Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.216
      1 /*	$NetBSD: ip_output.c,v 1.216 2012/06/22 14:54:35 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.216 2012/06/22 14:54:35 christos Exp $");
     95 
     96 #include "opt_pfil_hooks.h"
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 
    101 #include <sys/param.h>
    102 #include <sys/malloc.h>
    103 #include <sys/kmem.h>
    104 #include <sys/mbuf.h>
    105 #include <sys/errno.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/kauth.h>
    110 #ifdef FAST_IPSEC
    111 #include <sys/domain.h>
    112 #endif
    113 #include <sys/systm.h>
    114 #include <sys/proc.h>
    115 
    116 #include <net/if.h>
    117 #include <net/route.h>
    118 #include <net/pfil.h>
    119 
    120 #include <netinet/in.h>
    121 #include <netinet/in_systm.h>
    122 #include <netinet/ip.h>
    123 #include <netinet/in_pcb.h>
    124 #include <netinet/in_var.h>
    125 #include <netinet/ip_var.h>
    126 #include <netinet/ip_private.h>
    127 #include <netinet/in_offload.h>
    128 #include <netinet/rfc6056.h>
    129 
    130 #ifdef MROUTING
    131 #include <netinet/ip_mroute.h>
    132 #endif
    133 
    134 #ifdef FAST_IPSEC
    135 #include <netipsec/ipsec.h>
    136 #include <netipsec/key.h>
    137 #include <netipsec/xform.h>
    138 #endif	/* FAST_IPSEC*/
    139 
    140 #ifdef IPSEC_NAT_T
    141 #include <netinet/udp.h>
    142 #endif
    143 
    144 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    145 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    146 static void ip_mloopback(struct ifnet *, struct mbuf *,
    147     const struct sockaddr_in *);
    148 
    149 #ifdef PFIL_HOOKS
    150 extern struct pfil_head inet_pfil_hook;			/* XXX */
    151 #endif
    152 
    153 int	ip_do_loopback_cksum = 0;
    154 
    155 /*
    156  * IP output.  The packet in mbuf chain m contains a skeletal IP
    157  * header (with len, off, ttl, proto, tos, src, dst).
    158  * The mbuf chain containing the packet will be freed.
    159  * The mbuf opt, if present, will not be freed.
    160  */
    161 int
    162 ip_output(struct mbuf *m0, ...)
    163 {
    164 	struct rtentry *rt;
    165 	struct ip *ip;
    166 	struct ifnet *ifp;
    167 	struct mbuf *m = m0;
    168 	int hlen = sizeof (struct ip);
    169 	int len, error = 0;
    170 	struct route iproute;
    171 	const struct sockaddr_in *dst;
    172 	struct in_ifaddr *ia;
    173 	struct ifaddr *xifa;
    174 	struct mbuf *opt;
    175 	struct route *ro;
    176 	int flags, sw_csum;
    177 	int *mtu_p;
    178 	u_long mtu;
    179 	struct ip_moptions *imo;
    180 	struct socket *so;
    181 	va_list ap;
    182 #ifdef IPSEC_NAT_T
    183 	int natt_frag = 0;
    184 #endif
    185 #ifdef FAST_IPSEC
    186 	struct inpcb *inp;
    187 	struct secpolicy *sp = NULL;
    188 	int s;
    189 #endif
    190 	u_int16_t ip_len;
    191 	union {
    192 		struct sockaddr		dst;
    193 		struct sockaddr_in	dst4;
    194 	} u;
    195 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    196 					 * to the nexthop
    197 					 */
    198 
    199 	len = 0;
    200 	va_start(ap, m0);
    201 	opt = va_arg(ap, struct mbuf *);
    202 	ro = va_arg(ap, struct route *);
    203 	flags = va_arg(ap, int);
    204 	imo = va_arg(ap, struct ip_moptions *);
    205 	so = va_arg(ap, struct socket *);
    206 	if (flags & IP_RETURNMTU)
    207 		mtu_p = va_arg(ap, int *);
    208 	else
    209 		mtu_p = NULL;
    210 	va_end(ap);
    211 
    212 	MCLAIM(m, &ip_tx_mowner);
    213 #ifdef FAST_IPSEC
    214 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    215 		inp = (struct inpcb *)so->so_pcb;
    216 	else
    217 		inp = NULL;
    218 #endif /* FAST_IPSEC */
    219 
    220 #ifdef	DIAGNOSTIC
    221 	if ((m->m_flags & M_PKTHDR) == 0)
    222 		panic("ip_output: no HDR");
    223 
    224 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    225 		panic("ip_output: IPv6 checksum offload flags: %d",
    226 		    m->m_pkthdr.csum_flags);
    227 	}
    228 
    229 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    230 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    231 		panic("ip_output: conflicting checksum offload flags: %d",
    232 		    m->m_pkthdr.csum_flags);
    233 	}
    234 #endif
    235 	if (opt) {
    236 		m = ip_insertoptions(m, opt, &len);
    237 		if (len >= sizeof(struct ip))
    238 			hlen = len;
    239 	}
    240 	ip = mtod(m, struct ip *);
    241 	/*
    242 	 * Fill in IP header.
    243 	 */
    244 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    245 		ip->ip_v = IPVERSION;
    246 		ip->ip_off = htons(0);
    247 		/* ip->ip_id filled in after we find out source ia */
    248 		ip->ip_hl = hlen >> 2;
    249 		IP_STATINC(IP_STAT_LOCALOUT);
    250 	} else {
    251 		hlen = ip->ip_hl << 2;
    252 	}
    253 	/*
    254 	 * Route packet.
    255 	 */
    256 	memset(&iproute, 0, sizeof(iproute));
    257 	if (ro == NULL)
    258 		ro = &iproute;
    259 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    260 	dst = satocsin(rtcache_getdst(ro));
    261 	/*
    262 	 * If there is a cached route,
    263 	 * check that it is to the same destination
    264 	 * and is still up.  If not, free it and try again.
    265 	 * The address family should also be checked in case of sharing the
    266 	 * cache with IPv6.
    267 	 */
    268 	if (dst == NULL)
    269 		;
    270 	else if (dst->sin_family != AF_INET ||
    271 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
    272 		rtcache_free(ro);
    273 
    274 	if ((rt = rtcache_validate(ro)) == NULL &&
    275 	    (rt = rtcache_update(ro, 1)) == NULL) {
    276 		dst = &u.dst4;
    277 		rtcache_setdst(ro, &u.dst);
    278 	}
    279 	/*
    280 	 * If routing to interface only,
    281 	 * short circuit routing lookup.
    282 	 */
    283 	if (flags & IP_ROUTETOIF) {
    284 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    285 			IP_STATINC(IP_STAT_NOROUTE);
    286 			error = ENETUNREACH;
    287 			goto bad;
    288 		}
    289 		ifp = ia->ia_ifp;
    290 		mtu = ifp->if_mtu;
    291 		ip->ip_ttl = 1;
    292 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    293 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    294 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    295 		ifp = imo->imo_multicast_ifp;
    296 		mtu = ifp->if_mtu;
    297 		IFP_TO_IA(ifp, ia);
    298 	} else {
    299 		if (rt == NULL)
    300 			rt = rtcache_init(ro);
    301 		if (rt == NULL) {
    302 			IP_STATINC(IP_STAT_NOROUTE);
    303 			error = EHOSTUNREACH;
    304 			goto bad;
    305 		}
    306 		ia = ifatoia(rt->rt_ifa);
    307 		ifp = rt->rt_ifp;
    308 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    309 			mtu = ifp->if_mtu;
    310 		rt->rt_use++;
    311 		if (rt->rt_flags & RTF_GATEWAY)
    312 			dst = satosin(rt->rt_gateway);
    313 	}
    314 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    315 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    316 		struct in_multi *inm;
    317 
    318 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    319 			M_BCAST : M_MCAST;
    320 		/*
    321 		 * See if the caller provided any multicast options
    322 		 */
    323 		if (imo != NULL)
    324 			ip->ip_ttl = imo->imo_multicast_ttl;
    325 		else
    326 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    327 
    328 		/*
    329 		 * if we don't know the outgoing ifp yet, we can't generate
    330 		 * output
    331 		 */
    332 		if (!ifp) {
    333 			IP_STATINC(IP_STAT_NOROUTE);
    334 			error = ENETUNREACH;
    335 			goto bad;
    336 		}
    337 
    338 		/*
    339 		 * If the packet is multicast or broadcast, confirm that
    340 		 * the outgoing interface can transmit it.
    341 		 */
    342 		if (((m->m_flags & M_MCAST) &&
    343 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    344 		    ((m->m_flags & M_BCAST) &&
    345 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    346 			IP_STATINC(IP_STAT_NOROUTE);
    347 			error = ENETUNREACH;
    348 			goto bad;
    349 		}
    350 		/*
    351 		 * If source address not specified yet, use an address
    352 		 * of outgoing interface.
    353 		 */
    354 		if (in_nullhost(ip->ip_src)) {
    355 			struct in_ifaddr *xia;
    356 
    357 			IFP_TO_IA(ifp, xia);
    358 			if (!xia) {
    359 				error = EADDRNOTAVAIL;
    360 				goto bad;
    361 			}
    362 			xifa = &xia->ia_ifa;
    363 			if (xifa->ifa_getifa != NULL) {
    364 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    365 			}
    366 			ip->ip_src = xia->ia_addr.sin_addr;
    367 		}
    368 
    369 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    370 		if (inm != NULL &&
    371 		   (imo == NULL || imo->imo_multicast_loop)) {
    372 			/*
    373 			 * If we belong to the destination multicast group
    374 			 * on the outgoing interface, and the caller did not
    375 			 * forbid loopback, loop back a copy.
    376 			 */
    377 			ip_mloopback(ifp, m, &u.dst4);
    378 		}
    379 #ifdef MROUTING
    380 		else {
    381 			/*
    382 			 * If we are acting as a multicast router, perform
    383 			 * multicast forwarding as if the packet had just
    384 			 * arrived on the interface to which we are about
    385 			 * to send.  The multicast forwarding function
    386 			 * recursively calls this function, using the
    387 			 * IP_FORWARDING flag to prevent infinite recursion.
    388 			 *
    389 			 * Multicasts that are looped back by ip_mloopback(),
    390 			 * above, will be forwarded by the ip_input() routine,
    391 			 * if necessary.
    392 			 */
    393 			extern struct socket *ip_mrouter;
    394 
    395 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    396 				if (ip_mforward(m, ifp) != 0) {
    397 					m_freem(m);
    398 					goto done;
    399 				}
    400 			}
    401 		}
    402 #endif
    403 		/*
    404 		 * Multicasts with a time-to-live of zero may be looped-
    405 		 * back, above, but must not be transmitted on a network.
    406 		 * Also, multicasts addressed to the loopback interface
    407 		 * are not sent -- the above call to ip_mloopback() will
    408 		 * loop back a copy if this host actually belongs to the
    409 		 * destination group on the loopback interface.
    410 		 */
    411 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    412 			m_freem(m);
    413 			goto done;
    414 		}
    415 
    416 		goto sendit;
    417 	}
    418 	/*
    419 	 * If source address not specified yet, use address
    420 	 * of outgoing interface.
    421 	 */
    422 	if (in_nullhost(ip->ip_src)) {
    423 		xifa = &ia->ia_ifa;
    424 		if (xifa->ifa_getifa != NULL)
    425 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    426 		ip->ip_src = ia->ia_addr.sin_addr;
    427 	}
    428 
    429 	/*
    430 	 * packets with Class-D address as source are not valid per
    431 	 * RFC 1112
    432 	 */
    433 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    434 		IP_STATINC(IP_STAT_ODROPPED);
    435 		error = EADDRNOTAVAIL;
    436 		goto bad;
    437 	}
    438 
    439 	/*
    440 	 * Look for broadcast address and
    441 	 * and verify user is allowed to send
    442 	 * such a packet.
    443 	 */
    444 	if (in_broadcast(dst->sin_addr, ifp)) {
    445 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    446 			error = EADDRNOTAVAIL;
    447 			goto bad;
    448 		}
    449 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    450 			error = EACCES;
    451 			goto bad;
    452 		}
    453 		/* don't allow broadcast messages to be fragmented */
    454 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    455 			error = EMSGSIZE;
    456 			goto bad;
    457 		}
    458 		m->m_flags |= M_BCAST;
    459 	} else
    460 		m->m_flags &= ~M_BCAST;
    461 
    462 sendit:
    463 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    464 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    465 			ip->ip_id = 0;
    466 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    467 			ip->ip_id = ip_newid(ia);
    468 		} else {
    469 
    470 			/*
    471 			 * TSO capable interfaces (typically?) increment
    472 			 * ip_id for each segment.
    473 			 * "allocate" enough ids here to increase the chance
    474 			 * for them to be unique.
    475 			 *
    476 			 * note that the following calculation is not
    477 			 * needed to be precise.  wasting some ip_id is fine.
    478 			 */
    479 
    480 			unsigned int segsz = m->m_pkthdr.segsz;
    481 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    482 			unsigned int num = howmany(datasz, segsz);
    483 
    484 			ip->ip_id = ip_newid_range(ia, num);
    485 		}
    486 	}
    487 	/*
    488 	 * If we're doing Path MTU Discovery, we need to set DF unless
    489 	 * the route's MTU is locked.
    490 	 */
    491 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    492 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    493 		ip->ip_off |= htons(IP_DF);
    494 
    495 	/* Remember the current ip_len */
    496 	ip_len = ntohs(ip->ip_len);
    497 
    498 #ifdef FAST_IPSEC
    499 	/*
    500 	 * Check the security policy (SP) for the packet and, if
    501 	 * required, do IPsec-related processing.  There are two
    502 	 * cases here; the first time a packet is sent through
    503 	 * it will be untagged and handled by ipsec4_checkpolicy.
    504 	 * If the packet is resubmitted to ip_output (e.g. after
    505 	 * AH, ESP, etc. processing), there will be a tag to bypass
    506 	 * the lookup and related policy checking.
    507 	 */
    508 	if (!ipsec_outdone(m)) {
    509 		s = splsoftnet();
    510 		if (inp != NULL &&
    511 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
    512 			splx(s);
    513 			goto spd_done;
    514 		}
    515 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    516 				&error, inp);
    517 		/*
    518 		 * There are four return cases:
    519 		 *    sp != NULL	 	    apply IPsec policy
    520 		 *    sp == NULL, error == 0	    no IPsec handling needed
    521 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
    522 		 *    sp == NULL, error != 0	    discard packet, report error
    523 		 */
    524 		if (sp != NULL) {
    525 #ifdef IPSEC_NAT_T
    526 			/*
    527 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
    528 			 * we'll do it on each fragmented packet.
    529 			 */
    530 			if (sp->req->sav &&
    531 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    532 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    533 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    534 					natt_frag = 1;
    535 					mtu = sp->req->sav->esp_frag;
    536 					splx(s);
    537 					goto spd_done;
    538 				}
    539 			}
    540 #endif /* IPSEC_NAT_T */
    541 
    542 			/*
    543 			 * Do delayed checksums now because we send before
    544 			 * this is done in the normal processing path.
    545 			 */
    546 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    547 				in_delayed_cksum(m);
    548 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    549 			}
    550 
    551 #ifdef __FreeBSD__
    552 			ip->ip_len = htons(ip->ip_len);
    553 			ip->ip_off = htons(ip->ip_off);
    554 #endif
    555 
    556 			/* NB: callee frees mbuf */
    557 			error = ipsec4_process_packet(m, sp->req, flags, 0);
    558 			/*
    559 			 * Preserve KAME behaviour: ENOENT can be returned
    560 			 * when an SA acquire is in progress.  Don't propagate
    561 			 * this to user-level; it confuses applications.
    562 			 *
    563 			 * XXX this will go away when the SADB is redone.
    564 			 */
    565 			if (error == ENOENT)
    566 				error = 0;
    567 			splx(s);
    568 			goto done;
    569 		} else {
    570 			splx(s);
    571 
    572 			if (error != 0) {
    573 				/*
    574 				 * Hack: -EINVAL is used to signal that a packet
    575 				 * should be silently discarded.  This is typically
    576 				 * because we asked key management for an SA and
    577 				 * it was delayed (e.g. kicked up to IKE).
    578 				 */
    579 				if (error == -EINVAL)
    580 					error = 0;
    581 				goto bad;
    582 			} else {
    583 				/* No IPsec processing for this packet. */
    584 			}
    585 		}
    586 	}
    587 spd_done:
    588 #endif /* FAST_IPSEC */
    589 
    590 #ifdef PFIL_HOOKS
    591 	/*
    592 	 * Run through list of hooks for output packets.
    593 	 */
    594 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    595 		goto done;
    596 	if (m == NULL)
    597 		goto done;
    598 
    599 	ip = mtod(m, struct ip *);
    600 	hlen = ip->ip_hl << 2;
    601 	ip_len = ntohs(ip->ip_len);
    602 #endif /* PFIL_HOOKS */
    603 
    604 	m->m_pkthdr.csum_data |= hlen << 16;
    605 
    606 #if IFA_STATS
    607 	/*
    608 	 * search for the source address structure to
    609 	 * maintain output statistics.
    610 	 */
    611 	INADDR_TO_IA(ip->ip_src, ia);
    612 #endif
    613 
    614 	/* Maybe skip checksums on loopback interfaces. */
    615 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    616 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    617 	}
    618 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    619 	/*
    620 	 * If small enough for mtu of path, or if using TCP segmentation
    621 	 * offload, can just send directly.
    622 	 */
    623 	if (ip_len <= mtu ||
    624 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    625 #if IFA_STATS
    626 		if (ia)
    627 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    628 #endif
    629 		/*
    630 		 * Always initialize the sum to 0!  Some HW assisted
    631 		 * checksumming requires this.
    632 		 */
    633 		ip->ip_sum = 0;
    634 
    635 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    636 			/*
    637 			 * Perform any checksums that the hardware can't do
    638 			 * for us.
    639 			 *
    640 			 * XXX Does any hardware require the {th,uh}_sum
    641 			 * XXX fields to be 0?
    642 			 */
    643 			if (sw_csum & M_CSUM_IPv4) {
    644 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    645 				ip->ip_sum = in_cksum(m, hlen);
    646 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    647 			}
    648 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    649 				if (IN_NEED_CHECKSUM(ifp,
    650 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    651 					in_delayed_cksum(m);
    652 				}
    653 				m->m_pkthdr.csum_flags &=
    654 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    655 			}
    656 		}
    657 
    658 		if (__predict_true(
    659 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    660 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    661 			KERNEL_LOCK(1, NULL);
    662 			error =
    663 			    (*ifp->if_output)(ifp, m,
    664 				(m->m_flags & M_MCAST) ?
    665 				    sintocsa(rdst) : sintocsa(dst),
    666 				rt);
    667 			KERNEL_UNLOCK_ONE(NULL);
    668 		} else {
    669 			error =
    670 			    ip_tso_output(ifp, m,
    671 				(m->m_flags & M_MCAST) ?
    672 				    sintocsa(rdst) : sintocsa(dst),
    673 				rt);
    674 		}
    675 		goto done;
    676 	}
    677 
    678 	/*
    679 	 * We can't use HW checksumming if we're about to
    680 	 * to fragment the packet.
    681 	 *
    682 	 * XXX Some hardware can do this.
    683 	 */
    684 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    685 		if (IN_NEED_CHECKSUM(ifp,
    686 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    687 			in_delayed_cksum(m);
    688 		}
    689 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    690 	}
    691 
    692 	/*
    693 	 * Too large for interface; fragment if possible.
    694 	 * Must be able to put at least 8 bytes per fragment.
    695 	 */
    696 	if (ntohs(ip->ip_off) & IP_DF) {
    697 		if (flags & IP_RETURNMTU)
    698 			*mtu_p = mtu;
    699 		error = EMSGSIZE;
    700 		IP_STATINC(IP_STAT_CANTFRAG);
    701 		goto bad;
    702 	}
    703 
    704 	error = ip_fragment(m, ifp, mtu);
    705 	if (error) {
    706 		m = NULL;
    707 		goto bad;
    708 	}
    709 
    710 	for (; m; m = m0) {
    711 		m0 = m->m_nextpkt;
    712 		m->m_nextpkt = 0;
    713 		if (error == 0) {
    714 #if IFA_STATS
    715 			if (ia)
    716 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    717 				    ntohs(ip->ip_len);
    718 #endif
    719 #ifdef IPSEC_NAT_T
    720 			/*
    721 			 * If we get there, the packet has not been handeld by
    722 			 * IPSec whereas it should have. Now that it has been
    723 			 * fragmented, re-inject it in ip_output so that IPsec
    724 			 * processing can occur.
    725 			 */
    726 			if (natt_frag) {
    727 				error = ip_output(m, opt,
    728 				    ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
    729 			} else
    730 #endif /* IPSEC_NAT_T */
    731 			{
    732 				KASSERT((m->m_pkthdr.csum_flags &
    733 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    734 				KERNEL_LOCK(1, NULL);
    735 				error = (*ifp->if_output)(ifp, m,
    736 				    (m->m_flags & M_MCAST) ?
    737 					sintocsa(rdst) : sintocsa(dst),
    738 				    rt);
    739 				KERNEL_UNLOCK_ONE(NULL);
    740 			}
    741 		} else
    742 			m_freem(m);
    743 	}
    744 
    745 	if (error == 0)
    746 		IP_STATINC(IP_STAT_FRAGMENTED);
    747 done:
    748 	rtcache_free(&iproute);
    749 
    750 #ifdef FAST_IPSEC
    751 	if (sp != NULL)
    752 		KEY_FREESP(&sp);
    753 #endif /* FAST_IPSEC */
    754 
    755 	return (error);
    756 bad:
    757 	m_freem(m);
    758 	goto done;
    759 }
    760 
    761 int
    762 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    763 {
    764 	struct ip *ip, *mhip;
    765 	struct mbuf *m0;
    766 	int len, hlen, off;
    767 	int mhlen, firstlen;
    768 	struct mbuf **mnext;
    769 	int sw_csum = m->m_pkthdr.csum_flags;
    770 	int fragments = 0;
    771 	int s;
    772 	int error = 0;
    773 
    774 	ip = mtod(m, struct ip *);
    775 	hlen = ip->ip_hl << 2;
    776 	if (ifp != NULL)
    777 		sw_csum &= ~ifp->if_csum_flags_tx;
    778 
    779 	len = (mtu - hlen) &~ 7;
    780 	if (len < 8) {
    781 		m_freem(m);
    782 		return (EMSGSIZE);
    783 	}
    784 
    785 	firstlen = len;
    786 	mnext = &m->m_nextpkt;
    787 
    788 	/*
    789 	 * Loop through length of segment after first fragment,
    790 	 * make new header and copy data of each part and link onto chain.
    791 	 */
    792 	m0 = m;
    793 	mhlen = sizeof (struct ip);
    794 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    795 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    796 		if (m == 0) {
    797 			error = ENOBUFS;
    798 			IP_STATINC(IP_STAT_ODROPPED);
    799 			goto sendorfree;
    800 		}
    801 		MCLAIM(m, m0->m_owner);
    802 		*mnext = m;
    803 		mnext = &m->m_nextpkt;
    804 		m->m_data += max_linkhdr;
    805 		mhip = mtod(m, struct ip *);
    806 		*mhip = *ip;
    807 		/* we must inherit MCAST and BCAST flags */
    808 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    809 		if (hlen > sizeof (struct ip)) {
    810 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    811 			mhip->ip_hl = mhlen >> 2;
    812 		}
    813 		m->m_len = mhlen;
    814 		mhip->ip_off = ((off - hlen) >> 3) +
    815 		    (ntohs(ip->ip_off) & ~IP_MF);
    816 		if (ip->ip_off & htons(IP_MF))
    817 			mhip->ip_off |= IP_MF;
    818 		if (off + len >= ntohs(ip->ip_len))
    819 			len = ntohs(ip->ip_len) - off;
    820 		else
    821 			mhip->ip_off |= IP_MF;
    822 		HTONS(mhip->ip_off);
    823 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    824 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    825 		if (m->m_next == 0) {
    826 			error = ENOBUFS;	/* ??? */
    827 			IP_STATINC(IP_STAT_ODROPPED);
    828 			goto sendorfree;
    829 		}
    830 		m->m_pkthdr.len = mhlen + len;
    831 		m->m_pkthdr.rcvif = NULL;
    832 		mhip->ip_sum = 0;
    833 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    834 		if (sw_csum & M_CSUM_IPv4) {
    835 			mhip->ip_sum = in_cksum(m, mhlen);
    836 		} else {
    837 			/*
    838 			 * checksum is hw-offloaded or not necessary.
    839 			 */
    840 			m->m_pkthdr.csum_flags |=
    841 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    842 			m->m_pkthdr.csum_data |= mhlen << 16;
    843 			KASSERT(!(ifp != NULL &&
    844 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    845 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    846 		}
    847 		IP_STATINC(IP_STAT_OFRAGMENTS);
    848 		fragments++;
    849 	}
    850 	/*
    851 	 * Update first fragment by trimming what's been copied out
    852 	 * and updating header, then send each fragment (in order).
    853 	 */
    854 	m = m0;
    855 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    856 	m->m_pkthdr.len = hlen + firstlen;
    857 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    858 	ip->ip_off |= htons(IP_MF);
    859 	ip->ip_sum = 0;
    860 	if (sw_csum & M_CSUM_IPv4) {
    861 		ip->ip_sum = in_cksum(m, hlen);
    862 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    863 	} else {
    864 		/*
    865 		 * checksum is hw-offloaded or not necessary.
    866 		 */
    867 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    868 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    869 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    870 			sizeof(struct ip));
    871 	}
    872 sendorfree:
    873 	/*
    874 	 * If there is no room for all the fragments, don't queue
    875 	 * any of them.
    876 	 */
    877 	if (ifp != NULL) {
    878 		s = splnet();
    879 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    880 		    error == 0) {
    881 			error = ENOBUFS;
    882 			IP_STATINC(IP_STAT_ODROPPED);
    883 			IFQ_INC_DROPS(&ifp->if_snd);
    884 		}
    885 		splx(s);
    886 	}
    887 	if (error) {
    888 		for (m = m0; m; m = m0) {
    889 			m0 = m->m_nextpkt;
    890 			m->m_nextpkt = NULL;
    891 			m_freem(m);
    892 		}
    893 	}
    894 	return (error);
    895 }
    896 
    897 /*
    898  * Process a delayed payload checksum calculation.
    899  */
    900 void
    901 in_delayed_cksum(struct mbuf *m)
    902 {
    903 	struct ip *ip;
    904 	u_int16_t csum, offset;
    905 
    906 	ip = mtod(m, struct ip *);
    907 	offset = ip->ip_hl << 2;
    908 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    909 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    910 		csum = 0xffff;
    911 
    912 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    913 
    914 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    915 		/* This happen when ip options were inserted
    916 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    917 		    m->m_len, offset, ip->ip_p);
    918 		 */
    919 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    920 	} else
    921 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    922 }
    923 
    924 /*
    925  * Determine the maximum length of the options to be inserted;
    926  * we would far rather allocate too much space rather than too little.
    927  */
    928 
    929 u_int
    930 ip_optlen(struct inpcb *inp)
    931 {
    932 	struct mbuf *m = inp->inp_options;
    933 
    934 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
    935 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    936 	else
    937 		return 0;
    938 }
    939 
    940 
    941 /*
    942  * Insert IP options into preformed packet.
    943  * Adjust IP destination as required for IP source routing,
    944  * as indicated by a non-zero in_addr at the start of the options.
    945  */
    946 static struct mbuf *
    947 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    948 {
    949 	struct ipoption *p = mtod(opt, struct ipoption *);
    950 	struct mbuf *n;
    951 	struct ip *ip = mtod(m, struct ip *);
    952 	unsigned optlen;
    953 
    954 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    955 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    956 		return (m);		/* XXX should fail */
    957 	if (!in_nullhost(p->ipopt_dst))
    958 		ip->ip_dst = p->ipopt_dst;
    959 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    960 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    961 		if (n == 0)
    962 			return (m);
    963 		MCLAIM(n, m->m_owner);
    964 		M_MOVE_PKTHDR(n, m);
    965 		m->m_len -= sizeof(struct ip);
    966 		m->m_data += sizeof(struct ip);
    967 		n->m_next = m;
    968 		m = n;
    969 		m->m_len = optlen + sizeof(struct ip);
    970 		m->m_data += max_linkhdr;
    971 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    972 	} else {
    973 		m->m_data -= optlen;
    974 		m->m_len += optlen;
    975 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    976 	}
    977 	m->m_pkthdr.len += optlen;
    978 	ip = mtod(m, struct ip *);
    979 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    980 	*phlen = sizeof(struct ip) + optlen;
    981 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    982 	return (m);
    983 }
    984 
    985 /*
    986  * Copy options from ip to jp,
    987  * omitting those not copied during fragmentation.
    988  */
    989 int
    990 ip_optcopy(struct ip *ip, struct ip *jp)
    991 {
    992 	u_char *cp, *dp;
    993 	int opt, optlen, cnt;
    994 
    995 	cp = (u_char *)(ip + 1);
    996 	dp = (u_char *)(jp + 1);
    997 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    998 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    999 		opt = cp[0];
   1000 		if (opt == IPOPT_EOL)
   1001 			break;
   1002 		if (opt == IPOPT_NOP) {
   1003 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1004 			*dp++ = IPOPT_NOP;
   1005 			optlen = 1;
   1006 			continue;
   1007 		}
   1008 #ifdef DIAGNOSTIC
   1009 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1010 			panic("malformed IPv4 option passed to ip_optcopy");
   1011 #endif
   1012 		optlen = cp[IPOPT_OLEN];
   1013 #ifdef DIAGNOSTIC
   1014 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1015 			panic("malformed IPv4 option passed to ip_optcopy");
   1016 #endif
   1017 		/* bogus lengths should have been caught by ip_dooptions */
   1018 		if (optlen > cnt)
   1019 			optlen = cnt;
   1020 		if (IPOPT_COPIED(opt)) {
   1021 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1022 			dp += optlen;
   1023 		}
   1024 	}
   1025 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1026 		*dp++ = IPOPT_EOL;
   1027 	return (optlen);
   1028 }
   1029 
   1030 /*
   1031  * IP socket option processing.
   1032  */
   1033 int
   1034 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1035 {
   1036 	struct inpcb *inp = sotoinpcb(so);
   1037 	int optval = 0;
   1038 	int error = 0;
   1039 #if defined(FAST_IPSEC)
   1040 	struct lwp *l = curlwp;	/*XXX*/
   1041 #endif
   1042 
   1043 	if (sopt->sopt_level != IPPROTO_IP) {
   1044 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1045 			return 0;
   1046 		return ENOPROTOOPT;
   1047 	}
   1048 
   1049 	switch (op) {
   1050 	case PRCO_SETOPT:
   1051 		switch (sopt->sopt_name) {
   1052 		case IP_OPTIONS:
   1053 #ifdef notyet
   1054 		case IP_RETOPTS:
   1055 #endif
   1056 			error = ip_pcbopts(&inp->inp_options, sopt);
   1057 			break;
   1058 
   1059 		case IP_TOS:
   1060 		case IP_TTL:
   1061 		case IP_MINTTL:
   1062 		case IP_RECVOPTS:
   1063 		case IP_RECVRETOPTS:
   1064 		case IP_RECVDSTADDR:
   1065 		case IP_RECVIF:
   1066 		case IP_RECVTTL:
   1067 			error = sockopt_getint(sopt, &optval);
   1068 			if (error)
   1069 				break;
   1070 
   1071 			switch (sopt->sopt_name) {
   1072 			case IP_TOS:
   1073 				inp->inp_ip.ip_tos = optval;
   1074 				break;
   1075 
   1076 			case IP_TTL:
   1077 				inp->inp_ip.ip_ttl = optval;
   1078 				break;
   1079 
   1080 			case IP_MINTTL:
   1081 				if (optval > 0 && optval <= MAXTTL)
   1082 					inp->inp_ip_minttl = optval;
   1083 				else
   1084 					error = EINVAL;
   1085 				break;
   1086 #define	OPTSET(bit) \
   1087 	if (optval) \
   1088 		inp->inp_flags |= bit; \
   1089 	else \
   1090 		inp->inp_flags &= ~bit;
   1091 
   1092 			case IP_RECVOPTS:
   1093 				OPTSET(INP_RECVOPTS);
   1094 				break;
   1095 
   1096 			case IP_RECVRETOPTS:
   1097 				OPTSET(INP_RECVRETOPTS);
   1098 				break;
   1099 
   1100 			case IP_RECVDSTADDR:
   1101 				OPTSET(INP_RECVDSTADDR);
   1102 				break;
   1103 
   1104 			case IP_RECVIF:
   1105 				OPTSET(INP_RECVIF);
   1106 				break;
   1107 
   1108 			case IP_RECVTTL:
   1109 				OPTSET(INP_RECVTTL);
   1110 				break;
   1111 			}
   1112 		break;
   1113 #undef OPTSET
   1114 
   1115 		case IP_MULTICAST_IF:
   1116 		case IP_MULTICAST_TTL:
   1117 		case IP_MULTICAST_LOOP:
   1118 		case IP_ADD_MEMBERSHIP:
   1119 		case IP_DROP_MEMBERSHIP:
   1120 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1121 			break;
   1122 
   1123 		case IP_PORTRANGE:
   1124 			error = sockopt_getint(sopt, &optval);
   1125 			if (error)
   1126 				break;
   1127 
   1128 			/* INP_LOCK(inp); */
   1129 			switch (optval) {
   1130 			case IP_PORTRANGE_DEFAULT:
   1131 			case IP_PORTRANGE_HIGH:
   1132 				inp->inp_flags &= ~(INP_LOWPORT);
   1133 				break;
   1134 
   1135 			case IP_PORTRANGE_LOW:
   1136 				inp->inp_flags |= INP_LOWPORT;
   1137 				break;
   1138 
   1139 			default:
   1140 				error = EINVAL;
   1141 				break;
   1142 			}
   1143 			/* INP_UNLOCK(inp); */
   1144 			break;
   1145 
   1146 		case IP_PORTALGO:
   1147 			error = sockopt_getint(sopt, &optval);
   1148 			if (error)
   1149 				break;
   1150 
   1151 			error = rfc6056_algo_index_select(
   1152 			    (struct inpcb_hdr *)inp, optval);
   1153 			break;
   1154 
   1155 #if defined(FAST_IPSEC)
   1156 		case IP_IPSEC_POLICY:
   1157 			error = ipsec4_set_policy(inp, sopt->sopt_name,
   1158 			    sopt->sopt_data, sopt->sopt_size, l->l_cred);
   1159 			break;
   1160 #endif /*IPSEC*/
   1161 
   1162 		default:
   1163 			error = ENOPROTOOPT;
   1164 			break;
   1165 		}
   1166 		break;
   1167 
   1168 	case PRCO_GETOPT:
   1169 		switch (sopt->sopt_name) {
   1170 		case IP_OPTIONS:
   1171 		case IP_RETOPTS:
   1172 			if (inp->inp_options) {
   1173 				struct mbuf *m;
   1174 
   1175 				m = m_copym(inp->inp_options, 0, M_COPYALL,
   1176 				    M_DONTWAIT);
   1177 				if (m == NULL) {
   1178 					error = ENOBUFS;
   1179 					break;
   1180 				}
   1181 
   1182 				error = sockopt_setmbuf(sopt, m);
   1183 			}
   1184 			break;
   1185 
   1186 		case IP_TOS:
   1187 		case IP_TTL:
   1188 		case IP_MINTTL:
   1189 		case IP_RECVOPTS:
   1190 		case IP_RECVRETOPTS:
   1191 		case IP_RECVDSTADDR:
   1192 		case IP_RECVIF:
   1193 		case IP_RECVTTL:
   1194 		case IP_ERRORMTU:
   1195 			switch (sopt->sopt_name) {
   1196 			case IP_TOS:
   1197 				optval = inp->inp_ip.ip_tos;
   1198 				break;
   1199 
   1200 			case IP_TTL:
   1201 				optval = inp->inp_ip.ip_ttl;
   1202 				break;
   1203 
   1204 			case IP_MINTTL:
   1205 				optval = inp->inp_ip_minttl;
   1206 				break;
   1207 
   1208 			case IP_ERRORMTU:
   1209 				optval = inp->inp_errormtu;
   1210 				break;
   1211 
   1212 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1213 
   1214 			case IP_RECVOPTS:
   1215 				optval = OPTBIT(INP_RECVOPTS);
   1216 				break;
   1217 
   1218 			case IP_RECVRETOPTS:
   1219 				optval = OPTBIT(INP_RECVRETOPTS);
   1220 				break;
   1221 
   1222 			case IP_RECVDSTADDR:
   1223 				optval = OPTBIT(INP_RECVDSTADDR);
   1224 				break;
   1225 
   1226 			case IP_RECVIF:
   1227 				optval = OPTBIT(INP_RECVIF);
   1228 				break;
   1229 
   1230 			case IP_RECVTTL:
   1231 				optval = OPTBIT(INP_RECVTTL);
   1232 				break;
   1233 			}
   1234 			error = sockopt_setint(sopt, optval);
   1235 			break;
   1236 
   1237 #if 0	/* defined(FAST_IPSEC) */
   1238 		case IP_IPSEC_POLICY:
   1239 		{
   1240 			struct mbuf *m = NULL;
   1241 
   1242 			/* XXX this will return EINVAL as sopt is empty */
   1243 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1244 			    sopt->sopt_size, &m);
   1245 			if (error == 0)
   1246 				error = sockopt_setmbuf(sopt, m);
   1247 			break;
   1248 		}
   1249 #endif /*IPSEC*/
   1250 
   1251 		case IP_MULTICAST_IF:
   1252 		case IP_MULTICAST_TTL:
   1253 		case IP_MULTICAST_LOOP:
   1254 		case IP_ADD_MEMBERSHIP:
   1255 		case IP_DROP_MEMBERSHIP:
   1256 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1257 			break;
   1258 
   1259 		case IP_PORTRANGE:
   1260 			if (inp->inp_flags & INP_LOWPORT)
   1261 				optval = IP_PORTRANGE_LOW;
   1262 			else
   1263 				optval = IP_PORTRANGE_DEFAULT;
   1264 
   1265 			error = sockopt_setint(sopt, optval);
   1266 
   1267 			break;
   1268 
   1269 		case IP_PORTALGO:
   1270 			optval = ((struct inpcb_hdr *)inp)->inph_rfc6056algo;
   1271 			error = sockopt_setint(sopt, optval);
   1272 			break;
   1273 
   1274 		default:
   1275 			error = ENOPROTOOPT;
   1276 			break;
   1277 		}
   1278 		break;
   1279 	}
   1280 	return (error);
   1281 }
   1282 
   1283 /*
   1284  * Set up IP options in pcb for insertion in output packets.
   1285  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1286  * with destination address if source routed.
   1287  */
   1288 int
   1289 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
   1290 {
   1291 	struct mbuf *m;
   1292 	const u_char *cp;
   1293 	u_char *dp;
   1294 	int cnt;
   1295 	uint8_t optval, olen, offset;
   1296 
   1297 	/* turn off any old options */
   1298 	if (*pcbopt)
   1299 		(void)m_free(*pcbopt);
   1300 	*pcbopt = NULL;
   1301 
   1302 	cp = sopt->sopt_data;
   1303 	cnt = sopt->sopt_size;
   1304 
   1305 	if (cnt == 0)
   1306 		return (0);	/* Only turning off any previous options */
   1307 
   1308 #ifndef	__vax__
   1309 	if (cnt % sizeof(int32_t))
   1310 		return (EINVAL);
   1311 #endif
   1312 
   1313 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1314 	if (m == NULL)
   1315 		return (ENOBUFS);
   1316 
   1317 	dp = mtod(m, u_char *);
   1318 	memset(dp, 0, sizeof(struct in_addr));
   1319 	dp += sizeof(struct in_addr);
   1320 	m->m_len = sizeof(struct in_addr);
   1321 
   1322 	/*
   1323 	 * IP option list according to RFC791. Each option is of the form
   1324 	 *
   1325 	 *	[optval] [olen] [(olen - 2) data bytes]
   1326 	 *
   1327 	 * we validate the list and copy options to an mbuf for prepending
   1328 	 * to data packets. The IP first-hop destination address will be
   1329 	 * stored before actual options and is zero if unset.
   1330 	 */
   1331 	while (cnt > 0) {
   1332 		optval = cp[IPOPT_OPTVAL];
   1333 
   1334 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1335 			olen = 1;
   1336 		} else {
   1337 			if (cnt < IPOPT_OLEN + 1)
   1338 				goto bad;
   1339 
   1340 			olen = cp[IPOPT_OLEN];
   1341 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1342 				goto bad;
   1343 		}
   1344 
   1345 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1346 			/*
   1347 			 * user process specifies route as:
   1348 			 *	->A->B->C->D
   1349 			 * D must be our final destination (but we can't
   1350 			 * check that since we may not have connected yet).
   1351 			 * A is first hop destination, which doesn't appear in
   1352 			 * actual IP option, but is stored before the options.
   1353 			 */
   1354 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1355 				goto bad;
   1356 
   1357 			offset = cp[IPOPT_OFFSET];
   1358 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1359 			    sizeof(struct in_addr));
   1360 
   1361 			cp += sizeof(struct in_addr);
   1362 			cnt -= sizeof(struct in_addr);
   1363 			olen -= sizeof(struct in_addr);
   1364 
   1365 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1366 				goto bad;
   1367 
   1368 			memcpy(dp, cp, olen);
   1369 			dp[IPOPT_OPTVAL] = optval;
   1370 			dp[IPOPT_OLEN] = olen;
   1371 			dp[IPOPT_OFFSET] = offset;
   1372 			break;
   1373 		} else {
   1374 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1375 				goto bad;
   1376 
   1377 			memcpy(dp, cp, olen);
   1378 			break;
   1379 		}
   1380 
   1381 		dp += olen;
   1382 		m->m_len += olen;
   1383 
   1384 		if (optval == IPOPT_EOL)
   1385 			break;
   1386 
   1387 		cp += olen;
   1388 		cnt -= olen;
   1389 	}
   1390 
   1391 	*pcbopt = m;
   1392 	return (0);
   1393 
   1394 bad:
   1395 	(void)m_free(m);
   1396 	return (EINVAL);
   1397 }
   1398 
   1399 /*
   1400  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1401  */
   1402 static struct ifnet *
   1403 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1404 {
   1405 	int ifindex;
   1406 	struct ifnet *ifp = NULL;
   1407 	struct in_ifaddr *ia;
   1408 
   1409 	if (ifindexp)
   1410 		*ifindexp = 0;
   1411 	if (ntohl(a->s_addr) >> 24 == 0) {
   1412 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1413 		if (ifindex < 0 || if_indexlim <= ifindex)
   1414 			return NULL;
   1415 		ifp = ifindex2ifnet[ifindex];
   1416 		if (!ifp)
   1417 			return NULL;
   1418 		if (ifindexp)
   1419 			*ifindexp = ifindex;
   1420 	} else {
   1421 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1422 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1423 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1424 				ifp = ia->ia_ifp;
   1425 				break;
   1426 			}
   1427 		}
   1428 	}
   1429 	return ifp;
   1430 }
   1431 
   1432 static int
   1433 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1434 {
   1435 	u_int tval;
   1436 	u_char cval;
   1437 	int error;
   1438 
   1439 	if (sopt == NULL)
   1440 		return EINVAL;
   1441 
   1442 	switch (sopt->sopt_size) {
   1443 	case sizeof(u_char):
   1444 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1445 		tval = cval;
   1446 		break;
   1447 
   1448 	case sizeof(u_int):
   1449 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1450 		break;
   1451 
   1452 	default:
   1453 		error = EINVAL;
   1454 	}
   1455 
   1456 	if (error)
   1457 		return error;
   1458 
   1459 	if (tval > maxval)
   1460 		return EINVAL;
   1461 
   1462 	*val = tval;
   1463 	return 0;
   1464 }
   1465 
   1466 /*
   1467  * Set the IP multicast options in response to user setsockopt().
   1468  */
   1469 int
   1470 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
   1471 {
   1472 	struct in_addr addr;
   1473 	struct ip_mreq lmreq, *mreq;
   1474 	struct ifnet *ifp;
   1475 	struct ip_moptions *imo = *imop;
   1476 	int i, ifindex, error = 0;
   1477 
   1478 	if (imo == NULL) {
   1479 		/*
   1480 		 * No multicast option buffer attached to the pcb;
   1481 		 * allocate one and initialize to default values.
   1482 		 */
   1483 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1484 		if (imo == NULL)
   1485 			return ENOBUFS;
   1486 
   1487 		imo->imo_multicast_ifp = NULL;
   1488 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1489 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1490 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1491 		imo->imo_num_memberships = 0;
   1492 		*imop = imo;
   1493 	}
   1494 
   1495 	switch (sopt->sopt_name) {
   1496 	case IP_MULTICAST_IF:
   1497 		/*
   1498 		 * Select the interface for outgoing multicast packets.
   1499 		 */
   1500 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1501 		if (error)
   1502 			break;
   1503 
   1504 		/*
   1505 		 * INADDR_ANY is used to remove a previous selection.
   1506 		 * When no interface is selected, a default one is
   1507 		 * chosen every time a multicast packet is sent.
   1508 		 */
   1509 		if (in_nullhost(addr)) {
   1510 			imo->imo_multicast_ifp = NULL;
   1511 			break;
   1512 		}
   1513 		/*
   1514 		 * The selected interface is identified by its local
   1515 		 * IP address.  Find the interface and confirm that
   1516 		 * it supports multicasting.
   1517 		 */
   1518 		ifp = ip_multicast_if(&addr, &ifindex);
   1519 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1520 			error = EADDRNOTAVAIL;
   1521 			break;
   1522 		}
   1523 		imo->imo_multicast_ifp = ifp;
   1524 		if (ifindex)
   1525 			imo->imo_multicast_addr = addr;
   1526 		else
   1527 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1528 		break;
   1529 
   1530 	case IP_MULTICAST_TTL:
   1531 		/*
   1532 		 * Set the IP time-to-live for outgoing multicast packets.
   1533 		 */
   1534 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1535 		break;
   1536 
   1537 	case IP_MULTICAST_LOOP:
   1538 		/*
   1539 		 * Set the loopback flag for outgoing multicast packets.
   1540 		 * Must be zero or one.
   1541 		 */
   1542 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1543 		break;
   1544 
   1545 	case IP_ADD_MEMBERSHIP:
   1546 		/*
   1547 		 * Add a multicast group membership.
   1548 		 * Group must be a valid IP multicast address.
   1549 		 */
   1550 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1551 		if (error)
   1552 			break;
   1553 
   1554 		mreq = &lmreq;
   1555 
   1556 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1557 			error = EINVAL;
   1558 			break;
   1559 		}
   1560 		/*
   1561 		 * If no interface address was provided, use the interface of
   1562 		 * the route to the given multicast address.
   1563 		 */
   1564 		if (in_nullhost(mreq->imr_interface)) {
   1565 			struct rtentry *rt;
   1566 			union {
   1567 				struct sockaddr		dst;
   1568 				struct sockaddr_in	dst4;
   1569 			} u;
   1570 			struct route ro;
   1571 
   1572 			memset(&ro, 0, sizeof(ro));
   1573 
   1574 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1575 			rtcache_setdst(&ro, &u.dst);
   1576 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1577 			                                        : NULL;
   1578 			rtcache_free(&ro);
   1579 		} else {
   1580 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1581 		}
   1582 		/*
   1583 		 * See if we found an interface, and confirm that it
   1584 		 * supports multicast.
   1585 		 */
   1586 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1587 			error = EADDRNOTAVAIL;
   1588 			break;
   1589 		}
   1590 		/*
   1591 		 * See if the membership already exists or if all the
   1592 		 * membership slots are full.
   1593 		 */
   1594 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1595 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1596 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1597 				      mreq->imr_multiaddr))
   1598 				break;
   1599 		}
   1600 		if (i < imo->imo_num_memberships) {
   1601 			error = EADDRINUSE;
   1602 			break;
   1603 		}
   1604 		if (i == IP_MAX_MEMBERSHIPS) {
   1605 			error = ETOOMANYREFS;
   1606 			break;
   1607 		}
   1608 		/*
   1609 		 * Everything looks good; add a new record to the multicast
   1610 		 * address list for the given interface.
   1611 		 */
   1612 		if ((imo->imo_membership[i] =
   1613 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1614 			error = ENOBUFS;
   1615 			break;
   1616 		}
   1617 		++imo->imo_num_memberships;
   1618 		break;
   1619 
   1620 	case IP_DROP_MEMBERSHIP:
   1621 		/*
   1622 		 * Drop a multicast group membership.
   1623 		 * Group must be a valid IP multicast address.
   1624 		 */
   1625 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1626 		if (error)
   1627 			break;
   1628 
   1629 		mreq = &lmreq;
   1630 
   1631 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1632 			error = EINVAL;
   1633 			break;
   1634 		}
   1635 		/*
   1636 		 * If an interface address was specified, get a pointer
   1637 		 * to its ifnet structure.
   1638 		 */
   1639 		if (in_nullhost(mreq->imr_interface))
   1640 			ifp = NULL;
   1641 		else {
   1642 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1643 			if (ifp == NULL) {
   1644 				error = EADDRNOTAVAIL;
   1645 				break;
   1646 			}
   1647 		}
   1648 		/*
   1649 		 * Find the membership in the membership array.
   1650 		 */
   1651 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1652 			if ((ifp == NULL ||
   1653 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1654 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1655 				       mreq->imr_multiaddr))
   1656 				break;
   1657 		}
   1658 		if (i == imo->imo_num_memberships) {
   1659 			error = EADDRNOTAVAIL;
   1660 			break;
   1661 		}
   1662 		/*
   1663 		 * Give up the multicast address record to which the
   1664 		 * membership points.
   1665 		 */
   1666 		in_delmulti(imo->imo_membership[i]);
   1667 		/*
   1668 		 * Remove the gap in the membership array.
   1669 		 */
   1670 		for (++i; i < imo->imo_num_memberships; ++i)
   1671 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1672 		--imo->imo_num_memberships;
   1673 		break;
   1674 
   1675 	default:
   1676 		error = EOPNOTSUPP;
   1677 		break;
   1678 	}
   1679 
   1680 	/*
   1681 	 * If all options have default values, no need to keep the mbuf.
   1682 	 */
   1683 	if (imo->imo_multicast_ifp == NULL &&
   1684 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1685 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1686 	    imo->imo_num_memberships == 0) {
   1687 		kmem_free(imo, sizeof(*imo));
   1688 		*imop = NULL;
   1689 	}
   1690 
   1691 	return error;
   1692 }
   1693 
   1694 /*
   1695  * Return the IP multicast options in response to user getsockopt().
   1696  */
   1697 int
   1698 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1699 {
   1700 	struct in_addr addr;
   1701 	struct in_ifaddr *ia;
   1702 	int error;
   1703 	uint8_t optval;
   1704 
   1705 	error = 0;
   1706 
   1707 	switch (sopt->sopt_name) {
   1708 	case IP_MULTICAST_IF:
   1709 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1710 			addr = zeroin_addr;
   1711 		else if (imo->imo_multicast_addr.s_addr) {
   1712 			/* return the value user has set */
   1713 			addr = imo->imo_multicast_addr;
   1714 		} else {
   1715 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1716 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1717 		}
   1718 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1719 		break;
   1720 
   1721 	case IP_MULTICAST_TTL:
   1722 		optval = imo ? imo->imo_multicast_ttl
   1723 			     : IP_DEFAULT_MULTICAST_TTL;
   1724 
   1725 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1726 		break;
   1727 
   1728 	case IP_MULTICAST_LOOP:
   1729 		optval = imo ? imo->imo_multicast_loop
   1730 			     : IP_DEFAULT_MULTICAST_LOOP;
   1731 
   1732 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1733 		break;
   1734 
   1735 	default:
   1736 		error = EOPNOTSUPP;
   1737 	}
   1738 
   1739 	return (error);
   1740 }
   1741 
   1742 /*
   1743  * Discard the IP multicast options.
   1744  */
   1745 void
   1746 ip_freemoptions(struct ip_moptions *imo)
   1747 {
   1748 	int i;
   1749 
   1750 	if (imo != NULL) {
   1751 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1752 			in_delmulti(imo->imo_membership[i]);
   1753 		kmem_free(imo, sizeof(*imo));
   1754 	}
   1755 }
   1756 
   1757 /*
   1758  * Routine called from ip_output() to loop back a copy of an IP multicast
   1759  * packet to the input queue of a specified interface.  Note that this
   1760  * calls the output routine of the loopback "driver", but with an interface
   1761  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1762  */
   1763 static void
   1764 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1765 {
   1766 	struct ip *ip;
   1767 	struct mbuf *copym;
   1768 
   1769 	copym = m_copypacket(m, M_DONTWAIT);
   1770 	if (copym != NULL
   1771 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1772 		copym = m_pullup(copym, sizeof(struct ip));
   1773 	if (copym == NULL)
   1774 		return;
   1775 	/*
   1776 	 * We don't bother to fragment if the IP length is greater
   1777 	 * than the interface's MTU.  Can this possibly matter?
   1778 	 */
   1779 	ip = mtod(copym, struct ip *);
   1780 
   1781 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1782 		in_delayed_cksum(copym);
   1783 		copym->m_pkthdr.csum_flags &=
   1784 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1785 	}
   1786 
   1787 	ip->ip_sum = 0;
   1788 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1789 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1790 }
   1791