ip_output.c revision 1.217.2.1 1 /* $NetBSD: ip_output.c,v 1.217.2.1 2013/02/25 00:30:04 tls Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.217.2.1 2013/02/25 00:30:04 tls Exp $");
95
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/kmem.h>
104 #include <sys/mbuf.h>
105 #include <sys/errno.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/kauth.h>
110 #ifdef FAST_IPSEC
111 #include <sys/domain.h>
112 #endif
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115
116 #include <net/if.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129
130 #ifdef MROUTING
131 #include <netinet/ip_mroute.h>
132 #endif
133
134 #ifdef FAST_IPSEC
135 #include <netipsec/ipsec.h>
136 #include <netipsec/key.h>
137 #include <netipsec/xform.h>
138 #endif /* FAST_IPSEC*/
139
140 #ifdef IPSEC_NAT_T
141 #include <netinet/udp.h>
142 #endif
143
144 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
145 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
146 static void ip_mloopback(struct ifnet *, struct mbuf *,
147 const struct sockaddr_in *);
148
149 #ifdef PFIL_HOOKS
150 extern struct pfil_head inet_pfil_hook; /* XXX */
151 #endif
152
153 int ip_do_loopback_cksum = 0;
154
155 /*
156 * IP output. The packet in mbuf chain m contains a skeletal IP
157 * header (with len, off, ttl, proto, tos, src, dst).
158 * The mbuf chain containing the packet will be freed.
159 * The mbuf opt, if present, will not be freed.
160 */
161 int
162 ip_output(struct mbuf *m0, ...)
163 {
164 struct rtentry *rt;
165 struct ip *ip;
166 struct ifnet *ifp;
167 struct mbuf *m = m0;
168 int hlen = sizeof (struct ip);
169 int len, error = 0;
170 struct route iproute;
171 const struct sockaddr_in *dst;
172 struct in_ifaddr *ia;
173 struct ifaddr *xifa;
174 struct mbuf *opt;
175 struct route *ro;
176 int flags, sw_csum;
177 int *mtu_p;
178 u_long mtu;
179 struct ip_moptions *imo;
180 struct socket *so;
181 va_list ap;
182 #ifdef IPSEC_NAT_T
183 int natt_frag = 0;
184 #endif
185 #ifdef FAST_IPSEC
186 struct inpcb *inp;
187 struct secpolicy *sp = NULL;
188 int s;
189 #endif
190 union {
191 struct sockaddr dst;
192 struct sockaddr_in dst4;
193 } u;
194 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
195 * to the nexthop
196 */
197
198 len = 0;
199 va_start(ap, m0);
200 opt = va_arg(ap, struct mbuf *);
201 ro = va_arg(ap, struct route *);
202 flags = va_arg(ap, int);
203 imo = va_arg(ap, struct ip_moptions *);
204 so = va_arg(ap, struct socket *);
205 if (flags & IP_RETURNMTU)
206 mtu_p = va_arg(ap, int *);
207 else
208 mtu_p = NULL;
209 va_end(ap);
210
211 MCLAIM(m, &ip_tx_mowner);
212 #ifdef FAST_IPSEC
213 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
214 inp = (struct inpcb *)so->so_pcb;
215 else
216 inp = NULL;
217 #endif /* FAST_IPSEC */
218
219 #ifdef DIAGNOSTIC
220 if ((m->m_flags & M_PKTHDR) == 0)
221 panic("ip_output: no HDR");
222
223 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
224 panic("ip_output: IPv6 checksum offload flags: %d",
225 m->m_pkthdr.csum_flags);
226 }
227
228 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
229 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
230 panic("ip_output: conflicting checksum offload flags: %d",
231 m->m_pkthdr.csum_flags);
232 }
233 #endif
234 if (opt) {
235 m = ip_insertoptions(m, opt, &len);
236 if (len >= sizeof(struct ip))
237 hlen = len;
238 }
239 ip = mtod(m, struct ip *);
240 /*
241 * Fill in IP header.
242 */
243 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
244 ip->ip_v = IPVERSION;
245 ip->ip_off = htons(0);
246 /* ip->ip_id filled in after we find out source ia */
247 ip->ip_hl = hlen >> 2;
248 IP_STATINC(IP_STAT_LOCALOUT);
249 } else {
250 hlen = ip->ip_hl << 2;
251 }
252 /*
253 * Route packet.
254 */
255 memset(&iproute, 0, sizeof(iproute));
256 if (ro == NULL)
257 ro = &iproute;
258 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
259 dst = satocsin(rtcache_getdst(ro));
260 /*
261 * If there is a cached route,
262 * check that it is to the same destination
263 * and is still up. If not, free it and try again.
264 * The address family should also be checked in case of sharing the
265 * cache with IPv6.
266 */
267 if (dst == NULL)
268 ;
269 else if (dst->sin_family != AF_INET ||
270 !in_hosteq(dst->sin_addr, ip->ip_dst))
271 rtcache_free(ro);
272
273 if ((rt = rtcache_validate(ro)) == NULL &&
274 (rt = rtcache_update(ro, 1)) == NULL) {
275 dst = &u.dst4;
276 rtcache_setdst(ro, &u.dst);
277 }
278 /*
279 * If routing to interface only,
280 * short circuit routing lookup.
281 */
282 if (flags & IP_ROUTETOIF) {
283 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
284 IP_STATINC(IP_STAT_NOROUTE);
285 error = ENETUNREACH;
286 goto bad;
287 }
288 ifp = ia->ia_ifp;
289 mtu = ifp->if_mtu;
290 ip->ip_ttl = 1;
291 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
292 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
293 imo != NULL && imo->imo_multicast_ifp != NULL) {
294 ifp = imo->imo_multicast_ifp;
295 mtu = ifp->if_mtu;
296 IFP_TO_IA(ifp, ia);
297 } else {
298 if (rt == NULL)
299 rt = rtcache_init(ro);
300 if (rt == NULL) {
301 IP_STATINC(IP_STAT_NOROUTE);
302 error = EHOSTUNREACH;
303 goto bad;
304 }
305 ia = ifatoia(rt->rt_ifa);
306 ifp = rt->rt_ifp;
307 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
308 mtu = ifp->if_mtu;
309 rt->rt_use++;
310 if (rt->rt_flags & RTF_GATEWAY)
311 dst = satosin(rt->rt_gateway);
312 }
313 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
314 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
315 struct in_multi *inm;
316
317 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
318 M_BCAST : M_MCAST;
319 /*
320 * See if the caller provided any multicast options
321 */
322 if (imo != NULL)
323 ip->ip_ttl = imo->imo_multicast_ttl;
324 else
325 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
326
327 /*
328 * if we don't know the outgoing ifp yet, we can't generate
329 * output
330 */
331 if (!ifp) {
332 IP_STATINC(IP_STAT_NOROUTE);
333 error = ENETUNREACH;
334 goto bad;
335 }
336
337 /*
338 * If the packet is multicast or broadcast, confirm that
339 * the outgoing interface can transmit it.
340 */
341 if (((m->m_flags & M_MCAST) &&
342 (ifp->if_flags & IFF_MULTICAST) == 0) ||
343 ((m->m_flags & M_BCAST) &&
344 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
345 IP_STATINC(IP_STAT_NOROUTE);
346 error = ENETUNREACH;
347 goto bad;
348 }
349 /*
350 * If source address not specified yet, use an address
351 * of outgoing interface.
352 */
353 if (in_nullhost(ip->ip_src)) {
354 struct in_ifaddr *xia;
355
356 IFP_TO_IA(ifp, xia);
357 if (!xia) {
358 error = EADDRNOTAVAIL;
359 goto bad;
360 }
361 xifa = &xia->ia_ifa;
362 if (xifa->ifa_getifa != NULL) {
363 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
364 }
365 ip->ip_src = xia->ia_addr.sin_addr;
366 }
367
368 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
369 if (inm != NULL &&
370 (imo == NULL || imo->imo_multicast_loop)) {
371 /*
372 * If we belong to the destination multicast group
373 * on the outgoing interface, and the caller did not
374 * forbid loopback, loop back a copy.
375 */
376 ip_mloopback(ifp, m, &u.dst4);
377 }
378 #ifdef MROUTING
379 else {
380 /*
381 * If we are acting as a multicast router, perform
382 * multicast forwarding as if the packet had just
383 * arrived on the interface to which we are about
384 * to send. The multicast forwarding function
385 * recursively calls this function, using the
386 * IP_FORWARDING flag to prevent infinite recursion.
387 *
388 * Multicasts that are looped back by ip_mloopback(),
389 * above, will be forwarded by the ip_input() routine,
390 * if necessary.
391 */
392 extern struct socket *ip_mrouter;
393
394 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
395 if (ip_mforward(m, ifp) != 0) {
396 m_freem(m);
397 goto done;
398 }
399 }
400 }
401 #endif
402 /*
403 * Multicasts with a time-to-live of zero may be looped-
404 * back, above, but must not be transmitted on a network.
405 * Also, multicasts addressed to the loopback interface
406 * are not sent -- the above call to ip_mloopback() will
407 * loop back a copy if this host actually belongs to the
408 * destination group on the loopback interface.
409 */
410 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
411 m_freem(m);
412 goto done;
413 }
414
415 goto sendit;
416 }
417 /*
418 * If source address not specified yet, use address
419 * of outgoing interface.
420 */
421 if (in_nullhost(ip->ip_src)) {
422 xifa = &ia->ia_ifa;
423 if (xifa->ifa_getifa != NULL)
424 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
425 ip->ip_src = ia->ia_addr.sin_addr;
426 }
427
428 /*
429 * packets with Class-D address as source are not valid per
430 * RFC 1112
431 */
432 if (IN_MULTICAST(ip->ip_src.s_addr)) {
433 IP_STATINC(IP_STAT_ODROPPED);
434 error = EADDRNOTAVAIL;
435 goto bad;
436 }
437
438 /*
439 * Look for broadcast address and
440 * and verify user is allowed to send
441 * such a packet.
442 */
443 if (in_broadcast(dst->sin_addr, ifp)) {
444 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
445 error = EADDRNOTAVAIL;
446 goto bad;
447 }
448 if ((flags & IP_ALLOWBROADCAST) == 0) {
449 error = EACCES;
450 goto bad;
451 }
452 /* don't allow broadcast messages to be fragmented */
453 if (ntohs(ip->ip_len) > ifp->if_mtu) {
454 error = EMSGSIZE;
455 goto bad;
456 }
457 m->m_flags |= M_BCAST;
458 } else
459 m->m_flags &= ~M_BCAST;
460
461 sendit:
462 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
463 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
464 ip->ip_id = 0;
465 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
466 ip->ip_id = ip_newid(ia);
467 } else {
468
469 /*
470 * TSO capable interfaces (typically?) increment
471 * ip_id for each segment.
472 * "allocate" enough ids here to increase the chance
473 * for them to be unique.
474 *
475 * note that the following calculation is not
476 * needed to be precise. wasting some ip_id is fine.
477 */
478
479 unsigned int segsz = m->m_pkthdr.segsz;
480 unsigned int datasz = ntohs(ip->ip_len) - hlen;
481 unsigned int num = howmany(datasz, segsz);
482
483 ip->ip_id = ip_newid_range(ia, num);
484 }
485 }
486 /*
487 * If we're doing Path MTU Discovery, we need to set DF unless
488 * the route's MTU is locked.
489 */
490 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
491 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
492 ip->ip_off |= htons(IP_DF);
493
494 #ifdef FAST_IPSEC
495 /*
496 * Check the security policy (SP) for the packet and, if
497 * required, do IPsec-related processing. There are two
498 * cases here; the first time a packet is sent through
499 * it will be untagged and handled by ipsec4_checkpolicy.
500 * If the packet is resubmitted to ip_output (e.g. after
501 * AH, ESP, etc. processing), there will be a tag to bypass
502 * the lookup and related policy checking.
503 */
504 if (!ipsec_outdone(m)) {
505 s = splsoftnet();
506 if (inp != NULL &&
507 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
508 splx(s);
509 goto spd_done;
510 }
511 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
512 &error, inp);
513 /*
514 * There are four return cases:
515 * sp != NULL apply IPsec policy
516 * sp == NULL, error == 0 no IPsec handling needed
517 * sp == NULL, error == -EINVAL discard packet w/o error
518 * sp == NULL, error != 0 discard packet, report error
519 */
520 if (sp != NULL) {
521 #ifdef IPSEC_NAT_T
522 /*
523 * NAT-T ESP fragmentation: don't do IPSec processing now,
524 * we'll do it on each fragmented packet.
525 */
526 if (sp->req->sav &&
527 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
528 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
529 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
530 natt_frag = 1;
531 mtu = sp->req->sav->esp_frag;
532 splx(s);
533 goto spd_done;
534 }
535 }
536 #endif /* IPSEC_NAT_T */
537
538 /*
539 * Do delayed checksums now because we send before
540 * this is done in the normal processing path.
541 */
542 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
543 in_delayed_cksum(m);
544 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
545 }
546
547 #ifdef __FreeBSD__
548 ip->ip_len = htons(ip->ip_len);
549 ip->ip_off = htons(ip->ip_off);
550 #endif
551
552 /* NB: callee frees mbuf */
553 error = ipsec4_process_packet(m, sp->req, flags, 0);
554 /*
555 * Preserve KAME behaviour: ENOENT can be returned
556 * when an SA acquire is in progress. Don't propagate
557 * this to user-level; it confuses applications.
558 *
559 * XXX this will go away when the SADB is redone.
560 */
561 if (error == ENOENT)
562 error = 0;
563 splx(s);
564 goto done;
565 } else {
566 splx(s);
567
568 if (error != 0) {
569 /*
570 * Hack: -EINVAL is used to signal that a packet
571 * should be silently discarded. This is typically
572 * because we asked key management for an SA and
573 * it was delayed (e.g. kicked up to IKE).
574 */
575 if (error == -EINVAL)
576 error = 0;
577 goto bad;
578 } else {
579 /* No IPsec processing for this packet. */
580 }
581 }
582 }
583 spd_done:
584 #endif /* FAST_IPSEC */
585
586 #ifdef PFIL_HOOKS
587 /*
588 * Run through list of hooks for output packets.
589 */
590 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
591 goto done;
592 if (m == NULL)
593 goto done;
594
595 ip = mtod(m, struct ip *);
596 hlen = ip->ip_hl << 2;
597 #endif /* PFIL_HOOKS */
598
599 m->m_pkthdr.csum_data |= hlen << 16;
600
601 #if IFA_STATS
602 /*
603 * search for the source address structure to
604 * maintain output statistics.
605 */
606 INADDR_TO_IA(ip->ip_src, ia);
607 #endif
608
609 /* Maybe skip checksums on loopback interfaces. */
610 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
611 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
612 }
613 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
614 /*
615 * If small enough for mtu of path, or if using TCP segmentation
616 * offload, can just send directly.
617 */
618 if (ntohs(ip->ip_len) <= mtu ||
619 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
620 #if IFA_STATS
621 if (ia)
622 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
623 #endif
624 /*
625 * Always initialize the sum to 0! Some HW assisted
626 * checksumming requires this.
627 */
628 ip->ip_sum = 0;
629
630 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
631 /*
632 * Perform any checksums that the hardware can't do
633 * for us.
634 *
635 * XXX Does any hardware require the {th,uh}_sum
636 * XXX fields to be 0?
637 */
638 if (sw_csum & M_CSUM_IPv4) {
639 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
640 ip->ip_sum = in_cksum(m, hlen);
641 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
642 }
643 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
644 if (IN_NEED_CHECKSUM(ifp,
645 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
646 in_delayed_cksum(m);
647 }
648 m->m_pkthdr.csum_flags &=
649 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
650 }
651 }
652
653 if (__predict_true(
654 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
655 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
656 KERNEL_LOCK(1, NULL);
657 error =
658 (*ifp->if_output)(ifp, m,
659 (m->m_flags & M_MCAST) ?
660 sintocsa(rdst) : sintocsa(dst),
661 rt);
662 KERNEL_UNLOCK_ONE(NULL);
663 } else {
664 error =
665 ip_tso_output(ifp, m,
666 (m->m_flags & M_MCAST) ?
667 sintocsa(rdst) : sintocsa(dst),
668 rt);
669 }
670 goto done;
671 }
672
673 /*
674 * We can't use HW checksumming if we're about to
675 * to fragment the packet.
676 *
677 * XXX Some hardware can do this.
678 */
679 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
680 if (IN_NEED_CHECKSUM(ifp,
681 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
682 in_delayed_cksum(m);
683 }
684 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
685 }
686
687 /*
688 * Too large for interface; fragment if possible.
689 * Must be able to put at least 8 bytes per fragment.
690 */
691 if (ntohs(ip->ip_off) & IP_DF) {
692 if (flags & IP_RETURNMTU)
693 *mtu_p = mtu;
694 error = EMSGSIZE;
695 IP_STATINC(IP_STAT_CANTFRAG);
696 goto bad;
697 }
698
699 error = ip_fragment(m, ifp, mtu);
700 if (error) {
701 m = NULL;
702 goto bad;
703 }
704
705 for (; m; m = m0) {
706 m0 = m->m_nextpkt;
707 m->m_nextpkt = 0;
708 if (error == 0) {
709 #if IFA_STATS
710 if (ia)
711 ia->ia_ifa.ifa_data.ifad_outbytes +=
712 ntohs(ip->ip_len);
713 #endif
714 #ifdef IPSEC_NAT_T
715 /*
716 * If we get there, the packet has not been handeld by
717 * IPSec whereas it should have. Now that it has been
718 * fragmented, re-inject it in ip_output so that IPsec
719 * processing can occur.
720 */
721 if (natt_frag) {
722 error = ip_output(m, opt,
723 ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
724 } else
725 #endif /* IPSEC_NAT_T */
726 {
727 KASSERT((m->m_pkthdr.csum_flags &
728 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
729 KERNEL_LOCK(1, NULL);
730 error = (*ifp->if_output)(ifp, m,
731 (m->m_flags & M_MCAST) ?
732 sintocsa(rdst) : sintocsa(dst),
733 rt);
734 KERNEL_UNLOCK_ONE(NULL);
735 }
736 } else
737 m_freem(m);
738 }
739
740 if (error == 0)
741 IP_STATINC(IP_STAT_FRAGMENTED);
742 done:
743 rtcache_free(&iproute);
744
745 #ifdef FAST_IPSEC
746 if (sp != NULL)
747 KEY_FREESP(&sp);
748 #endif /* FAST_IPSEC */
749
750 return (error);
751 bad:
752 m_freem(m);
753 goto done;
754 }
755
756 int
757 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
758 {
759 struct ip *ip, *mhip;
760 struct mbuf *m0;
761 int len, hlen, off;
762 int mhlen, firstlen;
763 struct mbuf **mnext;
764 int sw_csum = m->m_pkthdr.csum_flags;
765 int fragments = 0;
766 int s;
767 int error = 0;
768
769 ip = mtod(m, struct ip *);
770 hlen = ip->ip_hl << 2;
771 if (ifp != NULL)
772 sw_csum &= ~ifp->if_csum_flags_tx;
773
774 len = (mtu - hlen) &~ 7;
775 if (len < 8) {
776 m_freem(m);
777 return (EMSGSIZE);
778 }
779
780 firstlen = len;
781 mnext = &m->m_nextpkt;
782
783 /*
784 * Loop through length of segment after first fragment,
785 * make new header and copy data of each part and link onto chain.
786 */
787 m0 = m;
788 mhlen = sizeof (struct ip);
789 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
790 MGETHDR(m, M_DONTWAIT, MT_HEADER);
791 if (m == 0) {
792 error = ENOBUFS;
793 IP_STATINC(IP_STAT_ODROPPED);
794 goto sendorfree;
795 }
796 MCLAIM(m, m0->m_owner);
797 *mnext = m;
798 mnext = &m->m_nextpkt;
799 m->m_data += max_linkhdr;
800 mhip = mtod(m, struct ip *);
801 *mhip = *ip;
802 /* we must inherit MCAST and BCAST flags */
803 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
804 if (hlen > sizeof (struct ip)) {
805 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
806 mhip->ip_hl = mhlen >> 2;
807 }
808 m->m_len = mhlen;
809 mhip->ip_off = ((off - hlen) >> 3) +
810 (ntohs(ip->ip_off) & ~IP_MF);
811 if (ip->ip_off & htons(IP_MF))
812 mhip->ip_off |= IP_MF;
813 if (off + len >= ntohs(ip->ip_len))
814 len = ntohs(ip->ip_len) - off;
815 else
816 mhip->ip_off |= IP_MF;
817 HTONS(mhip->ip_off);
818 mhip->ip_len = htons((u_int16_t)(len + mhlen));
819 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
820 if (m->m_next == 0) {
821 error = ENOBUFS; /* ??? */
822 IP_STATINC(IP_STAT_ODROPPED);
823 goto sendorfree;
824 }
825 m->m_pkthdr.len = mhlen + len;
826 m->m_pkthdr.rcvif = NULL;
827 mhip->ip_sum = 0;
828 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
829 if (sw_csum & M_CSUM_IPv4) {
830 mhip->ip_sum = in_cksum(m, mhlen);
831 } else {
832 /*
833 * checksum is hw-offloaded or not necessary.
834 */
835 m->m_pkthdr.csum_flags |=
836 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
837 m->m_pkthdr.csum_data |= mhlen << 16;
838 KASSERT(!(ifp != NULL &&
839 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
840 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
841 }
842 IP_STATINC(IP_STAT_OFRAGMENTS);
843 fragments++;
844 }
845 /*
846 * Update first fragment by trimming what's been copied out
847 * and updating header, then send each fragment (in order).
848 */
849 m = m0;
850 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
851 m->m_pkthdr.len = hlen + firstlen;
852 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
853 ip->ip_off |= htons(IP_MF);
854 ip->ip_sum = 0;
855 if (sw_csum & M_CSUM_IPv4) {
856 ip->ip_sum = in_cksum(m, hlen);
857 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
858 } else {
859 /*
860 * checksum is hw-offloaded or not necessary.
861 */
862 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
863 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
864 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
865 sizeof(struct ip));
866 }
867 sendorfree:
868 /*
869 * If there is no room for all the fragments, don't queue
870 * any of them.
871 */
872 if (ifp != NULL) {
873 s = splnet();
874 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
875 error == 0) {
876 error = ENOBUFS;
877 IP_STATINC(IP_STAT_ODROPPED);
878 IFQ_INC_DROPS(&ifp->if_snd);
879 }
880 splx(s);
881 }
882 if (error) {
883 for (m = m0; m; m = m0) {
884 m0 = m->m_nextpkt;
885 m->m_nextpkt = NULL;
886 m_freem(m);
887 }
888 }
889 return (error);
890 }
891
892 /*
893 * Process a delayed payload checksum calculation.
894 */
895 void
896 in_delayed_cksum(struct mbuf *m)
897 {
898 struct ip *ip;
899 u_int16_t csum, offset;
900
901 ip = mtod(m, struct ip *);
902 offset = ip->ip_hl << 2;
903 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
904 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
905 csum = 0xffff;
906
907 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
908
909 if ((offset + sizeof(u_int16_t)) > m->m_len) {
910 /* This happen when ip options were inserted
911 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
912 m->m_len, offset, ip->ip_p);
913 */
914 m_copyback(m, offset, sizeof(csum), (void *) &csum);
915 } else
916 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
917 }
918
919 /*
920 * Determine the maximum length of the options to be inserted;
921 * we would far rather allocate too much space rather than too little.
922 */
923
924 u_int
925 ip_optlen(struct inpcb *inp)
926 {
927 struct mbuf *m = inp->inp_options;
928
929 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
930 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
931 else
932 return 0;
933 }
934
935
936 /*
937 * Insert IP options into preformed packet.
938 * Adjust IP destination as required for IP source routing,
939 * as indicated by a non-zero in_addr at the start of the options.
940 */
941 static struct mbuf *
942 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
943 {
944 struct ipoption *p = mtod(opt, struct ipoption *);
945 struct mbuf *n;
946 struct ip *ip = mtod(m, struct ip *);
947 unsigned optlen;
948
949 optlen = opt->m_len - sizeof(p->ipopt_dst);
950 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
951 return (m); /* XXX should fail */
952 if (!in_nullhost(p->ipopt_dst))
953 ip->ip_dst = p->ipopt_dst;
954 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
955 MGETHDR(n, M_DONTWAIT, MT_HEADER);
956 if (n == 0)
957 return (m);
958 MCLAIM(n, m->m_owner);
959 M_MOVE_PKTHDR(n, m);
960 m->m_len -= sizeof(struct ip);
961 m->m_data += sizeof(struct ip);
962 n->m_next = m;
963 m = n;
964 m->m_len = optlen + sizeof(struct ip);
965 m->m_data += max_linkhdr;
966 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
967 } else {
968 m->m_data -= optlen;
969 m->m_len += optlen;
970 memmove(mtod(m, void *), ip, sizeof(struct ip));
971 }
972 m->m_pkthdr.len += optlen;
973 ip = mtod(m, struct ip *);
974 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
975 *phlen = sizeof(struct ip) + optlen;
976 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
977 return (m);
978 }
979
980 /*
981 * Copy options from ip to jp,
982 * omitting those not copied during fragmentation.
983 */
984 int
985 ip_optcopy(struct ip *ip, struct ip *jp)
986 {
987 u_char *cp, *dp;
988 int opt, optlen, cnt;
989
990 cp = (u_char *)(ip + 1);
991 dp = (u_char *)(jp + 1);
992 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
993 for (; cnt > 0; cnt -= optlen, cp += optlen) {
994 opt = cp[0];
995 if (opt == IPOPT_EOL)
996 break;
997 if (opt == IPOPT_NOP) {
998 /* Preserve for IP mcast tunnel's LSRR alignment. */
999 *dp++ = IPOPT_NOP;
1000 optlen = 1;
1001 continue;
1002 }
1003 #ifdef DIAGNOSTIC
1004 if (cnt < IPOPT_OLEN + sizeof(*cp))
1005 panic("malformed IPv4 option passed to ip_optcopy");
1006 #endif
1007 optlen = cp[IPOPT_OLEN];
1008 #ifdef DIAGNOSTIC
1009 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1010 panic("malformed IPv4 option passed to ip_optcopy");
1011 #endif
1012 /* bogus lengths should have been caught by ip_dooptions */
1013 if (optlen > cnt)
1014 optlen = cnt;
1015 if (IPOPT_COPIED(opt)) {
1016 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1017 dp += optlen;
1018 }
1019 }
1020 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1021 *dp++ = IPOPT_EOL;
1022 return (optlen);
1023 }
1024
1025 /*
1026 * IP socket option processing.
1027 */
1028 int
1029 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1030 {
1031 struct inpcb *inp = sotoinpcb(so);
1032 int optval = 0;
1033 int error = 0;
1034 #if defined(FAST_IPSEC)
1035 struct lwp *l = curlwp; /*XXX*/
1036 #endif
1037
1038 if (sopt->sopt_level != IPPROTO_IP) {
1039 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1040 return 0;
1041 return ENOPROTOOPT;
1042 }
1043
1044 switch (op) {
1045 case PRCO_SETOPT:
1046 switch (sopt->sopt_name) {
1047 case IP_OPTIONS:
1048 #ifdef notyet
1049 case IP_RETOPTS:
1050 #endif
1051 error = ip_pcbopts(&inp->inp_options, sopt);
1052 break;
1053
1054 case IP_TOS:
1055 case IP_TTL:
1056 case IP_MINTTL:
1057 case IP_RECVOPTS:
1058 case IP_RECVRETOPTS:
1059 case IP_RECVDSTADDR:
1060 case IP_RECVIF:
1061 case IP_RECVTTL:
1062 error = sockopt_getint(sopt, &optval);
1063 if (error)
1064 break;
1065
1066 switch (sopt->sopt_name) {
1067 case IP_TOS:
1068 inp->inp_ip.ip_tos = optval;
1069 break;
1070
1071 case IP_TTL:
1072 inp->inp_ip.ip_ttl = optval;
1073 break;
1074
1075 case IP_MINTTL:
1076 if (optval > 0 && optval <= MAXTTL)
1077 inp->inp_ip_minttl = optval;
1078 else
1079 error = EINVAL;
1080 break;
1081 #define OPTSET(bit) \
1082 if (optval) \
1083 inp->inp_flags |= bit; \
1084 else \
1085 inp->inp_flags &= ~bit;
1086
1087 case IP_RECVOPTS:
1088 OPTSET(INP_RECVOPTS);
1089 break;
1090
1091 case IP_RECVRETOPTS:
1092 OPTSET(INP_RECVRETOPTS);
1093 break;
1094
1095 case IP_RECVDSTADDR:
1096 OPTSET(INP_RECVDSTADDR);
1097 break;
1098
1099 case IP_RECVIF:
1100 OPTSET(INP_RECVIF);
1101 break;
1102
1103 case IP_RECVTTL:
1104 OPTSET(INP_RECVTTL);
1105 break;
1106 }
1107 break;
1108 #undef OPTSET
1109
1110 case IP_MULTICAST_IF:
1111 case IP_MULTICAST_TTL:
1112 case IP_MULTICAST_LOOP:
1113 case IP_ADD_MEMBERSHIP:
1114 case IP_DROP_MEMBERSHIP:
1115 error = ip_setmoptions(&inp->inp_moptions, sopt);
1116 break;
1117
1118 case IP_PORTRANGE:
1119 error = sockopt_getint(sopt, &optval);
1120 if (error)
1121 break;
1122
1123 /* INP_LOCK(inp); */
1124 switch (optval) {
1125 case IP_PORTRANGE_DEFAULT:
1126 case IP_PORTRANGE_HIGH:
1127 inp->inp_flags &= ~(INP_LOWPORT);
1128 break;
1129
1130 case IP_PORTRANGE_LOW:
1131 inp->inp_flags |= INP_LOWPORT;
1132 break;
1133
1134 default:
1135 error = EINVAL;
1136 break;
1137 }
1138 /* INP_UNLOCK(inp); */
1139 break;
1140
1141 case IP_PORTALGO:
1142 error = sockopt_getint(sopt, &optval);
1143 if (error)
1144 break;
1145
1146 error = portalgo_algo_index_select(
1147 (struct inpcb_hdr *)inp, optval);
1148 break;
1149
1150 #if defined(FAST_IPSEC)
1151 case IP_IPSEC_POLICY:
1152 error = ipsec4_set_policy(inp, sopt->sopt_name,
1153 sopt->sopt_data, sopt->sopt_size, l->l_cred);
1154 break;
1155 #endif /*IPSEC*/
1156
1157 default:
1158 error = ENOPROTOOPT;
1159 break;
1160 }
1161 break;
1162
1163 case PRCO_GETOPT:
1164 switch (sopt->sopt_name) {
1165 case IP_OPTIONS:
1166 case IP_RETOPTS:
1167 if (inp->inp_options) {
1168 struct mbuf *m;
1169
1170 m = m_copym(inp->inp_options, 0, M_COPYALL,
1171 M_DONTWAIT);
1172 if (m == NULL) {
1173 error = ENOBUFS;
1174 break;
1175 }
1176
1177 error = sockopt_setmbuf(sopt, m);
1178 }
1179 break;
1180
1181 case IP_TOS:
1182 case IP_TTL:
1183 case IP_MINTTL:
1184 case IP_RECVOPTS:
1185 case IP_RECVRETOPTS:
1186 case IP_RECVDSTADDR:
1187 case IP_RECVIF:
1188 case IP_RECVTTL:
1189 case IP_ERRORMTU:
1190 switch (sopt->sopt_name) {
1191 case IP_TOS:
1192 optval = inp->inp_ip.ip_tos;
1193 break;
1194
1195 case IP_TTL:
1196 optval = inp->inp_ip.ip_ttl;
1197 break;
1198
1199 case IP_MINTTL:
1200 optval = inp->inp_ip_minttl;
1201 break;
1202
1203 case IP_ERRORMTU:
1204 optval = inp->inp_errormtu;
1205 break;
1206
1207 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1208
1209 case IP_RECVOPTS:
1210 optval = OPTBIT(INP_RECVOPTS);
1211 break;
1212
1213 case IP_RECVRETOPTS:
1214 optval = OPTBIT(INP_RECVRETOPTS);
1215 break;
1216
1217 case IP_RECVDSTADDR:
1218 optval = OPTBIT(INP_RECVDSTADDR);
1219 break;
1220
1221 case IP_RECVIF:
1222 optval = OPTBIT(INP_RECVIF);
1223 break;
1224
1225 case IP_RECVTTL:
1226 optval = OPTBIT(INP_RECVTTL);
1227 break;
1228 }
1229 error = sockopt_setint(sopt, optval);
1230 break;
1231
1232 #if 0 /* defined(FAST_IPSEC) */
1233 case IP_IPSEC_POLICY:
1234 {
1235 struct mbuf *m = NULL;
1236
1237 /* XXX this will return EINVAL as sopt is empty */
1238 error = ipsec4_get_policy(inp, sopt->sopt_data,
1239 sopt->sopt_size, &m);
1240 if (error == 0)
1241 error = sockopt_setmbuf(sopt, m);
1242 break;
1243 }
1244 #endif /*IPSEC*/
1245
1246 case IP_MULTICAST_IF:
1247 case IP_MULTICAST_TTL:
1248 case IP_MULTICAST_LOOP:
1249 case IP_ADD_MEMBERSHIP:
1250 case IP_DROP_MEMBERSHIP:
1251 error = ip_getmoptions(inp->inp_moptions, sopt);
1252 break;
1253
1254 case IP_PORTRANGE:
1255 if (inp->inp_flags & INP_LOWPORT)
1256 optval = IP_PORTRANGE_LOW;
1257 else
1258 optval = IP_PORTRANGE_DEFAULT;
1259
1260 error = sockopt_setint(sopt, optval);
1261
1262 break;
1263
1264 case IP_PORTALGO:
1265 optval = ((struct inpcb_hdr *)inp)->inph_portalgo;
1266 error = sockopt_setint(sopt, optval);
1267 break;
1268
1269 default:
1270 error = ENOPROTOOPT;
1271 break;
1272 }
1273 break;
1274 }
1275 return (error);
1276 }
1277
1278 /*
1279 * Set up IP options in pcb for insertion in output packets.
1280 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1281 * with destination address if source routed.
1282 */
1283 int
1284 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1285 {
1286 struct mbuf *m;
1287 const u_char *cp;
1288 u_char *dp;
1289 int cnt;
1290 uint8_t optval, olen, offset;
1291
1292 /* turn off any old options */
1293 if (*pcbopt)
1294 (void)m_free(*pcbopt);
1295 *pcbopt = NULL;
1296
1297 cp = sopt->sopt_data;
1298 cnt = sopt->sopt_size;
1299
1300 if (cnt == 0)
1301 return (0); /* Only turning off any previous options */
1302
1303 #ifndef __vax__
1304 if (cnt % sizeof(int32_t))
1305 return (EINVAL);
1306 #endif
1307
1308 m = m_get(M_DONTWAIT, MT_SOOPTS);
1309 if (m == NULL)
1310 return (ENOBUFS);
1311
1312 dp = mtod(m, u_char *);
1313 memset(dp, 0, sizeof(struct in_addr));
1314 dp += sizeof(struct in_addr);
1315 m->m_len = sizeof(struct in_addr);
1316
1317 /*
1318 * IP option list according to RFC791. Each option is of the form
1319 *
1320 * [optval] [olen] [(olen - 2) data bytes]
1321 *
1322 * we validate the list and copy options to an mbuf for prepending
1323 * to data packets. The IP first-hop destination address will be
1324 * stored before actual options and is zero if unset.
1325 */
1326 while (cnt > 0) {
1327 optval = cp[IPOPT_OPTVAL];
1328
1329 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1330 olen = 1;
1331 } else {
1332 if (cnt < IPOPT_OLEN + 1)
1333 goto bad;
1334
1335 olen = cp[IPOPT_OLEN];
1336 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1337 goto bad;
1338 }
1339
1340 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1341 /*
1342 * user process specifies route as:
1343 * ->A->B->C->D
1344 * D must be our final destination (but we can't
1345 * check that since we may not have connected yet).
1346 * A is first hop destination, which doesn't appear in
1347 * actual IP option, but is stored before the options.
1348 */
1349 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1350 goto bad;
1351
1352 offset = cp[IPOPT_OFFSET];
1353 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1354 sizeof(struct in_addr));
1355
1356 cp += sizeof(struct in_addr);
1357 cnt -= sizeof(struct in_addr);
1358 olen -= sizeof(struct in_addr);
1359
1360 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1361 goto bad;
1362
1363 memcpy(dp, cp, olen);
1364 dp[IPOPT_OPTVAL] = optval;
1365 dp[IPOPT_OLEN] = olen;
1366 dp[IPOPT_OFFSET] = offset;
1367 break;
1368 } else {
1369 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1370 goto bad;
1371
1372 memcpy(dp, cp, olen);
1373 break;
1374 }
1375
1376 dp += olen;
1377 m->m_len += olen;
1378
1379 if (optval == IPOPT_EOL)
1380 break;
1381
1382 cp += olen;
1383 cnt -= olen;
1384 }
1385
1386 *pcbopt = m;
1387 return (0);
1388
1389 bad:
1390 (void)m_free(m);
1391 return (EINVAL);
1392 }
1393
1394 /*
1395 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1396 */
1397 static struct ifnet *
1398 ip_multicast_if(struct in_addr *a, int *ifindexp)
1399 {
1400 int ifindex;
1401 struct ifnet *ifp = NULL;
1402 struct in_ifaddr *ia;
1403
1404 if (ifindexp)
1405 *ifindexp = 0;
1406 if (ntohl(a->s_addr) >> 24 == 0) {
1407 ifindex = ntohl(a->s_addr) & 0xffffff;
1408 if (ifindex < 0 || if_indexlim <= ifindex)
1409 return NULL;
1410 ifp = ifindex2ifnet[ifindex];
1411 if (!ifp)
1412 return NULL;
1413 if (ifindexp)
1414 *ifindexp = ifindex;
1415 } else {
1416 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1417 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1418 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1419 ifp = ia->ia_ifp;
1420 break;
1421 }
1422 }
1423 }
1424 return ifp;
1425 }
1426
1427 static int
1428 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1429 {
1430 u_int tval;
1431 u_char cval;
1432 int error;
1433
1434 if (sopt == NULL)
1435 return EINVAL;
1436
1437 switch (sopt->sopt_size) {
1438 case sizeof(u_char):
1439 error = sockopt_get(sopt, &cval, sizeof(u_char));
1440 tval = cval;
1441 break;
1442
1443 case sizeof(u_int):
1444 error = sockopt_get(sopt, &tval, sizeof(u_int));
1445 break;
1446
1447 default:
1448 error = EINVAL;
1449 }
1450
1451 if (error)
1452 return error;
1453
1454 if (tval > maxval)
1455 return EINVAL;
1456
1457 *val = tval;
1458 return 0;
1459 }
1460
1461 /*
1462 * Set the IP multicast options in response to user setsockopt().
1463 */
1464 int
1465 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1466 {
1467 struct in_addr addr;
1468 struct ip_mreq lmreq, *mreq;
1469 struct ifnet *ifp;
1470 struct ip_moptions *imo = *imop;
1471 int i, ifindex, error = 0;
1472
1473 if (imo == NULL) {
1474 /*
1475 * No multicast option buffer attached to the pcb;
1476 * allocate one and initialize to default values.
1477 */
1478 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1479 if (imo == NULL)
1480 return ENOBUFS;
1481
1482 imo->imo_multicast_ifp = NULL;
1483 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1484 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1485 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1486 imo->imo_num_memberships = 0;
1487 *imop = imo;
1488 }
1489
1490 switch (sopt->sopt_name) {
1491 case IP_MULTICAST_IF:
1492 /*
1493 * Select the interface for outgoing multicast packets.
1494 */
1495 error = sockopt_get(sopt, &addr, sizeof(addr));
1496 if (error)
1497 break;
1498
1499 /*
1500 * INADDR_ANY is used to remove a previous selection.
1501 * When no interface is selected, a default one is
1502 * chosen every time a multicast packet is sent.
1503 */
1504 if (in_nullhost(addr)) {
1505 imo->imo_multicast_ifp = NULL;
1506 break;
1507 }
1508 /*
1509 * The selected interface is identified by its local
1510 * IP address. Find the interface and confirm that
1511 * it supports multicasting.
1512 */
1513 ifp = ip_multicast_if(&addr, &ifindex);
1514 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1515 error = EADDRNOTAVAIL;
1516 break;
1517 }
1518 imo->imo_multicast_ifp = ifp;
1519 if (ifindex)
1520 imo->imo_multicast_addr = addr;
1521 else
1522 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1523 break;
1524
1525 case IP_MULTICAST_TTL:
1526 /*
1527 * Set the IP time-to-live for outgoing multicast packets.
1528 */
1529 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1530 break;
1531
1532 case IP_MULTICAST_LOOP:
1533 /*
1534 * Set the loopback flag for outgoing multicast packets.
1535 * Must be zero or one.
1536 */
1537 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1538 break;
1539
1540 case IP_ADD_MEMBERSHIP:
1541 /*
1542 * Add a multicast group membership.
1543 * Group must be a valid IP multicast address.
1544 */
1545 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1546 if (error)
1547 break;
1548
1549 mreq = &lmreq;
1550
1551 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1552 error = EINVAL;
1553 break;
1554 }
1555 /*
1556 * If no interface address was provided, use the interface of
1557 * the route to the given multicast address.
1558 */
1559 if (in_nullhost(mreq->imr_interface)) {
1560 struct rtentry *rt;
1561 union {
1562 struct sockaddr dst;
1563 struct sockaddr_in dst4;
1564 } u;
1565 struct route ro;
1566
1567 memset(&ro, 0, sizeof(ro));
1568
1569 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1570 rtcache_setdst(&ro, &u.dst);
1571 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1572 : NULL;
1573 rtcache_free(&ro);
1574 } else {
1575 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1576 }
1577 /*
1578 * See if we found an interface, and confirm that it
1579 * supports multicast.
1580 */
1581 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1582 error = EADDRNOTAVAIL;
1583 break;
1584 }
1585 /*
1586 * See if the membership already exists or if all the
1587 * membership slots are full.
1588 */
1589 for (i = 0; i < imo->imo_num_memberships; ++i) {
1590 if (imo->imo_membership[i]->inm_ifp == ifp &&
1591 in_hosteq(imo->imo_membership[i]->inm_addr,
1592 mreq->imr_multiaddr))
1593 break;
1594 }
1595 if (i < imo->imo_num_memberships) {
1596 error = EADDRINUSE;
1597 break;
1598 }
1599 if (i == IP_MAX_MEMBERSHIPS) {
1600 error = ETOOMANYREFS;
1601 break;
1602 }
1603 /*
1604 * Everything looks good; add a new record to the multicast
1605 * address list for the given interface.
1606 */
1607 if ((imo->imo_membership[i] =
1608 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1609 error = ENOBUFS;
1610 break;
1611 }
1612 ++imo->imo_num_memberships;
1613 break;
1614
1615 case IP_DROP_MEMBERSHIP:
1616 /*
1617 * Drop a multicast group membership.
1618 * Group must be a valid IP multicast address.
1619 */
1620 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1621 if (error)
1622 break;
1623
1624 mreq = &lmreq;
1625
1626 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1627 error = EINVAL;
1628 break;
1629 }
1630 /*
1631 * If an interface address was specified, get a pointer
1632 * to its ifnet structure.
1633 */
1634 if (in_nullhost(mreq->imr_interface))
1635 ifp = NULL;
1636 else {
1637 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1638 if (ifp == NULL) {
1639 error = EADDRNOTAVAIL;
1640 break;
1641 }
1642 }
1643 /*
1644 * Find the membership in the membership array.
1645 */
1646 for (i = 0; i < imo->imo_num_memberships; ++i) {
1647 if ((ifp == NULL ||
1648 imo->imo_membership[i]->inm_ifp == ifp) &&
1649 in_hosteq(imo->imo_membership[i]->inm_addr,
1650 mreq->imr_multiaddr))
1651 break;
1652 }
1653 if (i == imo->imo_num_memberships) {
1654 error = EADDRNOTAVAIL;
1655 break;
1656 }
1657 /*
1658 * Give up the multicast address record to which the
1659 * membership points.
1660 */
1661 in_delmulti(imo->imo_membership[i]);
1662 /*
1663 * Remove the gap in the membership array.
1664 */
1665 for (++i; i < imo->imo_num_memberships; ++i)
1666 imo->imo_membership[i-1] = imo->imo_membership[i];
1667 --imo->imo_num_memberships;
1668 break;
1669
1670 default:
1671 error = EOPNOTSUPP;
1672 break;
1673 }
1674
1675 /*
1676 * If all options have default values, no need to keep the mbuf.
1677 */
1678 if (imo->imo_multicast_ifp == NULL &&
1679 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1680 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1681 imo->imo_num_memberships == 0) {
1682 kmem_free(imo, sizeof(*imo));
1683 *imop = NULL;
1684 }
1685
1686 return error;
1687 }
1688
1689 /*
1690 * Return the IP multicast options in response to user getsockopt().
1691 */
1692 int
1693 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1694 {
1695 struct in_addr addr;
1696 struct in_ifaddr *ia;
1697 int error;
1698 uint8_t optval;
1699
1700 error = 0;
1701
1702 switch (sopt->sopt_name) {
1703 case IP_MULTICAST_IF:
1704 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1705 addr = zeroin_addr;
1706 else if (imo->imo_multicast_addr.s_addr) {
1707 /* return the value user has set */
1708 addr = imo->imo_multicast_addr;
1709 } else {
1710 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1711 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1712 }
1713 error = sockopt_set(sopt, &addr, sizeof(addr));
1714 break;
1715
1716 case IP_MULTICAST_TTL:
1717 optval = imo ? imo->imo_multicast_ttl
1718 : IP_DEFAULT_MULTICAST_TTL;
1719
1720 error = sockopt_set(sopt, &optval, sizeof(optval));
1721 break;
1722
1723 case IP_MULTICAST_LOOP:
1724 optval = imo ? imo->imo_multicast_loop
1725 : IP_DEFAULT_MULTICAST_LOOP;
1726
1727 error = sockopt_set(sopt, &optval, sizeof(optval));
1728 break;
1729
1730 default:
1731 error = EOPNOTSUPP;
1732 }
1733
1734 return (error);
1735 }
1736
1737 /*
1738 * Discard the IP multicast options.
1739 */
1740 void
1741 ip_freemoptions(struct ip_moptions *imo)
1742 {
1743 int i;
1744
1745 if (imo != NULL) {
1746 for (i = 0; i < imo->imo_num_memberships; ++i)
1747 in_delmulti(imo->imo_membership[i]);
1748 kmem_free(imo, sizeof(*imo));
1749 }
1750 }
1751
1752 /*
1753 * Routine called from ip_output() to loop back a copy of an IP multicast
1754 * packet to the input queue of a specified interface. Note that this
1755 * calls the output routine of the loopback "driver", but with an interface
1756 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1757 */
1758 static void
1759 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1760 {
1761 struct ip *ip;
1762 struct mbuf *copym;
1763
1764 copym = m_copypacket(m, M_DONTWAIT);
1765 if (copym != NULL
1766 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1767 copym = m_pullup(copym, sizeof(struct ip));
1768 if (copym == NULL)
1769 return;
1770 /*
1771 * We don't bother to fragment if the IP length is greater
1772 * than the interface's MTU. Can this possibly matter?
1773 */
1774 ip = mtod(copym, struct ip *);
1775
1776 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1777 in_delayed_cksum(copym);
1778 copym->m_pkthdr.csum_flags &=
1779 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1780 }
1781
1782 ip->ip_sum = 0;
1783 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1784 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1785 }
1786