Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.217.2.1
      1 /*	$NetBSD: ip_output.c,v 1.217.2.1 2013/02/25 00:30:04 tls Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.217.2.1 2013/02/25 00:30:04 tls Exp $");
     95 
     96 #include "opt_pfil_hooks.h"
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 
    101 #include <sys/param.h>
    102 #include <sys/malloc.h>
    103 #include <sys/kmem.h>
    104 #include <sys/mbuf.h>
    105 #include <sys/errno.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/kauth.h>
    110 #ifdef FAST_IPSEC
    111 #include <sys/domain.h>
    112 #endif
    113 #include <sys/systm.h>
    114 #include <sys/proc.h>
    115 
    116 #include <net/if.h>
    117 #include <net/route.h>
    118 #include <net/pfil.h>
    119 
    120 #include <netinet/in.h>
    121 #include <netinet/in_systm.h>
    122 #include <netinet/ip.h>
    123 #include <netinet/in_pcb.h>
    124 #include <netinet/in_var.h>
    125 #include <netinet/ip_var.h>
    126 #include <netinet/ip_private.h>
    127 #include <netinet/in_offload.h>
    128 #include <netinet/portalgo.h>
    129 
    130 #ifdef MROUTING
    131 #include <netinet/ip_mroute.h>
    132 #endif
    133 
    134 #ifdef FAST_IPSEC
    135 #include <netipsec/ipsec.h>
    136 #include <netipsec/key.h>
    137 #include <netipsec/xform.h>
    138 #endif	/* FAST_IPSEC*/
    139 
    140 #ifdef IPSEC_NAT_T
    141 #include <netinet/udp.h>
    142 #endif
    143 
    144 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    145 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    146 static void ip_mloopback(struct ifnet *, struct mbuf *,
    147     const struct sockaddr_in *);
    148 
    149 #ifdef PFIL_HOOKS
    150 extern struct pfil_head inet_pfil_hook;			/* XXX */
    151 #endif
    152 
    153 int	ip_do_loopback_cksum = 0;
    154 
    155 /*
    156  * IP output.  The packet in mbuf chain m contains a skeletal IP
    157  * header (with len, off, ttl, proto, tos, src, dst).
    158  * The mbuf chain containing the packet will be freed.
    159  * The mbuf opt, if present, will not be freed.
    160  */
    161 int
    162 ip_output(struct mbuf *m0, ...)
    163 {
    164 	struct rtentry *rt;
    165 	struct ip *ip;
    166 	struct ifnet *ifp;
    167 	struct mbuf *m = m0;
    168 	int hlen = sizeof (struct ip);
    169 	int len, error = 0;
    170 	struct route iproute;
    171 	const struct sockaddr_in *dst;
    172 	struct in_ifaddr *ia;
    173 	struct ifaddr *xifa;
    174 	struct mbuf *opt;
    175 	struct route *ro;
    176 	int flags, sw_csum;
    177 	int *mtu_p;
    178 	u_long mtu;
    179 	struct ip_moptions *imo;
    180 	struct socket *so;
    181 	va_list ap;
    182 #ifdef IPSEC_NAT_T
    183 	int natt_frag = 0;
    184 #endif
    185 #ifdef FAST_IPSEC
    186 	struct inpcb *inp;
    187 	struct secpolicy *sp = NULL;
    188 	int s;
    189 #endif
    190 	union {
    191 		struct sockaddr		dst;
    192 		struct sockaddr_in	dst4;
    193 	} u;
    194 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    195 					 * to the nexthop
    196 					 */
    197 
    198 	len = 0;
    199 	va_start(ap, m0);
    200 	opt = va_arg(ap, struct mbuf *);
    201 	ro = va_arg(ap, struct route *);
    202 	flags = va_arg(ap, int);
    203 	imo = va_arg(ap, struct ip_moptions *);
    204 	so = va_arg(ap, struct socket *);
    205 	if (flags & IP_RETURNMTU)
    206 		mtu_p = va_arg(ap, int *);
    207 	else
    208 		mtu_p = NULL;
    209 	va_end(ap);
    210 
    211 	MCLAIM(m, &ip_tx_mowner);
    212 #ifdef FAST_IPSEC
    213 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    214 		inp = (struct inpcb *)so->so_pcb;
    215 	else
    216 		inp = NULL;
    217 #endif /* FAST_IPSEC */
    218 
    219 #ifdef	DIAGNOSTIC
    220 	if ((m->m_flags & M_PKTHDR) == 0)
    221 		panic("ip_output: no HDR");
    222 
    223 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    224 		panic("ip_output: IPv6 checksum offload flags: %d",
    225 		    m->m_pkthdr.csum_flags);
    226 	}
    227 
    228 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    229 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    230 		panic("ip_output: conflicting checksum offload flags: %d",
    231 		    m->m_pkthdr.csum_flags);
    232 	}
    233 #endif
    234 	if (opt) {
    235 		m = ip_insertoptions(m, opt, &len);
    236 		if (len >= sizeof(struct ip))
    237 			hlen = len;
    238 	}
    239 	ip = mtod(m, struct ip *);
    240 	/*
    241 	 * Fill in IP header.
    242 	 */
    243 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    244 		ip->ip_v = IPVERSION;
    245 		ip->ip_off = htons(0);
    246 		/* ip->ip_id filled in after we find out source ia */
    247 		ip->ip_hl = hlen >> 2;
    248 		IP_STATINC(IP_STAT_LOCALOUT);
    249 	} else {
    250 		hlen = ip->ip_hl << 2;
    251 	}
    252 	/*
    253 	 * Route packet.
    254 	 */
    255 	memset(&iproute, 0, sizeof(iproute));
    256 	if (ro == NULL)
    257 		ro = &iproute;
    258 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    259 	dst = satocsin(rtcache_getdst(ro));
    260 	/*
    261 	 * If there is a cached route,
    262 	 * check that it is to the same destination
    263 	 * and is still up.  If not, free it and try again.
    264 	 * The address family should also be checked in case of sharing the
    265 	 * cache with IPv6.
    266 	 */
    267 	if (dst == NULL)
    268 		;
    269 	else if (dst->sin_family != AF_INET ||
    270 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
    271 		rtcache_free(ro);
    272 
    273 	if ((rt = rtcache_validate(ro)) == NULL &&
    274 	    (rt = rtcache_update(ro, 1)) == NULL) {
    275 		dst = &u.dst4;
    276 		rtcache_setdst(ro, &u.dst);
    277 	}
    278 	/*
    279 	 * If routing to interface only,
    280 	 * short circuit routing lookup.
    281 	 */
    282 	if (flags & IP_ROUTETOIF) {
    283 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    284 			IP_STATINC(IP_STAT_NOROUTE);
    285 			error = ENETUNREACH;
    286 			goto bad;
    287 		}
    288 		ifp = ia->ia_ifp;
    289 		mtu = ifp->if_mtu;
    290 		ip->ip_ttl = 1;
    291 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    292 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    293 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    294 		ifp = imo->imo_multicast_ifp;
    295 		mtu = ifp->if_mtu;
    296 		IFP_TO_IA(ifp, ia);
    297 	} else {
    298 		if (rt == NULL)
    299 			rt = rtcache_init(ro);
    300 		if (rt == NULL) {
    301 			IP_STATINC(IP_STAT_NOROUTE);
    302 			error = EHOSTUNREACH;
    303 			goto bad;
    304 		}
    305 		ia = ifatoia(rt->rt_ifa);
    306 		ifp = rt->rt_ifp;
    307 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    308 			mtu = ifp->if_mtu;
    309 		rt->rt_use++;
    310 		if (rt->rt_flags & RTF_GATEWAY)
    311 			dst = satosin(rt->rt_gateway);
    312 	}
    313 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    314 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    315 		struct in_multi *inm;
    316 
    317 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    318 			M_BCAST : M_MCAST;
    319 		/*
    320 		 * See if the caller provided any multicast options
    321 		 */
    322 		if (imo != NULL)
    323 			ip->ip_ttl = imo->imo_multicast_ttl;
    324 		else
    325 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    326 
    327 		/*
    328 		 * if we don't know the outgoing ifp yet, we can't generate
    329 		 * output
    330 		 */
    331 		if (!ifp) {
    332 			IP_STATINC(IP_STAT_NOROUTE);
    333 			error = ENETUNREACH;
    334 			goto bad;
    335 		}
    336 
    337 		/*
    338 		 * If the packet is multicast or broadcast, confirm that
    339 		 * the outgoing interface can transmit it.
    340 		 */
    341 		if (((m->m_flags & M_MCAST) &&
    342 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    343 		    ((m->m_flags & M_BCAST) &&
    344 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    345 			IP_STATINC(IP_STAT_NOROUTE);
    346 			error = ENETUNREACH;
    347 			goto bad;
    348 		}
    349 		/*
    350 		 * If source address not specified yet, use an address
    351 		 * of outgoing interface.
    352 		 */
    353 		if (in_nullhost(ip->ip_src)) {
    354 			struct in_ifaddr *xia;
    355 
    356 			IFP_TO_IA(ifp, xia);
    357 			if (!xia) {
    358 				error = EADDRNOTAVAIL;
    359 				goto bad;
    360 			}
    361 			xifa = &xia->ia_ifa;
    362 			if (xifa->ifa_getifa != NULL) {
    363 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    364 			}
    365 			ip->ip_src = xia->ia_addr.sin_addr;
    366 		}
    367 
    368 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    369 		if (inm != NULL &&
    370 		   (imo == NULL || imo->imo_multicast_loop)) {
    371 			/*
    372 			 * If we belong to the destination multicast group
    373 			 * on the outgoing interface, and the caller did not
    374 			 * forbid loopback, loop back a copy.
    375 			 */
    376 			ip_mloopback(ifp, m, &u.dst4);
    377 		}
    378 #ifdef MROUTING
    379 		else {
    380 			/*
    381 			 * If we are acting as a multicast router, perform
    382 			 * multicast forwarding as if the packet had just
    383 			 * arrived on the interface to which we are about
    384 			 * to send.  The multicast forwarding function
    385 			 * recursively calls this function, using the
    386 			 * IP_FORWARDING flag to prevent infinite recursion.
    387 			 *
    388 			 * Multicasts that are looped back by ip_mloopback(),
    389 			 * above, will be forwarded by the ip_input() routine,
    390 			 * if necessary.
    391 			 */
    392 			extern struct socket *ip_mrouter;
    393 
    394 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    395 				if (ip_mforward(m, ifp) != 0) {
    396 					m_freem(m);
    397 					goto done;
    398 				}
    399 			}
    400 		}
    401 #endif
    402 		/*
    403 		 * Multicasts with a time-to-live of zero may be looped-
    404 		 * back, above, but must not be transmitted on a network.
    405 		 * Also, multicasts addressed to the loopback interface
    406 		 * are not sent -- the above call to ip_mloopback() will
    407 		 * loop back a copy if this host actually belongs to the
    408 		 * destination group on the loopback interface.
    409 		 */
    410 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    411 			m_freem(m);
    412 			goto done;
    413 		}
    414 
    415 		goto sendit;
    416 	}
    417 	/*
    418 	 * If source address not specified yet, use address
    419 	 * of outgoing interface.
    420 	 */
    421 	if (in_nullhost(ip->ip_src)) {
    422 		xifa = &ia->ia_ifa;
    423 		if (xifa->ifa_getifa != NULL)
    424 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    425 		ip->ip_src = ia->ia_addr.sin_addr;
    426 	}
    427 
    428 	/*
    429 	 * packets with Class-D address as source are not valid per
    430 	 * RFC 1112
    431 	 */
    432 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    433 		IP_STATINC(IP_STAT_ODROPPED);
    434 		error = EADDRNOTAVAIL;
    435 		goto bad;
    436 	}
    437 
    438 	/*
    439 	 * Look for broadcast address and
    440 	 * and verify user is allowed to send
    441 	 * such a packet.
    442 	 */
    443 	if (in_broadcast(dst->sin_addr, ifp)) {
    444 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    445 			error = EADDRNOTAVAIL;
    446 			goto bad;
    447 		}
    448 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    449 			error = EACCES;
    450 			goto bad;
    451 		}
    452 		/* don't allow broadcast messages to be fragmented */
    453 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    454 			error = EMSGSIZE;
    455 			goto bad;
    456 		}
    457 		m->m_flags |= M_BCAST;
    458 	} else
    459 		m->m_flags &= ~M_BCAST;
    460 
    461 sendit:
    462 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    463 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    464 			ip->ip_id = 0;
    465 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    466 			ip->ip_id = ip_newid(ia);
    467 		} else {
    468 
    469 			/*
    470 			 * TSO capable interfaces (typically?) increment
    471 			 * ip_id for each segment.
    472 			 * "allocate" enough ids here to increase the chance
    473 			 * for them to be unique.
    474 			 *
    475 			 * note that the following calculation is not
    476 			 * needed to be precise.  wasting some ip_id is fine.
    477 			 */
    478 
    479 			unsigned int segsz = m->m_pkthdr.segsz;
    480 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    481 			unsigned int num = howmany(datasz, segsz);
    482 
    483 			ip->ip_id = ip_newid_range(ia, num);
    484 		}
    485 	}
    486 	/*
    487 	 * If we're doing Path MTU Discovery, we need to set DF unless
    488 	 * the route's MTU is locked.
    489 	 */
    490 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    491 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    492 		ip->ip_off |= htons(IP_DF);
    493 
    494 #ifdef FAST_IPSEC
    495 	/*
    496 	 * Check the security policy (SP) for the packet and, if
    497 	 * required, do IPsec-related processing.  There are two
    498 	 * cases here; the first time a packet is sent through
    499 	 * it will be untagged and handled by ipsec4_checkpolicy.
    500 	 * If the packet is resubmitted to ip_output (e.g. after
    501 	 * AH, ESP, etc. processing), there will be a tag to bypass
    502 	 * the lookup and related policy checking.
    503 	 */
    504 	if (!ipsec_outdone(m)) {
    505 		s = splsoftnet();
    506 		if (inp != NULL &&
    507 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
    508 			splx(s);
    509 			goto spd_done;
    510 		}
    511 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    512 				&error, inp);
    513 		/*
    514 		 * There are four return cases:
    515 		 *    sp != NULL	 	    apply IPsec policy
    516 		 *    sp == NULL, error == 0	    no IPsec handling needed
    517 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
    518 		 *    sp == NULL, error != 0	    discard packet, report error
    519 		 */
    520 		if (sp != NULL) {
    521 #ifdef IPSEC_NAT_T
    522 			/*
    523 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
    524 			 * we'll do it on each fragmented packet.
    525 			 */
    526 			if (sp->req->sav &&
    527 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    528 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    529 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    530 					natt_frag = 1;
    531 					mtu = sp->req->sav->esp_frag;
    532 					splx(s);
    533 					goto spd_done;
    534 				}
    535 			}
    536 #endif /* IPSEC_NAT_T */
    537 
    538 			/*
    539 			 * Do delayed checksums now because we send before
    540 			 * this is done in the normal processing path.
    541 			 */
    542 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    543 				in_delayed_cksum(m);
    544 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    545 			}
    546 
    547 #ifdef __FreeBSD__
    548 			ip->ip_len = htons(ip->ip_len);
    549 			ip->ip_off = htons(ip->ip_off);
    550 #endif
    551 
    552 			/* NB: callee frees mbuf */
    553 			error = ipsec4_process_packet(m, sp->req, flags, 0);
    554 			/*
    555 			 * Preserve KAME behaviour: ENOENT can be returned
    556 			 * when an SA acquire is in progress.  Don't propagate
    557 			 * this to user-level; it confuses applications.
    558 			 *
    559 			 * XXX this will go away when the SADB is redone.
    560 			 */
    561 			if (error == ENOENT)
    562 				error = 0;
    563 			splx(s);
    564 			goto done;
    565 		} else {
    566 			splx(s);
    567 
    568 			if (error != 0) {
    569 				/*
    570 				 * Hack: -EINVAL is used to signal that a packet
    571 				 * should be silently discarded.  This is typically
    572 				 * because we asked key management for an SA and
    573 				 * it was delayed (e.g. kicked up to IKE).
    574 				 */
    575 				if (error == -EINVAL)
    576 					error = 0;
    577 				goto bad;
    578 			} else {
    579 				/* No IPsec processing for this packet. */
    580 			}
    581 		}
    582 	}
    583 spd_done:
    584 #endif /* FAST_IPSEC */
    585 
    586 #ifdef PFIL_HOOKS
    587 	/*
    588 	 * Run through list of hooks for output packets.
    589 	 */
    590 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    591 		goto done;
    592 	if (m == NULL)
    593 		goto done;
    594 
    595 	ip = mtod(m, struct ip *);
    596 	hlen = ip->ip_hl << 2;
    597 #endif /* PFIL_HOOKS */
    598 
    599 	m->m_pkthdr.csum_data |= hlen << 16;
    600 
    601 #if IFA_STATS
    602 	/*
    603 	 * search for the source address structure to
    604 	 * maintain output statistics.
    605 	 */
    606 	INADDR_TO_IA(ip->ip_src, ia);
    607 #endif
    608 
    609 	/* Maybe skip checksums on loopback interfaces. */
    610 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    611 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    612 	}
    613 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    614 	/*
    615 	 * If small enough for mtu of path, or if using TCP segmentation
    616 	 * offload, can just send directly.
    617 	 */
    618 	if (ntohs(ip->ip_len) <= mtu ||
    619 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    620 #if IFA_STATS
    621 		if (ia)
    622 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    623 #endif
    624 		/*
    625 		 * Always initialize the sum to 0!  Some HW assisted
    626 		 * checksumming requires this.
    627 		 */
    628 		ip->ip_sum = 0;
    629 
    630 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    631 			/*
    632 			 * Perform any checksums that the hardware can't do
    633 			 * for us.
    634 			 *
    635 			 * XXX Does any hardware require the {th,uh}_sum
    636 			 * XXX fields to be 0?
    637 			 */
    638 			if (sw_csum & M_CSUM_IPv4) {
    639 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    640 				ip->ip_sum = in_cksum(m, hlen);
    641 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    642 			}
    643 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    644 				if (IN_NEED_CHECKSUM(ifp,
    645 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    646 					in_delayed_cksum(m);
    647 				}
    648 				m->m_pkthdr.csum_flags &=
    649 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    650 			}
    651 		}
    652 
    653 		if (__predict_true(
    654 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    655 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    656 			KERNEL_LOCK(1, NULL);
    657 			error =
    658 			    (*ifp->if_output)(ifp, m,
    659 				(m->m_flags & M_MCAST) ?
    660 				    sintocsa(rdst) : sintocsa(dst),
    661 				rt);
    662 			KERNEL_UNLOCK_ONE(NULL);
    663 		} else {
    664 			error =
    665 			    ip_tso_output(ifp, m,
    666 				(m->m_flags & M_MCAST) ?
    667 				    sintocsa(rdst) : sintocsa(dst),
    668 				rt);
    669 		}
    670 		goto done;
    671 	}
    672 
    673 	/*
    674 	 * We can't use HW checksumming if we're about to
    675 	 * to fragment the packet.
    676 	 *
    677 	 * XXX Some hardware can do this.
    678 	 */
    679 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    680 		if (IN_NEED_CHECKSUM(ifp,
    681 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    682 			in_delayed_cksum(m);
    683 		}
    684 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    685 	}
    686 
    687 	/*
    688 	 * Too large for interface; fragment if possible.
    689 	 * Must be able to put at least 8 bytes per fragment.
    690 	 */
    691 	if (ntohs(ip->ip_off) & IP_DF) {
    692 		if (flags & IP_RETURNMTU)
    693 			*mtu_p = mtu;
    694 		error = EMSGSIZE;
    695 		IP_STATINC(IP_STAT_CANTFRAG);
    696 		goto bad;
    697 	}
    698 
    699 	error = ip_fragment(m, ifp, mtu);
    700 	if (error) {
    701 		m = NULL;
    702 		goto bad;
    703 	}
    704 
    705 	for (; m; m = m0) {
    706 		m0 = m->m_nextpkt;
    707 		m->m_nextpkt = 0;
    708 		if (error == 0) {
    709 #if IFA_STATS
    710 			if (ia)
    711 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    712 				    ntohs(ip->ip_len);
    713 #endif
    714 #ifdef IPSEC_NAT_T
    715 			/*
    716 			 * If we get there, the packet has not been handeld by
    717 			 * IPSec whereas it should have. Now that it has been
    718 			 * fragmented, re-inject it in ip_output so that IPsec
    719 			 * processing can occur.
    720 			 */
    721 			if (natt_frag) {
    722 				error = ip_output(m, opt,
    723 				    ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
    724 			} else
    725 #endif /* IPSEC_NAT_T */
    726 			{
    727 				KASSERT((m->m_pkthdr.csum_flags &
    728 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    729 				KERNEL_LOCK(1, NULL);
    730 				error = (*ifp->if_output)(ifp, m,
    731 				    (m->m_flags & M_MCAST) ?
    732 					sintocsa(rdst) : sintocsa(dst),
    733 				    rt);
    734 				KERNEL_UNLOCK_ONE(NULL);
    735 			}
    736 		} else
    737 			m_freem(m);
    738 	}
    739 
    740 	if (error == 0)
    741 		IP_STATINC(IP_STAT_FRAGMENTED);
    742 done:
    743 	rtcache_free(&iproute);
    744 
    745 #ifdef FAST_IPSEC
    746 	if (sp != NULL)
    747 		KEY_FREESP(&sp);
    748 #endif /* FAST_IPSEC */
    749 
    750 	return (error);
    751 bad:
    752 	m_freem(m);
    753 	goto done;
    754 }
    755 
    756 int
    757 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    758 {
    759 	struct ip *ip, *mhip;
    760 	struct mbuf *m0;
    761 	int len, hlen, off;
    762 	int mhlen, firstlen;
    763 	struct mbuf **mnext;
    764 	int sw_csum = m->m_pkthdr.csum_flags;
    765 	int fragments = 0;
    766 	int s;
    767 	int error = 0;
    768 
    769 	ip = mtod(m, struct ip *);
    770 	hlen = ip->ip_hl << 2;
    771 	if (ifp != NULL)
    772 		sw_csum &= ~ifp->if_csum_flags_tx;
    773 
    774 	len = (mtu - hlen) &~ 7;
    775 	if (len < 8) {
    776 		m_freem(m);
    777 		return (EMSGSIZE);
    778 	}
    779 
    780 	firstlen = len;
    781 	mnext = &m->m_nextpkt;
    782 
    783 	/*
    784 	 * Loop through length of segment after first fragment,
    785 	 * make new header and copy data of each part and link onto chain.
    786 	 */
    787 	m0 = m;
    788 	mhlen = sizeof (struct ip);
    789 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    790 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    791 		if (m == 0) {
    792 			error = ENOBUFS;
    793 			IP_STATINC(IP_STAT_ODROPPED);
    794 			goto sendorfree;
    795 		}
    796 		MCLAIM(m, m0->m_owner);
    797 		*mnext = m;
    798 		mnext = &m->m_nextpkt;
    799 		m->m_data += max_linkhdr;
    800 		mhip = mtod(m, struct ip *);
    801 		*mhip = *ip;
    802 		/* we must inherit MCAST and BCAST flags */
    803 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    804 		if (hlen > sizeof (struct ip)) {
    805 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    806 			mhip->ip_hl = mhlen >> 2;
    807 		}
    808 		m->m_len = mhlen;
    809 		mhip->ip_off = ((off - hlen) >> 3) +
    810 		    (ntohs(ip->ip_off) & ~IP_MF);
    811 		if (ip->ip_off & htons(IP_MF))
    812 			mhip->ip_off |= IP_MF;
    813 		if (off + len >= ntohs(ip->ip_len))
    814 			len = ntohs(ip->ip_len) - off;
    815 		else
    816 			mhip->ip_off |= IP_MF;
    817 		HTONS(mhip->ip_off);
    818 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    819 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    820 		if (m->m_next == 0) {
    821 			error = ENOBUFS;	/* ??? */
    822 			IP_STATINC(IP_STAT_ODROPPED);
    823 			goto sendorfree;
    824 		}
    825 		m->m_pkthdr.len = mhlen + len;
    826 		m->m_pkthdr.rcvif = NULL;
    827 		mhip->ip_sum = 0;
    828 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    829 		if (sw_csum & M_CSUM_IPv4) {
    830 			mhip->ip_sum = in_cksum(m, mhlen);
    831 		} else {
    832 			/*
    833 			 * checksum is hw-offloaded or not necessary.
    834 			 */
    835 			m->m_pkthdr.csum_flags |=
    836 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    837 			m->m_pkthdr.csum_data |= mhlen << 16;
    838 			KASSERT(!(ifp != NULL &&
    839 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    840 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    841 		}
    842 		IP_STATINC(IP_STAT_OFRAGMENTS);
    843 		fragments++;
    844 	}
    845 	/*
    846 	 * Update first fragment by trimming what's been copied out
    847 	 * and updating header, then send each fragment (in order).
    848 	 */
    849 	m = m0;
    850 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    851 	m->m_pkthdr.len = hlen + firstlen;
    852 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    853 	ip->ip_off |= htons(IP_MF);
    854 	ip->ip_sum = 0;
    855 	if (sw_csum & M_CSUM_IPv4) {
    856 		ip->ip_sum = in_cksum(m, hlen);
    857 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    858 	} else {
    859 		/*
    860 		 * checksum is hw-offloaded or not necessary.
    861 		 */
    862 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    863 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    864 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    865 			sizeof(struct ip));
    866 	}
    867 sendorfree:
    868 	/*
    869 	 * If there is no room for all the fragments, don't queue
    870 	 * any of them.
    871 	 */
    872 	if (ifp != NULL) {
    873 		s = splnet();
    874 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    875 		    error == 0) {
    876 			error = ENOBUFS;
    877 			IP_STATINC(IP_STAT_ODROPPED);
    878 			IFQ_INC_DROPS(&ifp->if_snd);
    879 		}
    880 		splx(s);
    881 	}
    882 	if (error) {
    883 		for (m = m0; m; m = m0) {
    884 			m0 = m->m_nextpkt;
    885 			m->m_nextpkt = NULL;
    886 			m_freem(m);
    887 		}
    888 	}
    889 	return (error);
    890 }
    891 
    892 /*
    893  * Process a delayed payload checksum calculation.
    894  */
    895 void
    896 in_delayed_cksum(struct mbuf *m)
    897 {
    898 	struct ip *ip;
    899 	u_int16_t csum, offset;
    900 
    901 	ip = mtod(m, struct ip *);
    902 	offset = ip->ip_hl << 2;
    903 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    904 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    905 		csum = 0xffff;
    906 
    907 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    908 
    909 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    910 		/* This happen when ip options were inserted
    911 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    912 		    m->m_len, offset, ip->ip_p);
    913 		 */
    914 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    915 	} else
    916 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    917 }
    918 
    919 /*
    920  * Determine the maximum length of the options to be inserted;
    921  * we would far rather allocate too much space rather than too little.
    922  */
    923 
    924 u_int
    925 ip_optlen(struct inpcb *inp)
    926 {
    927 	struct mbuf *m = inp->inp_options;
    928 
    929 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
    930 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    931 	else
    932 		return 0;
    933 }
    934 
    935 
    936 /*
    937  * Insert IP options into preformed packet.
    938  * Adjust IP destination as required for IP source routing,
    939  * as indicated by a non-zero in_addr at the start of the options.
    940  */
    941 static struct mbuf *
    942 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    943 {
    944 	struct ipoption *p = mtod(opt, struct ipoption *);
    945 	struct mbuf *n;
    946 	struct ip *ip = mtod(m, struct ip *);
    947 	unsigned optlen;
    948 
    949 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    950 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    951 		return (m);		/* XXX should fail */
    952 	if (!in_nullhost(p->ipopt_dst))
    953 		ip->ip_dst = p->ipopt_dst;
    954 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    955 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    956 		if (n == 0)
    957 			return (m);
    958 		MCLAIM(n, m->m_owner);
    959 		M_MOVE_PKTHDR(n, m);
    960 		m->m_len -= sizeof(struct ip);
    961 		m->m_data += sizeof(struct ip);
    962 		n->m_next = m;
    963 		m = n;
    964 		m->m_len = optlen + sizeof(struct ip);
    965 		m->m_data += max_linkhdr;
    966 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    967 	} else {
    968 		m->m_data -= optlen;
    969 		m->m_len += optlen;
    970 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    971 	}
    972 	m->m_pkthdr.len += optlen;
    973 	ip = mtod(m, struct ip *);
    974 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    975 	*phlen = sizeof(struct ip) + optlen;
    976 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    977 	return (m);
    978 }
    979 
    980 /*
    981  * Copy options from ip to jp,
    982  * omitting those not copied during fragmentation.
    983  */
    984 int
    985 ip_optcopy(struct ip *ip, struct ip *jp)
    986 {
    987 	u_char *cp, *dp;
    988 	int opt, optlen, cnt;
    989 
    990 	cp = (u_char *)(ip + 1);
    991 	dp = (u_char *)(jp + 1);
    992 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    993 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    994 		opt = cp[0];
    995 		if (opt == IPOPT_EOL)
    996 			break;
    997 		if (opt == IPOPT_NOP) {
    998 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    999 			*dp++ = IPOPT_NOP;
   1000 			optlen = 1;
   1001 			continue;
   1002 		}
   1003 #ifdef DIAGNOSTIC
   1004 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1005 			panic("malformed IPv4 option passed to ip_optcopy");
   1006 #endif
   1007 		optlen = cp[IPOPT_OLEN];
   1008 #ifdef DIAGNOSTIC
   1009 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1010 			panic("malformed IPv4 option passed to ip_optcopy");
   1011 #endif
   1012 		/* bogus lengths should have been caught by ip_dooptions */
   1013 		if (optlen > cnt)
   1014 			optlen = cnt;
   1015 		if (IPOPT_COPIED(opt)) {
   1016 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1017 			dp += optlen;
   1018 		}
   1019 	}
   1020 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1021 		*dp++ = IPOPT_EOL;
   1022 	return (optlen);
   1023 }
   1024 
   1025 /*
   1026  * IP socket option processing.
   1027  */
   1028 int
   1029 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1030 {
   1031 	struct inpcb *inp = sotoinpcb(so);
   1032 	int optval = 0;
   1033 	int error = 0;
   1034 #if defined(FAST_IPSEC)
   1035 	struct lwp *l = curlwp;	/*XXX*/
   1036 #endif
   1037 
   1038 	if (sopt->sopt_level != IPPROTO_IP) {
   1039 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1040 			return 0;
   1041 		return ENOPROTOOPT;
   1042 	}
   1043 
   1044 	switch (op) {
   1045 	case PRCO_SETOPT:
   1046 		switch (sopt->sopt_name) {
   1047 		case IP_OPTIONS:
   1048 #ifdef notyet
   1049 		case IP_RETOPTS:
   1050 #endif
   1051 			error = ip_pcbopts(&inp->inp_options, sopt);
   1052 			break;
   1053 
   1054 		case IP_TOS:
   1055 		case IP_TTL:
   1056 		case IP_MINTTL:
   1057 		case IP_RECVOPTS:
   1058 		case IP_RECVRETOPTS:
   1059 		case IP_RECVDSTADDR:
   1060 		case IP_RECVIF:
   1061 		case IP_RECVTTL:
   1062 			error = sockopt_getint(sopt, &optval);
   1063 			if (error)
   1064 				break;
   1065 
   1066 			switch (sopt->sopt_name) {
   1067 			case IP_TOS:
   1068 				inp->inp_ip.ip_tos = optval;
   1069 				break;
   1070 
   1071 			case IP_TTL:
   1072 				inp->inp_ip.ip_ttl = optval;
   1073 				break;
   1074 
   1075 			case IP_MINTTL:
   1076 				if (optval > 0 && optval <= MAXTTL)
   1077 					inp->inp_ip_minttl = optval;
   1078 				else
   1079 					error = EINVAL;
   1080 				break;
   1081 #define	OPTSET(bit) \
   1082 	if (optval) \
   1083 		inp->inp_flags |= bit; \
   1084 	else \
   1085 		inp->inp_flags &= ~bit;
   1086 
   1087 			case IP_RECVOPTS:
   1088 				OPTSET(INP_RECVOPTS);
   1089 				break;
   1090 
   1091 			case IP_RECVRETOPTS:
   1092 				OPTSET(INP_RECVRETOPTS);
   1093 				break;
   1094 
   1095 			case IP_RECVDSTADDR:
   1096 				OPTSET(INP_RECVDSTADDR);
   1097 				break;
   1098 
   1099 			case IP_RECVIF:
   1100 				OPTSET(INP_RECVIF);
   1101 				break;
   1102 
   1103 			case IP_RECVTTL:
   1104 				OPTSET(INP_RECVTTL);
   1105 				break;
   1106 			}
   1107 		break;
   1108 #undef OPTSET
   1109 
   1110 		case IP_MULTICAST_IF:
   1111 		case IP_MULTICAST_TTL:
   1112 		case IP_MULTICAST_LOOP:
   1113 		case IP_ADD_MEMBERSHIP:
   1114 		case IP_DROP_MEMBERSHIP:
   1115 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1116 			break;
   1117 
   1118 		case IP_PORTRANGE:
   1119 			error = sockopt_getint(sopt, &optval);
   1120 			if (error)
   1121 				break;
   1122 
   1123 			/* INP_LOCK(inp); */
   1124 			switch (optval) {
   1125 			case IP_PORTRANGE_DEFAULT:
   1126 			case IP_PORTRANGE_HIGH:
   1127 				inp->inp_flags &= ~(INP_LOWPORT);
   1128 				break;
   1129 
   1130 			case IP_PORTRANGE_LOW:
   1131 				inp->inp_flags |= INP_LOWPORT;
   1132 				break;
   1133 
   1134 			default:
   1135 				error = EINVAL;
   1136 				break;
   1137 			}
   1138 			/* INP_UNLOCK(inp); */
   1139 			break;
   1140 
   1141 		case IP_PORTALGO:
   1142 			error = sockopt_getint(sopt, &optval);
   1143 			if (error)
   1144 				break;
   1145 
   1146 			error = portalgo_algo_index_select(
   1147 			    (struct inpcb_hdr *)inp, optval);
   1148 			break;
   1149 
   1150 #if defined(FAST_IPSEC)
   1151 		case IP_IPSEC_POLICY:
   1152 			error = ipsec4_set_policy(inp, sopt->sopt_name,
   1153 			    sopt->sopt_data, sopt->sopt_size, l->l_cred);
   1154 			break;
   1155 #endif /*IPSEC*/
   1156 
   1157 		default:
   1158 			error = ENOPROTOOPT;
   1159 			break;
   1160 		}
   1161 		break;
   1162 
   1163 	case PRCO_GETOPT:
   1164 		switch (sopt->sopt_name) {
   1165 		case IP_OPTIONS:
   1166 		case IP_RETOPTS:
   1167 			if (inp->inp_options) {
   1168 				struct mbuf *m;
   1169 
   1170 				m = m_copym(inp->inp_options, 0, M_COPYALL,
   1171 				    M_DONTWAIT);
   1172 				if (m == NULL) {
   1173 					error = ENOBUFS;
   1174 					break;
   1175 				}
   1176 
   1177 				error = sockopt_setmbuf(sopt, m);
   1178 			}
   1179 			break;
   1180 
   1181 		case IP_TOS:
   1182 		case IP_TTL:
   1183 		case IP_MINTTL:
   1184 		case IP_RECVOPTS:
   1185 		case IP_RECVRETOPTS:
   1186 		case IP_RECVDSTADDR:
   1187 		case IP_RECVIF:
   1188 		case IP_RECVTTL:
   1189 		case IP_ERRORMTU:
   1190 			switch (sopt->sopt_name) {
   1191 			case IP_TOS:
   1192 				optval = inp->inp_ip.ip_tos;
   1193 				break;
   1194 
   1195 			case IP_TTL:
   1196 				optval = inp->inp_ip.ip_ttl;
   1197 				break;
   1198 
   1199 			case IP_MINTTL:
   1200 				optval = inp->inp_ip_minttl;
   1201 				break;
   1202 
   1203 			case IP_ERRORMTU:
   1204 				optval = inp->inp_errormtu;
   1205 				break;
   1206 
   1207 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1208 
   1209 			case IP_RECVOPTS:
   1210 				optval = OPTBIT(INP_RECVOPTS);
   1211 				break;
   1212 
   1213 			case IP_RECVRETOPTS:
   1214 				optval = OPTBIT(INP_RECVRETOPTS);
   1215 				break;
   1216 
   1217 			case IP_RECVDSTADDR:
   1218 				optval = OPTBIT(INP_RECVDSTADDR);
   1219 				break;
   1220 
   1221 			case IP_RECVIF:
   1222 				optval = OPTBIT(INP_RECVIF);
   1223 				break;
   1224 
   1225 			case IP_RECVTTL:
   1226 				optval = OPTBIT(INP_RECVTTL);
   1227 				break;
   1228 			}
   1229 			error = sockopt_setint(sopt, optval);
   1230 			break;
   1231 
   1232 #if 0	/* defined(FAST_IPSEC) */
   1233 		case IP_IPSEC_POLICY:
   1234 		{
   1235 			struct mbuf *m = NULL;
   1236 
   1237 			/* XXX this will return EINVAL as sopt is empty */
   1238 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1239 			    sopt->sopt_size, &m);
   1240 			if (error == 0)
   1241 				error = sockopt_setmbuf(sopt, m);
   1242 			break;
   1243 		}
   1244 #endif /*IPSEC*/
   1245 
   1246 		case IP_MULTICAST_IF:
   1247 		case IP_MULTICAST_TTL:
   1248 		case IP_MULTICAST_LOOP:
   1249 		case IP_ADD_MEMBERSHIP:
   1250 		case IP_DROP_MEMBERSHIP:
   1251 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1252 			break;
   1253 
   1254 		case IP_PORTRANGE:
   1255 			if (inp->inp_flags & INP_LOWPORT)
   1256 				optval = IP_PORTRANGE_LOW;
   1257 			else
   1258 				optval = IP_PORTRANGE_DEFAULT;
   1259 
   1260 			error = sockopt_setint(sopt, optval);
   1261 
   1262 			break;
   1263 
   1264 		case IP_PORTALGO:
   1265 			optval = ((struct inpcb_hdr *)inp)->inph_portalgo;
   1266 			error = sockopt_setint(sopt, optval);
   1267 			break;
   1268 
   1269 		default:
   1270 			error = ENOPROTOOPT;
   1271 			break;
   1272 		}
   1273 		break;
   1274 	}
   1275 	return (error);
   1276 }
   1277 
   1278 /*
   1279  * Set up IP options in pcb for insertion in output packets.
   1280  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1281  * with destination address if source routed.
   1282  */
   1283 int
   1284 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
   1285 {
   1286 	struct mbuf *m;
   1287 	const u_char *cp;
   1288 	u_char *dp;
   1289 	int cnt;
   1290 	uint8_t optval, olen, offset;
   1291 
   1292 	/* turn off any old options */
   1293 	if (*pcbopt)
   1294 		(void)m_free(*pcbopt);
   1295 	*pcbopt = NULL;
   1296 
   1297 	cp = sopt->sopt_data;
   1298 	cnt = sopt->sopt_size;
   1299 
   1300 	if (cnt == 0)
   1301 		return (0);	/* Only turning off any previous options */
   1302 
   1303 #ifndef	__vax__
   1304 	if (cnt % sizeof(int32_t))
   1305 		return (EINVAL);
   1306 #endif
   1307 
   1308 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1309 	if (m == NULL)
   1310 		return (ENOBUFS);
   1311 
   1312 	dp = mtod(m, u_char *);
   1313 	memset(dp, 0, sizeof(struct in_addr));
   1314 	dp += sizeof(struct in_addr);
   1315 	m->m_len = sizeof(struct in_addr);
   1316 
   1317 	/*
   1318 	 * IP option list according to RFC791. Each option is of the form
   1319 	 *
   1320 	 *	[optval] [olen] [(olen - 2) data bytes]
   1321 	 *
   1322 	 * we validate the list and copy options to an mbuf for prepending
   1323 	 * to data packets. The IP first-hop destination address will be
   1324 	 * stored before actual options and is zero if unset.
   1325 	 */
   1326 	while (cnt > 0) {
   1327 		optval = cp[IPOPT_OPTVAL];
   1328 
   1329 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1330 			olen = 1;
   1331 		} else {
   1332 			if (cnt < IPOPT_OLEN + 1)
   1333 				goto bad;
   1334 
   1335 			olen = cp[IPOPT_OLEN];
   1336 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1337 				goto bad;
   1338 		}
   1339 
   1340 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1341 			/*
   1342 			 * user process specifies route as:
   1343 			 *	->A->B->C->D
   1344 			 * D must be our final destination (but we can't
   1345 			 * check that since we may not have connected yet).
   1346 			 * A is first hop destination, which doesn't appear in
   1347 			 * actual IP option, but is stored before the options.
   1348 			 */
   1349 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1350 				goto bad;
   1351 
   1352 			offset = cp[IPOPT_OFFSET];
   1353 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1354 			    sizeof(struct in_addr));
   1355 
   1356 			cp += sizeof(struct in_addr);
   1357 			cnt -= sizeof(struct in_addr);
   1358 			olen -= sizeof(struct in_addr);
   1359 
   1360 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1361 				goto bad;
   1362 
   1363 			memcpy(dp, cp, olen);
   1364 			dp[IPOPT_OPTVAL] = optval;
   1365 			dp[IPOPT_OLEN] = olen;
   1366 			dp[IPOPT_OFFSET] = offset;
   1367 			break;
   1368 		} else {
   1369 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1370 				goto bad;
   1371 
   1372 			memcpy(dp, cp, olen);
   1373 			break;
   1374 		}
   1375 
   1376 		dp += olen;
   1377 		m->m_len += olen;
   1378 
   1379 		if (optval == IPOPT_EOL)
   1380 			break;
   1381 
   1382 		cp += olen;
   1383 		cnt -= olen;
   1384 	}
   1385 
   1386 	*pcbopt = m;
   1387 	return (0);
   1388 
   1389 bad:
   1390 	(void)m_free(m);
   1391 	return (EINVAL);
   1392 }
   1393 
   1394 /*
   1395  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1396  */
   1397 static struct ifnet *
   1398 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1399 {
   1400 	int ifindex;
   1401 	struct ifnet *ifp = NULL;
   1402 	struct in_ifaddr *ia;
   1403 
   1404 	if (ifindexp)
   1405 		*ifindexp = 0;
   1406 	if (ntohl(a->s_addr) >> 24 == 0) {
   1407 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1408 		if (ifindex < 0 || if_indexlim <= ifindex)
   1409 			return NULL;
   1410 		ifp = ifindex2ifnet[ifindex];
   1411 		if (!ifp)
   1412 			return NULL;
   1413 		if (ifindexp)
   1414 			*ifindexp = ifindex;
   1415 	} else {
   1416 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1417 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1418 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1419 				ifp = ia->ia_ifp;
   1420 				break;
   1421 			}
   1422 		}
   1423 	}
   1424 	return ifp;
   1425 }
   1426 
   1427 static int
   1428 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1429 {
   1430 	u_int tval;
   1431 	u_char cval;
   1432 	int error;
   1433 
   1434 	if (sopt == NULL)
   1435 		return EINVAL;
   1436 
   1437 	switch (sopt->sopt_size) {
   1438 	case sizeof(u_char):
   1439 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1440 		tval = cval;
   1441 		break;
   1442 
   1443 	case sizeof(u_int):
   1444 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1445 		break;
   1446 
   1447 	default:
   1448 		error = EINVAL;
   1449 	}
   1450 
   1451 	if (error)
   1452 		return error;
   1453 
   1454 	if (tval > maxval)
   1455 		return EINVAL;
   1456 
   1457 	*val = tval;
   1458 	return 0;
   1459 }
   1460 
   1461 /*
   1462  * Set the IP multicast options in response to user setsockopt().
   1463  */
   1464 int
   1465 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
   1466 {
   1467 	struct in_addr addr;
   1468 	struct ip_mreq lmreq, *mreq;
   1469 	struct ifnet *ifp;
   1470 	struct ip_moptions *imo = *imop;
   1471 	int i, ifindex, error = 0;
   1472 
   1473 	if (imo == NULL) {
   1474 		/*
   1475 		 * No multicast option buffer attached to the pcb;
   1476 		 * allocate one and initialize to default values.
   1477 		 */
   1478 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1479 		if (imo == NULL)
   1480 			return ENOBUFS;
   1481 
   1482 		imo->imo_multicast_ifp = NULL;
   1483 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1484 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1485 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1486 		imo->imo_num_memberships = 0;
   1487 		*imop = imo;
   1488 	}
   1489 
   1490 	switch (sopt->sopt_name) {
   1491 	case IP_MULTICAST_IF:
   1492 		/*
   1493 		 * Select the interface for outgoing multicast packets.
   1494 		 */
   1495 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1496 		if (error)
   1497 			break;
   1498 
   1499 		/*
   1500 		 * INADDR_ANY is used to remove a previous selection.
   1501 		 * When no interface is selected, a default one is
   1502 		 * chosen every time a multicast packet is sent.
   1503 		 */
   1504 		if (in_nullhost(addr)) {
   1505 			imo->imo_multicast_ifp = NULL;
   1506 			break;
   1507 		}
   1508 		/*
   1509 		 * The selected interface is identified by its local
   1510 		 * IP address.  Find the interface and confirm that
   1511 		 * it supports multicasting.
   1512 		 */
   1513 		ifp = ip_multicast_if(&addr, &ifindex);
   1514 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1515 			error = EADDRNOTAVAIL;
   1516 			break;
   1517 		}
   1518 		imo->imo_multicast_ifp = ifp;
   1519 		if (ifindex)
   1520 			imo->imo_multicast_addr = addr;
   1521 		else
   1522 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1523 		break;
   1524 
   1525 	case IP_MULTICAST_TTL:
   1526 		/*
   1527 		 * Set the IP time-to-live for outgoing multicast packets.
   1528 		 */
   1529 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1530 		break;
   1531 
   1532 	case IP_MULTICAST_LOOP:
   1533 		/*
   1534 		 * Set the loopback flag for outgoing multicast packets.
   1535 		 * Must be zero or one.
   1536 		 */
   1537 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1538 		break;
   1539 
   1540 	case IP_ADD_MEMBERSHIP:
   1541 		/*
   1542 		 * Add a multicast group membership.
   1543 		 * Group must be a valid IP multicast address.
   1544 		 */
   1545 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1546 		if (error)
   1547 			break;
   1548 
   1549 		mreq = &lmreq;
   1550 
   1551 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1552 			error = EINVAL;
   1553 			break;
   1554 		}
   1555 		/*
   1556 		 * If no interface address was provided, use the interface of
   1557 		 * the route to the given multicast address.
   1558 		 */
   1559 		if (in_nullhost(mreq->imr_interface)) {
   1560 			struct rtentry *rt;
   1561 			union {
   1562 				struct sockaddr		dst;
   1563 				struct sockaddr_in	dst4;
   1564 			} u;
   1565 			struct route ro;
   1566 
   1567 			memset(&ro, 0, sizeof(ro));
   1568 
   1569 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1570 			rtcache_setdst(&ro, &u.dst);
   1571 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1572 			                                        : NULL;
   1573 			rtcache_free(&ro);
   1574 		} else {
   1575 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1576 		}
   1577 		/*
   1578 		 * See if we found an interface, and confirm that it
   1579 		 * supports multicast.
   1580 		 */
   1581 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1582 			error = EADDRNOTAVAIL;
   1583 			break;
   1584 		}
   1585 		/*
   1586 		 * See if the membership already exists or if all the
   1587 		 * membership slots are full.
   1588 		 */
   1589 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1590 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1591 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1592 				      mreq->imr_multiaddr))
   1593 				break;
   1594 		}
   1595 		if (i < imo->imo_num_memberships) {
   1596 			error = EADDRINUSE;
   1597 			break;
   1598 		}
   1599 		if (i == IP_MAX_MEMBERSHIPS) {
   1600 			error = ETOOMANYREFS;
   1601 			break;
   1602 		}
   1603 		/*
   1604 		 * Everything looks good; add a new record to the multicast
   1605 		 * address list for the given interface.
   1606 		 */
   1607 		if ((imo->imo_membership[i] =
   1608 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1609 			error = ENOBUFS;
   1610 			break;
   1611 		}
   1612 		++imo->imo_num_memberships;
   1613 		break;
   1614 
   1615 	case IP_DROP_MEMBERSHIP:
   1616 		/*
   1617 		 * Drop a multicast group membership.
   1618 		 * Group must be a valid IP multicast address.
   1619 		 */
   1620 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1621 		if (error)
   1622 			break;
   1623 
   1624 		mreq = &lmreq;
   1625 
   1626 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1627 			error = EINVAL;
   1628 			break;
   1629 		}
   1630 		/*
   1631 		 * If an interface address was specified, get a pointer
   1632 		 * to its ifnet structure.
   1633 		 */
   1634 		if (in_nullhost(mreq->imr_interface))
   1635 			ifp = NULL;
   1636 		else {
   1637 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1638 			if (ifp == NULL) {
   1639 				error = EADDRNOTAVAIL;
   1640 				break;
   1641 			}
   1642 		}
   1643 		/*
   1644 		 * Find the membership in the membership array.
   1645 		 */
   1646 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1647 			if ((ifp == NULL ||
   1648 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1649 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1650 				       mreq->imr_multiaddr))
   1651 				break;
   1652 		}
   1653 		if (i == imo->imo_num_memberships) {
   1654 			error = EADDRNOTAVAIL;
   1655 			break;
   1656 		}
   1657 		/*
   1658 		 * Give up the multicast address record to which the
   1659 		 * membership points.
   1660 		 */
   1661 		in_delmulti(imo->imo_membership[i]);
   1662 		/*
   1663 		 * Remove the gap in the membership array.
   1664 		 */
   1665 		for (++i; i < imo->imo_num_memberships; ++i)
   1666 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1667 		--imo->imo_num_memberships;
   1668 		break;
   1669 
   1670 	default:
   1671 		error = EOPNOTSUPP;
   1672 		break;
   1673 	}
   1674 
   1675 	/*
   1676 	 * If all options have default values, no need to keep the mbuf.
   1677 	 */
   1678 	if (imo->imo_multicast_ifp == NULL &&
   1679 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1680 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1681 	    imo->imo_num_memberships == 0) {
   1682 		kmem_free(imo, sizeof(*imo));
   1683 		*imop = NULL;
   1684 	}
   1685 
   1686 	return error;
   1687 }
   1688 
   1689 /*
   1690  * Return the IP multicast options in response to user getsockopt().
   1691  */
   1692 int
   1693 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1694 {
   1695 	struct in_addr addr;
   1696 	struct in_ifaddr *ia;
   1697 	int error;
   1698 	uint8_t optval;
   1699 
   1700 	error = 0;
   1701 
   1702 	switch (sopt->sopt_name) {
   1703 	case IP_MULTICAST_IF:
   1704 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1705 			addr = zeroin_addr;
   1706 		else if (imo->imo_multicast_addr.s_addr) {
   1707 			/* return the value user has set */
   1708 			addr = imo->imo_multicast_addr;
   1709 		} else {
   1710 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1711 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1712 		}
   1713 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1714 		break;
   1715 
   1716 	case IP_MULTICAST_TTL:
   1717 		optval = imo ? imo->imo_multicast_ttl
   1718 			     : IP_DEFAULT_MULTICAST_TTL;
   1719 
   1720 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1721 		break;
   1722 
   1723 	case IP_MULTICAST_LOOP:
   1724 		optval = imo ? imo->imo_multicast_loop
   1725 			     : IP_DEFAULT_MULTICAST_LOOP;
   1726 
   1727 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1728 		break;
   1729 
   1730 	default:
   1731 		error = EOPNOTSUPP;
   1732 	}
   1733 
   1734 	return (error);
   1735 }
   1736 
   1737 /*
   1738  * Discard the IP multicast options.
   1739  */
   1740 void
   1741 ip_freemoptions(struct ip_moptions *imo)
   1742 {
   1743 	int i;
   1744 
   1745 	if (imo != NULL) {
   1746 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1747 			in_delmulti(imo->imo_membership[i]);
   1748 		kmem_free(imo, sizeof(*imo));
   1749 	}
   1750 }
   1751 
   1752 /*
   1753  * Routine called from ip_output() to loop back a copy of an IP multicast
   1754  * packet to the input queue of a specified interface.  Note that this
   1755  * calls the output routine of the loopback "driver", but with an interface
   1756  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1757  */
   1758 static void
   1759 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1760 {
   1761 	struct ip *ip;
   1762 	struct mbuf *copym;
   1763 
   1764 	copym = m_copypacket(m, M_DONTWAIT);
   1765 	if (copym != NULL
   1766 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1767 		copym = m_pullup(copym, sizeof(struct ip));
   1768 	if (copym == NULL)
   1769 		return;
   1770 	/*
   1771 	 * We don't bother to fragment if the IP length is greater
   1772 	 * than the interface's MTU.  Can this possibly matter?
   1773 	 */
   1774 	ip = mtod(copym, struct ip *);
   1775 
   1776 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1777 		in_delayed_cksum(copym);
   1778 		copym->m_pkthdr.csum_flags &=
   1779 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1780 	}
   1781 
   1782 	ip->ip_sum = 0;
   1783 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1784 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1785 }
   1786