ip_output.c revision 1.213 1 /* $NetBSD: ip_output.c,v 1.213 2012/02/15 16:11:23 drochner Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.213 2012/02/15 16:11:23 drochner Exp $");
95
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef FAST_IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131
132 #ifdef KAME_IPSEC
133 #include <netinet6/ipsec.h>
134 #include <netinet6/ipsec_private.h>
135 #include <netkey/key.h>
136 #include <netkey/key_debug.h>
137 #endif /*KAME_IPSEC*/
138
139 #ifdef FAST_IPSEC
140 #include <netipsec/ipsec.h>
141 #include <netipsec/key.h>
142 #include <netipsec/xform.h>
143 #endif /* FAST_IPSEC*/
144
145 #ifdef IPSEC_NAT_T
146 #include <netinet/udp.h>
147 #endif
148
149 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
150 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
151 static void ip_mloopback(struct ifnet *, struct mbuf *,
152 const struct sockaddr_in *);
153
154 #ifdef PFIL_HOOKS
155 extern struct pfil_head inet_pfil_hook; /* XXX */
156 #endif
157
158 int ip_do_loopback_cksum = 0;
159
160 /*
161 * IP output. The packet in mbuf chain m contains a skeletal IP
162 * header (with len, off, ttl, proto, tos, src, dst).
163 * The mbuf chain containing the packet will be freed.
164 * The mbuf opt, if present, will not be freed.
165 */
166 int
167 ip_output(struct mbuf *m0, ...)
168 {
169 struct rtentry *rt;
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 const struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct ifaddr *xifa;
179 struct mbuf *opt;
180 struct route *ro;
181 int flags, sw_csum;
182 int *mtu_p;
183 u_long mtu;
184 struct ip_moptions *imo;
185 struct socket *so;
186 va_list ap;
187 #ifdef IPSEC_NAT_T
188 int natt_frag = 0;
189 #endif
190 #ifdef KAME_IPSEC
191 struct secpolicy *sp = NULL;
192 #endif /*KAME_IPSEC*/
193 #ifdef FAST_IPSEC
194 struct inpcb *inp;
195 struct secpolicy *sp = NULL;
196 int s;
197 #endif
198 u_int16_t ip_len;
199 union {
200 struct sockaddr dst;
201 struct sockaddr_in dst4;
202 } u;
203 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
204 * to the nexthop
205 */
206
207 len = 0;
208 va_start(ap, m0);
209 opt = va_arg(ap, struct mbuf *);
210 ro = va_arg(ap, struct route *);
211 flags = va_arg(ap, int);
212 imo = va_arg(ap, struct ip_moptions *);
213 so = va_arg(ap, struct socket *);
214 if (flags & IP_RETURNMTU)
215 mtu_p = va_arg(ap, int *);
216 else
217 mtu_p = NULL;
218 va_end(ap);
219
220 MCLAIM(m, &ip_tx_mowner);
221 #ifdef FAST_IPSEC
222 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
223 inp = (struct inpcb *)so->so_pcb;
224 else
225 inp = NULL;
226 #endif /* FAST_IPSEC */
227
228 #ifdef DIAGNOSTIC
229 if ((m->m_flags & M_PKTHDR) == 0)
230 panic("ip_output: no HDR");
231
232 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
233 panic("ip_output: IPv6 checksum offload flags: %d",
234 m->m_pkthdr.csum_flags);
235 }
236
237 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
238 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
239 panic("ip_output: conflicting checksum offload flags: %d",
240 m->m_pkthdr.csum_flags);
241 }
242 #endif
243 if (opt) {
244 m = ip_insertoptions(m, opt, &len);
245 if (len >= sizeof(struct ip))
246 hlen = len;
247 }
248 ip = mtod(m, struct ip *);
249 /*
250 * Fill in IP header.
251 */
252 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
253 ip->ip_v = IPVERSION;
254 ip->ip_off = htons(0);
255 /* ip->ip_id filled in after we find out source ia */
256 ip->ip_hl = hlen >> 2;
257 IP_STATINC(IP_STAT_LOCALOUT);
258 } else {
259 hlen = ip->ip_hl << 2;
260 }
261 /*
262 * Route packet.
263 */
264 memset(&iproute, 0, sizeof(iproute));
265 if (ro == NULL)
266 ro = &iproute;
267 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
268 dst = satocsin(rtcache_getdst(ro));
269 /*
270 * If there is a cached route,
271 * check that it is to the same destination
272 * and is still up. If not, free it and try again.
273 * The address family should also be checked in case of sharing the
274 * cache with IPv6.
275 */
276 if (dst == NULL)
277 ;
278 else if (dst->sin_family != AF_INET ||
279 !in_hosteq(dst->sin_addr, ip->ip_dst))
280 rtcache_free(ro);
281
282 if ((rt = rtcache_validate(ro)) == NULL &&
283 (rt = rtcache_update(ro, 1)) == NULL) {
284 dst = &u.dst4;
285 rtcache_setdst(ro, &u.dst);
286 }
287 /*
288 * If routing to interface only,
289 * short circuit routing lookup.
290 */
291 if (flags & IP_ROUTETOIF) {
292 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
293 IP_STATINC(IP_STAT_NOROUTE);
294 error = ENETUNREACH;
295 goto bad;
296 }
297 ifp = ia->ia_ifp;
298 mtu = ifp->if_mtu;
299 ip->ip_ttl = 1;
300 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
301 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
302 imo != NULL && imo->imo_multicast_ifp != NULL) {
303 ifp = imo->imo_multicast_ifp;
304 mtu = ifp->if_mtu;
305 IFP_TO_IA(ifp, ia);
306 } else {
307 if (rt == NULL)
308 rt = rtcache_init(ro);
309 if (rt == NULL) {
310 IP_STATINC(IP_STAT_NOROUTE);
311 error = EHOSTUNREACH;
312 goto bad;
313 }
314 ia = ifatoia(rt->rt_ifa);
315 ifp = rt->rt_ifp;
316 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
317 mtu = ifp->if_mtu;
318 rt->rt_use++;
319 if (rt->rt_flags & RTF_GATEWAY)
320 dst = satosin(rt->rt_gateway);
321 }
322 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
323 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
324 struct in_multi *inm;
325
326 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
327 M_BCAST : M_MCAST;
328 /*
329 * See if the caller provided any multicast options
330 */
331 if (imo != NULL)
332 ip->ip_ttl = imo->imo_multicast_ttl;
333 else
334 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
335
336 /*
337 * if we don't know the outgoing ifp yet, we can't generate
338 * output
339 */
340 if (!ifp) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345
346 /*
347 * If the packet is multicast or broadcast, confirm that
348 * the outgoing interface can transmit it.
349 */
350 if (((m->m_flags & M_MCAST) &&
351 (ifp->if_flags & IFF_MULTICAST) == 0) ||
352 ((m->m_flags & M_BCAST) &&
353 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
354 IP_STATINC(IP_STAT_NOROUTE);
355 error = ENETUNREACH;
356 goto bad;
357 }
358 /*
359 * If source address not specified yet, use an address
360 * of outgoing interface.
361 */
362 if (in_nullhost(ip->ip_src)) {
363 struct in_ifaddr *xia;
364
365 IFP_TO_IA(ifp, xia);
366 if (!xia) {
367 error = EADDRNOTAVAIL;
368 goto bad;
369 }
370 xifa = &xia->ia_ifa;
371 if (xifa->ifa_getifa != NULL) {
372 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
373 }
374 ip->ip_src = xia->ia_addr.sin_addr;
375 }
376
377 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
378 if (inm != NULL &&
379 (imo == NULL || imo->imo_multicast_loop)) {
380 /*
381 * If we belong to the destination multicast group
382 * on the outgoing interface, and the caller did not
383 * forbid loopback, loop back a copy.
384 */
385 ip_mloopback(ifp, m, &u.dst4);
386 }
387 #ifdef MROUTING
388 else {
389 /*
390 * If we are acting as a multicast router, perform
391 * multicast forwarding as if the packet had just
392 * arrived on the interface to which we are about
393 * to send. The multicast forwarding function
394 * recursively calls this function, using the
395 * IP_FORWARDING flag to prevent infinite recursion.
396 *
397 * Multicasts that are looped back by ip_mloopback(),
398 * above, will be forwarded by the ip_input() routine,
399 * if necessary.
400 */
401 extern struct socket *ip_mrouter;
402
403 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
404 if (ip_mforward(m, ifp) != 0) {
405 m_freem(m);
406 goto done;
407 }
408 }
409 }
410 #endif
411 /*
412 * Multicasts with a time-to-live of zero may be looped-
413 * back, above, but must not be transmitted on a network.
414 * Also, multicasts addressed to the loopback interface
415 * are not sent -- the above call to ip_mloopback() will
416 * loop back a copy if this host actually belongs to the
417 * destination group on the loopback interface.
418 */
419 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
420 m_freem(m);
421 goto done;
422 }
423
424 goto sendit;
425 }
426 /*
427 * If source address not specified yet, use address
428 * of outgoing interface.
429 */
430 if (in_nullhost(ip->ip_src)) {
431 xifa = &ia->ia_ifa;
432 if (xifa->ifa_getifa != NULL)
433 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
434 ip->ip_src = ia->ia_addr.sin_addr;
435 }
436
437 /*
438 * packets with Class-D address as source are not valid per
439 * RFC 1112
440 */
441 if (IN_MULTICAST(ip->ip_src.s_addr)) {
442 IP_STATINC(IP_STAT_ODROPPED);
443 error = EADDRNOTAVAIL;
444 goto bad;
445 }
446
447 /*
448 * Look for broadcast address and
449 * and verify user is allowed to send
450 * such a packet.
451 */
452 if (in_broadcast(dst->sin_addr, ifp)) {
453 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
454 error = EADDRNOTAVAIL;
455 goto bad;
456 }
457 if ((flags & IP_ALLOWBROADCAST) == 0) {
458 error = EACCES;
459 goto bad;
460 }
461 /* don't allow broadcast messages to be fragmented */
462 if (ntohs(ip->ip_len) > ifp->if_mtu) {
463 error = EMSGSIZE;
464 goto bad;
465 }
466 m->m_flags |= M_BCAST;
467 } else
468 m->m_flags &= ~M_BCAST;
469
470 sendit:
471 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
472 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
473 ip->ip_id = 0;
474 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
475 ip->ip_id = ip_newid(ia);
476 } else {
477
478 /*
479 * TSO capable interfaces (typically?) increment
480 * ip_id for each segment.
481 * "allocate" enough ids here to increase the chance
482 * for them to be unique.
483 *
484 * note that the following calculation is not
485 * needed to be precise. wasting some ip_id is fine.
486 */
487
488 unsigned int segsz = m->m_pkthdr.segsz;
489 unsigned int datasz = ntohs(ip->ip_len) - hlen;
490 unsigned int num = howmany(datasz, segsz);
491
492 ip->ip_id = ip_newid_range(ia, num);
493 }
494 }
495 /*
496 * If we're doing Path MTU Discovery, we need to set DF unless
497 * the route's MTU is locked.
498 */
499 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
500 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
501 ip->ip_off |= htons(IP_DF);
502
503 /* Remember the current ip_len */
504 ip_len = ntohs(ip->ip_len);
505
506 #ifdef KAME_IPSEC
507 /* get SP for this packet */
508 if (so == NULL)
509 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
510 flags, &error);
511 else {
512 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
513 IPSEC_DIR_OUTBOUND))
514 goto skip_ipsec;
515 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
516 }
517
518 if (sp == NULL) {
519 IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
520 goto bad;
521 }
522
523 error = 0;
524
525 /* check policy */
526 switch (sp->policy) {
527 case IPSEC_POLICY_DISCARD:
528 /*
529 * This packet is just discarded.
530 */
531 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
532 goto bad;
533
534 case IPSEC_POLICY_BYPASS:
535 case IPSEC_POLICY_NONE:
536 /* no need to do IPsec. */
537 goto skip_ipsec;
538
539 case IPSEC_POLICY_IPSEC:
540 if (sp->req == NULL) {
541 /* XXX should be panic ? */
542 printf("ip_output: No IPsec request specified.\n");
543 error = EINVAL;
544 goto bad;
545 }
546 break;
547
548 case IPSEC_POLICY_ENTRUST:
549 default:
550 printf("ip_output: Invalid policy found. %d\n", sp->policy);
551 }
552
553 #ifdef IPSEC_NAT_T
554 /*
555 * NAT-T ESP fragmentation: don't do IPSec processing now,
556 * we'll do it on each fragmented packet.
557 */
558 if (sp->req->sav &&
559 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
560 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
561 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
562 natt_frag = 1;
563 mtu = sp->req->sav->esp_frag;
564 goto skip_ipsec;
565 }
566 }
567 #endif /* IPSEC_NAT_T */
568
569 /*
570 * ipsec4_output() expects ip_len and ip_off in network
571 * order. They have been set to network order above.
572 */
573
574 {
575 struct ipsec_output_state state;
576 memset(&state, 0, sizeof(state));
577 state.m = m;
578 if (flags & IP_ROUTETOIF) {
579 state.ro = &iproute;
580 memset(&iproute, 0, sizeof(iproute));
581 } else
582 state.ro = ro;
583 state.dst = sintocsa(dst);
584
585 /*
586 * We can't defer the checksum of payload data if
587 * we're about to encrypt/authenticate it.
588 *
589 * XXX When we support crypto offloading functions of
590 * XXX network interfaces, we need to reconsider this,
591 * XXX since it's likely that they'll support checksumming,
592 * XXX as well.
593 */
594 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
595 in_delayed_cksum(m);
596 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
597 }
598
599 error = ipsec4_output(&state, sp, flags);
600
601 m = state.m;
602 if (flags & IP_ROUTETOIF) {
603 /*
604 * if we have tunnel mode SA, we may need to ignore
605 * IP_ROUTETOIF.
606 */
607 if (state.ro != &iproute ||
608 rtcache_validate(state.ro) != NULL) {
609 flags &= ~IP_ROUTETOIF;
610 ro = state.ro;
611 }
612 } else
613 ro = state.ro;
614 dst = satocsin(state.dst);
615 if (error) {
616 /* mbuf is already reclaimed in ipsec4_output. */
617 m0 = NULL;
618 switch (error) {
619 case EHOSTUNREACH:
620 case ENETUNREACH:
621 case EMSGSIZE:
622 case ENOBUFS:
623 case ENOMEM:
624 break;
625 default:
626 printf("ip4_output (ipsec): error code %d\n", error);
627 /*fall through*/
628 case ENOENT:
629 /* don't show these error codes to the user */
630 error = 0;
631 break;
632 }
633 goto bad;
634 }
635
636 /* be sure to update variables that are affected by ipsec4_output() */
637 ip = mtod(m, struct ip *);
638 hlen = ip->ip_hl << 2;
639 ip_len = ntohs(ip->ip_len);
640
641 if ((rt = rtcache_validate(ro)) == NULL) {
642 if ((flags & IP_ROUTETOIF) == 0) {
643 printf("ip_output: "
644 "can't update route after IPsec processing\n");
645 error = EHOSTUNREACH; /*XXX*/
646 goto bad;
647 }
648 } else {
649 /* nobody uses ia beyond here */
650 if (state.encap) {
651 ifp = rt->rt_ifp;
652 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
653 mtu = ifp->if_mtu;
654 }
655 }
656 }
657 skip_ipsec:
658 #endif /*KAME_IPSEC*/
659 #ifdef FAST_IPSEC
660 /*
661 * Check the security policy (SP) for the packet and, if
662 * required, do IPsec-related processing. There are two
663 * cases here; the first time a packet is sent through
664 * it will be untagged and handled by ipsec4_checkpolicy.
665 * If the packet is resubmitted to ip_output (e.g. after
666 * AH, ESP, etc. processing), there will be a tag to bypass
667 * the lookup and related policy checking.
668 */
669 if (!ipsec_outdone(m)) {
670 s = splsoftnet();
671 if (inp != NULL &&
672 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
673 splx(s);
674 goto spd_done;
675 }
676 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
677 &error, inp);
678 /*
679 * There are four return cases:
680 * sp != NULL apply IPsec policy
681 * sp == NULL, error == 0 no IPsec handling needed
682 * sp == NULL, error == -EINVAL discard packet w/o error
683 * sp == NULL, error != 0 discard packet, report error
684 */
685 if (sp != NULL) {
686 #ifdef IPSEC_NAT_T
687 /*
688 * NAT-T ESP fragmentation: don't do IPSec processing now,
689 * we'll do it on each fragmented packet.
690 */
691 if (sp->req->sav &&
692 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
693 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
694 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
695 natt_frag = 1;
696 mtu = sp->req->sav->esp_frag;
697 splx(s);
698 goto spd_done;
699 }
700 }
701 #endif /* IPSEC_NAT_T */
702
703 /*
704 * Do delayed checksums now because we send before
705 * this is done in the normal processing path.
706 */
707 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 in_delayed_cksum(m);
709 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
710 }
711
712 #ifdef __FreeBSD__
713 ip->ip_len = htons(ip->ip_len);
714 ip->ip_off = htons(ip->ip_off);
715 #endif
716
717 /* NB: callee frees mbuf */
718 error = ipsec4_process_packet(m, sp->req, flags, 0);
719 /*
720 * Preserve KAME behaviour: ENOENT can be returned
721 * when an SA acquire is in progress. Don't propagate
722 * this to user-level; it confuses applications.
723 *
724 * XXX this will go away when the SADB is redone.
725 */
726 if (error == ENOENT)
727 error = 0;
728 splx(s);
729 goto done;
730 } else {
731 splx(s);
732
733 if (error != 0) {
734 /*
735 * Hack: -EINVAL is used to signal that a packet
736 * should be silently discarded. This is typically
737 * because we asked key management for an SA and
738 * it was delayed (e.g. kicked up to IKE).
739 */
740 if (error == -EINVAL)
741 error = 0;
742 goto bad;
743 } else {
744 /* No IPsec processing for this packet. */
745 }
746 }
747 }
748 spd_done:
749 #endif /* FAST_IPSEC */
750
751 #ifdef PFIL_HOOKS
752 /*
753 * Run through list of hooks for output packets.
754 */
755 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
756 goto done;
757 if (m == NULL)
758 goto done;
759
760 ip = mtod(m, struct ip *);
761 hlen = ip->ip_hl << 2;
762 ip_len = ntohs(ip->ip_len);
763 #endif /* PFIL_HOOKS */
764
765 m->m_pkthdr.csum_data |= hlen << 16;
766
767 #if IFA_STATS
768 /*
769 * search for the source address structure to
770 * maintain output statistics.
771 */
772 INADDR_TO_IA(ip->ip_src, ia);
773 #endif
774
775 /* Maybe skip checksums on loopback interfaces. */
776 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
777 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
778 }
779 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
780 /*
781 * If small enough for mtu of path, or if using TCP segmentation
782 * offload, can just send directly.
783 */
784 if (ip_len <= mtu ||
785 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
786 #if IFA_STATS
787 if (ia)
788 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
789 #endif
790 /*
791 * Always initialize the sum to 0! Some HW assisted
792 * checksumming requires this.
793 */
794 ip->ip_sum = 0;
795
796 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
797 /*
798 * Perform any checksums that the hardware can't do
799 * for us.
800 *
801 * XXX Does any hardware require the {th,uh}_sum
802 * XXX fields to be 0?
803 */
804 if (sw_csum & M_CSUM_IPv4) {
805 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
806 ip->ip_sum = in_cksum(m, hlen);
807 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
808 }
809 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
810 if (IN_NEED_CHECKSUM(ifp,
811 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
812 in_delayed_cksum(m);
813 }
814 m->m_pkthdr.csum_flags &=
815 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
816 }
817 }
818
819 #ifdef KAME_IPSEC
820 /* clean ipsec history once it goes out of the node */
821 ipsec_delaux(m);
822 #endif
823
824 if (__predict_true(
825 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
826 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
827 KERNEL_LOCK(1, NULL);
828 error =
829 (*ifp->if_output)(ifp, m,
830 (m->m_flags & M_MCAST) ?
831 sintocsa(rdst) : sintocsa(dst),
832 rt);
833 KERNEL_UNLOCK_ONE(NULL);
834 } else {
835 error =
836 ip_tso_output(ifp, m,
837 (m->m_flags & M_MCAST) ?
838 sintocsa(rdst) : sintocsa(dst),
839 rt);
840 }
841 goto done;
842 }
843
844 /*
845 * We can't use HW checksumming if we're about to
846 * to fragment the packet.
847 *
848 * XXX Some hardware can do this.
849 */
850 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
851 if (IN_NEED_CHECKSUM(ifp,
852 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
853 in_delayed_cksum(m);
854 }
855 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
856 }
857
858 /*
859 * Too large for interface; fragment if possible.
860 * Must be able to put at least 8 bytes per fragment.
861 */
862 if (ntohs(ip->ip_off) & IP_DF) {
863 if (flags & IP_RETURNMTU)
864 *mtu_p = mtu;
865 error = EMSGSIZE;
866 IP_STATINC(IP_STAT_CANTFRAG);
867 goto bad;
868 }
869
870 error = ip_fragment(m, ifp, mtu);
871 if (error) {
872 m = NULL;
873 goto bad;
874 }
875
876 for (; m; m = m0) {
877 m0 = m->m_nextpkt;
878 m->m_nextpkt = 0;
879 if (error == 0) {
880 #if IFA_STATS
881 if (ia)
882 ia->ia_ifa.ifa_data.ifad_outbytes +=
883 ntohs(ip->ip_len);
884 #endif
885 #ifdef KAME_IPSEC
886 /* clean ipsec history once it goes out of the node */
887 ipsec_delaux(m);
888 #endif /* KAME_IPSEC */
889
890 #ifdef IPSEC_NAT_T
891 /*
892 * If we get there, the packet has not been handeld by
893 * IPSec whereas it should have. Now that it has been
894 * fragmented, re-inject it in ip_output so that IPsec
895 * processing can occur.
896 */
897 if (natt_frag) {
898 error = ip_output(m, opt,
899 ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
900 } else
901 #endif /* IPSEC_NAT_T */
902 {
903 KASSERT((m->m_pkthdr.csum_flags &
904 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
905 KERNEL_LOCK(1, NULL);
906 error = (*ifp->if_output)(ifp, m,
907 (m->m_flags & M_MCAST) ?
908 sintocsa(rdst) : sintocsa(dst),
909 rt);
910 KERNEL_UNLOCK_ONE(NULL);
911 }
912 } else
913 m_freem(m);
914 }
915
916 if (error == 0)
917 IP_STATINC(IP_STAT_FRAGMENTED);
918 done:
919 rtcache_free(&iproute);
920
921 #ifdef KAME_IPSEC
922 if (sp != NULL) {
923 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
924 printf("DP ip_output call free SP:%p\n", sp));
925 key_freesp(sp);
926 }
927 #endif /* KAME_IPSEC */
928 #ifdef FAST_IPSEC
929 if (sp != NULL)
930 KEY_FREESP(&sp);
931 #endif /* FAST_IPSEC */
932
933 return (error);
934 bad:
935 m_freem(m);
936 goto done;
937 }
938
939 int
940 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
941 {
942 struct ip *ip, *mhip;
943 struct mbuf *m0;
944 int len, hlen, off;
945 int mhlen, firstlen;
946 struct mbuf **mnext;
947 int sw_csum = m->m_pkthdr.csum_flags;
948 int fragments = 0;
949 int s;
950 int error = 0;
951
952 ip = mtod(m, struct ip *);
953 hlen = ip->ip_hl << 2;
954 if (ifp != NULL)
955 sw_csum &= ~ifp->if_csum_flags_tx;
956
957 len = (mtu - hlen) &~ 7;
958 if (len < 8) {
959 m_freem(m);
960 return (EMSGSIZE);
961 }
962
963 firstlen = len;
964 mnext = &m->m_nextpkt;
965
966 /*
967 * Loop through length of segment after first fragment,
968 * make new header and copy data of each part and link onto chain.
969 */
970 m0 = m;
971 mhlen = sizeof (struct ip);
972 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
973 MGETHDR(m, M_DONTWAIT, MT_HEADER);
974 if (m == 0) {
975 error = ENOBUFS;
976 IP_STATINC(IP_STAT_ODROPPED);
977 goto sendorfree;
978 }
979 MCLAIM(m, m0->m_owner);
980 *mnext = m;
981 mnext = &m->m_nextpkt;
982 m->m_data += max_linkhdr;
983 mhip = mtod(m, struct ip *);
984 *mhip = *ip;
985 /* we must inherit MCAST and BCAST flags */
986 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
987 if (hlen > sizeof (struct ip)) {
988 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
989 mhip->ip_hl = mhlen >> 2;
990 }
991 m->m_len = mhlen;
992 mhip->ip_off = ((off - hlen) >> 3) +
993 (ntohs(ip->ip_off) & ~IP_MF);
994 if (ip->ip_off & htons(IP_MF))
995 mhip->ip_off |= IP_MF;
996 if (off + len >= ntohs(ip->ip_len))
997 len = ntohs(ip->ip_len) - off;
998 else
999 mhip->ip_off |= IP_MF;
1000 HTONS(mhip->ip_off);
1001 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1002 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1003 if (m->m_next == 0) {
1004 error = ENOBUFS; /* ??? */
1005 IP_STATINC(IP_STAT_ODROPPED);
1006 goto sendorfree;
1007 }
1008 m->m_pkthdr.len = mhlen + len;
1009 m->m_pkthdr.rcvif = NULL;
1010 mhip->ip_sum = 0;
1011 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1012 if (sw_csum & M_CSUM_IPv4) {
1013 mhip->ip_sum = in_cksum(m, mhlen);
1014 } else {
1015 /*
1016 * checksum is hw-offloaded or not necessary.
1017 */
1018 m->m_pkthdr.csum_flags |=
1019 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
1020 m->m_pkthdr.csum_data |= mhlen << 16;
1021 KASSERT(!(ifp != NULL &&
1022 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
1023 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
1024 }
1025 IP_STATINC(IP_STAT_OFRAGMENTS);
1026 fragments++;
1027 }
1028 /*
1029 * Update first fragment by trimming what's been copied out
1030 * and updating header, then send each fragment (in order).
1031 */
1032 m = m0;
1033 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1034 m->m_pkthdr.len = hlen + firstlen;
1035 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1036 ip->ip_off |= htons(IP_MF);
1037 ip->ip_sum = 0;
1038 if (sw_csum & M_CSUM_IPv4) {
1039 ip->ip_sum = in_cksum(m, hlen);
1040 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1041 } else {
1042 /*
1043 * checksum is hw-offloaded or not necessary.
1044 */
1045 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
1046 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
1047 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1048 sizeof(struct ip));
1049 }
1050 sendorfree:
1051 /*
1052 * If there is no room for all the fragments, don't queue
1053 * any of them.
1054 */
1055 if (ifp != NULL) {
1056 s = splnet();
1057 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1058 error == 0) {
1059 error = ENOBUFS;
1060 IP_STATINC(IP_STAT_ODROPPED);
1061 IFQ_INC_DROPS(&ifp->if_snd);
1062 }
1063 splx(s);
1064 }
1065 if (error) {
1066 for (m = m0; m; m = m0) {
1067 m0 = m->m_nextpkt;
1068 m->m_nextpkt = NULL;
1069 m_freem(m);
1070 }
1071 }
1072 return (error);
1073 }
1074
1075 /*
1076 * Process a delayed payload checksum calculation.
1077 */
1078 void
1079 in_delayed_cksum(struct mbuf *m)
1080 {
1081 struct ip *ip;
1082 u_int16_t csum, offset;
1083
1084 ip = mtod(m, struct ip *);
1085 offset = ip->ip_hl << 2;
1086 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1087 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1088 csum = 0xffff;
1089
1090 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1091
1092 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1093 /* This happen when ip options were inserted
1094 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1095 m->m_len, offset, ip->ip_p);
1096 */
1097 m_copyback(m, offset, sizeof(csum), (void *) &csum);
1098 } else
1099 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1100 }
1101
1102 /*
1103 * Determine the maximum length of the options to be inserted;
1104 * we would far rather allocate too much space rather than too little.
1105 */
1106
1107 u_int
1108 ip_optlen(struct inpcb *inp)
1109 {
1110 struct mbuf *m = inp->inp_options;
1111
1112 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1113 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1114 else
1115 return 0;
1116 }
1117
1118
1119 /*
1120 * Insert IP options into preformed packet.
1121 * Adjust IP destination as required for IP source routing,
1122 * as indicated by a non-zero in_addr at the start of the options.
1123 */
1124 static struct mbuf *
1125 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1126 {
1127 struct ipoption *p = mtod(opt, struct ipoption *);
1128 struct mbuf *n;
1129 struct ip *ip = mtod(m, struct ip *);
1130 unsigned optlen;
1131
1132 optlen = opt->m_len - sizeof(p->ipopt_dst);
1133 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1134 return (m); /* XXX should fail */
1135 if (!in_nullhost(p->ipopt_dst))
1136 ip->ip_dst = p->ipopt_dst;
1137 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1138 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1139 if (n == 0)
1140 return (m);
1141 MCLAIM(n, m->m_owner);
1142 M_MOVE_PKTHDR(n, m);
1143 m->m_len -= sizeof(struct ip);
1144 m->m_data += sizeof(struct ip);
1145 n->m_next = m;
1146 m = n;
1147 m->m_len = optlen + sizeof(struct ip);
1148 m->m_data += max_linkhdr;
1149 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1150 } else {
1151 m->m_data -= optlen;
1152 m->m_len += optlen;
1153 memmove(mtod(m, void *), ip, sizeof(struct ip));
1154 }
1155 m->m_pkthdr.len += optlen;
1156 ip = mtod(m, struct ip *);
1157 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1158 *phlen = sizeof(struct ip) + optlen;
1159 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1160 return (m);
1161 }
1162
1163 /*
1164 * Copy options from ip to jp,
1165 * omitting those not copied during fragmentation.
1166 */
1167 int
1168 ip_optcopy(struct ip *ip, struct ip *jp)
1169 {
1170 u_char *cp, *dp;
1171 int opt, optlen, cnt;
1172
1173 cp = (u_char *)(ip + 1);
1174 dp = (u_char *)(jp + 1);
1175 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1176 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1177 opt = cp[0];
1178 if (opt == IPOPT_EOL)
1179 break;
1180 if (opt == IPOPT_NOP) {
1181 /* Preserve for IP mcast tunnel's LSRR alignment. */
1182 *dp++ = IPOPT_NOP;
1183 optlen = 1;
1184 continue;
1185 }
1186 #ifdef DIAGNOSTIC
1187 if (cnt < IPOPT_OLEN + sizeof(*cp))
1188 panic("malformed IPv4 option passed to ip_optcopy");
1189 #endif
1190 optlen = cp[IPOPT_OLEN];
1191 #ifdef DIAGNOSTIC
1192 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1193 panic("malformed IPv4 option passed to ip_optcopy");
1194 #endif
1195 /* bogus lengths should have been caught by ip_dooptions */
1196 if (optlen > cnt)
1197 optlen = cnt;
1198 if (IPOPT_COPIED(opt)) {
1199 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1200 dp += optlen;
1201 }
1202 }
1203 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1204 *dp++ = IPOPT_EOL;
1205 return (optlen);
1206 }
1207
1208 /*
1209 * IP socket option processing.
1210 */
1211 int
1212 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1213 {
1214 struct inpcb *inp = sotoinpcb(so);
1215 int optval = 0;
1216 int error = 0;
1217 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1218 struct lwp *l = curlwp; /*XXX*/
1219 #endif
1220
1221 if (sopt->sopt_level != IPPROTO_IP) {
1222 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1223 return 0;
1224 return ENOPROTOOPT;
1225 }
1226
1227 switch (op) {
1228 case PRCO_SETOPT:
1229 switch (sopt->sopt_name) {
1230 case IP_OPTIONS:
1231 #ifdef notyet
1232 case IP_RETOPTS:
1233 #endif
1234 error = ip_pcbopts(&inp->inp_options, sopt);
1235 break;
1236
1237 case IP_TOS:
1238 case IP_TTL:
1239 case IP_MINTTL:
1240 case IP_RECVOPTS:
1241 case IP_RECVRETOPTS:
1242 case IP_RECVDSTADDR:
1243 case IP_RECVIF:
1244 case IP_RECVTTL:
1245 error = sockopt_getint(sopt, &optval);
1246 if (error)
1247 break;
1248
1249 switch (sopt->sopt_name) {
1250 case IP_TOS:
1251 inp->inp_ip.ip_tos = optval;
1252 break;
1253
1254 case IP_TTL:
1255 inp->inp_ip.ip_ttl = optval;
1256 break;
1257
1258 case IP_MINTTL:
1259 if (optval > 0 && optval <= MAXTTL)
1260 inp->inp_ip_minttl = optval;
1261 else
1262 error = EINVAL;
1263 break;
1264 #define OPTSET(bit) \
1265 if (optval) \
1266 inp->inp_flags |= bit; \
1267 else \
1268 inp->inp_flags &= ~bit;
1269
1270 case IP_RECVOPTS:
1271 OPTSET(INP_RECVOPTS);
1272 break;
1273
1274 case IP_RECVRETOPTS:
1275 OPTSET(INP_RECVRETOPTS);
1276 break;
1277
1278 case IP_RECVDSTADDR:
1279 OPTSET(INP_RECVDSTADDR);
1280 break;
1281
1282 case IP_RECVIF:
1283 OPTSET(INP_RECVIF);
1284 break;
1285
1286 case IP_RECVTTL:
1287 OPTSET(INP_RECVTTL);
1288 break;
1289 }
1290 break;
1291 #undef OPTSET
1292
1293 case IP_MULTICAST_IF:
1294 case IP_MULTICAST_TTL:
1295 case IP_MULTICAST_LOOP:
1296 case IP_ADD_MEMBERSHIP:
1297 case IP_DROP_MEMBERSHIP:
1298 error = ip_setmoptions(&inp->inp_moptions, sopt);
1299 break;
1300
1301 case IP_PORTRANGE:
1302 error = sockopt_getint(sopt, &optval);
1303 if (error)
1304 break;
1305
1306 /* INP_LOCK(inp); */
1307 switch (optval) {
1308 case IP_PORTRANGE_DEFAULT:
1309 case IP_PORTRANGE_HIGH:
1310 inp->inp_flags &= ~(INP_LOWPORT);
1311 break;
1312
1313 case IP_PORTRANGE_LOW:
1314 inp->inp_flags |= INP_LOWPORT;
1315 break;
1316
1317 default:
1318 error = EINVAL;
1319 break;
1320 }
1321 /* INP_UNLOCK(inp); */
1322 break;
1323
1324 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1325 case IP_IPSEC_POLICY:
1326 {
1327 error = ipsec4_set_policy(inp, sopt->sopt_name,
1328 sopt->sopt_data, sopt->sopt_size, l->l_cred);
1329 break;
1330 }
1331 #endif /*IPSEC*/
1332
1333 default:
1334 error = ENOPROTOOPT;
1335 break;
1336 }
1337 break;
1338
1339 case PRCO_GETOPT:
1340 switch (sopt->sopt_name) {
1341 case IP_OPTIONS:
1342 case IP_RETOPTS:
1343 if (inp->inp_options) {
1344 struct mbuf *m;
1345
1346 m = m_copym(inp->inp_options, 0, M_COPYALL,
1347 M_DONTWAIT);
1348 if (m == NULL) {
1349 error = ENOBUFS;
1350 break;
1351 }
1352
1353 error = sockopt_setmbuf(sopt, m);
1354 }
1355 break;
1356
1357 case IP_TOS:
1358 case IP_TTL:
1359 case IP_MINTTL:
1360 case IP_RECVOPTS:
1361 case IP_RECVRETOPTS:
1362 case IP_RECVDSTADDR:
1363 case IP_RECVIF:
1364 case IP_RECVTTL:
1365 case IP_ERRORMTU:
1366 switch (sopt->sopt_name) {
1367 case IP_TOS:
1368 optval = inp->inp_ip.ip_tos;
1369 break;
1370
1371 case IP_TTL:
1372 optval = inp->inp_ip.ip_ttl;
1373 break;
1374
1375 case IP_MINTTL:
1376 optval = inp->inp_ip_minttl;
1377 break;
1378
1379 case IP_ERRORMTU:
1380 optval = inp->inp_errormtu;
1381 break;
1382
1383 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1384
1385 case IP_RECVOPTS:
1386 optval = OPTBIT(INP_RECVOPTS);
1387 break;
1388
1389 case IP_RECVRETOPTS:
1390 optval = OPTBIT(INP_RECVRETOPTS);
1391 break;
1392
1393 case IP_RECVDSTADDR:
1394 optval = OPTBIT(INP_RECVDSTADDR);
1395 break;
1396
1397 case IP_RECVIF:
1398 optval = OPTBIT(INP_RECVIF);
1399 break;
1400
1401 case IP_RECVTTL:
1402 optval = OPTBIT(INP_RECVTTL);
1403 break;
1404 }
1405 error = sockopt_setint(sopt, optval);
1406 break;
1407
1408 #if 0 /* defined(KAME_IPSEC) || defined(FAST_IPSEC) */
1409 case IP_IPSEC_POLICY:
1410 {
1411 struct mbuf *m = NULL;
1412
1413 /* XXX this will return EINVAL as sopt is empty */
1414 error = ipsec4_get_policy(inp, sopt->sopt_data,
1415 sopt->sopt_size, &m);
1416 if (error == 0)
1417 error = sockopt_setmbuf(sopt, m);
1418 break;
1419 }
1420 #endif /*IPSEC*/
1421
1422 case IP_MULTICAST_IF:
1423 case IP_MULTICAST_TTL:
1424 case IP_MULTICAST_LOOP:
1425 case IP_ADD_MEMBERSHIP:
1426 case IP_DROP_MEMBERSHIP:
1427 error = ip_getmoptions(inp->inp_moptions, sopt);
1428 break;
1429
1430 case IP_PORTRANGE:
1431 if (inp->inp_flags & INP_LOWPORT)
1432 optval = IP_PORTRANGE_LOW;
1433 else
1434 optval = IP_PORTRANGE_DEFAULT;
1435
1436 error = sockopt_setint(sopt, optval);
1437
1438 break;
1439
1440 default:
1441 error = ENOPROTOOPT;
1442 break;
1443 }
1444 break;
1445 }
1446 return (error);
1447 }
1448
1449 /*
1450 * Set up IP options in pcb for insertion in output packets.
1451 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1452 * with destination address if source routed.
1453 */
1454 int
1455 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1456 {
1457 struct mbuf *m;
1458 const u_char *cp;
1459 u_char *dp;
1460 int cnt;
1461 uint8_t optval, olen, offset;
1462
1463 /* turn off any old options */
1464 if (*pcbopt)
1465 (void)m_free(*pcbopt);
1466 *pcbopt = NULL;
1467
1468 cp = sopt->sopt_data;
1469 cnt = sopt->sopt_size;
1470
1471 if (cnt == 0)
1472 return (0); /* Only turning off any previous options */
1473
1474 #ifndef __vax__
1475 if (cnt % sizeof(int32_t))
1476 return (EINVAL);
1477 #endif
1478
1479 m = m_get(M_DONTWAIT, MT_SOOPTS);
1480 if (m == NULL)
1481 return (ENOBUFS);
1482
1483 dp = mtod(m, u_char *);
1484 memset(dp, 0, sizeof(struct in_addr));
1485 dp += sizeof(struct in_addr);
1486 m->m_len = sizeof(struct in_addr);
1487
1488 /*
1489 * IP option list according to RFC791. Each option is of the form
1490 *
1491 * [optval] [olen] [(olen - 2) data bytes]
1492 *
1493 * we validate the list and copy options to an mbuf for prepending
1494 * to data packets. The IP first-hop destination address will be
1495 * stored before actual options and is zero if unset.
1496 */
1497 while (cnt > 0) {
1498 optval = cp[IPOPT_OPTVAL];
1499
1500 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1501 olen = 1;
1502 } else {
1503 if (cnt < IPOPT_OLEN + 1)
1504 goto bad;
1505
1506 olen = cp[IPOPT_OLEN];
1507 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1508 goto bad;
1509 }
1510
1511 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1512 /*
1513 * user process specifies route as:
1514 * ->A->B->C->D
1515 * D must be our final destination (but we can't
1516 * check that since we may not have connected yet).
1517 * A is first hop destination, which doesn't appear in
1518 * actual IP option, but is stored before the options.
1519 */
1520 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1521 goto bad;
1522
1523 offset = cp[IPOPT_OFFSET];
1524 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1525 sizeof(struct in_addr));
1526
1527 cp += sizeof(struct in_addr);
1528 cnt -= sizeof(struct in_addr);
1529 olen -= sizeof(struct in_addr);
1530
1531 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1532 goto bad;
1533
1534 memcpy(dp, cp, olen);
1535 dp[IPOPT_OPTVAL] = optval;
1536 dp[IPOPT_OLEN] = olen;
1537 dp[IPOPT_OFFSET] = offset;
1538 break;
1539 } else {
1540 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1541 goto bad;
1542
1543 memcpy(dp, cp, olen);
1544 break;
1545 }
1546
1547 dp += olen;
1548 m->m_len += olen;
1549
1550 if (optval == IPOPT_EOL)
1551 break;
1552
1553 cp += olen;
1554 cnt -= olen;
1555 }
1556
1557 *pcbopt = m;
1558 return (0);
1559
1560 bad:
1561 (void)m_free(m);
1562 return (EINVAL);
1563 }
1564
1565 /*
1566 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1567 */
1568 static struct ifnet *
1569 ip_multicast_if(struct in_addr *a, int *ifindexp)
1570 {
1571 int ifindex;
1572 struct ifnet *ifp = NULL;
1573 struct in_ifaddr *ia;
1574
1575 if (ifindexp)
1576 *ifindexp = 0;
1577 if (ntohl(a->s_addr) >> 24 == 0) {
1578 ifindex = ntohl(a->s_addr) & 0xffffff;
1579 if (ifindex < 0 || if_indexlim <= ifindex)
1580 return NULL;
1581 ifp = ifindex2ifnet[ifindex];
1582 if (!ifp)
1583 return NULL;
1584 if (ifindexp)
1585 *ifindexp = ifindex;
1586 } else {
1587 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1588 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1589 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1590 ifp = ia->ia_ifp;
1591 break;
1592 }
1593 }
1594 }
1595 return ifp;
1596 }
1597
1598 static int
1599 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1600 {
1601 u_int tval;
1602 u_char cval;
1603 int error;
1604
1605 if (sopt == NULL)
1606 return EINVAL;
1607
1608 switch (sopt->sopt_size) {
1609 case sizeof(u_char):
1610 error = sockopt_get(sopt, &cval, sizeof(u_char));
1611 tval = cval;
1612 break;
1613
1614 case sizeof(u_int):
1615 error = sockopt_get(sopt, &tval, sizeof(u_int));
1616 break;
1617
1618 default:
1619 error = EINVAL;
1620 }
1621
1622 if (error)
1623 return error;
1624
1625 if (tval > maxval)
1626 return EINVAL;
1627
1628 *val = tval;
1629 return 0;
1630 }
1631
1632 /*
1633 * Set the IP multicast options in response to user setsockopt().
1634 */
1635 int
1636 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1637 {
1638 int error = 0;
1639 int i;
1640 struct in_addr addr;
1641 struct ip_mreq lmreq, *mreq;
1642 struct ifnet *ifp;
1643 struct ip_moptions *imo = *imop;
1644 int ifindex;
1645
1646 if (imo == NULL) {
1647 /*
1648 * No multicast option buffer attached to the pcb;
1649 * allocate one and initialize to default values.
1650 */
1651 imo = malloc(sizeof(*imo), M_IPMOPTS, M_NOWAIT);
1652 if (imo == NULL)
1653 return (ENOBUFS);
1654
1655 *imop = imo;
1656 imo->imo_multicast_ifp = NULL;
1657 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1658 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1659 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1660 imo->imo_num_memberships = 0;
1661 }
1662
1663 switch (sopt->sopt_name) {
1664 case IP_MULTICAST_IF:
1665 /*
1666 * Select the interface for outgoing multicast packets.
1667 */
1668 error = sockopt_get(sopt, &addr, sizeof(addr));
1669 if (error)
1670 break;
1671
1672 /*
1673 * INADDR_ANY is used to remove a previous selection.
1674 * When no interface is selected, a default one is
1675 * chosen every time a multicast packet is sent.
1676 */
1677 if (in_nullhost(addr)) {
1678 imo->imo_multicast_ifp = NULL;
1679 break;
1680 }
1681 /*
1682 * The selected interface is identified by its local
1683 * IP address. Find the interface and confirm that
1684 * it supports multicasting.
1685 */
1686 ifp = ip_multicast_if(&addr, &ifindex);
1687 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1688 error = EADDRNOTAVAIL;
1689 break;
1690 }
1691 imo->imo_multicast_ifp = ifp;
1692 if (ifindex)
1693 imo->imo_multicast_addr = addr;
1694 else
1695 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1696 break;
1697
1698 case IP_MULTICAST_TTL:
1699 /*
1700 * Set the IP time-to-live for outgoing multicast packets.
1701 */
1702 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1703 break;
1704
1705 case IP_MULTICAST_LOOP:
1706 /*
1707 * Set the loopback flag for outgoing multicast packets.
1708 * Must be zero or one.
1709 */
1710 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1711 break;
1712
1713 case IP_ADD_MEMBERSHIP:
1714 /*
1715 * Add a multicast group membership.
1716 * Group must be a valid IP multicast address.
1717 */
1718 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1719 if (error)
1720 break;
1721
1722 mreq = &lmreq;
1723
1724 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1725 error = EINVAL;
1726 break;
1727 }
1728 /*
1729 * If no interface address was provided, use the interface of
1730 * the route to the given multicast address.
1731 */
1732 if (in_nullhost(mreq->imr_interface)) {
1733 struct rtentry *rt;
1734 union {
1735 struct sockaddr dst;
1736 struct sockaddr_in dst4;
1737 } u;
1738 struct route ro;
1739
1740 memset(&ro, 0, sizeof(ro));
1741
1742 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1743 rtcache_setdst(&ro, &u.dst);
1744 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1745 : NULL;
1746 rtcache_free(&ro);
1747 } else {
1748 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1749 }
1750 /*
1751 * See if we found an interface, and confirm that it
1752 * supports multicast.
1753 */
1754 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1755 error = EADDRNOTAVAIL;
1756 break;
1757 }
1758 /*
1759 * See if the membership already exists or if all the
1760 * membership slots are full.
1761 */
1762 for (i = 0; i < imo->imo_num_memberships; ++i) {
1763 if (imo->imo_membership[i]->inm_ifp == ifp &&
1764 in_hosteq(imo->imo_membership[i]->inm_addr,
1765 mreq->imr_multiaddr))
1766 break;
1767 }
1768 if (i < imo->imo_num_memberships) {
1769 error = EADDRINUSE;
1770 break;
1771 }
1772 if (i == IP_MAX_MEMBERSHIPS) {
1773 error = ETOOMANYREFS;
1774 break;
1775 }
1776 /*
1777 * Everything looks good; add a new record to the multicast
1778 * address list for the given interface.
1779 */
1780 if ((imo->imo_membership[i] =
1781 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1782 error = ENOBUFS;
1783 break;
1784 }
1785 ++imo->imo_num_memberships;
1786 break;
1787
1788 case IP_DROP_MEMBERSHIP:
1789 /*
1790 * Drop a multicast group membership.
1791 * Group must be a valid IP multicast address.
1792 */
1793 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1794 if (error)
1795 break;
1796
1797 mreq = &lmreq;
1798
1799 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1800 error = EINVAL;
1801 break;
1802 }
1803 /*
1804 * If an interface address was specified, get a pointer
1805 * to its ifnet structure.
1806 */
1807 if (in_nullhost(mreq->imr_interface))
1808 ifp = NULL;
1809 else {
1810 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1811 if (ifp == NULL) {
1812 error = EADDRNOTAVAIL;
1813 break;
1814 }
1815 }
1816 /*
1817 * Find the membership in the membership array.
1818 */
1819 for (i = 0; i < imo->imo_num_memberships; ++i) {
1820 if ((ifp == NULL ||
1821 imo->imo_membership[i]->inm_ifp == ifp) &&
1822 in_hosteq(imo->imo_membership[i]->inm_addr,
1823 mreq->imr_multiaddr))
1824 break;
1825 }
1826 if (i == imo->imo_num_memberships) {
1827 error = EADDRNOTAVAIL;
1828 break;
1829 }
1830 /*
1831 * Give up the multicast address record to which the
1832 * membership points.
1833 */
1834 in_delmulti(imo->imo_membership[i]);
1835 /*
1836 * Remove the gap in the membership array.
1837 */
1838 for (++i; i < imo->imo_num_memberships; ++i)
1839 imo->imo_membership[i-1] = imo->imo_membership[i];
1840 --imo->imo_num_memberships;
1841 break;
1842
1843 default:
1844 error = EOPNOTSUPP;
1845 break;
1846 }
1847
1848 /*
1849 * If all options have default values, no need to keep the mbuf.
1850 */
1851 if (imo->imo_multicast_ifp == NULL &&
1852 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1853 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1854 imo->imo_num_memberships == 0) {
1855 free(*imop, M_IPMOPTS);
1856 *imop = NULL;
1857 }
1858
1859 return (error);
1860 }
1861
1862 /*
1863 * Return the IP multicast options in response to user getsockopt().
1864 */
1865 int
1866 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1867 {
1868 struct in_addr addr;
1869 struct in_ifaddr *ia;
1870 int error;
1871 uint8_t optval;
1872
1873 error = 0;
1874
1875 switch (sopt->sopt_name) {
1876 case IP_MULTICAST_IF:
1877 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1878 addr = zeroin_addr;
1879 else if (imo->imo_multicast_addr.s_addr) {
1880 /* return the value user has set */
1881 addr = imo->imo_multicast_addr;
1882 } else {
1883 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1884 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1885 }
1886 error = sockopt_set(sopt, &addr, sizeof(addr));
1887 break;
1888
1889 case IP_MULTICAST_TTL:
1890 optval = imo ? imo->imo_multicast_ttl
1891 : IP_DEFAULT_MULTICAST_TTL;
1892
1893 error = sockopt_set(sopt, &optval, sizeof(optval));
1894 break;
1895
1896 case IP_MULTICAST_LOOP:
1897 optval = imo ? imo->imo_multicast_loop
1898 : IP_DEFAULT_MULTICAST_LOOP;
1899
1900 error = sockopt_set(sopt, &optval, sizeof(optval));
1901 break;
1902
1903 default:
1904 error = EOPNOTSUPP;
1905 }
1906
1907 return (error);
1908 }
1909
1910 /*
1911 * Discard the IP multicast options.
1912 */
1913 void
1914 ip_freemoptions(struct ip_moptions *imo)
1915 {
1916 int i;
1917
1918 if (imo != NULL) {
1919 for (i = 0; i < imo->imo_num_memberships; ++i)
1920 in_delmulti(imo->imo_membership[i]);
1921 free(imo, M_IPMOPTS);
1922 }
1923 }
1924
1925 /*
1926 * Routine called from ip_output() to loop back a copy of an IP multicast
1927 * packet to the input queue of a specified interface. Note that this
1928 * calls the output routine of the loopback "driver", but with an interface
1929 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1930 */
1931 static void
1932 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1933 {
1934 struct ip *ip;
1935 struct mbuf *copym;
1936
1937 copym = m_copypacket(m, M_DONTWAIT);
1938 if (copym != NULL
1939 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1940 copym = m_pullup(copym, sizeof(struct ip));
1941 if (copym == NULL)
1942 return;
1943 /*
1944 * We don't bother to fragment if the IP length is greater
1945 * than the interface's MTU. Can this possibly matter?
1946 */
1947 ip = mtod(copym, struct ip *);
1948
1949 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1950 in_delayed_cksum(copym);
1951 copym->m_pkthdr.csum_flags &=
1952 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1953 }
1954
1955 ip->ip_sum = 0;
1956 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1957 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1958 }
1959