Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.213
      1 /*	$NetBSD: ip_output.c,v 1.213 2012/02/15 16:11:23 drochner Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.213 2012/02/15 16:11:23 drochner Exp $");
     95 
     96 #include "opt_pfil_hooks.h"
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 
    101 #include <sys/param.h>
    102 #include <sys/malloc.h>
    103 #include <sys/mbuf.h>
    104 #include <sys/errno.h>
    105 #include <sys/protosw.h>
    106 #include <sys/socket.h>
    107 #include <sys/socketvar.h>
    108 #include <sys/kauth.h>
    109 #ifdef FAST_IPSEC
    110 #include <sys/domain.h>
    111 #endif
    112 #include <sys/systm.h>
    113 #include <sys/proc.h>
    114 
    115 #include <net/if.h>
    116 #include <net/route.h>
    117 #include <net/pfil.h>
    118 
    119 #include <netinet/in.h>
    120 #include <netinet/in_systm.h>
    121 #include <netinet/ip.h>
    122 #include <netinet/in_pcb.h>
    123 #include <netinet/in_var.h>
    124 #include <netinet/ip_var.h>
    125 #include <netinet/ip_private.h>
    126 #include <netinet/in_offload.h>
    127 
    128 #ifdef MROUTING
    129 #include <netinet/ip_mroute.h>
    130 #endif
    131 
    132 #ifdef KAME_IPSEC
    133 #include <netinet6/ipsec.h>
    134 #include <netinet6/ipsec_private.h>
    135 #include <netkey/key.h>
    136 #include <netkey/key_debug.h>
    137 #endif /*KAME_IPSEC*/
    138 
    139 #ifdef FAST_IPSEC
    140 #include <netipsec/ipsec.h>
    141 #include <netipsec/key.h>
    142 #include <netipsec/xform.h>
    143 #endif	/* FAST_IPSEC*/
    144 
    145 #ifdef IPSEC_NAT_T
    146 #include <netinet/udp.h>
    147 #endif
    148 
    149 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    150 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    151 static void ip_mloopback(struct ifnet *, struct mbuf *,
    152     const struct sockaddr_in *);
    153 
    154 #ifdef PFIL_HOOKS
    155 extern struct pfil_head inet_pfil_hook;			/* XXX */
    156 #endif
    157 
    158 int	ip_do_loopback_cksum = 0;
    159 
    160 /*
    161  * IP output.  The packet in mbuf chain m contains a skeletal IP
    162  * header (with len, off, ttl, proto, tos, src, dst).
    163  * The mbuf chain containing the packet will be freed.
    164  * The mbuf opt, if present, will not be freed.
    165  */
    166 int
    167 ip_output(struct mbuf *m0, ...)
    168 {
    169 	struct rtentry *rt;
    170 	struct ip *ip;
    171 	struct ifnet *ifp;
    172 	struct mbuf *m = m0;
    173 	int hlen = sizeof (struct ip);
    174 	int len, error = 0;
    175 	struct route iproute;
    176 	const struct sockaddr_in *dst;
    177 	struct in_ifaddr *ia;
    178 	struct ifaddr *xifa;
    179 	struct mbuf *opt;
    180 	struct route *ro;
    181 	int flags, sw_csum;
    182 	int *mtu_p;
    183 	u_long mtu;
    184 	struct ip_moptions *imo;
    185 	struct socket *so;
    186 	va_list ap;
    187 #ifdef IPSEC_NAT_T
    188 	int natt_frag = 0;
    189 #endif
    190 #ifdef KAME_IPSEC
    191 	struct secpolicy *sp = NULL;
    192 #endif /*KAME_IPSEC*/
    193 #ifdef FAST_IPSEC
    194 	struct inpcb *inp;
    195 	struct secpolicy *sp = NULL;
    196 	int s;
    197 #endif
    198 	u_int16_t ip_len;
    199 	union {
    200 		struct sockaddr		dst;
    201 		struct sockaddr_in	dst4;
    202 	} u;
    203 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    204 					 * to the nexthop
    205 					 */
    206 
    207 	len = 0;
    208 	va_start(ap, m0);
    209 	opt = va_arg(ap, struct mbuf *);
    210 	ro = va_arg(ap, struct route *);
    211 	flags = va_arg(ap, int);
    212 	imo = va_arg(ap, struct ip_moptions *);
    213 	so = va_arg(ap, struct socket *);
    214 	if (flags & IP_RETURNMTU)
    215 		mtu_p = va_arg(ap, int *);
    216 	else
    217 		mtu_p = NULL;
    218 	va_end(ap);
    219 
    220 	MCLAIM(m, &ip_tx_mowner);
    221 #ifdef FAST_IPSEC
    222 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    223 		inp = (struct inpcb *)so->so_pcb;
    224 	else
    225 		inp = NULL;
    226 #endif /* FAST_IPSEC */
    227 
    228 #ifdef	DIAGNOSTIC
    229 	if ((m->m_flags & M_PKTHDR) == 0)
    230 		panic("ip_output: no HDR");
    231 
    232 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    233 		panic("ip_output: IPv6 checksum offload flags: %d",
    234 		    m->m_pkthdr.csum_flags);
    235 	}
    236 
    237 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    238 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    239 		panic("ip_output: conflicting checksum offload flags: %d",
    240 		    m->m_pkthdr.csum_flags);
    241 	}
    242 #endif
    243 	if (opt) {
    244 		m = ip_insertoptions(m, opt, &len);
    245 		if (len >= sizeof(struct ip))
    246 			hlen = len;
    247 	}
    248 	ip = mtod(m, struct ip *);
    249 	/*
    250 	 * Fill in IP header.
    251 	 */
    252 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    253 		ip->ip_v = IPVERSION;
    254 		ip->ip_off = htons(0);
    255 		/* ip->ip_id filled in after we find out source ia */
    256 		ip->ip_hl = hlen >> 2;
    257 		IP_STATINC(IP_STAT_LOCALOUT);
    258 	} else {
    259 		hlen = ip->ip_hl << 2;
    260 	}
    261 	/*
    262 	 * Route packet.
    263 	 */
    264 	memset(&iproute, 0, sizeof(iproute));
    265 	if (ro == NULL)
    266 		ro = &iproute;
    267 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    268 	dst = satocsin(rtcache_getdst(ro));
    269 	/*
    270 	 * If there is a cached route,
    271 	 * check that it is to the same destination
    272 	 * and is still up.  If not, free it and try again.
    273 	 * The address family should also be checked in case of sharing the
    274 	 * cache with IPv6.
    275 	 */
    276 	if (dst == NULL)
    277 		;
    278 	else if (dst->sin_family != AF_INET ||
    279 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
    280 		rtcache_free(ro);
    281 
    282 	if ((rt = rtcache_validate(ro)) == NULL &&
    283 	    (rt = rtcache_update(ro, 1)) == NULL) {
    284 		dst = &u.dst4;
    285 		rtcache_setdst(ro, &u.dst);
    286 	}
    287 	/*
    288 	 * If routing to interface only,
    289 	 * short circuit routing lookup.
    290 	 */
    291 	if (flags & IP_ROUTETOIF) {
    292 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    293 			IP_STATINC(IP_STAT_NOROUTE);
    294 			error = ENETUNREACH;
    295 			goto bad;
    296 		}
    297 		ifp = ia->ia_ifp;
    298 		mtu = ifp->if_mtu;
    299 		ip->ip_ttl = 1;
    300 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    301 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    302 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    303 		ifp = imo->imo_multicast_ifp;
    304 		mtu = ifp->if_mtu;
    305 		IFP_TO_IA(ifp, ia);
    306 	} else {
    307 		if (rt == NULL)
    308 			rt = rtcache_init(ro);
    309 		if (rt == NULL) {
    310 			IP_STATINC(IP_STAT_NOROUTE);
    311 			error = EHOSTUNREACH;
    312 			goto bad;
    313 		}
    314 		ia = ifatoia(rt->rt_ifa);
    315 		ifp = rt->rt_ifp;
    316 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    317 			mtu = ifp->if_mtu;
    318 		rt->rt_use++;
    319 		if (rt->rt_flags & RTF_GATEWAY)
    320 			dst = satosin(rt->rt_gateway);
    321 	}
    322 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    323 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    324 		struct in_multi *inm;
    325 
    326 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    327 			M_BCAST : M_MCAST;
    328 		/*
    329 		 * See if the caller provided any multicast options
    330 		 */
    331 		if (imo != NULL)
    332 			ip->ip_ttl = imo->imo_multicast_ttl;
    333 		else
    334 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    335 
    336 		/*
    337 		 * if we don't know the outgoing ifp yet, we can't generate
    338 		 * output
    339 		 */
    340 		if (!ifp) {
    341 			IP_STATINC(IP_STAT_NOROUTE);
    342 			error = ENETUNREACH;
    343 			goto bad;
    344 		}
    345 
    346 		/*
    347 		 * If the packet is multicast or broadcast, confirm that
    348 		 * the outgoing interface can transmit it.
    349 		 */
    350 		if (((m->m_flags & M_MCAST) &&
    351 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    352 		    ((m->m_flags & M_BCAST) &&
    353 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    354 			IP_STATINC(IP_STAT_NOROUTE);
    355 			error = ENETUNREACH;
    356 			goto bad;
    357 		}
    358 		/*
    359 		 * If source address not specified yet, use an address
    360 		 * of outgoing interface.
    361 		 */
    362 		if (in_nullhost(ip->ip_src)) {
    363 			struct in_ifaddr *xia;
    364 
    365 			IFP_TO_IA(ifp, xia);
    366 			if (!xia) {
    367 				error = EADDRNOTAVAIL;
    368 				goto bad;
    369 			}
    370 			xifa = &xia->ia_ifa;
    371 			if (xifa->ifa_getifa != NULL) {
    372 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    373 			}
    374 			ip->ip_src = xia->ia_addr.sin_addr;
    375 		}
    376 
    377 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    378 		if (inm != NULL &&
    379 		   (imo == NULL || imo->imo_multicast_loop)) {
    380 			/*
    381 			 * If we belong to the destination multicast group
    382 			 * on the outgoing interface, and the caller did not
    383 			 * forbid loopback, loop back a copy.
    384 			 */
    385 			ip_mloopback(ifp, m, &u.dst4);
    386 		}
    387 #ifdef MROUTING
    388 		else {
    389 			/*
    390 			 * If we are acting as a multicast router, perform
    391 			 * multicast forwarding as if the packet had just
    392 			 * arrived on the interface to which we are about
    393 			 * to send.  The multicast forwarding function
    394 			 * recursively calls this function, using the
    395 			 * IP_FORWARDING flag to prevent infinite recursion.
    396 			 *
    397 			 * Multicasts that are looped back by ip_mloopback(),
    398 			 * above, will be forwarded by the ip_input() routine,
    399 			 * if necessary.
    400 			 */
    401 			extern struct socket *ip_mrouter;
    402 
    403 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    404 				if (ip_mforward(m, ifp) != 0) {
    405 					m_freem(m);
    406 					goto done;
    407 				}
    408 			}
    409 		}
    410 #endif
    411 		/*
    412 		 * Multicasts with a time-to-live of zero may be looped-
    413 		 * back, above, but must not be transmitted on a network.
    414 		 * Also, multicasts addressed to the loopback interface
    415 		 * are not sent -- the above call to ip_mloopback() will
    416 		 * loop back a copy if this host actually belongs to the
    417 		 * destination group on the loopback interface.
    418 		 */
    419 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    420 			m_freem(m);
    421 			goto done;
    422 		}
    423 
    424 		goto sendit;
    425 	}
    426 	/*
    427 	 * If source address not specified yet, use address
    428 	 * of outgoing interface.
    429 	 */
    430 	if (in_nullhost(ip->ip_src)) {
    431 		xifa = &ia->ia_ifa;
    432 		if (xifa->ifa_getifa != NULL)
    433 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    434 		ip->ip_src = ia->ia_addr.sin_addr;
    435 	}
    436 
    437 	/*
    438 	 * packets with Class-D address as source are not valid per
    439 	 * RFC 1112
    440 	 */
    441 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    442 		IP_STATINC(IP_STAT_ODROPPED);
    443 		error = EADDRNOTAVAIL;
    444 		goto bad;
    445 	}
    446 
    447 	/*
    448 	 * Look for broadcast address and
    449 	 * and verify user is allowed to send
    450 	 * such a packet.
    451 	 */
    452 	if (in_broadcast(dst->sin_addr, ifp)) {
    453 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    454 			error = EADDRNOTAVAIL;
    455 			goto bad;
    456 		}
    457 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    458 			error = EACCES;
    459 			goto bad;
    460 		}
    461 		/* don't allow broadcast messages to be fragmented */
    462 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    463 			error = EMSGSIZE;
    464 			goto bad;
    465 		}
    466 		m->m_flags |= M_BCAST;
    467 	} else
    468 		m->m_flags &= ~M_BCAST;
    469 
    470 sendit:
    471 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    472 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    473 			ip->ip_id = 0;
    474 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    475 			ip->ip_id = ip_newid(ia);
    476 		} else {
    477 
    478 			/*
    479 			 * TSO capable interfaces (typically?) increment
    480 			 * ip_id for each segment.
    481 			 * "allocate" enough ids here to increase the chance
    482 			 * for them to be unique.
    483 			 *
    484 			 * note that the following calculation is not
    485 			 * needed to be precise.  wasting some ip_id is fine.
    486 			 */
    487 
    488 			unsigned int segsz = m->m_pkthdr.segsz;
    489 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    490 			unsigned int num = howmany(datasz, segsz);
    491 
    492 			ip->ip_id = ip_newid_range(ia, num);
    493 		}
    494 	}
    495 	/*
    496 	 * If we're doing Path MTU Discovery, we need to set DF unless
    497 	 * the route's MTU is locked.
    498 	 */
    499 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    500 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    501 		ip->ip_off |= htons(IP_DF);
    502 
    503 	/* Remember the current ip_len */
    504 	ip_len = ntohs(ip->ip_len);
    505 
    506 #ifdef KAME_IPSEC
    507 	/* get SP for this packet */
    508 	if (so == NULL)
    509 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    510 		    flags, &error);
    511 	else {
    512 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    513 					 IPSEC_DIR_OUTBOUND))
    514 			goto skip_ipsec;
    515 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    516 	}
    517 
    518 	if (sp == NULL) {
    519 		IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
    520 		goto bad;
    521 	}
    522 
    523 	error = 0;
    524 
    525 	/* check policy */
    526 	switch (sp->policy) {
    527 	case IPSEC_POLICY_DISCARD:
    528 		/*
    529 		 * This packet is just discarded.
    530 		 */
    531 		IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
    532 		goto bad;
    533 
    534 	case IPSEC_POLICY_BYPASS:
    535 	case IPSEC_POLICY_NONE:
    536 		/* no need to do IPsec. */
    537 		goto skip_ipsec;
    538 
    539 	case IPSEC_POLICY_IPSEC:
    540 		if (sp->req == NULL) {
    541 			/* XXX should be panic ? */
    542 			printf("ip_output: No IPsec request specified.\n");
    543 			error = EINVAL;
    544 			goto bad;
    545 		}
    546 		break;
    547 
    548 	case IPSEC_POLICY_ENTRUST:
    549 	default:
    550 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    551 	}
    552 
    553 #ifdef IPSEC_NAT_T
    554 	/*
    555 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    556 	 * we'll do it on each fragmented packet.
    557 	 */
    558 	if (sp->req->sav &&
    559 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    560 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    561 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    562 			natt_frag = 1;
    563 			mtu = sp->req->sav->esp_frag;
    564 			goto skip_ipsec;
    565 		}
    566 	}
    567 #endif /* IPSEC_NAT_T */
    568 
    569 	/*
    570 	 * ipsec4_output() expects ip_len and ip_off in network
    571 	 * order.  They have been set to network order above.
    572 	 */
    573 
    574     {
    575 	struct ipsec_output_state state;
    576 	memset(&state, 0, sizeof(state));
    577 	state.m = m;
    578 	if (flags & IP_ROUTETOIF) {
    579 		state.ro = &iproute;
    580 		memset(&iproute, 0, sizeof(iproute));
    581 	} else
    582 		state.ro = ro;
    583 	state.dst = sintocsa(dst);
    584 
    585 	/*
    586 	 * We can't defer the checksum of payload data if
    587 	 * we're about to encrypt/authenticate it.
    588 	 *
    589 	 * XXX When we support crypto offloading functions of
    590 	 * XXX network interfaces, we need to reconsider this,
    591 	 * XXX since it's likely that they'll support checksumming,
    592 	 * XXX as well.
    593 	 */
    594 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    595 		in_delayed_cksum(m);
    596 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    597 	}
    598 
    599 	error = ipsec4_output(&state, sp, flags);
    600 
    601 	m = state.m;
    602 	if (flags & IP_ROUTETOIF) {
    603 		/*
    604 		 * if we have tunnel mode SA, we may need to ignore
    605 		 * IP_ROUTETOIF.
    606 		 */
    607 		if (state.ro != &iproute ||
    608 		    rtcache_validate(state.ro) != NULL) {
    609 			flags &= ~IP_ROUTETOIF;
    610 			ro = state.ro;
    611 		}
    612 	} else
    613 		ro = state.ro;
    614 	dst = satocsin(state.dst);
    615 	if (error) {
    616 		/* mbuf is already reclaimed in ipsec4_output. */
    617 		m0 = NULL;
    618 		switch (error) {
    619 		case EHOSTUNREACH:
    620 		case ENETUNREACH:
    621 		case EMSGSIZE:
    622 		case ENOBUFS:
    623 		case ENOMEM:
    624 			break;
    625 		default:
    626 			printf("ip4_output (ipsec): error code %d\n", error);
    627 			/*fall through*/
    628 		case ENOENT:
    629 			/* don't show these error codes to the user */
    630 			error = 0;
    631 			break;
    632 		}
    633 		goto bad;
    634 	}
    635 
    636 	/* be sure to update variables that are affected by ipsec4_output() */
    637 	ip = mtod(m, struct ip *);
    638 	hlen = ip->ip_hl << 2;
    639 	ip_len = ntohs(ip->ip_len);
    640 
    641 	if ((rt = rtcache_validate(ro)) == NULL) {
    642 		if ((flags & IP_ROUTETOIF) == 0) {
    643 			printf("ip_output: "
    644 				"can't update route after IPsec processing\n");
    645 			error = EHOSTUNREACH;	/*XXX*/
    646 			goto bad;
    647 		}
    648 	} else {
    649 		/* nobody uses ia beyond here */
    650 		if (state.encap) {
    651 			ifp = rt->rt_ifp;
    652 			if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    653 				mtu = ifp->if_mtu;
    654 		}
    655 	}
    656     }
    657 skip_ipsec:
    658 #endif /*KAME_IPSEC*/
    659 #ifdef FAST_IPSEC
    660 	/*
    661 	 * Check the security policy (SP) for the packet and, if
    662 	 * required, do IPsec-related processing.  There are two
    663 	 * cases here; the first time a packet is sent through
    664 	 * it will be untagged and handled by ipsec4_checkpolicy.
    665 	 * If the packet is resubmitted to ip_output (e.g. after
    666 	 * AH, ESP, etc. processing), there will be a tag to bypass
    667 	 * the lookup and related policy checking.
    668 	 */
    669 	if (!ipsec_outdone(m)) {
    670 		s = splsoftnet();
    671 		if (inp != NULL &&
    672 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
    673 			splx(s);
    674 			goto spd_done;
    675 		}
    676 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    677 				&error, inp);
    678 		/*
    679 		 * There are four return cases:
    680 		 *    sp != NULL	 	    apply IPsec policy
    681 		 *    sp == NULL, error == 0	    no IPsec handling needed
    682 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
    683 		 *    sp == NULL, error != 0	    discard packet, report error
    684 		 */
    685 		if (sp != NULL) {
    686 #ifdef IPSEC_NAT_T
    687 			/*
    688 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
    689 			 * we'll do it on each fragmented packet.
    690 			 */
    691 			if (sp->req->sav &&
    692 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    693 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    694 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    695 					natt_frag = 1;
    696 					mtu = sp->req->sav->esp_frag;
    697 					splx(s);
    698 					goto spd_done;
    699 				}
    700 			}
    701 #endif /* IPSEC_NAT_T */
    702 
    703 			/*
    704 			 * Do delayed checksums now because we send before
    705 			 * this is done in the normal processing path.
    706 			 */
    707 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    708 				in_delayed_cksum(m);
    709 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    710 			}
    711 
    712 #ifdef __FreeBSD__
    713 			ip->ip_len = htons(ip->ip_len);
    714 			ip->ip_off = htons(ip->ip_off);
    715 #endif
    716 
    717 			/* NB: callee frees mbuf */
    718 			error = ipsec4_process_packet(m, sp->req, flags, 0);
    719 			/*
    720 			 * Preserve KAME behaviour: ENOENT can be returned
    721 			 * when an SA acquire is in progress.  Don't propagate
    722 			 * this to user-level; it confuses applications.
    723 			 *
    724 			 * XXX this will go away when the SADB is redone.
    725 			 */
    726 			if (error == ENOENT)
    727 				error = 0;
    728 			splx(s);
    729 			goto done;
    730 		} else {
    731 			splx(s);
    732 
    733 			if (error != 0) {
    734 				/*
    735 				 * Hack: -EINVAL is used to signal that a packet
    736 				 * should be silently discarded.  This is typically
    737 				 * because we asked key management for an SA and
    738 				 * it was delayed (e.g. kicked up to IKE).
    739 				 */
    740 				if (error == -EINVAL)
    741 					error = 0;
    742 				goto bad;
    743 			} else {
    744 				/* No IPsec processing for this packet. */
    745 			}
    746 		}
    747 	}
    748 spd_done:
    749 #endif /* FAST_IPSEC */
    750 
    751 #ifdef PFIL_HOOKS
    752 	/*
    753 	 * Run through list of hooks for output packets.
    754 	 */
    755 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    756 		goto done;
    757 	if (m == NULL)
    758 		goto done;
    759 
    760 	ip = mtod(m, struct ip *);
    761 	hlen = ip->ip_hl << 2;
    762 	ip_len = ntohs(ip->ip_len);
    763 #endif /* PFIL_HOOKS */
    764 
    765 	m->m_pkthdr.csum_data |= hlen << 16;
    766 
    767 #if IFA_STATS
    768 	/*
    769 	 * search for the source address structure to
    770 	 * maintain output statistics.
    771 	 */
    772 	INADDR_TO_IA(ip->ip_src, ia);
    773 #endif
    774 
    775 	/* Maybe skip checksums on loopback interfaces. */
    776 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    777 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    778 	}
    779 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    780 	/*
    781 	 * If small enough for mtu of path, or if using TCP segmentation
    782 	 * offload, can just send directly.
    783 	 */
    784 	if (ip_len <= mtu ||
    785 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    786 #if IFA_STATS
    787 		if (ia)
    788 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    789 #endif
    790 		/*
    791 		 * Always initialize the sum to 0!  Some HW assisted
    792 		 * checksumming requires this.
    793 		 */
    794 		ip->ip_sum = 0;
    795 
    796 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    797 			/*
    798 			 * Perform any checksums that the hardware can't do
    799 			 * for us.
    800 			 *
    801 			 * XXX Does any hardware require the {th,uh}_sum
    802 			 * XXX fields to be 0?
    803 			 */
    804 			if (sw_csum & M_CSUM_IPv4) {
    805 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    806 				ip->ip_sum = in_cksum(m, hlen);
    807 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    808 			}
    809 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    810 				if (IN_NEED_CHECKSUM(ifp,
    811 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    812 					in_delayed_cksum(m);
    813 				}
    814 				m->m_pkthdr.csum_flags &=
    815 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    816 			}
    817 		}
    818 
    819 #ifdef KAME_IPSEC
    820 		/* clean ipsec history once it goes out of the node */
    821 		ipsec_delaux(m);
    822 #endif
    823 
    824 		if (__predict_true(
    825 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    826 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    827 			KERNEL_LOCK(1, NULL);
    828 			error =
    829 			    (*ifp->if_output)(ifp, m,
    830 				(m->m_flags & M_MCAST) ?
    831 				    sintocsa(rdst) : sintocsa(dst),
    832 				rt);
    833 			KERNEL_UNLOCK_ONE(NULL);
    834 		} else {
    835 			error =
    836 			    ip_tso_output(ifp, m,
    837 				(m->m_flags & M_MCAST) ?
    838 				    sintocsa(rdst) : sintocsa(dst),
    839 				rt);
    840 		}
    841 		goto done;
    842 	}
    843 
    844 	/*
    845 	 * We can't use HW checksumming if we're about to
    846 	 * to fragment the packet.
    847 	 *
    848 	 * XXX Some hardware can do this.
    849 	 */
    850 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    851 		if (IN_NEED_CHECKSUM(ifp,
    852 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    853 			in_delayed_cksum(m);
    854 		}
    855 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    856 	}
    857 
    858 	/*
    859 	 * Too large for interface; fragment if possible.
    860 	 * Must be able to put at least 8 bytes per fragment.
    861 	 */
    862 	if (ntohs(ip->ip_off) & IP_DF) {
    863 		if (flags & IP_RETURNMTU)
    864 			*mtu_p = mtu;
    865 		error = EMSGSIZE;
    866 		IP_STATINC(IP_STAT_CANTFRAG);
    867 		goto bad;
    868 	}
    869 
    870 	error = ip_fragment(m, ifp, mtu);
    871 	if (error) {
    872 		m = NULL;
    873 		goto bad;
    874 	}
    875 
    876 	for (; m; m = m0) {
    877 		m0 = m->m_nextpkt;
    878 		m->m_nextpkt = 0;
    879 		if (error == 0) {
    880 #if IFA_STATS
    881 			if (ia)
    882 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    883 				    ntohs(ip->ip_len);
    884 #endif
    885 #ifdef KAME_IPSEC
    886 			/* clean ipsec history once it goes out of the node */
    887 			ipsec_delaux(m);
    888 #endif /* KAME_IPSEC */
    889 
    890 #ifdef IPSEC_NAT_T
    891 			/*
    892 			 * If we get there, the packet has not been handeld by
    893 			 * IPSec whereas it should have. Now that it has been
    894 			 * fragmented, re-inject it in ip_output so that IPsec
    895 			 * processing can occur.
    896 			 */
    897 			if (natt_frag) {
    898 				error = ip_output(m, opt,
    899 				    ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
    900 			} else
    901 #endif /* IPSEC_NAT_T */
    902 			{
    903 				KASSERT((m->m_pkthdr.csum_flags &
    904 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    905 				KERNEL_LOCK(1, NULL);
    906 				error = (*ifp->if_output)(ifp, m,
    907 				    (m->m_flags & M_MCAST) ?
    908 					sintocsa(rdst) : sintocsa(dst),
    909 				    rt);
    910 				KERNEL_UNLOCK_ONE(NULL);
    911 			}
    912 		} else
    913 			m_freem(m);
    914 	}
    915 
    916 	if (error == 0)
    917 		IP_STATINC(IP_STAT_FRAGMENTED);
    918 done:
    919 	rtcache_free(&iproute);
    920 
    921 #ifdef KAME_IPSEC
    922 	if (sp != NULL) {
    923 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    924 			printf("DP ip_output call free SP:%p\n", sp));
    925 		key_freesp(sp);
    926 	}
    927 #endif /* KAME_IPSEC */
    928 #ifdef FAST_IPSEC
    929 	if (sp != NULL)
    930 		KEY_FREESP(&sp);
    931 #endif /* FAST_IPSEC */
    932 
    933 	return (error);
    934 bad:
    935 	m_freem(m);
    936 	goto done;
    937 }
    938 
    939 int
    940 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    941 {
    942 	struct ip *ip, *mhip;
    943 	struct mbuf *m0;
    944 	int len, hlen, off;
    945 	int mhlen, firstlen;
    946 	struct mbuf **mnext;
    947 	int sw_csum = m->m_pkthdr.csum_flags;
    948 	int fragments = 0;
    949 	int s;
    950 	int error = 0;
    951 
    952 	ip = mtod(m, struct ip *);
    953 	hlen = ip->ip_hl << 2;
    954 	if (ifp != NULL)
    955 		sw_csum &= ~ifp->if_csum_flags_tx;
    956 
    957 	len = (mtu - hlen) &~ 7;
    958 	if (len < 8) {
    959 		m_freem(m);
    960 		return (EMSGSIZE);
    961 	}
    962 
    963 	firstlen = len;
    964 	mnext = &m->m_nextpkt;
    965 
    966 	/*
    967 	 * Loop through length of segment after first fragment,
    968 	 * make new header and copy data of each part and link onto chain.
    969 	 */
    970 	m0 = m;
    971 	mhlen = sizeof (struct ip);
    972 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    973 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    974 		if (m == 0) {
    975 			error = ENOBUFS;
    976 			IP_STATINC(IP_STAT_ODROPPED);
    977 			goto sendorfree;
    978 		}
    979 		MCLAIM(m, m0->m_owner);
    980 		*mnext = m;
    981 		mnext = &m->m_nextpkt;
    982 		m->m_data += max_linkhdr;
    983 		mhip = mtod(m, struct ip *);
    984 		*mhip = *ip;
    985 		/* we must inherit MCAST and BCAST flags */
    986 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    987 		if (hlen > sizeof (struct ip)) {
    988 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    989 			mhip->ip_hl = mhlen >> 2;
    990 		}
    991 		m->m_len = mhlen;
    992 		mhip->ip_off = ((off - hlen) >> 3) +
    993 		    (ntohs(ip->ip_off) & ~IP_MF);
    994 		if (ip->ip_off & htons(IP_MF))
    995 			mhip->ip_off |= IP_MF;
    996 		if (off + len >= ntohs(ip->ip_len))
    997 			len = ntohs(ip->ip_len) - off;
    998 		else
    999 			mhip->ip_off |= IP_MF;
   1000 		HTONS(mhip->ip_off);
   1001 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
   1002 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
   1003 		if (m->m_next == 0) {
   1004 			error = ENOBUFS;	/* ??? */
   1005 			IP_STATINC(IP_STAT_ODROPPED);
   1006 			goto sendorfree;
   1007 		}
   1008 		m->m_pkthdr.len = mhlen + len;
   1009 		m->m_pkthdr.rcvif = NULL;
   1010 		mhip->ip_sum = 0;
   1011 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1012 		if (sw_csum & M_CSUM_IPv4) {
   1013 			mhip->ip_sum = in_cksum(m, mhlen);
   1014 		} else {
   1015 			/*
   1016 			 * checksum is hw-offloaded or not necessary.
   1017 			 */
   1018 			m->m_pkthdr.csum_flags |=
   1019 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
   1020 			m->m_pkthdr.csum_data |= mhlen << 16;
   1021 			KASSERT(!(ifp != NULL &&
   1022 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
   1023 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
   1024 		}
   1025 		IP_STATINC(IP_STAT_OFRAGMENTS);
   1026 		fragments++;
   1027 	}
   1028 	/*
   1029 	 * Update first fragment by trimming what's been copied out
   1030 	 * and updating header, then send each fragment (in order).
   1031 	 */
   1032 	m = m0;
   1033 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1034 	m->m_pkthdr.len = hlen + firstlen;
   1035 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1036 	ip->ip_off |= htons(IP_MF);
   1037 	ip->ip_sum = 0;
   1038 	if (sw_csum & M_CSUM_IPv4) {
   1039 		ip->ip_sum = in_cksum(m, hlen);
   1040 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1041 	} else {
   1042 		/*
   1043 		 * checksum is hw-offloaded or not necessary.
   1044 		 */
   1045 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
   1046 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
   1047 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1048 			sizeof(struct ip));
   1049 	}
   1050 sendorfree:
   1051 	/*
   1052 	 * If there is no room for all the fragments, don't queue
   1053 	 * any of them.
   1054 	 */
   1055 	if (ifp != NULL) {
   1056 		s = splnet();
   1057 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1058 		    error == 0) {
   1059 			error = ENOBUFS;
   1060 			IP_STATINC(IP_STAT_ODROPPED);
   1061 			IFQ_INC_DROPS(&ifp->if_snd);
   1062 		}
   1063 		splx(s);
   1064 	}
   1065 	if (error) {
   1066 		for (m = m0; m; m = m0) {
   1067 			m0 = m->m_nextpkt;
   1068 			m->m_nextpkt = NULL;
   1069 			m_freem(m);
   1070 		}
   1071 	}
   1072 	return (error);
   1073 }
   1074 
   1075 /*
   1076  * Process a delayed payload checksum calculation.
   1077  */
   1078 void
   1079 in_delayed_cksum(struct mbuf *m)
   1080 {
   1081 	struct ip *ip;
   1082 	u_int16_t csum, offset;
   1083 
   1084 	ip = mtod(m, struct ip *);
   1085 	offset = ip->ip_hl << 2;
   1086 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1087 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1088 		csum = 0xffff;
   1089 
   1090 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1091 
   1092 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1093 		/* This happen when ip options were inserted
   1094 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1095 		    m->m_len, offset, ip->ip_p);
   1096 		 */
   1097 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
   1098 	} else
   1099 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
   1100 }
   1101 
   1102 /*
   1103  * Determine the maximum length of the options to be inserted;
   1104  * we would far rather allocate too much space rather than too little.
   1105  */
   1106 
   1107 u_int
   1108 ip_optlen(struct inpcb *inp)
   1109 {
   1110 	struct mbuf *m = inp->inp_options;
   1111 
   1112 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1113 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1114 	else
   1115 		return 0;
   1116 }
   1117 
   1118 
   1119 /*
   1120  * Insert IP options into preformed packet.
   1121  * Adjust IP destination as required for IP source routing,
   1122  * as indicated by a non-zero in_addr at the start of the options.
   1123  */
   1124 static struct mbuf *
   1125 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1126 {
   1127 	struct ipoption *p = mtod(opt, struct ipoption *);
   1128 	struct mbuf *n;
   1129 	struct ip *ip = mtod(m, struct ip *);
   1130 	unsigned optlen;
   1131 
   1132 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1133 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1134 		return (m);		/* XXX should fail */
   1135 	if (!in_nullhost(p->ipopt_dst))
   1136 		ip->ip_dst = p->ipopt_dst;
   1137 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1138 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1139 		if (n == 0)
   1140 			return (m);
   1141 		MCLAIM(n, m->m_owner);
   1142 		M_MOVE_PKTHDR(n, m);
   1143 		m->m_len -= sizeof(struct ip);
   1144 		m->m_data += sizeof(struct ip);
   1145 		n->m_next = m;
   1146 		m = n;
   1147 		m->m_len = optlen + sizeof(struct ip);
   1148 		m->m_data += max_linkhdr;
   1149 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1150 	} else {
   1151 		m->m_data -= optlen;
   1152 		m->m_len += optlen;
   1153 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1154 	}
   1155 	m->m_pkthdr.len += optlen;
   1156 	ip = mtod(m, struct ip *);
   1157 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1158 	*phlen = sizeof(struct ip) + optlen;
   1159 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1160 	return (m);
   1161 }
   1162 
   1163 /*
   1164  * Copy options from ip to jp,
   1165  * omitting those not copied during fragmentation.
   1166  */
   1167 int
   1168 ip_optcopy(struct ip *ip, struct ip *jp)
   1169 {
   1170 	u_char *cp, *dp;
   1171 	int opt, optlen, cnt;
   1172 
   1173 	cp = (u_char *)(ip + 1);
   1174 	dp = (u_char *)(jp + 1);
   1175 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1176 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1177 		opt = cp[0];
   1178 		if (opt == IPOPT_EOL)
   1179 			break;
   1180 		if (opt == IPOPT_NOP) {
   1181 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1182 			*dp++ = IPOPT_NOP;
   1183 			optlen = 1;
   1184 			continue;
   1185 		}
   1186 #ifdef DIAGNOSTIC
   1187 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1188 			panic("malformed IPv4 option passed to ip_optcopy");
   1189 #endif
   1190 		optlen = cp[IPOPT_OLEN];
   1191 #ifdef DIAGNOSTIC
   1192 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1193 			panic("malformed IPv4 option passed to ip_optcopy");
   1194 #endif
   1195 		/* bogus lengths should have been caught by ip_dooptions */
   1196 		if (optlen > cnt)
   1197 			optlen = cnt;
   1198 		if (IPOPT_COPIED(opt)) {
   1199 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1200 			dp += optlen;
   1201 		}
   1202 	}
   1203 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1204 		*dp++ = IPOPT_EOL;
   1205 	return (optlen);
   1206 }
   1207 
   1208 /*
   1209  * IP socket option processing.
   1210  */
   1211 int
   1212 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1213 {
   1214 	struct inpcb *inp = sotoinpcb(so);
   1215 	int optval = 0;
   1216 	int error = 0;
   1217 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
   1218 	struct lwp *l = curlwp;	/*XXX*/
   1219 #endif
   1220 
   1221 	if (sopt->sopt_level != IPPROTO_IP) {
   1222 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1223 			return 0;
   1224 		return ENOPROTOOPT;
   1225 	}
   1226 
   1227 	switch (op) {
   1228 	case PRCO_SETOPT:
   1229 		switch (sopt->sopt_name) {
   1230 		case IP_OPTIONS:
   1231 #ifdef notyet
   1232 		case IP_RETOPTS:
   1233 #endif
   1234 			error = ip_pcbopts(&inp->inp_options, sopt);
   1235 			break;
   1236 
   1237 		case IP_TOS:
   1238 		case IP_TTL:
   1239 		case IP_MINTTL:
   1240 		case IP_RECVOPTS:
   1241 		case IP_RECVRETOPTS:
   1242 		case IP_RECVDSTADDR:
   1243 		case IP_RECVIF:
   1244 		case IP_RECVTTL:
   1245 			error = sockopt_getint(sopt, &optval);
   1246 			if (error)
   1247 				break;
   1248 
   1249 			switch (sopt->sopt_name) {
   1250 			case IP_TOS:
   1251 				inp->inp_ip.ip_tos = optval;
   1252 				break;
   1253 
   1254 			case IP_TTL:
   1255 				inp->inp_ip.ip_ttl = optval;
   1256 				break;
   1257 
   1258 			case IP_MINTTL:
   1259 				if (optval > 0 && optval <= MAXTTL)
   1260 					inp->inp_ip_minttl = optval;
   1261 				else
   1262 					error = EINVAL;
   1263 				break;
   1264 #define	OPTSET(bit) \
   1265 	if (optval) \
   1266 		inp->inp_flags |= bit; \
   1267 	else \
   1268 		inp->inp_flags &= ~bit;
   1269 
   1270 			case IP_RECVOPTS:
   1271 				OPTSET(INP_RECVOPTS);
   1272 				break;
   1273 
   1274 			case IP_RECVRETOPTS:
   1275 				OPTSET(INP_RECVRETOPTS);
   1276 				break;
   1277 
   1278 			case IP_RECVDSTADDR:
   1279 				OPTSET(INP_RECVDSTADDR);
   1280 				break;
   1281 
   1282 			case IP_RECVIF:
   1283 				OPTSET(INP_RECVIF);
   1284 				break;
   1285 
   1286 			case IP_RECVTTL:
   1287 				OPTSET(INP_RECVTTL);
   1288 				break;
   1289 			}
   1290 		break;
   1291 #undef OPTSET
   1292 
   1293 		case IP_MULTICAST_IF:
   1294 		case IP_MULTICAST_TTL:
   1295 		case IP_MULTICAST_LOOP:
   1296 		case IP_ADD_MEMBERSHIP:
   1297 		case IP_DROP_MEMBERSHIP:
   1298 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1299 			break;
   1300 
   1301 		case IP_PORTRANGE:
   1302 			error = sockopt_getint(sopt, &optval);
   1303 			if (error)
   1304 				break;
   1305 
   1306 			/* INP_LOCK(inp); */
   1307 			switch (optval) {
   1308 			case IP_PORTRANGE_DEFAULT:
   1309 			case IP_PORTRANGE_HIGH:
   1310 				inp->inp_flags &= ~(INP_LOWPORT);
   1311 				break;
   1312 
   1313 			case IP_PORTRANGE_LOW:
   1314 				inp->inp_flags |= INP_LOWPORT;
   1315 				break;
   1316 
   1317 			default:
   1318 				error = EINVAL;
   1319 				break;
   1320 			}
   1321 			/* INP_UNLOCK(inp); */
   1322 			break;
   1323 
   1324 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
   1325 		case IP_IPSEC_POLICY:
   1326 		    {
   1327 			error = ipsec4_set_policy(inp, sopt->sopt_name,
   1328 			    sopt->sopt_data, sopt->sopt_size, l->l_cred);
   1329 			break;
   1330 		    }
   1331 #endif /*IPSEC*/
   1332 
   1333 		default:
   1334 			error = ENOPROTOOPT;
   1335 			break;
   1336 		}
   1337 		break;
   1338 
   1339 	case PRCO_GETOPT:
   1340 		switch (sopt->sopt_name) {
   1341 		case IP_OPTIONS:
   1342 		case IP_RETOPTS:
   1343 			if (inp->inp_options) {
   1344 				struct mbuf *m;
   1345 
   1346 				m = m_copym(inp->inp_options, 0, M_COPYALL,
   1347 				    M_DONTWAIT);
   1348 				if (m == NULL) {
   1349 					error = ENOBUFS;
   1350 					break;
   1351 				}
   1352 
   1353 				error = sockopt_setmbuf(sopt, m);
   1354 			}
   1355 			break;
   1356 
   1357 		case IP_TOS:
   1358 		case IP_TTL:
   1359 		case IP_MINTTL:
   1360 		case IP_RECVOPTS:
   1361 		case IP_RECVRETOPTS:
   1362 		case IP_RECVDSTADDR:
   1363 		case IP_RECVIF:
   1364 		case IP_RECVTTL:
   1365 		case IP_ERRORMTU:
   1366 			switch (sopt->sopt_name) {
   1367 			case IP_TOS:
   1368 				optval = inp->inp_ip.ip_tos;
   1369 				break;
   1370 
   1371 			case IP_TTL:
   1372 				optval = inp->inp_ip.ip_ttl;
   1373 				break;
   1374 
   1375 			case IP_MINTTL:
   1376 				optval = inp->inp_ip_minttl;
   1377 				break;
   1378 
   1379 			case IP_ERRORMTU:
   1380 				optval = inp->inp_errormtu;
   1381 				break;
   1382 
   1383 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1384 
   1385 			case IP_RECVOPTS:
   1386 				optval = OPTBIT(INP_RECVOPTS);
   1387 				break;
   1388 
   1389 			case IP_RECVRETOPTS:
   1390 				optval = OPTBIT(INP_RECVRETOPTS);
   1391 				break;
   1392 
   1393 			case IP_RECVDSTADDR:
   1394 				optval = OPTBIT(INP_RECVDSTADDR);
   1395 				break;
   1396 
   1397 			case IP_RECVIF:
   1398 				optval = OPTBIT(INP_RECVIF);
   1399 				break;
   1400 
   1401 			case IP_RECVTTL:
   1402 				optval = OPTBIT(INP_RECVTTL);
   1403 				break;
   1404 			}
   1405 			error = sockopt_setint(sopt, optval);
   1406 			break;
   1407 
   1408 #if 0	/* defined(KAME_IPSEC) || defined(FAST_IPSEC) */
   1409 		case IP_IPSEC_POLICY:
   1410 		{
   1411 			struct mbuf *m = NULL;
   1412 
   1413 			/* XXX this will return EINVAL as sopt is empty */
   1414 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1415 			    sopt->sopt_size, &m);
   1416 			if (error == 0)
   1417 				error = sockopt_setmbuf(sopt, m);
   1418 			break;
   1419 		}
   1420 #endif /*IPSEC*/
   1421 
   1422 		case IP_MULTICAST_IF:
   1423 		case IP_MULTICAST_TTL:
   1424 		case IP_MULTICAST_LOOP:
   1425 		case IP_ADD_MEMBERSHIP:
   1426 		case IP_DROP_MEMBERSHIP:
   1427 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1428 			break;
   1429 
   1430 		case IP_PORTRANGE:
   1431 			if (inp->inp_flags & INP_LOWPORT)
   1432 				optval = IP_PORTRANGE_LOW;
   1433 			else
   1434 				optval = IP_PORTRANGE_DEFAULT;
   1435 
   1436 			error = sockopt_setint(sopt, optval);
   1437 
   1438 			break;
   1439 
   1440 		default:
   1441 			error = ENOPROTOOPT;
   1442 			break;
   1443 		}
   1444 		break;
   1445 	}
   1446 	return (error);
   1447 }
   1448 
   1449 /*
   1450  * Set up IP options in pcb for insertion in output packets.
   1451  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1452  * with destination address if source routed.
   1453  */
   1454 int
   1455 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
   1456 {
   1457 	struct mbuf *m;
   1458 	const u_char *cp;
   1459 	u_char *dp;
   1460 	int cnt;
   1461 	uint8_t optval, olen, offset;
   1462 
   1463 	/* turn off any old options */
   1464 	if (*pcbopt)
   1465 		(void)m_free(*pcbopt);
   1466 	*pcbopt = NULL;
   1467 
   1468 	cp = sopt->sopt_data;
   1469 	cnt = sopt->sopt_size;
   1470 
   1471 	if (cnt == 0)
   1472 		return (0);	/* Only turning off any previous options */
   1473 
   1474 #ifndef	__vax__
   1475 	if (cnt % sizeof(int32_t))
   1476 		return (EINVAL);
   1477 #endif
   1478 
   1479 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1480 	if (m == NULL)
   1481 		return (ENOBUFS);
   1482 
   1483 	dp = mtod(m, u_char *);
   1484 	memset(dp, 0, sizeof(struct in_addr));
   1485 	dp += sizeof(struct in_addr);
   1486 	m->m_len = sizeof(struct in_addr);
   1487 
   1488 	/*
   1489 	 * IP option list according to RFC791. Each option is of the form
   1490 	 *
   1491 	 *	[optval] [olen] [(olen - 2) data bytes]
   1492 	 *
   1493 	 * we validate the list and copy options to an mbuf for prepending
   1494 	 * to data packets. The IP first-hop destination address will be
   1495 	 * stored before actual options and is zero if unset.
   1496 	 */
   1497 	while (cnt > 0) {
   1498 		optval = cp[IPOPT_OPTVAL];
   1499 
   1500 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1501 			olen = 1;
   1502 		} else {
   1503 			if (cnt < IPOPT_OLEN + 1)
   1504 				goto bad;
   1505 
   1506 			olen = cp[IPOPT_OLEN];
   1507 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1508 				goto bad;
   1509 		}
   1510 
   1511 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1512 			/*
   1513 			 * user process specifies route as:
   1514 			 *	->A->B->C->D
   1515 			 * D must be our final destination (but we can't
   1516 			 * check that since we may not have connected yet).
   1517 			 * A is first hop destination, which doesn't appear in
   1518 			 * actual IP option, but is stored before the options.
   1519 			 */
   1520 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1521 				goto bad;
   1522 
   1523 			offset = cp[IPOPT_OFFSET];
   1524 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1525 			    sizeof(struct in_addr));
   1526 
   1527 			cp += sizeof(struct in_addr);
   1528 			cnt -= sizeof(struct in_addr);
   1529 			olen -= sizeof(struct in_addr);
   1530 
   1531 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1532 				goto bad;
   1533 
   1534 			memcpy(dp, cp, olen);
   1535 			dp[IPOPT_OPTVAL] = optval;
   1536 			dp[IPOPT_OLEN] = olen;
   1537 			dp[IPOPT_OFFSET] = offset;
   1538 			break;
   1539 		} else {
   1540 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1541 				goto bad;
   1542 
   1543 			memcpy(dp, cp, olen);
   1544 			break;
   1545 		}
   1546 
   1547 		dp += olen;
   1548 		m->m_len += olen;
   1549 
   1550 		if (optval == IPOPT_EOL)
   1551 			break;
   1552 
   1553 		cp += olen;
   1554 		cnt -= olen;
   1555 	}
   1556 
   1557 	*pcbopt = m;
   1558 	return (0);
   1559 
   1560 bad:
   1561 	(void)m_free(m);
   1562 	return (EINVAL);
   1563 }
   1564 
   1565 /*
   1566  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1567  */
   1568 static struct ifnet *
   1569 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1570 {
   1571 	int ifindex;
   1572 	struct ifnet *ifp = NULL;
   1573 	struct in_ifaddr *ia;
   1574 
   1575 	if (ifindexp)
   1576 		*ifindexp = 0;
   1577 	if (ntohl(a->s_addr) >> 24 == 0) {
   1578 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1579 		if (ifindex < 0 || if_indexlim <= ifindex)
   1580 			return NULL;
   1581 		ifp = ifindex2ifnet[ifindex];
   1582 		if (!ifp)
   1583 			return NULL;
   1584 		if (ifindexp)
   1585 			*ifindexp = ifindex;
   1586 	} else {
   1587 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1588 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1589 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1590 				ifp = ia->ia_ifp;
   1591 				break;
   1592 			}
   1593 		}
   1594 	}
   1595 	return ifp;
   1596 }
   1597 
   1598 static int
   1599 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1600 {
   1601 	u_int tval;
   1602 	u_char cval;
   1603 	int error;
   1604 
   1605 	if (sopt == NULL)
   1606 		return EINVAL;
   1607 
   1608 	switch (sopt->sopt_size) {
   1609 	case sizeof(u_char):
   1610 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1611 		tval = cval;
   1612 		break;
   1613 
   1614 	case sizeof(u_int):
   1615 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1616 		break;
   1617 
   1618 	default:
   1619 		error = EINVAL;
   1620 	}
   1621 
   1622 	if (error)
   1623 		return error;
   1624 
   1625 	if (tval > maxval)
   1626 		return EINVAL;
   1627 
   1628 	*val = tval;
   1629 	return 0;
   1630 }
   1631 
   1632 /*
   1633  * Set the IP multicast options in response to user setsockopt().
   1634  */
   1635 int
   1636 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
   1637 {
   1638 	int error = 0;
   1639 	int i;
   1640 	struct in_addr addr;
   1641 	struct ip_mreq lmreq, *mreq;
   1642 	struct ifnet *ifp;
   1643 	struct ip_moptions *imo = *imop;
   1644 	int ifindex;
   1645 
   1646 	if (imo == NULL) {
   1647 		/*
   1648 		 * No multicast option buffer attached to the pcb;
   1649 		 * allocate one and initialize to default values.
   1650 		 */
   1651 		imo = malloc(sizeof(*imo), M_IPMOPTS, M_NOWAIT);
   1652 		if (imo == NULL)
   1653 			return (ENOBUFS);
   1654 
   1655 		*imop = imo;
   1656 		imo->imo_multicast_ifp = NULL;
   1657 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1658 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1659 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1660 		imo->imo_num_memberships = 0;
   1661 	}
   1662 
   1663 	switch (sopt->sopt_name) {
   1664 	case IP_MULTICAST_IF:
   1665 		/*
   1666 		 * Select the interface for outgoing multicast packets.
   1667 		 */
   1668 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1669 		if (error)
   1670 			break;
   1671 
   1672 		/*
   1673 		 * INADDR_ANY is used to remove a previous selection.
   1674 		 * When no interface is selected, a default one is
   1675 		 * chosen every time a multicast packet is sent.
   1676 		 */
   1677 		if (in_nullhost(addr)) {
   1678 			imo->imo_multicast_ifp = NULL;
   1679 			break;
   1680 		}
   1681 		/*
   1682 		 * The selected interface is identified by its local
   1683 		 * IP address.  Find the interface and confirm that
   1684 		 * it supports multicasting.
   1685 		 */
   1686 		ifp = ip_multicast_if(&addr, &ifindex);
   1687 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1688 			error = EADDRNOTAVAIL;
   1689 			break;
   1690 		}
   1691 		imo->imo_multicast_ifp = ifp;
   1692 		if (ifindex)
   1693 			imo->imo_multicast_addr = addr;
   1694 		else
   1695 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1696 		break;
   1697 
   1698 	case IP_MULTICAST_TTL:
   1699 		/*
   1700 		 * Set the IP time-to-live for outgoing multicast packets.
   1701 		 */
   1702 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1703 		break;
   1704 
   1705 	case IP_MULTICAST_LOOP:
   1706 		/*
   1707 		 * Set the loopback flag for outgoing multicast packets.
   1708 		 * Must be zero or one.
   1709 		 */
   1710 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1711 		break;
   1712 
   1713 	case IP_ADD_MEMBERSHIP:
   1714 		/*
   1715 		 * Add a multicast group membership.
   1716 		 * Group must be a valid IP multicast address.
   1717 		 */
   1718 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1719 		if (error)
   1720 			break;
   1721 
   1722 		mreq = &lmreq;
   1723 
   1724 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1725 			error = EINVAL;
   1726 			break;
   1727 		}
   1728 		/*
   1729 		 * If no interface address was provided, use the interface of
   1730 		 * the route to the given multicast address.
   1731 		 */
   1732 		if (in_nullhost(mreq->imr_interface)) {
   1733 			struct rtentry *rt;
   1734 			union {
   1735 				struct sockaddr		dst;
   1736 				struct sockaddr_in	dst4;
   1737 			} u;
   1738 			struct route ro;
   1739 
   1740 			memset(&ro, 0, sizeof(ro));
   1741 
   1742 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1743 			rtcache_setdst(&ro, &u.dst);
   1744 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1745 			                                        : NULL;
   1746 			rtcache_free(&ro);
   1747 		} else {
   1748 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1749 		}
   1750 		/*
   1751 		 * See if we found an interface, and confirm that it
   1752 		 * supports multicast.
   1753 		 */
   1754 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1755 			error = EADDRNOTAVAIL;
   1756 			break;
   1757 		}
   1758 		/*
   1759 		 * See if the membership already exists or if all the
   1760 		 * membership slots are full.
   1761 		 */
   1762 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1763 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1764 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1765 				      mreq->imr_multiaddr))
   1766 				break;
   1767 		}
   1768 		if (i < imo->imo_num_memberships) {
   1769 			error = EADDRINUSE;
   1770 			break;
   1771 		}
   1772 		if (i == IP_MAX_MEMBERSHIPS) {
   1773 			error = ETOOMANYREFS;
   1774 			break;
   1775 		}
   1776 		/*
   1777 		 * Everything looks good; add a new record to the multicast
   1778 		 * address list for the given interface.
   1779 		 */
   1780 		if ((imo->imo_membership[i] =
   1781 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1782 			error = ENOBUFS;
   1783 			break;
   1784 		}
   1785 		++imo->imo_num_memberships;
   1786 		break;
   1787 
   1788 	case IP_DROP_MEMBERSHIP:
   1789 		/*
   1790 		 * Drop a multicast group membership.
   1791 		 * Group must be a valid IP multicast address.
   1792 		 */
   1793 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1794 		if (error)
   1795 			break;
   1796 
   1797 		mreq = &lmreq;
   1798 
   1799 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1800 			error = EINVAL;
   1801 			break;
   1802 		}
   1803 		/*
   1804 		 * If an interface address was specified, get a pointer
   1805 		 * to its ifnet structure.
   1806 		 */
   1807 		if (in_nullhost(mreq->imr_interface))
   1808 			ifp = NULL;
   1809 		else {
   1810 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1811 			if (ifp == NULL) {
   1812 				error = EADDRNOTAVAIL;
   1813 				break;
   1814 			}
   1815 		}
   1816 		/*
   1817 		 * Find the membership in the membership array.
   1818 		 */
   1819 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1820 			if ((ifp == NULL ||
   1821 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1822 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1823 				       mreq->imr_multiaddr))
   1824 				break;
   1825 		}
   1826 		if (i == imo->imo_num_memberships) {
   1827 			error = EADDRNOTAVAIL;
   1828 			break;
   1829 		}
   1830 		/*
   1831 		 * Give up the multicast address record to which the
   1832 		 * membership points.
   1833 		 */
   1834 		in_delmulti(imo->imo_membership[i]);
   1835 		/*
   1836 		 * Remove the gap in the membership array.
   1837 		 */
   1838 		for (++i; i < imo->imo_num_memberships; ++i)
   1839 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1840 		--imo->imo_num_memberships;
   1841 		break;
   1842 
   1843 	default:
   1844 		error = EOPNOTSUPP;
   1845 		break;
   1846 	}
   1847 
   1848 	/*
   1849 	 * If all options have default values, no need to keep the mbuf.
   1850 	 */
   1851 	if (imo->imo_multicast_ifp == NULL &&
   1852 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1853 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1854 	    imo->imo_num_memberships == 0) {
   1855 		free(*imop, M_IPMOPTS);
   1856 		*imop = NULL;
   1857 	}
   1858 
   1859 	return (error);
   1860 }
   1861 
   1862 /*
   1863  * Return the IP multicast options in response to user getsockopt().
   1864  */
   1865 int
   1866 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1867 {
   1868 	struct in_addr addr;
   1869 	struct in_ifaddr *ia;
   1870 	int error;
   1871 	uint8_t optval;
   1872 
   1873 	error = 0;
   1874 
   1875 	switch (sopt->sopt_name) {
   1876 	case IP_MULTICAST_IF:
   1877 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1878 			addr = zeroin_addr;
   1879 		else if (imo->imo_multicast_addr.s_addr) {
   1880 			/* return the value user has set */
   1881 			addr = imo->imo_multicast_addr;
   1882 		} else {
   1883 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1884 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1885 		}
   1886 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1887 		break;
   1888 
   1889 	case IP_MULTICAST_TTL:
   1890 		optval = imo ? imo->imo_multicast_ttl
   1891 			     : IP_DEFAULT_MULTICAST_TTL;
   1892 
   1893 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1894 		break;
   1895 
   1896 	case IP_MULTICAST_LOOP:
   1897 		optval = imo ? imo->imo_multicast_loop
   1898 			     : IP_DEFAULT_MULTICAST_LOOP;
   1899 
   1900 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1901 		break;
   1902 
   1903 	default:
   1904 		error = EOPNOTSUPP;
   1905 	}
   1906 
   1907 	return (error);
   1908 }
   1909 
   1910 /*
   1911  * Discard the IP multicast options.
   1912  */
   1913 void
   1914 ip_freemoptions(struct ip_moptions *imo)
   1915 {
   1916 	int i;
   1917 
   1918 	if (imo != NULL) {
   1919 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1920 			in_delmulti(imo->imo_membership[i]);
   1921 		free(imo, M_IPMOPTS);
   1922 	}
   1923 }
   1924 
   1925 /*
   1926  * Routine called from ip_output() to loop back a copy of an IP multicast
   1927  * packet to the input queue of a specified interface.  Note that this
   1928  * calls the output routine of the loopback "driver", but with an interface
   1929  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1930  */
   1931 static void
   1932 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1933 {
   1934 	struct ip *ip;
   1935 	struct mbuf *copym;
   1936 
   1937 	copym = m_copypacket(m, M_DONTWAIT);
   1938 	if (copym != NULL
   1939 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1940 		copym = m_pullup(copym, sizeof(struct ip));
   1941 	if (copym == NULL)
   1942 		return;
   1943 	/*
   1944 	 * We don't bother to fragment if the IP length is greater
   1945 	 * than the interface's MTU.  Can this possibly matter?
   1946 	 */
   1947 	ip = mtod(copym, struct ip *);
   1948 
   1949 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1950 		in_delayed_cksum(copym);
   1951 		copym->m_pkthdr.csum_flags &=
   1952 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1953 	}
   1954 
   1955 	ip->ip_sum = 0;
   1956 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1957 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1958 }
   1959