splx(s);
    512 			goto spd_done;
    513 		}
    514 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    515 				&error, inp);
    516 		/*
    517 		 * There are four return cases:
    518 		 *    sp != NULL	 	    apply IPsec policy
    519 		 *    sp == NULL, error == 0	    no IPsec handling needed
    520 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
    521 		 *    sp == NULL, error != 0	    discard packet, report error
    522 		 */
    523 		if (sp != NULL) {
    524 #ifdef IPSEC_NAT_T
    525 			/*
    526 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
    527 			 * we'll do it on each fragmented packet.
    528 			 */
    529 			if (sp->req->sav &&
    530 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    531 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    532 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    533 					natt_frag = 1;
    534 					mtu = sp->req->sav->esp_frag;
    535 					splx(s);
    536 					goto spd_done;
    537 				}
    538 			}
    539 #endif /* IPSEC_NAT_T */
    540 
    541 			/*
    542 			 * Do delayed checksums now because we send before
    543 			 * this is done in the normal processing path.
    544 			 */
    545 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    546 				in_delayed_cksum(m);
    547 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    548 			}
    549 
    550 #ifdef __FreeBSD__
    551 			ip->ip_len = htons(ip->ip_len);
    552 			ip->ip_off = htons(ip->ip_off);
    553 #endif
    554 
    555 			/* NB: callee frees mbuf */
    556 			error = ipsec4_process_packet(m, sp->req, flags, 0);
    557 			/*
    558 			 * Preserve KAME behaviour: ENOENT can be returned
    559 			 * when an SA acquire is in progress.  Don't propagate
    560 			 * this to user-level; it confuses applications.
    561 			 *
    562 			 * XXX this will go away when the SADB is redone.
    563 			 */
    564 			if (error == ENOENT)
    565 				error = 0;
    566 			splx(s);
    567 			goto done;
    568 		} else {
    569 			splx(s);
    570 
    571 			if (error != 0) {
    572 				/*
    573 				 * Hack: -EINVAL is used to signal that a packet
    574 				 * should be silently discarded.  This is typically
    575 				 * because we asked key management for an SA and
    576 				 * it was delayed (e.g. kicked up to IKE).
    577 				 */
    578 				if (error == -EINVAL)
    579 					error = 0;
    580 				goto bad;
    581 			} else {
    582 				/* No IPsec processing for this packet. */
    583 			}
    584 		}
    585 	}
    586 spd_done:
    587 #endif /* FAST_IPSEC */
    588 
    589 #ifdef PFIL_HOOKS
    590 	/*
    591 	 * Run through list of hooks for output packets.
    592 	 */
    593 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    594 		goto done;
    595 	if (m == NULL)
    596 		goto done;
    597 
    598 	ip = mtod(m, struct ip *);
    599 	hlen = ip->ip_hl << 2;
    600 	ip_len = ntohs(ip->ip_len);
    601 #endif /* PFIL_HOOKS */
    602 
    603 	m->m_pkthdr.csum_data |= hlen << 16;
    604 
    605 #if IFA_STATS
    606 	/*
    607 	 * search for the source address structure to
    608 	 * maintain output statistics.
    609 	 */
    610 	INADDR_TO_IA(ip->ip_src, ia);
    611 #endif
    612 
    613 	/* Maybe skip checksums on loopback interfaces. */
    614 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    615 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    616 	}
    617 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    618 	/*
    619 	 * If small enough for mtu of path, or if using TCP segmentation
    620 	 * offload, can just send directly.
    621 	 */
    622 	if (ip_len <= mtu ||
    623 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    624 #if IFA_STATS
    625 		if (ia)
    626 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    627 #endif
    628 		/*
    629 		 * Always initialize the sum to 0!  Some HW assisted
    630 		 * checksumming requires this.
    631 		 */
    632 		ip->ip_sum = 0;
    633 
    634 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    635 			/*
    636 			 * Perform any checksums that the hardware can't do
    637 			 * for us.
    638 			 *
    639 			 * XXX Does any hardware require the {th,uh}_sum
    640 			 * XXX fields to be 0?
    641 			 */
    642 			if (sw_csum & M_CSUM_IPv4) {
    643 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    644 				ip->ip_sum = in_cksum(m, hlen);
    645 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    646 			}
    647 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    648 				if (IN_NEED_CHECKSUM(ifp,
    649 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    650 					in_delayed_cksum(m);
    651 				}
    652 				m->m_pkthdr.csum_flags &=
    653 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    654 			}
    655 		}
    656 
    657 		if (__predict_true(
    658 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    659 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    660 			KERNEL_LOCK(1, NULL);
    661 			error =
    662 			    (*ifp->if_output)(ifp, m,
    663 				(m->m_flags & M_MCAST) ?
    664 				    sintocsa(rdst) : sintocsa(dst),
    665 				rt);
    666 			KERNEL_UNLOCK_ONE(NULL);
    667 		} else {
    668 			error =
    669 			    ip_tso_output(ifp, m,
    670 				(m->m_flags & M_MCAST) ?
    671 				    sintocsa(rdst) : sintocsa(dst),
    672 				rt);
    673 		}
    674 		goto done;
    675 	}
    676 
    677 	/*
    678 	 * We can't use HW checksumming if we're about to
    679 	 * to fragment the packet.
    680 	 *
    681 	 * XXX Some hardware can do this.
    682 	 */
    683 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    684 		if (IN_NEED_CHECKSUM(ifp,
    685 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    686 			in_delayed_cksum(m);
    687 		}
    688 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    689 	}
    690 
    691 	/*
    692 	 * Too large for interface; fragment if possible.
    693 	 * Must be able to put at least 8 bytes per fragment.
    694 	 */
    695 	if (ntohs(ip->ip_off) & IP_DF) {
    696 		if (flags & IP_RETURNMTU)
    697 			*mtu_p = mtu;
    698 		error = EMSGSIZE;
    699 		IP_STATINC(IP_STAT_CANTFRAG);
    700 		goto bad;
    701 	}
    702 
    703 	error = ip_fragment(m, ifp, mtu);
    704 	if (error) {
    705 		m = NULL;
    706 		goto bad;
    707 	}
    708 
    709 	for (; m; m = m0) {
    710 		m0 = m->m_nextpkt;
    711 		m->m_nextpkt = 0;
    712 		if (error == 0) {
    713 #if IFA_STATS
    714 			if (ia)
    715 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    716 				    ntohs(ip->ip_len);
    717 #endif
    718 #ifdef IPSEC_NAT_T
    719 			/*
    720 			 * If we get there, the packet has not been handeld by
    721 			 * IPSec whereas it should have. Now that it has been
    722 			 * fragmented, re-inject it in ip_output so that IPsec
    723 			 * processing can occur.
    724 			 */
    725 			if (natt_frag) {
    726 				error = ip_output(m, opt,
    727 				    ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
    728 			} else
    729 #endif /* IPSEC_NAT_T */
    730 			{
    731 				KASSERT((m->m_pkthdr.csum_flags &
    732 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    733 				KERNEL_LOCK(1, NULL);
    734 				error = (*ifp->if_output)(ifp, m,
    735 				    (m->m_flags & M_MCAST) ?
    736 					sintocsa(rdst) : sintocsa(dst),
    737 				    rt);
    738 				KERNEL_UNLOCK_ONE(NULL);
    739 			}
    740 		} else
    741 			m_freem(m);
    742 	}
    743 
    744 	if (error == 0)
    745 		IP_STATINC(IP_STAT_FRAGMENTED);
    746 done:
    747 	rtcache_free(&iproute);
    748 
    749 #ifdef FAST_IPSEC
    750 	if (sp != NULL)
    751 		KEY_FREESP(&sp);
    752 #endif /* FAST_IPSEC */
    753 
    754 	return (error);
    755 bad:
    756 	m_freem(m);
    757 	goto done;
    758 }
    759 
    760 int
    761 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    762 {
    763 	struct ip *ip, *mhip;
    764 	struct mbuf *m0;
    765 	int len, hlen, off;
    766 	int mhlen, firstlen;
    767 	struct mbuf **mnext;
    768 	int sw_csum = m->m_pkthdr.csum_flags;
    769 	int fragments = 0;
    770 	int s;
    771 	int error = 0;
    772 
    773 	ip = mtod(m, struct ip *);
    774 	hlen = ip->ip_hl << 2;
    775 	if (ifp != NULL)
    776 		sw_csum &= ~ifp->if_csum_flags_tx;
    777 
    778 	len = (mtu - hlen) &~ 7;
    779 	if (len < 8) {
    780 		m_freem(m);
    781 		return (EMSGSIZE);
    782 	}
    783 
    784 	firstlen = len;
    785 	mnext = &m->m_nextpkt;
    786 
    787 	/*
    788 	 * Loop through length of segment after first fragment,
    789 	 * make new header and copy data of each part and link onto chain.
    790 	 */
    791 	m0 = m;
    792 	mhlen = sizeof (struct ip);
    793 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    794 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    795 		if (m == 0) {
    796 			error = ENOBUFS;
    797 			IP_STATINC(IP_STAT_ODROPPED);
    798 			goto sendorfree;
    799 		}
    800 		MCLAIM(m, m0->m_owner);
    801 		*mnext = m;
    802 		mnext = &m->m_nextpkt;
    803 		m->m_data += max_linkhdr;
    804 		mhip = mtod(m, struct ip *);
    805 		*mhip = *ip;
    806 		/* we must inherit MCAST and BCAST flags */
    807 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    808 		if (hlen > sizeof (struct ip)) {
    809 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    810 			mhip->ip_hl = mhlen >> 2;
    811 		}
    812 		m->m_len = mhlen;
    813 		mhip->ip_off = ((off - hlen) >> 3) +
    814 		    (ntohs(ip->ip_off) & ~IP_MF);
    815 		if (ip->ip_off & htons(IP_MF))
    816 			mhip->ip_off |= IP_MF;
    817 		if (off + len >= ntohs(ip->ip_len))
    818 			len = ntohs(ip->ip_len) - off;
    819 		else
    820 			mhip->ip_off |= IP_MF;
    821 		HTONS(mhip->ip_off);
    822 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    823 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    824 		if (m->m_next == 0) {
    825 			error = ENOBUFS;	/* ??? */
    826 			IP_STATINC(IP_STAT_ODROPPED);
    827 			goto sendorfree;
    828 		}
    829 		m->m_pkthdr.len = mhlen + len;
    830 		m->m_pkthdr.rcvif = NULL;
    831 		mhip->ip_sum = 0;
    832 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    833 		if (sw_csum & M_CSUM_IPv4) {
    834 			mhip->ip_sum = in_cksum(m, mhlen);
    835 		} else {
    836 			/*
    837 			 * checksum is hw-offloaded or not necessary.
    838 			 */
    839 			m->m_pkthdr.csum_flags |=
    840 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    841 			m->m_pkthdr.csum_data |= mhlen << 16;
    842 			KASSERT(!(ifp != NULL &&
    843 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    844 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    845 		}
    846 		IP_STATINC(IP_STAT_OFRAGMENTS);
    847 		fragments++;
    848 	}
    849 	/*
    850 	 * Update first fragment by trimming what's been copied out
    851 	 * and updating header, then send each fragment (in order).
    852 	 */
    853 	m = m0;
    854 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    855 	m->m_pkthdr.len = hlen + firstlen;
    856 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    857 	ip->ip_off |= htons(IP_MF);
    858 	ip->ip_sum = 0;
    859 	if (sw_csum & M_CSUM_IPv4) {
    860 		ip->ip_sum = in_cksum(m, hlen);
    861 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    862 	} else {
    863 		/*
    864 		 * checksum is hw-offloaded or not necessary.
    865 		 */
    866 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    867 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    868 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    869 			sizeof(struct ip));
    870 	}
    871 sendorfree:
    872 	/*
    873 	 * If there is no room for all the fragments, don't queue
    874 	 * any of them.
    875 	 */
    876 	if (ifp != NULL) {
    877 		s = splnet();
    878 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    879 		    error == 0) {
    880 			error = ENOBUFS;
    881 			IP_STATINC(IP_STAT_ODROPPED);
    882 			IFQ_INC_DROPS(&ifp->if_snd);
    883 		}
    884 		splx(s);
    885 	}
    886 	if (error) {
    887 		for (m = m0; m; m = m0) {
    888 			m0 = m->m_nextpkt;
    889 			m->m_nextpkt = NULL;
    890 			m_freem(m);
    891 		}
    892 	}
    893 	return (error);
    894 }
    895 
    896 /*
    897  * Process a delayed payload checksum calculation.
    898  */
    899 void
    900 in_delayed_cksum(struct mbuf *m)
    901 {
    902 	struct ip *ip;
    903 	u_int16_t csum, offset;
    904 
    905 	ip = mtod(m, struct ip *);
    906 	offset = ip->ip_hl << 2;
    907 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    908 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    909 		csum = 0xffff;
    910 
    911 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    912 
    913 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    914 		/* This happen when ip options were inserted
    915 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    916 		    m->m_len, offset, ip->ip_p);
    917 		 */
    918 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    919 	} else
    920 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    921 }
    922 
    923 /*
    924  * Determine the maximum length of the options to be inserted;
    925  * we would far rather allocate too much space rather than too little.
    926  */
    927 
    928 u_int
    929 ip_optlen(struct inpcb *inp)
    930 {
    931 	struct mbuf *m = inp->inp_options;
    932 
    933 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
    934 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    935 	else
    936 		return 0;
    937 }
    938 
    939 
    940 /*
    941  * Insert IP options into preformed packet.
    942  * Adjust IP destination as required for IP source routing,
    943  * as indicated by a non-zero in_addr at the start of the options.
    944  */
    945 static struct mbuf *
    946 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    947 {
    948 	struct ipoption *p = mtod(opt, struct ipoption *);
    949 	struct mbuf *n;
    950 	struct ip *ip = mtod(m, struct ip *);
    951 	unsigned optlen;
    952 
    953 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    954 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    955 		return (m);		/* XXX should fail */
    956 	if (!in_nullhost(p->ipopt_dst))
    957 		ip->ip_dst = p->ipopt_dst;
    958 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    959 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    960 		if (n == 0)
    961 			return (m);
    962 		MCLAIM(n, m->m_owner);
    963 		M_MOVE_PKTHDR(n, m);
    964 		m->m_len -= sizeof(struct ip);
    965 		m->m_data += sizeof(struct ip);
    966 		n->m_next = m;
    967 		m = n;
    968 		m->m_len = optlen + sizeof(struct ip);
    969 		m->m_data += max_linkhdr;
    970 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    971 	} else {
    972 		m->m_data -= optlen;
    973 		m->m_len += optlen;
    974 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    975 	}
    976 	m->m_pkthdr.len += optlen;
    977 	ip = mtod(m, struct ip *);
    978 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    979 	*phlen = sizeof(struct ip) + optlen;
    980 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    981 	return (m);
    982 }
    983 
    984 /*
    985  * Copy options from ip to jp,
    986  * omitting those not copied during fragmentation.
    987  */
    988 int
    989 ip_optcopy(struct ip *ip, struct ip *jp)
    990 {
    991 	u_char *cp, *dp;
    992 	int opt, optlen, cnt;
    993 
    994 	cp = (u_char *)(ip + 1);
    995 	dp = (u_char *)(jp + 1);
    996 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    997 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    998 		opt = cp[0];
    999 		if (opt == IPOPT_EOL)
   1000 			break;
   1001 		if (opt == IPOPT_NOP) {
   1002 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1003 			*dp++ = IPOPT_NOP;
   1004 			optlen = 1;
   1005 			continue;
   1006 		}
   1007 #ifdef DIAGNOSTIC
   1008 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1009 			panic("malformed IPv4 option passed to ip_optcopy");
   1010 #endif
   1011 		optlen = cp[IPOPT_OLEN];
   1012 #ifdef DIAGNOSTIC
   1013 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1014 			panic("malformed IPv4 option passed to ip_optcopy");
   1015 #endif
   1016 		/* bogus lengths should have been caught by ip_dooptions */
   1017 		if (optlen > cnt)
   1018 			optlen = cnt;
   1019 		if (IPOPT_COPIED(opt)) {
   1020 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1021 			dp += optlen;
   1022 		}
   1023 	}
   1024 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1025 		*dp++ = IPOPT_EOL;
   1026 	return (optlen);
   1027 }
   1028 
   1029 /*
   1030  * IP socket option processing.
   1031  */
   1032 int
   1033 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1034 {
   1035 	struct inpcb *inp = sotoinpcb(so);
   1036 	int optval = 0;
   1037 	int error = 0;
   1038 #if defined(FAST_IPSEC)
   1039 	struct lwp *l = curlwp;	/*XXX*/
   1040 #endif
   1041 
   1042 	if (sopt->sopt_level != IPPROTO_IP) {
   1043 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1044 			return 0;
   1045 		return ENOPROTOOPT;
   1046 	}
   1047 
   1048 	switch (op) {
   1049 	case PRCO_SETOPT:
   1050 		switch (sopt->sopt_name) {
   1051 		case IP_OPTIONS:
   1052 #ifdef notyet
   1053 		case IP_RETOPTS:
   1054 #endif
   1055 			error = ip_pcbopts(&inp->inp_options, sopt);
   1056 			break;
   1057 
   1058 		case IP_TOS:
   1059 		case IP_TTL:
   1060 		case IP_MINTTL:
   1061 		case IP_RECVOPTS:
   1062 		case IP_RECVRETOPTS:
   1063 		case IP_RECVDSTADDR:
   1064 		case IP_RECVIF:
   1065 		case IP_RECVTTL:
   1066 			error = sockopt_getint(sopt, &optval);
   1067 			if (error)
   1068 				break;
   1069 
   1070 			switch (sopt->sopt_name) {
   1071 			case IP_TOS:
   1072 				inp->inp_ip.ip_tos = optval;
   1073 				break;
   1074 
   1075 			case IP_TTL:
   1076 				inp->inp_ip.ip_ttl = optval;
   1077 				break;
   1078 
   1079 			case IP_MINTTL:
   1080 				if (optval > 0 && optval <= MAXTTL)
   1081 					inp->inp_ip_minttl = optval;
   1082 				else
   1083 					error = EINVAL;
   1084 				break;
   1085 #define	OPTSET(bit) \
   1086 	if (optval) \
   1087 		inp->inp_flags |= bit; \
   1088 	else \
   1089 		inp->inp_flags &= ~bit;
   1090 
   1091 			case IP_RECVOPTS:
   1092 				OPTSET(INP_RECVOPTS);
   1093 				break;
   1094 
   1095 			case IP_RECVRETOPTS:
   1096 				OPTSET(INP_RECVRETOPTS);
   1097 				break;
   1098 
   1099 			case IP_RECVDSTADDR:
   1100 				OPTSET(INP_RECVDSTADDR);
   1101 				break;
   1102 
   1103 			case IP_RECVIF:
   1104 				OPTSET(INP_RECVIF);
   1105 				break;
   1106 
   1107 			case IP_RECVTTL:
   1108 				OPTSET(INP_RECVTTL);
   1109 				break;
   1110 			}
   1111 		break;
   1112 #undef OPTSET
   1113 
   1114 		case IP_MULTICAST_IF:
   1115 		case IP_MULTICAST_TTL:
   1116 		case IP_MULTICAST_LOOP:
   1117 		case IP_ADD_MEMBERSHIP:
   1118 		case IP_DROP_MEMBERSHIP:
   1119 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1120 			break;
   1121 
   1122 		case IP_PORTRANGE:
   1123 			error = sockopt_getint(sopt, &optval);
   1124 			if (error)
   1125 				break;
   1126 
   1127 			/* INP_LOCK(inp); */
   1128 			switch (optval) {
   1129 			case IP_PORTRANGE_DEFAULT:
   1130 			case IP_PORTRANGE_HIGH:
   1131 				inp->inp_flags &= ~(INP_LOWPORT);
   1132 				break;
   1133 
   1134 			case IP_PORTRANGE_LOW:
   1135 				inp->inp_flags |= INP_LOWPORT;
   1136 				break;
   1137 
   1138 			default:
   1139 				error = EINVAL;
   1140 				break;
   1141 			}
   1142 			/* INP_UNLOCK(inp); */
   1143 			break;
   1144 
   1145 #if defined(FAST_IPSEC)
   1146 		case IP_IPSEC_POLICY:
   1147 		    {
   1148 			error = ipsec4_set_policy(inp, sopt->sopt_name,
   1149 			    sopt->sopt_data, sopt->sopt_size, l->l_cred);
   1150 			break;
   1151 		    }
   1152 #endif /*IPSEC*/
   1153 
   1154 		default:
   1155 			error = ENOPROTOOPT;
   1156 			break;
   1157 		}
   1158 		break;
   1159 
   1160 	case PRCO_GETOPT:
   1161 		switch (sopt->sopt_name) {
   1162 		case IP_OPTIONS:
   1163 		case IP_RETOPTS:
   1164 			if (inp->inp_options) {
   1165 				struct mbuf *m;
   1166 
   1167 				m = m_copym(inp->inp_options, 0, M_COPYALL,
   1168 				    M_DONTWAIT);
   1169 				if (m == NULL) {
   1170 					error = ENOBUFS;
   1171 					break;
   1172 				}
   1173 
   1174 				error = sockopt_setmbuf(sopt, m);
   1175 			}
   1176 			break;
   1177 
   1178 		case IP_TOS:
   1179 		case IP_TTL:
   1180 		case IP_MINTTL:
   1181 		case IP_RECVOPTS:
   1182 		case IP_RECVRETOPTS:
   1183 		case IP_RECVDSTADDR:
   1184 		case IP_RECVIF:
   1185 		case IP_RECVTTL:
   1186 		case IP_ERRORMTU:
   1187 			switch (sopt->sopt_name) {
   1188 			case IP_TOS:
   1189 				optval = inp->inp_ip.ip_tos;
   1190 				break;
   1191 
   1192 			case IP_TTL:
   1193 				optval = inp->inp_ip.ip_ttl;
   1194 				break;
   1195 
   1196 			case IP_MINTTL:
   1197 				optval = inp->inp_ip_minttl;
   1198 				break;
   1199 
   1200 			case IP_ERRORMTU:
   1201 				optval = inp->inp_errormtu;
   1202 				break;
   1203 
   1204 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1205 
   1206 			case IP_RECVOPTS:
   1207 				optval = OPTBIT(INP_RECVOPTS);
   1208 				break;
   1209 
   1210 			case IP_RECVRETOPTS:
   1211 				optval = OPTBIT(INP_RECVRETOPTS);
   1212 				break;
   1213 
   1214 			case IP_RECVDSTADDR:
   1215 				optval = OPTBIT(INP_RECVDSTADDR);
   1216 				break;
   1217 
   1218 			case IP_RECVIF:
   1219 				optval = OPTBIT(INP_RECVIF);
   1220 				break;
   1221 
   1222 			case IP_RECVTTL:
   1223 				optval = OPTBIT(INP_RECVTTL);
   1224 				break;
   1225 			}
   1226 			error = sockopt_setint(sopt, optval);
   1227 			break;
   1228 
   1229 #if 0	/* defined(FAST_IPSEC) */
   1230 		case IP_IPSEC_POLICY:
   1231 		{
   1232 			struct mbuf *m = NULL;
   1233 
   1234 			/* XXX this will return EINVAL as sopt is empty */
   1235 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1236 			    sopt->sopt_size, &m);
   1237 			if (error == 0)
   1238 				error = sockopt_setmbuf(sopt, m);
   1239 			break;
   1240 		}
   1241 #endif /*IPSEC*/
   1242 
   1243 		case IP_MULTICAST_IF:
   1244 		case IP_MULTICAST_TTL:
   1245 		case IP_MULTICAST_LOOP:
   1246 		case IP_ADD_MEMBERSHIP:
   1247 		case IP_DROP_MEMBERSHIP:
   1248 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1249 			break;
   1250 
   1251 		case IP_PORTRANGE:
   1252 			if (inp->inp_flags & INP_LOWPORT)
   1253 				optval = IP_PORTRANGE_LOW;
   1254 			else
   1255 				optval = IP_PORTRANGE_DEFAULT;
   1256 
   1257 			error = sockopt_setint(sopt, optval);
   1258 
   1259 			break;
   1260 
   1261 		default:
   1262 			error = ENOPROTOOPT;
   1263 			break;
   1264 		}
   1265 		break;
   1266 	}
   1267 	return (error);
   1268 }
   1269 
   1270 /*
   1271  * Set up IP options in pcb for insertion in output packets.
   1272  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1273  * with destination address if source routed.
   1274  */
   1275 int
   1276 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
   1277 {
   1278 	struct mbuf *m;
   1279 	const u_char *cp;
   1280 	u_char *dp;
   1281 	int cnt;
   1282 	uint8_t optval, olen, offset;
   1283 
   1284 	/* turn off any old options */
   1285 	if (*pcbopt)
   1286 		(void)m_free(*pcbopt);
   1287 	*pcbopt = NULL;
   1288 
   1289 	cp = sopt->sopt_data;
   1290 	cnt = sopt->sopt_size;
   1291 
   1292 	if (cnt == 0)
   1293 		return (0);	/* Only turning off any previous options */
   1294 
   1295 #ifndef	__vax__
   1296 	if (cnt % sizeof(int32_t))
   1297 		return (EINVAL);
   1298 #endif
   1299 
   1300 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1301 	if (m == NULL)
   1302 		return (ENOBUFS);
   1303 
   1304 	dp = mtod(m, u_char *);
   1305 	memset(dp, 0, sizeof(struct in_addr));
   1306 	dp += sizeof(struct in_addr);
   1307 	m->m_len = sizeof(struct in_addr);
   1308 
   1309 	/*
   1310 	 * IP option list according to RFC791. Each option is of the form
   1311 	 *
   1312 	 *	[optval] [olen] [(olen - 2) data bytes]
   1313 	 *
   1314 	 * we validate the list and copy options to an mbuf for prepending
   1315 	 * to data packets. The IP first-hop destination address will be
   1316 	 * stored before actual options and is zero if unset.
   1317 	 */
   1318 	while (cnt > 0) {
   1319 		optval = cp[IPOPT_OPTVAL];
   1320 
   1321 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1322 			olen = 1;
   1323 		} else {
   1324 			if (cnt < IPOPT_OLEN + 1)
   1325 				goto bad;
   1326 
   1327 			olen = cp[IPOPT_OLEN];
   1328 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1329 				goto bad;
   1330 		}
   1331 
   1332 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1333 			/*
   1334 			 * user process specifies route as:
   1335 			 *	->A->B->C->D
   1336 			 * D must be our final destination (but we can't
   1337 			 * check that since we may not have connected yet).
   1338 			 * A is first hop destination, which doesn't appear in
   1339 			 * actual IP option, but is stored before the options.
   1340 			 */
   1341 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1342 				goto bad;
   1343 
   1344 			offset = cp[IPOPT_OFFSET];
   1345 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1346 			    sizeof(struct in_addr));
   1347 
   1348 			cp += sizeof(struct in_addr);
   1349 			cnt -= sizeof(struct in_addr);
   1350 			olen -= sizeof(struct in_addr);
   1351 
   1352 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1353 				goto bad;
   1354 
   1355 			memcpy(dp, cp, olen);
   1356 			dp[IPOPT_OPTVAL] = optval;
   1357 			dp[IPOPT_OLEN] = olen;
   1358 			dp[IPOPT_OFFSET] = offset;
   1359 			break;
   1360 		} else {
   1361 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1362 				goto bad;
   1363 
   1364 			memcpy(dp, cp, olen);
   1365 			break;
   1366 		}
   1367 
   1368 		dp += olen;
   1369 		m->m_len += olen;
   1370 
   1371 		if (optval == IPOPT_EOL)
   1372 			break;
   1373 
   1374 		cp += olen;
   1375 		cnt -= olen;
   1376 	}
   1377 
   1378 	*pcbopt = m;
   1379 	return (0);
   1380 
   1381 bad:
   1382 	(void)m_free(m);
   1383 	return (EINVAL);
   1384 }
   1385 
   1386 /*
   1387  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1388  */
   1389 static struct ifnet *
   1390 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1391 {
   1392 	int ifindex;
   1393 	struct ifnet *ifp = NULL;
   1394 	struct in_ifaddr *ia;
   1395 
   1396 	if (ifindexp)
   1397 		*ifindexp = 0;
   1398 	if (ntohl(a->s_addr) >> 24 == 0) {
   1399 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1400 		if (ifindex < 0 || if_indexlim <= ifindex)
   1401 			return NULL;
   1402 		ifp = ifindex2ifnet[ifindex];
   1403 		if (!ifp)
   1404 			return NULL;
   1405 		if (ifindexp)
   1406 			*ifindexp = ifindex;
   1407 	} else {
   1408 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1409 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1410 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1411 				ifp = ia->ia_ifp;
   1412 				break;
   1413 			}
   1414 		}
   1415 	}
   1416 	return ifp;
   1417 }
   1418 
   1419 static int
   1420 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1421 {
   1422 	u_int tval;
   1423 	u_char cval;
   1424 	int error;
   1425 
   1426 	if (sopt == NULL)
   1427 		return EINVAL;
   1428 
   1429 	switch (sopt->sopt_size) {
   1430 	case sizeof(u_char):
   1431 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1432 		tval = cval;
   1433 		break;
   1434 
   1435 	case sizeof(u_int):
   1436 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1437 		break;
   1438 
   1439 	default:
   1440 		error = EINVAL;
   1441 	}
   1442 
   1443 	if (error)
   1444 		return error;
   1445 
   1446 	if (tval > maxval)
   1447 		return EINVAL;
   1448 
   1449 	*val = tval;
   1450 	return 0;
   1451 }
   1452 
   1453 /*
   1454  * Set the IP multicast options in response to user setsockopt().
   1455  */
   1456 int
   1457 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
   1458 {
   1459 	struct in_addr addr;
   1460 	struct ip_mreq lmreq, *mreq;
   1461 	struct ifnet *ifp;
   1462 	struct ip_moptions *imo = *imop;
   1463 	int i, ifindex, error = 0;
   1464 
   1465 	if (imo == NULL) {
   1466 		/*
   1467 		 * No multicast option buffer attached to the pcb;
   1468 		 * allocate one and initialize to default values.
   1469 		 */
   1470 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1471 		if (imo == NULL)
   1472 			return ENOBUFS;
   1473 
   1474 		imo->imo_multicast_ifp = NULL;
   1475 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1476 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1477 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1478 		imo->imo_num_memberships = 0;
   1479 		*imop = imo;
   1480 	}
   1481 
   1482 	switch (sopt->sopt_name) {
   1483 	case IP_MULTICAST_IF:
   1484 		/*
   1485 		 * Select the interface for outgoing multicast packets.
   1486 		 */
   1487 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1488 		if (error)
   1489 			break;
   1490 
   1491 		/*
   1492 		 * INADDR_ANY is used to remove a previous selection.
   1493 		 * When no interface is selected, a default one is
   1494 		 * chosen every time a multicast packet is sent.
   1495 		 */
   1496 		if (in_nullhost(addr)) {
   1497 			imo->imo_multicast_ifp = NULL;
   1498 			break;
   1499 		}
   1500 		/*
   1501 		 * The selected interface is identified by its local
   1502 		 * IP address.  Find the interface and confirm that
   1503 		 * it supports multicasting.
   1504 		 */
   1505 		ifp = ip_multicast_if(&addr, &ifindex);
   1506 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1507 			error = EADDRNOTAVAIL;
   1508 			break;
   1509 		}
   1510 		imo->imo_multicast_ifp = ifp;
   1511 		if (ifindex)
   1512 			imo->imo_multicast_addr = addr;
   1513 		else
   1514 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1515 		break;
   1516 
   1517 	case IP_MULTICAST_TTL:
   1518 		/*
   1519 		 * Set the IP time-to-live for outgoing multicast packets.
   1520 		 */
   1521 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1522 		break;
   1523 
   1524 	case IP_MULTICAST_LOOP:
   1525 		/*
   1526 		 * Set the loopback flag for outgoing multicast packets.
   1527 		 * Must be zero or one.
   1528 		 */
   1529 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1530 		break;
   1531 
   1532 	case IP_ADD_MEMBERSHIP:
   1533 		/*
   1534 		 * Add a multicast group membership.
   1535 		 * Group must be a valid IP multicast address.
   1536 		 */
   1537 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1538 		if (error)
   1539 			break;
   1540 
   1541 		mreq = &lmreq;
   1542 
   1543 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1544 			error = EINVAL;
   1545 			break;
   1546 		}
   1547 		/*
   1548 		 * If no interface address was provided, use the interface of
   1549 		 * the route to the given multicast address.
   1550 		 */
   1551 		if (in_nullhost(mreq->imr_interface)) {
   1552 			struct rtentry *rt;
   1553 			union {
   1554 				struct sockaddr		dst;
   1555 				struct sockaddr_in	dst4;
   1556 			} u;
   1557 			struct route ro;
   1558 
   1559 			memset(&ro, 0, sizeof(ro));
   1560 
   1561 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1562 			rtcache_setdst(&ro, &u.dst);
   1563 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1564 			                                        : NULL;
   1565 			rtcache_free(&ro);
   1566 		} else {
   1567 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1568 		}
   1569 		/*
   1570 		 * See if we found an interface, and confirm that it
   1571 		 * supports multicast.
   1572 		 */
   1573 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1574 			error = EADDRNOTAVAIL;
   1575 			break;
   1576 		}
   1577 		/*
   1578 		 * See if the membership already exists or if all the
   1579 		 * membership slots are full.
   1580 		 */
   1581 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1582 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1583 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1584 				      mreq->imr_multiaddr))
   1585 				break;
   1586 		}
   1587 		if (i < imo->imo_num_memberships) {
   1588 			error = EADDRINUSE;
   1589 			break;
   1590 		}
   1591 		if (i == IP_MAX_MEMBERSHIPS) {
   1592 			error = ETOOMANYREFS;
   1593 			break;
   1594 		}
   1595 		/*
   1596 		 * Everything looks good; add a new record to the multicast
   1597 		 * address list for the given interface.
   1598 		 */
   1599 		if ((imo->imo_membership[i] =
   1600 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1601 			error = ENOBUFS;
   1602 			break;
   1603 		}
   1604 		++imo->imo_num_memberships;
   1605 		break;
   1606 
   1607 	case IP_DROP_MEMBERSHIP:
   1608 		/*
   1609 		 * Drop a multicast group membership.
   1610 		 * Group must be a valid IP multicast address.
   1611 		 */
   1612 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1613 		if (error)
   1614 			break;
   1615 
   1616 		mreq = &lmreq;
   1617 
   1618 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1619 			error = EINVAL;
   1620 			break;
   1621 		}
   1622 		/*
   1623 		 * If an interface address was specified, get a pointer
   1624 		 * to its ifnet structure.
   1625 		 */
   1626 		if (in_nullhost(mreq->imr_interface))
   1627 			ifp = NULL;
   1628 		else {
   1629 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1630 			if (ifp == NULL) {
   1631 				error = EADDRNOTAVAIL;
   1632 				break;
   1633 			}
   1634 		}
   1635 		/*
   1636 		 * Find the membership in the membership array.
   1637 		 */
   1638 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1639 			if ((ifp == NULL ||
   1640 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1641 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1642 				       mreq->imr_multiaddr))
   1643 				break;
   1644 		}
   1645 		if (i == imo->imo_num_memberships) {
   1646 			error = EADDRNOTAVAIL;
   1647 			break;
   1648 		}
   1649 		/*
   1650 		 * Give up the multicast address record to which the
   1651 		 * membership points.
   1652 		 */
   1653 		in_delmulti(imo->imo_membership[i]);
   1654 		/*
   1655 		 * Remove the gap in the membership array.
   1656 		 */
   1657 		for (++i; i < imo->imo_num_memberships; ++i)
   1658 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1659 		--imo->imo_num_memberships;
   1660 		break;
   1661 
   1662 	default:
   1663 		error = EOPNOTSUPP;
   1664 		break;
   1665 	}
   1666 
   1667 	/*
   1668 	 * If all options have default values, no need to keep the mbuf.
   1669 	 */
   1670 	if (imo->imo_multicast_ifp == NULL &&
   1671 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1672 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1673 	    imo->imo_num_memberships == 0) {
   1674 		kmem_free(imo, sizeof(*imo));
   1675 		*imop = NULL;
   1676 	}
   1677 
   1678 	return error;
   1679 }
   1680 
   1681 /*
   1682  * Return the IP multicast options in response to user getsockopt().
   1683  */
   1684 int
   1685 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1686 {
   1687 	struct in_addr addr;
   1688 	struct in_ifaddr *ia;
   1689 	int error;
   1690 	uint8_t optval;
   1691 
   1692 	error = 0;
   1693 
   1694 	switch (sopt->sopt_name) {
   1695 	case IP_MULTICAST_IF:
   1696 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1697 			addr = zeroin_addr;
   1698 		else if (imo->imo_multicast_addr.s_addr) {
   1699 			/* return the value user has set */
   1700 			addr = imo->imo_multicast_addr;
   1701 		} else {
   1702 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1703 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1704 		}
   1705 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1706 		break;
   1707 
   1708 	case IP_MULTICAST_TTL:
   1709 		optval = imo ? imo->imo_multicast_ttl
   1710 			     : IP_DEFAULT_MULTICAST_TTL;
   1711 
   1712 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1713 		break;
   1714 
   1715 	case IP_MULTICAST_LOOP:
   1716 		optval = imo ? imo->imo_multicast_loop
   1717 			     : IP_DEFAULT_MULTICAST_LOOP;
   1718 
   1719 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1720 		break;
   1721 
   1722 	default:
   1723 		error = EOPNOTSUPP;
   1724 	}
   1725 
   1726 	return (error);
   1727 }
   1728 
   1729 /*
   1730  * Discard the IP multicast options.
   1731  */
   1732 void
   1733 ip_freemoptions(struct ip_moptions *imo)
   1734 {
   1735 	int i;
   1736 
   1737 	if (imo != NULL) {
   1738 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1739 			in_delmulti(imo->imo_membership[i]);
   1740 		kmem_free(imo, sizeof(*imo));
   1741 	}
   1742 }
   1743 
   1744 /*
   1745  * Routine called from ip_output() to loop back a copy of an IP multicast
   1746  * packet to the input queue of a specified interface.  Note that this
   1747  * calls the output routine of the loopback "driver", but with an interface
   1748  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1749  */
   1750 static void
   1751 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1752 {
   1753 	struct ip *ip;
   1754 	struct mbuf *copym;
   1755 
   1756 	copym = m_copypacket(m, M_DONTWAIT);
   1757 	if (copym != NULL
   1758 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1759 		copym = m_pullup(copym, sizeof(struct ip));
   1760 	if (copym == NULL)
   1761 		return;
   1762 	/*
   1763 	 * We don't bother to fragment if the IP length is greater
   1764 	 * than the interface's MTU.  Can this possibly matter?
   1765 	 */
   1766 	ip = mtod(copym, struct ip *);
   1767 
   1768 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1769 		in_delayed_cksum(copym);
   1770 		copym->m_pkthdr.csum_flags &=
   1771 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1772 	}
   1773 
   1774 	ip->ip_sum = 0;
   1775 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1776 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1777 }
   1778