ip_output.c revision 1.216 1 /* $NetBSD: ip_output.c,v 1.216 2012/06/22 14:54:35 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.216 2012/06/22 14:54:35 christos Exp $");
95
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/kmem.h>
104 #include <sys/mbuf.h>
105 #include <sys/errno.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/kauth.h>
110 #ifdef FAST_IPSEC
111 #include <sys/domain.h>
112 #endif
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115
116 #include <net/if.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/rfc6056.h>
129
130 #ifdef MROUTING
131 #include <netinet/ip_mroute.h>
132 #endif
133
134 #ifdef FAST_IPSEC
135 #include <netipsec/ipsec.h>
136 #include <netipsec/key.h>
137 #include <netipsec/xform.h>
138 #endif /* FAST_IPSEC*/
139
140 #ifdef IPSEC_NAT_T
141 #include <netinet/udp.h>
142 #endif
143
144 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
145 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
146 static void ip_mloopback(struct ifnet *, struct mbuf *,
147 const struct sockaddr_in *);
148
149 #ifdef PFIL_HOOKS
150 extern struct pfil_head inet_pfil_hook; /* XXX */
151 #endif
152
153 int ip_do_loopback_cksum = 0;
154
155 /*
156 * IP output. The packet in mbuf chain m contains a skeletal IP
157 * header (with len, off, ttl, proto, tos, src, dst).
158 * The mbuf chain containing the packet will be freed.
159 * The mbuf opt, if present, will not be freed.
160 */
161 int
162 ip_output(struct mbuf *m0, ...)
163 {
164 struct rtentry *rt;
165 struct ip *ip;
166 struct ifnet *ifp;
167 struct mbuf *m = m0;
168 int hlen = sizeof (struct ip);
169 int len, error = 0;
170 struct route iproute;
171 const struct sockaddr_in *dst;
172 struct in_ifaddr *ia;
173 struct ifaddr *xifa;
174 struct mbuf *opt;
175 struct route *ro;
176 int flags, sw_csum;
177 int *mtu_p;
178 u_long mtu;
179 struct ip_moptions *imo;
180 struct socket *so;
181 va_list ap;
182 #ifdef IPSEC_NAT_T
183 int natt_frag = 0;
184 #endif
185 #ifdef FAST_IPSEC
186 struct inpcb *inp;
187 struct secpolicy *sp = NULL;
188 int s;
189 #endif
190 u_int16_t ip_len;
191 union {
192 struct sockaddr dst;
193 struct sockaddr_in dst4;
194 } u;
195 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
196 * to the nexthop
197 */
198
199 len = 0;
200 va_start(ap, m0);
201 opt = va_arg(ap, struct mbuf *);
202 ro = va_arg(ap, struct route *);
203 flags = va_arg(ap, int);
204 imo = va_arg(ap, struct ip_moptions *);
205 so = va_arg(ap, struct socket *);
206 if (flags & IP_RETURNMTU)
207 mtu_p = va_arg(ap, int *);
208 else
209 mtu_p = NULL;
210 va_end(ap);
211
212 MCLAIM(m, &ip_tx_mowner);
213 #ifdef FAST_IPSEC
214 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
215 inp = (struct inpcb *)so->so_pcb;
216 else
217 inp = NULL;
218 #endif /* FAST_IPSEC */
219
220 #ifdef DIAGNOSTIC
221 if ((m->m_flags & M_PKTHDR) == 0)
222 panic("ip_output: no HDR");
223
224 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
225 panic("ip_output: IPv6 checksum offload flags: %d",
226 m->m_pkthdr.csum_flags);
227 }
228
229 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
230 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
231 panic("ip_output: conflicting checksum offload flags: %d",
232 m->m_pkthdr.csum_flags);
233 }
234 #endif
235 if (opt) {
236 m = ip_insertoptions(m, opt, &len);
237 if (len >= sizeof(struct ip))
238 hlen = len;
239 }
240 ip = mtod(m, struct ip *);
241 /*
242 * Fill in IP header.
243 */
244 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
245 ip->ip_v = IPVERSION;
246 ip->ip_off = htons(0);
247 /* ip->ip_id filled in after we find out source ia */
248 ip->ip_hl = hlen >> 2;
249 IP_STATINC(IP_STAT_LOCALOUT);
250 } else {
251 hlen = ip->ip_hl << 2;
252 }
253 /*
254 * Route packet.
255 */
256 memset(&iproute, 0, sizeof(iproute));
257 if (ro == NULL)
258 ro = &iproute;
259 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
260 dst = satocsin(rtcache_getdst(ro));
261 /*
262 * If there is a cached route,
263 * check that it is to the same destination
264 * and is still up. If not, free it and try again.
265 * The address family should also be checked in case of sharing the
266 * cache with IPv6.
267 */
268 if (dst == NULL)
269 ;
270 else if (dst->sin_family != AF_INET ||
271 !in_hosteq(dst->sin_addr, ip->ip_dst))
272 rtcache_free(ro);
273
274 if ((rt = rtcache_validate(ro)) == NULL &&
275 (rt = rtcache_update(ro, 1)) == NULL) {
276 dst = &u.dst4;
277 rtcache_setdst(ro, &u.dst);
278 }
279 /*
280 * If routing to interface only,
281 * short circuit routing lookup.
282 */
283 if (flags & IP_ROUTETOIF) {
284 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
285 IP_STATINC(IP_STAT_NOROUTE);
286 error = ENETUNREACH;
287 goto bad;
288 }
289 ifp = ia->ia_ifp;
290 mtu = ifp->if_mtu;
291 ip->ip_ttl = 1;
292 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
293 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
294 imo != NULL && imo->imo_multicast_ifp != NULL) {
295 ifp = imo->imo_multicast_ifp;
296 mtu = ifp->if_mtu;
297 IFP_TO_IA(ifp, ia);
298 } else {
299 if (rt == NULL)
300 rt = rtcache_init(ro);
301 if (rt == NULL) {
302 IP_STATINC(IP_STAT_NOROUTE);
303 error = EHOSTUNREACH;
304 goto bad;
305 }
306 ia = ifatoia(rt->rt_ifa);
307 ifp = rt->rt_ifp;
308 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
309 mtu = ifp->if_mtu;
310 rt->rt_use++;
311 if (rt->rt_flags & RTF_GATEWAY)
312 dst = satosin(rt->rt_gateway);
313 }
314 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
315 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
316 struct in_multi *inm;
317
318 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
319 M_BCAST : M_MCAST;
320 /*
321 * See if the caller provided any multicast options
322 */
323 if (imo != NULL)
324 ip->ip_ttl = imo->imo_multicast_ttl;
325 else
326 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
327
328 /*
329 * if we don't know the outgoing ifp yet, we can't generate
330 * output
331 */
332 if (!ifp) {
333 IP_STATINC(IP_STAT_NOROUTE);
334 error = ENETUNREACH;
335 goto bad;
336 }
337
338 /*
339 * If the packet is multicast or broadcast, confirm that
340 * the outgoing interface can transmit it.
341 */
342 if (((m->m_flags & M_MCAST) &&
343 (ifp->if_flags & IFF_MULTICAST) == 0) ||
344 ((m->m_flags & M_BCAST) &&
345 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
346 IP_STATINC(IP_STAT_NOROUTE);
347 error = ENETUNREACH;
348 goto bad;
349 }
350 /*
351 * If source address not specified yet, use an address
352 * of outgoing interface.
353 */
354 if (in_nullhost(ip->ip_src)) {
355 struct in_ifaddr *xia;
356
357 IFP_TO_IA(ifp, xia);
358 if (!xia) {
359 error = EADDRNOTAVAIL;
360 goto bad;
361 }
362 xifa = &xia->ia_ifa;
363 if (xifa->ifa_getifa != NULL) {
364 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
365 }
366 ip->ip_src = xia->ia_addr.sin_addr;
367 }
368
369 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
370 if (inm != NULL &&
371 (imo == NULL || imo->imo_multicast_loop)) {
372 /*
373 * If we belong to the destination multicast group
374 * on the outgoing interface, and the caller did not
375 * forbid loopback, loop back a copy.
376 */
377 ip_mloopback(ifp, m, &u.dst4);
378 }
379 #ifdef MROUTING
380 else {
381 /*
382 * If we are acting as a multicast router, perform
383 * multicast forwarding as if the packet had just
384 * arrived on the interface to which we are about
385 * to send. The multicast forwarding function
386 * recursively calls this function, using the
387 * IP_FORWARDING flag to prevent infinite recursion.
388 *
389 * Multicasts that are looped back by ip_mloopback(),
390 * above, will be forwarded by the ip_input() routine,
391 * if necessary.
392 */
393 extern struct socket *ip_mrouter;
394
395 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
396 if (ip_mforward(m, ifp) != 0) {
397 m_freem(m);
398 goto done;
399 }
400 }
401 }
402 #endif
403 /*
404 * Multicasts with a time-to-live of zero may be looped-
405 * back, above, but must not be transmitted on a network.
406 * Also, multicasts addressed to the loopback interface
407 * are not sent -- the above call to ip_mloopback() will
408 * loop back a copy if this host actually belongs to the
409 * destination group on the loopback interface.
410 */
411 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
412 m_freem(m);
413 goto done;
414 }
415
416 goto sendit;
417 }
418 /*
419 * If source address not specified yet, use address
420 * of outgoing interface.
421 */
422 if (in_nullhost(ip->ip_src)) {
423 xifa = &ia->ia_ifa;
424 if (xifa->ifa_getifa != NULL)
425 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
426 ip->ip_src = ia->ia_addr.sin_addr;
427 }
428
429 /*
430 * packets with Class-D address as source are not valid per
431 * RFC 1112
432 */
433 if (IN_MULTICAST(ip->ip_src.s_addr)) {
434 IP_STATINC(IP_STAT_ODROPPED);
435 error = EADDRNOTAVAIL;
436 goto bad;
437 }
438
439 /*
440 * Look for broadcast address and
441 * and verify user is allowed to send
442 * such a packet.
443 */
444 if (in_broadcast(dst->sin_addr, ifp)) {
445 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
446 error = EADDRNOTAVAIL;
447 goto bad;
448 }
449 if ((flags & IP_ALLOWBROADCAST) == 0) {
450 error = EACCES;
451 goto bad;
452 }
453 /* don't allow broadcast messages to be fragmented */
454 if (ntohs(ip->ip_len) > ifp->if_mtu) {
455 error = EMSGSIZE;
456 goto bad;
457 }
458 m->m_flags |= M_BCAST;
459 } else
460 m->m_flags &= ~M_BCAST;
461
462 sendit:
463 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
464 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
465 ip->ip_id = 0;
466 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
467 ip->ip_id = ip_newid(ia);
468 } else {
469
470 /*
471 * TSO capable interfaces (typically?) increment
472 * ip_id for each segment.
473 * "allocate" enough ids here to increase the chance
474 * for them to be unique.
475 *
476 * note that the following calculation is not
477 * needed to be precise. wasting some ip_id is fine.
478 */
479
480 unsigned int segsz = m->m_pkthdr.segsz;
481 unsigned int datasz = ntohs(ip->ip_len) - hlen;
482 unsigned int num = howmany(datasz, segsz);
483
484 ip->ip_id = ip_newid_range(ia, num);
485 }
486 }
487 /*
488 * If we're doing Path MTU Discovery, we need to set DF unless
489 * the route's MTU is locked.
490 */
491 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
492 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
493 ip->ip_off |= htons(IP_DF);
494
495 /* Remember the current ip_len */
496 ip_len = ntohs(ip->ip_len);
497
498 #ifdef FAST_IPSEC
499 /*
500 * Check the security policy (SP) for the packet and, if
501 * required, do IPsec-related processing. There are two
502 * cases here; the first time a packet is sent through
503 * it will be untagged and handled by ipsec4_checkpolicy.
504 * If the packet is resubmitted to ip_output (e.g. after
505 * AH, ESP, etc. processing), there will be a tag to bypass
506 * the lookup and related policy checking.
507 */
508 if (!ipsec_outdone(m)) {
509 s = splsoftnet();
510 if (inp != NULL &&
511 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
512 splx(s);
513 goto spd_done;
514 }
515 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
516 &error, inp);
517 /*
518 * There are four return cases:
519 * sp != NULL apply IPsec policy
520 * sp == NULL, error == 0 no IPsec handling needed
521 * sp == NULL, error == -EINVAL discard packet w/o error
522 * sp == NULL, error != 0 discard packet, report error
523 */
524 if (sp != NULL) {
525 #ifdef IPSEC_NAT_T
526 /*
527 * NAT-T ESP fragmentation: don't do IPSec processing now,
528 * we'll do it on each fragmented packet.
529 */
530 if (sp->req->sav &&
531 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
532 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
533 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
534 natt_frag = 1;
535 mtu = sp->req->sav->esp_frag;
536 splx(s);
537 goto spd_done;
538 }
539 }
540 #endif /* IPSEC_NAT_T */
541
542 /*
543 * Do delayed checksums now because we send before
544 * this is done in the normal processing path.
545 */
546 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
547 in_delayed_cksum(m);
548 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
549 }
550
551 #ifdef __FreeBSD__
552 ip->ip_len = htons(ip->ip_len);
553 ip->ip_off = htons(ip->ip_off);
554 #endif
555
556 /* NB: callee frees mbuf */
557 error = ipsec4_process_packet(m, sp->req, flags, 0);
558 /*
559 * Preserve KAME behaviour: ENOENT can be returned
560 * when an SA acquire is in progress. Don't propagate
561 * this to user-level; it confuses applications.
562 *
563 * XXX this will go away when the SADB is redone.
564 */
565 if (error == ENOENT)
566 error = 0;
567 splx(s);
568 goto done;
569 } else {
570 splx(s);
571
572 if (error != 0) {
573 /*
574 * Hack: -EINVAL is used to signal that a packet
575 * should be silently discarded. This is typically
576 * because we asked key management for an SA and
577 * it was delayed (e.g. kicked up to IKE).
578 */
579 if (error == -EINVAL)
580 error = 0;
581 goto bad;
582 } else {
583 /* No IPsec processing for this packet. */
584 }
585 }
586 }
587 spd_done:
588 #endif /* FAST_IPSEC */
589
590 #ifdef PFIL_HOOKS
591 /*
592 * Run through list of hooks for output packets.
593 */
594 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
595 goto done;
596 if (m == NULL)
597 goto done;
598
599 ip = mtod(m, struct ip *);
600 hlen = ip->ip_hl << 2;
601 ip_len = ntohs(ip->ip_len);
602 #endif /* PFIL_HOOKS */
603
604 m->m_pkthdr.csum_data |= hlen << 16;
605
606 #if IFA_STATS
607 /*
608 * search for the source address structure to
609 * maintain output statistics.
610 */
611 INADDR_TO_IA(ip->ip_src, ia);
612 #endif
613
614 /* Maybe skip checksums on loopback interfaces. */
615 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
616 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
617 }
618 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
619 /*
620 * If small enough for mtu of path, or if using TCP segmentation
621 * offload, can just send directly.
622 */
623 if (ip_len <= mtu ||
624 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
625 #if IFA_STATS
626 if (ia)
627 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
628 #endif
629 /*
630 * Always initialize the sum to 0! Some HW assisted
631 * checksumming requires this.
632 */
633 ip->ip_sum = 0;
634
635 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
636 /*
637 * Perform any checksums that the hardware can't do
638 * for us.
639 *
640 * XXX Does any hardware require the {th,uh}_sum
641 * XXX fields to be 0?
642 */
643 if (sw_csum & M_CSUM_IPv4) {
644 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
645 ip->ip_sum = in_cksum(m, hlen);
646 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
647 }
648 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
649 if (IN_NEED_CHECKSUM(ifp,
650 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
651 in_delayed_cksum(m);
652 }
653 m->m_pkthdr.csum_flags &=
654 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
655 }
656 }
657
658 if (__predict_true(
659 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
660 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
661 KERNEL_LOCK(1, NULL);
662 error =
663 (*ifp->if_output)(ifp, m,
664 (m->m_flags & M_MCAST) ?
665 sintocsa(rdst) : sintocsa(dst),
666 rt);
667 KERNEL_UNLOCK_ONE(NULL);
668 } else {
669 error =
670 ip_tso_output(ifp, m,
671 (m->m_flags & M_MCAST) ?
672 sintocsa(rdst) : sintocsa(dst),
673 rt);
674 }
675 goto done;
676 }
677
678 /*
679 * We can't use HW checksumming if we're about to
680 * to fragment the packet.
681 *
682 * XXX Some hardware can do this.
683 */
684 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
685 if (IN_NEED_CHECKSUM(ifp,
686 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
687 in_delayed_cksum(m);
688 }
689 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
690 }
691
692 /*
693 * Too large for interface; fragment if possible.
694 * Must be able to put at least 8 bytes per fragment.
695 */
696 if (ntohs(ip->ip_off) & IP_DF) {
697 if (flags & IP_RETURNMTU)
698 *mtu_p = mtu;
699 error = EMSGSIZE;
700 IP_STATINC(IP_STAT_CANTFRAG);
701 goto bad;
702 }
703
704 error = ip_fragment(m, ifp, mtu);
705 if (error) {
706 m = NULL;
707 goto bad;
708 }
709
710 for (; m; m = m0) {
711 m0 = m->m_nextpkt;
712 m->m_nextpkt = 0;
713 if (error == 0) {
714 #if IFA_STATS
715 if (ia)
716 ia->ia_ifa.ifa_data.ifad_outbytes +=
717 ntohs(ip->ip_len);
718 #endif
719 #ifdef IPSEC_NAT_T
720 /*
721 * If we get there, the packet has not been handeld by
722 * IPSec whereas it should have. Now that it has been
723 * fragmented, re-inject it in ip_output so that IPsec
724 * processing can occur.
725 */
726 if (natt_frag) {
727 error = ip_output(m, opt,
728 ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
729 } else
730 #endif /* IPSEC_NAT_T */
731 {
732 KASSERT((m->m_pkthdr.csum_flags &
733 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
734 KERNEL_LOCK(1, NULL);
735 error = (*ifp->if_output)(ifp, m,
736 (m->m_flags & M_MCAST) ?
737 sintocsa(rdst) : sintocsa(dst),
738 rt);
739 KERNEL_UNLOCK_ONE(NULL);
740 }
741 } else
742 m_freem(m);
743 }
744
745 if (error == 0)
746 IP_STATINC(IP_STAT_FRAGMENTED);
747 done:
748 rtcache_free(&iproute);
749
750 #ifdef FAST_IPSEC
751 if (sp != NULL)
752 KEY_FREESP(&sp);
753 #endif /* FAST_IPSEC */
754
755 return (error);
756 bad:
757 m_freem(m);
758 goto done;
759 }
760
761 int
762 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
763 {
764 struct ip *ip, *mhip;
765 struct mbuf *m0;
766 int len, hlen, off;
767 int mhlen, firstlen;
768 struct mbuf **mnext;
769 int sw_csum = m->m_pkthdr.csum_flags;
770 int fragments = 0;
771 int s;
772 int error = 0;
773
774 ip = mtod(m, struct ip *);
775 hlen = ip->ip_hl << 2;
776 if (ifp != NULL)
777 sw_csum &= ~ifp->if_csum_flags_tx;
778
779 len = (mtu - hlen) &~ 7;
780 if (len < 8) {
781 m_freem(m);
782 return (EMSGSIZE);
783 }
784
785 firstlen = len;
786 mnext = &m->m_nextpkt;
787
788 /*
789 * Loop through length of segment after first fragment,
790 * make new header and copy data of each part and link onto chain.
791 */
792 m0 = m;
793 mhlen = sizeof (struct ip);
794 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
795 MGETHDR(m, M_DONTWAIT, MT_HEADER);
796 if (m == 0) {
797 error = ENOBUFS;
798 IP_STATINC(IP_STAT_ODROPPED);
799 goto sendorfree;
800 }
801 MCLAIM(m, m0->m_owner);
802 *mnext = m;
803 mnext = &m->m_nextpkt;
804 m->m_data += max_linkhdr;
805 mhip = mtod(m, struct ip *);
806 *mhip = *ip;
807 /* we must inherit MCAST and BCAST flags */
808 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
809 if (hlen > sizeof (struct ip)) {
810 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
811 mhip->ip_hl = mhlen >> 2;
812 }
813 m->m_len = mhlen;
814 mhip->ip_off = ((off - hlen) >> 3) +
815 (ntohs(ip->ip_off) & ~IP_MF);
816 if (ip->ip_off & htons(IP_MF))
817 mhip->ip_off |= IP_MF;
818 if (off + len >= ntohs(ip->ip_len))
819 len = ntohs(ip->ip_len) - off;
820 else
821 mhip->ip_off |= IP_MF;
822 HTONS(mhip->ip_off);
823 mhip->ip_len = htons((u_int16_t)(len + mhlen));
824 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
825 if (m->m_next == 0) {
826 error = ENOBUFS; /* ??? */
827 IP_STATINC(IP_STAT_ODROPPED);
828 goto sendorfree;
829 }
830 m->m_pkthdr.len = mhlen + len;
831 m->m_pkthdr.rcvif = NULL;
832 mhip->ip_sum = 0;
833 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
834 if (sw_csum & M_CSUM_IPv4) {
835 mhip->ip_sum = in_cksum(m, mhlen);
836 } else {
837 /*
838 * checksum is hw-offloaded or not necessary.
839 */
840 m->m_pkthdr.csum_flags |=
841 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
842 m->m_pkthdr.csum_data |= mhlen << 16;
843 KASSERT(!(ifp != NULL &&
844 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
845 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
846 }
847 IP_STATINC(IP_STAT_OFRAGMENTS);
848 fragments++;
849 }
850 /*
851 * Update first fragment by trimming what's been copied out
852 * and updating header, then send each fragment (in order).
853 */
854 m = m0;
855 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
856 m->m_pkthdr.len = hlen + firstlen;
857 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
858 ip->ip_off |= htons(IP_MF);
859 ip->ip_sum = 0;
860 if (sw_csum & M_CSUM_IPv4) {
861 ip->ip_sum = in_cksum(m, hlen);
862 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
863 } else {
864 /*
865 * checksum is hw-offloaded or not necessary.
866 */
867 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
868 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
869 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
870 sizeof(struct ip));
871 }
872 sendorfree:
873 /*
874 * If there is no room for all the fragments, don't queue
875 * any of them.
876 */
877 if (ifp != NULL) {
878 s = splnet();
879 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
880 error == 0) {
881 error = ENOBUFS;
882 IP_STATINC(IP_STAT_ODROPPED);
883 IFQ_INC_DROPS(&ifp->if_snd);
884 }
885 splx(s);
886 }
887 if (error) {
888 for (m = m0; m; m = m0) {
889 m0 = m->m_nextpkt;
890 m->m_nextpkt = NULL;
891 m_freem(m);
892 }
893 }
894 return (error);
895 }
896
897 /*
898 * Process a delayed payload checksum calculation.
899 */
900 void
901 in_delayed_cksum(struct mbuf *m)
902 {
903 struct ip *ip;
904 u_int16_t csum, offset;
905
906 ip = mtod(m, struct ip *);
907 offset = ip->ip_hl << 2;
908 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
909 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
910 csum = 0xffff;
911
912 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
913
914 if ((offset + sizeof(u_int16_t)) > m->m_len) {
915 /* This happen when ip options were inserted
916 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
917 m->m_len, offset, ip->ip_p);
918 */
919 m_copyback(m, offset, sizeof(csum), (void *) &csum);
920 } else
921 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
922 }
923
924 /*
925 * Determine the maximum length of the options to be inserted;
926 * we would far rather allocate too much space rather than too little.
927 */
928
929 u_int
930 ip_optlen(struct inpcb *inp)
931 {
932 struct mbuf *m = inp->inp_options;
933
934 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
935 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
936 else
937 return 0;
938 }
939
940
941 /*
942 * Insert IP options into preformed packet.
943 * Adjust IP destination as required for IP source routing,
944 * as indicated by a non-zero in_addr at the start of the options.
945 */
946 static struct mbuf *
947 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
948 {
949 struct ipoption *p = mtod(opt, struct ipoption *);
950 struct mbuf *n;
951 struct ip *ip = mtod(m, struct ip *);
952 unsigned optlen;
953
954 optlen = opt->m_len - sizeof(p->ipopt_dst);
955 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
956 return (m); /* XXX should fail */
957 if (!in_nullhost(p->ipopt_dst))
958 ip->ip_dst = p->ipopt_dst;
959 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
960 MGETHDR(n, M_DONTWAIT, MT_HEADER);
961 if (n == 0)
962 return (m);
963 MCLAIM(n, m->m_owner);
964 M_MOVE_PKTHDR(n, m);
965 m->m_len -= sizeof(struct ip);
966 m->m_data += sizeof(struct ip);
967 n->m_next = m;
968 m = n;
969 m->m_len = optlen + sizeof(struct ip);
970 m->m_data += max_linkhdr;
971 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
972 } else {
973 m->m_data -= optlen;
974 m->m_len += optlen;
975 memmove(mtod(m, void *), ip, sizeof(struct ip));
976 }
977 m->m_pkthdr.len += optlen;
978 ip = mtod(m, struct ip *);
979 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
980 *phlen = sizeof(struct ip) + optlen;
981 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
982 return (m);
983 }
984
985 /*
986 * Copy options from ip to jp,
987 * omitting those not copied during fragmentation.
988 */
989 int
990 ip_optcopy(struct ip *ip, struct ip *jp)
991 {
992 u_char *cp, *dp;
993 int opt, optlen, cnt;
994
995 cp = (u_char *)(ip + 1);
996 dp = (u_char *)(jp + 1);
997 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
998 for (; cnt > 0; cnt -= optlen, cp += optlen) {
999 opt = cp[0];
1000 if (opt == IPOPT_EOL)
1001 break;
1002 if (opt == IPOPT_NOP) {
1003 /* Preserve for IP mcast tunnel's LSRR alignment. */
1004 *dp++ = IPOPT_NOP;
1005 optlen = 1;
1006 continue;
1007 }
1008 #ifdef DIAGNOSTIC
1009 if (cnt < IPOPT_OLEN + sizeof(*cp))
1010 panic("malformed IPv4 option passed to ip_optcopy");
1011 #endif
1012 optlen = cp[IPOPT_OLEN];
1013 #ifdef DIAGNOSTIC
1014 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1015 panic("malformed IPv4 option passed to ip_optcopy");
1016 #endif
1017 /* bogus lengths should have been caught by ip_dooptions */
1018 if (optlen > cnt)
1019 optlen = cnt;
1020 if (IPOPT_COPIED(opt)) {
1021 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1022 dp += optlen;
1023 }
1024 }
1025 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1026 *dp++ = IPOPT_EOL;
1027 return (optlen);
1028 }
1029
1030 /*
1031 * IP socket option processing.
1032 */
1033 int
1034 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1035 {
1036 struct inpcb *inp = sotoinpcb(so);
1037 int optval = 0;
1038 int error = 0;
1039 #if defined(FAST_IPSEC)
1040 struct lwp *l = curlwp; /*XXX*/
1041 #endif
1042
1043 if (sopt->sopt_level != IPPROTO_IP) {
1044 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1045 return 0;
1046 return ENOPROTOOPT;
1047 }
1048
1049 switch (op) {
1050 case PRCO_SETOPT:
1051 switch (sopt->sopt_name) {
1052 case IP_OPTIONS:
1053 #ifdef notyet
1054 case IP_RETOPTS:
1055 #endif
1056 error = ip_pcbopts(&inp->inp_options, sopt);
1057 break;
1058
1059 case IP_TOS:
1060 case IP_TTL:
1061 case IP_MINTTL:
1062 case IP_RECVOPTS:
1063 case IP_RECVRETOPTS:
1064 case IP_RECVDSTADDR:
1065 case IP_RECVIF:
1066 case IP_RECVTTL:
1067 error = sockopt_getint(sopt, &optval);
1068 if (error)
1069 break;
1070
1071 switch (sopt->sopt_name) {
1072 case IP_TOS:
1073 inp->inp_ip.ip_tos = optval;
1074 break;
1075
1076 case IP_TTL:
1077 inp->inp_ip.ip_ttl = optval;
1078 break;
1079
1080 case IP_MINTTL:
1081 if (optval > 0 && optval <= MAXTTL)
1082 inp->inp_ip_minttl = optval;
1083 else
1084 error = EINVAL;
1085 break;
1086 #define OPTSET(bit) \
1087 if (optval) \
1088 inp->inp_flags |= bit; \
1089 else \
1090 inp->inp_flags &= ~bit;
1091
1092 case IP_RECVOPTS:
1093 OPTSET(INP_RECVOPTS);
1094 break;
1095
1096 case IP_RECVRETOPTS:
1097 OPTSET(INP_RECVRETOPTS);
1098 break;
1099
1100 case IP_RECVDSTADDR:
1101 OPTSET(INP_RECVDSTADDR);
1102 break;
1103
1104 case IP_RECVIF:
1105 OPTSET(INP_RECVIF);
1106 break;
1107
1108 case IP_RECVTTL:
1109 OPTSET(INP_RECVTTL);
1110 break;
1111 }
1112 break;
1113 #undef OPTSET
1114
1115 case IP_MULTICAST_IF:
1116 case IP_MULTICAST_TTL:
1117 case IP_MULTICAST_LOOP:
1118 case IP_ADD_MEMBERSHIP:
1119 case IP_DROP_MEMBERSHIP:
1120 error = ip_setmoptions(&inp->inp_moptions, sopt);
1121 break;
1122
1123 case IP_PORTRANGE:
1124 error = sockopt_getint(sopt, &optval);
1125 if (error)
1126 break;
1127
1128 /* INP_LOCK(inp); */
1129 switch (optval) {
1130 case IP_PORTRANGE_DEFAULT:
1131 case IP_PORTRANGE_HIGH:
1132 inp->inp_flags &= ~(INP_LOWPORT);
1133 break;
1134
1135 case IP_PORTRANGE_LOW:
1136 inp->inp_flags |= INP_LOWPORT;
1137 break;
1138
1139 default:
1140 error = EINVAL;
1141 break;
1142 }
1143 /* INP_UNLOCK(inp); */
1144 break;
1145
1146 case IP_PORTALGO:
1147 error = sockopt_getint(sopt, &optval);
1148 if (error)
1149 break;
1150
1151 error = rfc6056_algo_index_select(
1152 (struct inpcb_hdr *)inp, optval);
1153 break;
1154
1155 #if defined(FAST_IPSEC)
1156 case IP_IPSEC_POLICY:
1157 error = ipsec4_set_policy(inp, sopt->sopt_name,
1158 sopt->sopt_data, sopt->sopt_size, l->l_cred);
1159 break;
1160 #endif /*IPSEC*/
1161
1162 default:
1163 error = ENOPROTOOPT;
1164 break;
1165 }
1166 break;
1167
1168 case PRCO_GETOPT:
1169 switch (sopt->sopt_name) {
1170 case IP_OPTIONS:
1171 case IP_RETOPTS:
1172 if (inp->inp_options) {
1173 struct mbuf *m;
1174
1175 m = m_copym(inp->inp_options, 0, M_COPYALL,
1176 M_DONTWAIT);
1177 if (m == NULL) {
1178 error = ENOBUFS;
1179 break;
1180 }
1181
1182 error = sockopt_setmbuf(sopt, m);
1183 }
1184 break;
1185
1186 case IP_TOS:
1187 case IP_TTL:
1188 case IP_MINTTL:
1189 case IP_RECVOPTS:
1190 case IP_RECVRETOPTS:
1191 case IP_RECVDSTADDR:
1192 case IP_RECVIF:
1193 case IP_RECVTTL:
1194 case IP_ERRORMTU:
1195 switch (sopt->sopt_name) {
1196 case IP_TOS:
1197 optval = inp->inp_ip.ip_tos;
1198 break;
1199
1200 case IP_TTL:
1201 optval = inp->inp_ip.ip_ttl;
1202 break;
1203
1204 case IP_MINTTL:
1205 optval = inp->inp_ip_minttl;
1206 break;
1207
1208 case IP_ERRORMTU:
1209 optval = inp->inp_errormtu;
1210 break;
1211
1212 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1213
1214 case IP_RECVOPTS:
1215 optval = OPTBIT(INP_RECVOPTS);
1216 break;
1217
1218 case IP_RECVRETOPTS:
1219 optval = OPTBIT(INP_RECVRETOPTS);
1220 break;
1221
1222 case IP_RECVDSTADDR:
1223 optval = OPTBIT(INP_RECVDSTADDR);
1224 break;
1225
1226 case IP_RECVIF:
1227 optval = OPTBIT(INP_RECVIF);
1228 break;
1229
1230 case IP_RECVTTL:
1231 optval = OPTBIT(INP_RECVTTL);
1232 break;
1233 }
1234 error = sockopt_setint(sopt, optval);
1235 break;
1236
1237 #if 0 /* defined(FAST_IPSEC) */
1238 case IP_IPSEC_POLICY:
1239 {
1240 struct mbuf *m = NULL;
1241
1242 /* XXX this will return EINVAL as sopt is empty */
1243 error = ipsec4_get_policy(inp, sopt->sopt_data,
1244 sopt->sopt_size, &m);
1245 if (error == 0)
1246 error = sockopt_setmbuf(sopt, m);
1247 break;
1248 }
1249 #endif /*IPSEC*/
1250
1251 case IP_MULTICAST_IF:
1252 case IP_MULTICAST_TTL:
1253 case IP_MULTICAST_LOOP:
1254 case IP_ADD_MEMBERSHIP:
1255 case IP_DROP_MEMBERSHIP:
1256 error = ip_getmoptions(inp->inp_moptions, sopt);
1257 break;
1258
1259 case IP_PORTRANGE:
1260 if (inp->inp_flags & INP_LOWPORT)
1261 optval = IP_PORTRANGE_LOW;
1262 else
1263 optval = IP_PORTRANGE_DEFAULT;
1264
1265 error = sockopt_setint(sopt, optval);
1266
1267 break;
1268
1269 case IP_PORTALGO:
1270 optval = ((struct inpcb_hdr *)inp)->inph_rfc6056algo;
1271 error = sockopt_setint(sopt, optval);
1272 break;
1273
1274 default:
1275 error = ENOPROTOOPT;
1276 break;
1277 }
1278 break;
1279 }
1280 return (error);
1281 }
1282
1283 /*
1284 * Set up IP options in pcb for insertion in output packets.
1285 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1286 * with destination address if source routed.
1287 */
1288 int
1289 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1290 {
1291 struct mbuf *m;
1292 const u_char *cp;
1293 u_char *dp;
1294 int cnt;
1295 uint8_t optval, olen, offset;
1296
1297 /* turn off any old options */
1298 if (*pcbopt)
1299 (void)m_free(*pcbopt);
1300 *pcbopt = NULL;
1301
1302 cp = sopt->sopt_data;
1303 cnt = sopt->sopt_size;
1304
1305 if (cnt == 0)
1306 return (0); /* Only turning off any previous options */
1307
1308 #ifndef __vax__
1309 if (cnt % sizeof(int32_t))
1310 return (EINVAL);
1311 #endif
1312
1313 m = m_get(M_DONTWAIT, MT_SOOPTS);
1314 if (m == NULL)
1315 return (ENOBUFS);
1316
1317 dp = mtod(m, u_char *);
1318 memset(dp, 0, sizeof(struct in_addr));
1319 dp += sizeof(struct in_addr);
1320 m->m_len = sizeof(struct in_addr);
1321
1322 /*
1323 * IP option list according to RFC791. Each option is of the form
1324 *
1325 * [optval] [olen] [(olen - 2) data bytes]
1326 *
1327 * we validate the list and copy options to an mbuf for prepending
1328 * to data packets. The IP first-hop destination address will be
1329 * stored before actual options and is zero if unset.
1330 */
1331 while (cnt > 0) {
1332 optval = cp[IPOPT_OPTVAL];
1333
1334 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1335 olen = 1;
1336 } else {
1337 if (cnt < IPOPT_OLEN + 1)
1338 goto bad;
1339
1340 olen = cp[IPOPT_OLEN];
1341 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1342 goto bad;
1343 }
1344
1345 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1346 /*
1347 * user process specifies route as:
1348 * ->A->B->C->D
1349 * D must be our final destination (but we can't
1350 * check that since we may not have connected yet).
1351 * A is first hop destination, which doesn't appear in
1352 * actual IP option, but is stored before the options.
1353 */
1354 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1355 goto bad;
1356
1357 offset = cp[IPOPT_OFFSET];
1358 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1359 sizeof(struct in_addr));
1360
1361 cp += sizeof(struct in_addr);
1362 cnt -= sizeof(struct in_addr);
1363 olen -= sizeof(struct in_addr);
1364
1365 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1366 goto bad;
1367
1368 memcpy(dp, cp, olen);
1369 dp[IPOPT_OPTVAL] = optval;
1370 dp[IPOPT_OLEN] = olen;
1371 dp[IPOPT_OFFSET] = offset;
1372 break;
1373 } else {
1374 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1375 goto bad;
1376
1377 memcpy(dp, cp, olen);
1378 break;
1379 }
1380
1381 dp += olen;
1382 m->m_len += olen;
1383
1384 if (optval == IPOPT_EOL)
1385 break;
1386
1387 cp += olen;
1388 cnt -= olen;
1389 }
1390
1391 *pcbopt = m;
1392 return (0);
1393
1394 bad:
1395 (void)m_free(m);
1396 return (EINVAL);
1397 }
1398
1399 /*
1400 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1401 */
1402 static struct ifnet *
1403 ip_multicast_if(struct in_addr *a, int *ifindexp)
1404 {
1405 int ifindex;
1406 struct ifnet *ifp = NULL;
1407 struct in_ifaddr *ia;
1408
1409 if (ifindexp)
1410 *ifindexp = 0;
1411 if (ntohl(a->s_addr) >> 24 == 0) {
1412 ifindex = ntohl(a->s_addr) & 0xffffff;
1413 if (ifindex < 0 || if_indexlim <= ifindex)
1414 return NULL;
1415 ifp = ifindex2ifnet[ifindex];
1416 if (!ifp)
1417 return NULL;
1418 if (ifindexp)
1419 *ifindexp = ifindex;
1420 } else {
1421 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1422 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1423 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1424 ifp = ia->ia_ifp;
1425 break;
1426 }
1427 }
1428 }
1429 return ifp;
1430 }
1431
1432 static int
1433 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1434 {
1435 u_int tval;
1436 u_char cval;
1437 int error;
1438
1439 if (sopt == NULL)
1440 return EINVAL;
1441
1442 switch (sopt->sopt_size) {
1443 case sizeof(u_char):
1444 error = sockopt_get(sopt, &cval, sizeof(u_char));
1445 tval = cval;
1446 break;
1447
1448 case sizeof(u_int):
1449 error = sockopt_get(sopt, &tval, sizeof(u_int));
1450 break;
1451
1452 default:
1453 error = EINVAL;
1454 }
1455
1456 if (error)
1457 return error;
1458
1459 if (tval > maxval)
1460 return EINVAL;
1461
1462 *val = tval;
1463 return 0;
1464 }
1465
1466 /*
1467 * Set the IP multicast options in response to user setsockopt().
1468 */
1469 int
1470 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1471 {
1472 struct in_addr addr;
1473 struct ip_mreq lmreq, *mreq;
1474 struct ifnet *ifp;
1475 struct ip_moptions *imo = *imop;
1476 int i, ifindex, error = 0;
1477
1478 if (imo == NULL) {
1479 /*
1480 * No multicast option buffer attached to the pcb;
1481 * allocate one and initialize to default values.
1482 */
1483 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1484 if (imo == NULL)
1485 return ENOBUFS;
1486
1487 imo->imo_multicast_ifp = NULL;
1488 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1489 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1490 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1491 imo->imo_num_memberships = 0;
1492 *imop = imo;
1493 }
1494
1495 switch (sopt->sopt_name) {
1496 case IP_MULTICAST_IF:
1497 /*
1498 * Select the interface for outgoing multicast packets.
1499 */
1500 error = sockopt_get(sopt, &addr, sizeof(addr));
1501 if (error)
1502 break;
1503
1504 /*
1505 * INADDR_ANY is used to remove a previous selection.
1506 * When no interface is selected, a default one is
1507 * chosen every time a multicast packet is sent.
1508 */
1509 if (in_nullhost(addr)) {
1510 imo->imo_multicast_ifp = NULL;
1511 break;
1512 }
1513 /*
1514 * The selected interface is identified by its local
1515 * IP address. Find the interface and confirm that
1516 * it supports multicasting.
1517 */
1518 ifp = ip_multicast_if(&addr, &ifindex);
1519 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1520 error = EADDRNOTAVAIL;
1521 break;
1522 }
1523 imo->imo_multicast_ifp = ifp;
1524 if (ifindex)
1525 imo->imo_multicast_addr = addr;
1526 else
1527 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1528 break;
1529
1530 case IP_MULTICAST_TTL:
1531 /*
1532 * Set the IP time-to-live for outgoing multicast packets.
1533 */
1534 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1535 break;
1536
1537 case IP_MULTICAST_LOOP:
1538 /*
1539 * Set the loopback flag for outgoing multicast packets.
1540 * Must be zero or one.
1541 */
1542 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1543 break;
1544
1545 case IP_ADD_MEMBERSHIP:
1546 /*
1547 * Add a multicast group membership.
1548 * Group must be a valid IP multicast address.
1549 */
1550 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1551 if (error)
1552 break;
1553
1554 mreq = &lmreq;
1555
1556 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1557 error = EINVAL;
1558 break;
1559 }
1560 /*
1561 * If no interface address was provided, use the interface of
1562 * the route to the given multicast address.
1563 */
1564 if (in_nullhost(mreq->imr_interface)) {
1565 struct rtentry *rt;
1566 union {
1567 struct sockaddr dst;
1568 struct sockaddr_in dst4;
1569 } u;
1570 struct route ro;
1571
1572 memset(&ro, 0, sizeof(ro));
1573
1574 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1575 rtcache_setdst(&ro, &u.dst);
1576 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1577 : NULL;
1578 rtcache_free(&ro);
1579 } else {
1580 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1581 }
1582 /*
1583 * See if we found an interface, and confirm that it
1584 * supports multicast.
1585 */
1586 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1587 error = EADDRNOTAVAIL;
1588 break;
1589 }
1590 /*
1591 * See if the membership already exists or if all the
1592 * membership slots are full.
1593 */
1594 for (i = 0; i < imo->imo_num_memberships; ++i) {
1595 if (imo->imo_membership[i]->inm_ifp == ifp &&
1596 in_hosteq(imo->imo_membership[i]->inm_addr,
1597 mreq->imr_multiaddr))
1598 break;
1599 }
1600 if (i < imo->imo_num_memberships) {
1601 error = EADDRINUSE;
1602 break;
1603 }
1604 if (i == IP_MAX_MEMBERSHIPS) {
1605 error = ETOOMANYREFS;
1606 break;
1607 }
1608 /*
1609 * Everything looks good; add a new record to the multicast
1610 * address list for the given interface.
1611 */
1612 if ((imo->imo_membership[i] =
1613 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1614 error = ENOBUFS;
1615 break;
1616 }
1617 ++imo->imo_num_memberships;
1618 break;
1619
1620 case IP_DROP_MEMBERSHIP:
1621 /*
1622 * Drop a multicast group membership.
1623 * Group must be a valid IP multicast address.
1624 */
1625 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1626 if (error)
1627 break;
1628
1629 mreq = &lmreq;
1630
1631 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1632 error = EINVAL;
1633 break;
1634 }
1635 /*
1636 * If an interface address was specified, get a pointer
1637 * to its ifnet structure.
1638 */
1639 if (in_nullhost(mreq->imr_interface))
1640 ifp = NULL;
1641 else {
1642 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1643 if (ifp == NULL) {
1644 error = EADDRNOTAVAIL;
1645 break;
1646 }
1647 }
1648 /*
1649 * Find the membership in the membership array.
1650 */
1651 for (i = 0; i < imo->imo_num_memberships; ++i) {
1652 if ((ifp == NULL ||
1653 imo->imo_membership[i]->inm_ifp == ifp) &&
1654 in_hosteq(imo->imo_membership[i]->inm_addr,
1655 mreq->imr_multiaddr))
1656 break;
1657 }
1658 if (i == imo->imo_num_memberships) {
1659 error = EADDRNOTAVAIL;
1660 break;
1661 }
1662 /*
1663 * Give up the multicast address record to which the
1664 * membership points.
1665 */
1666 in_delmulti(imo->imo_membership[i]);
1667 /*
1668 * Remove the gap in the membership array.
1669 */
1670 for (++i; i < imo->imo_num_memberships; ++i)
1671 imo->imo_membership[i-1] = imo->imo_membership[i];
1672 --imo->imo_num_memberships;
1673 break;
1674
1675 default:
1676 error = EOPNOTSUPP;
1677 break;
1678 }
1679
1680 /*
1681 * If all options have default values, no need to keep the mbuf.
1682 */
1683 if (imo->imo_multicast_ifp == NULL &&
1684 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1685 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1686 imo->imo_num_memberships == 0) {
1687 kmem_free(imo, sizeof(*imo));
1688 *imop = NULL;
1689 }
1690
1691 return error;
1692 }
1693
1694 /*
1695 * Return the IP multicast options in response to user getsockopt().
1696 */
1697 int
1698 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1699 {
1700 struct in_addr addr;
1701 struct in_ifaddr *ia;
1702 int error;
1703 uint8_t optval;
1704
1705 error = 0;
1706
1707 switch (sopt->sopt_name) {
1708 case IP_MULTICAST_IF:
1709 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1710 addr = zeroin_addr;
1711 else if (imo->imo_multicast_addr.s_addr) {
1712 /* return the value user has set */
1713 addr = imo->imo_multicast_addr;
1714 } else {
1715 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1716 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1717 }
1718 error = sockopt_set(sopt, &addr, sizeof(addr));
1719 break;
1720
1721 case IP_MULTICAST_TTL:
1722 optval = imo ? imo->imo_multicast_ttl
1723 : IP_DEFAULT_MULTICAST_TTL;
1724
1725 error = sockopt_set(sopt, &optval, sizeof(optval));
1726 break;
1727
1728 case IP_MULTICAST_LOOP:
1729 optval = imo ? imo->imo_multicast_loop
1730 : IP_DEFAULT_MULTICAST_LOOP;
1731
1732 error = sockopt_set(sopt, &optval, sizeof(optval));
1733 break;
1734
1735 default:
1736 error = EOPNOTSUPP;
1737 }
1738
1739 return (error);
1740 }
1741
1742 /*
1743 * Discard the IP multicast options.
1744 */
1745 void
1746 ip_freemoptions(struct ip_moptions *imo)
1747 {
1748 int i;
1749
1750 if (imo != NULL) {
1751 for (i = 0; i < imo->imo_num_memberships; ++i)
1752 in_delmulti(imo->imo_membership[i]);
1753 kmem_free(imo, sizeof(*imo));
1754 }
1755 }
1756
1757 /*
1758 * Routine called from ip_output() to loop back a copy of an IP multicast
1759 * packet to the input queue of a specified interface. Note that this
1760 * calls the output routine of the loopback "driver", but with an interface
1761 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1762 */
1763 static void
1764 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1765 {
1766 struct ip *ip;
1767 struct mbuf *copym;
1768
1769 copym = m_copypacket(m, M_DONTWAIT);
1770 if (copym != NULL
1771 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1772 copym = m_pullup(copym, sizeof(struct ip));
1773 if (copym == NULL)
1774 return;
1775 /*
1776 * We don't bother to fragment if the IP length is greater
1777 * than the interface's MTU. Can this possibly matter?
1778 */
1779 ip = mtod(copym, struct ip *);
1780
1781 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1782 in_delayed_cksum(copym);
1783 copym->m_pkthdr.csum_flags &=
1784 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1785 }
1786
1787 ip->ip_sum = 0;
1788 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1789 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1790 }
1791