ip_output.c revision 1.223 1 /* $NetBSD: ip_output.c,v 1.223 2013/06/27 19:38:16 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.223 2013/06/27 19:38:16 christos Exp $");
95
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/kmem.h>
104 #include <sys/mbuf.h>
105 #include <sys/errno.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/kauth.h>
110 #ifdef IPSEC
111 #include <sys/domain.h>
112 #endif
113 #include <sys/systm.h>
114 #include <sys/proc.h>
115
116 #include <net/if.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130
131 #ifdef MROUTING
132 #include <netinet/ip_mroute.h>
133 #endif
134
135 #include <netipsec/ipsec.h>
136 #include <netipsec/key.h>
137
138 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
139 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
140 static void ip_mloopback(struct ifnet *, struct mbuf *,
141 const struct sockaddr_in *);
142
143 #ifdef PFIL_HOOKS
144 extern struct pfil_head inet_pfil_hook; /* XXX */
145 #endif
146
147 int ip_do_loopback_cksum = 0;
148
149 /*
150 * IP output. The packet in mbuf chain m contains a skeletal IP
151 * header (with len, off, ttl, proto, tos, src, dst).
152 * The mbuf chain containing the packet will be freed.
153 * The mbuf opt, if present, will not be freed.
154 */
155 int
156 ip_output(struct mbuf *m0, ...)
157 {
158 struct rtentry *rt;
159 struct ip *ip;
160 struct ifnet *ifp;
161 struct mbuf *m = m0;
162 int hlen = sizeof (struct ip);
163 int len, error = 0;
164 struct route iproute;
165 const struct sockaddr_in *dst;
166 struct in_ifaddr *ia;
167 struct ifaddr *xifa;
168 struct mbuf *opt;
169 struct route *ro;
170 int flags, sw_csum, *mtu_p;
171 u_long mtu;
172 struct ip_moptions *imo;
173 struct socket *so;
174 va_list ap;
175 struct secpolicy *sp = NULL;
176 bool natt_frag = false;
177 bool __unused done = false;
178 union {
179 struct sockaddr dst;
180 struct sockaddr_in dst4;
181 } u;
182 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
183 * to the nexthop
184 */
185
186 len = 0;
187 va_start(ap, m0);
188 opt = va_arg(ap, struct mbuf *);
189 ro = va_arg(ap, struct route *);
190 flags = va_arg(ap, int);
191 imo = va_arg(ap, struct ip_moptions *);
192 so = va_arg(ap, struct socket *);
193 if (flags & IP_RETURNMTU)
194 mtu_p = va_arg(ap, int *);
195 else
196 mtu_p = NULL;
197 va_end(ap);
198
199 MCLAIM(m, &ip_tx_mowner);
200
201 #ifdef DIAGNOSTIC
202 if ((m->m_flags & M_PKTHDR) == 0)
203 panic("ip_output: no HDR");
204
205 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
206 panic("ip_output: IPv6 checksum offload flags: %d",
207 m->m_pkthdr.csum_flags);
208 }
209
210 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
211 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
212 panic("ip_output: conflicting checksum offload flags: %d",
213 m->m_pkthdr.csum_flags);
214 }
215 #endif
216 if (opt) {
217 m = ip_insertoptions(m, opt, &len);
218 if (len >= sizeof(struct ip))
219 hlen = len;
220 }
221 ip = mtod(m, struct ip *);
222 /*
223 * Fill in IP header.
224 */
225 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
226 ip->ip_v = IPVERSION;
227 ip->ip_off = htons(0);
228 /* ip->ip_id filled in after we find out source ia */
229 ip->ip_hl = hlen >> 2;
230 IP_STATINC(IP_STAT_LOCALOUT);
231 } else {
232 hlen = ip->ip_hl << 2;
233 }
234 /*
235 * Route packet.
236 */
237 memset(&iproute, 0, sizeof(iproute));
238 if (ro == NULL)
239 ro = &iproute;
240 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
241 dst = satocsin(rtcache_getdst(ro));
242 /*
243 * If there is a cached route,
244 * check that it is to the same destination
245 * and is still up. If not, free it and try again.
246 * The address family should also be checked in case of sharing the
247 * cache with IPv6.
248 */
249 if (dst == NULL)
250 ;
251 else if (dst->sin_family != AF_INET ||
252 !in_hosteq(dst->sin_addr, ip->ip_dst))
253 rtcache_free(ro);
254
255 if ((rt = rtcache_validate(ro)) == NULL &&
256 (rt = rtcache_update(ro, 1)) == NULL) {
257 dst = &u.dst4;
258 rtcache_setdst(ro, &u.dst);
259 }
260 /*
261 * If routing to interface only,
262 * short circuit routing lookup.
263 */
264 if (flags & IP_ROUTETOIF) {
265 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
266 IP_STATINC(IP_STAT_NOROUTE);
267 error = ENETUNREACH;
268 goto bad;
269 }
270 ifp = ia->ia_ifp;
271 mtu = ifp->if_mtu;
272 ip->ip_ttl = 1;
273 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
274 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
275 imo != NULL && imo->imo_multicast_ifp != NULL) {
276 ifp = imo->imo_multicast_ifp;
277 mtu = ifp->if_mtu;
278 IFP_TO_IA(ifp, ia);
279 } else {
280 if (rt == NULL)
281 rt = rtcache_init(ro);
282 if (rt == NULL) {
283 IP_STATINC(IP_STAT_NOROUTE);
284 error = EHOSTUNREACH;
285 goto bad;
286 }
287 ia = ifatoia(rt->rt_ifa);
288 ifp = rt->rt_ifp;
289 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
290 mtu = ifp->if_mtu;
291 rt->rt_use++;
292 if (rt->rt_flags & RTF_GATEWAY)
293 dst = satosin(rt->rt_gateway);
294 }
295 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
296 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
297 struct in_multi *inm;
298
299 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
300 M_BCAST : M_MCAST;
301 /*
302 * See if the caller provided any multicast options
303 */
304 if (imo != NULL)
305 ip->ip_ttl = imo->imo_multicast_ttl;
306 else
307 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
308
309 /*
310 * if we don't know the outgoing ifp yet, we can't generate
311 * output
312 */
313 if (!ifp) {
314 IP_STATINC(IP_STAT_NOROUTE);
315 error = ENETUNREACH;
316 goto bad;
317 }
318
319 /*
320 * If the packet is multicast or broadcast, confirm that
321 * the outgoing interface can transmit it.
322 */
323 if (((m->m_flags & M_MCAST) &&
324 (ifp->if_flags & IFF_MULTICAST) == 0) ||
325 ((m->m_flags & M_BCAST) &&
326 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
327 IP_STATINC(IP_STAT_NOROUTE);
328 error = ENETUNREACH;
329 goto bad;
330 }
331 /*
332 * If source address not specified yet, use an address
333 * of outgoing interface.
334 */
335 if (in_nullhost(ip->ip_src)) {
336 struct in_ifaddr *xia;
337
338 IFP_TO_IA(ifp, xia);
339 if (!xia) {
340 error = EADDRNOTAVAIL;
341 goto bad;
342 }
343 xifa = &xia->ia_ifa;
344 if (xifa->ifa_getifa != NULL) {
345 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
346 }
347 ip->ip_src = xia->ia_addr.sin_addr;
348 }
349
350 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
351 if (inm != NULL &&
352 (imo == NULL || imo->imo_multicast_loop)) {
353 /*
354 * If we belong to the destination multicast group
355 * on the outgoing interface, and the caller did not
356 * forbid loopback, loop back a copy.
357 */
358 ip_mloopback(ifp, m, &u.dst4);
359 }
360 #ifdef MROUTING
361 else {
362 /*
363 * If we are acting as a multicast router, perform
364 * multicast forwarding as if the packet had just
365 * arrived on the interface to which we are about
366 * to send. The multicast forwarding function
367 * recursively calls this function, using the
368 * IP_FORWARDING flag to prevent infinite recursion.
369 *
370 * Multicasts that are looped back by ip_mloopback(),
371 * above, will be forwarded by the ip_input() routine,
372 * if necessary.
373 */
374 extern struct socket *ip_mrouter;
375
376 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
377 if (ip_mforward(m, ifp) != 0) {
378 m_freem(m);
379 goto done;
380 }
381 }
382 }
383 #endif
384 /*
385 * Multicasts with a time-to-live of zero may be looped-
386 * back, above, but must not be transmitted on a network.
387 * Also, multicasts addressed to the loopback interface
388 * are not sent -- the above call to ip_mloopback() will
389 * loop back a copy if this host actually belongs to the
390 * destination group on the loopback interface.
391 */
392 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
393 m_freem(m);
394 goto done;
395 }
396
397 goto sendit;
398 }
399 /*
400 * If source address not specified yet, use address
401 * of outgoing interface.
402 */
403 if (in_nullhost(ip->ip_src)) {
404 xifa = &ia->ia_ifa;
405 if (xifa->ifa_getifa != NULL)
406 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
407 ip->ip_src = ia->ia_addr.sin_addr;
408 }
409
410 /*
411 * packets with Class-D address as source are not valid per
412 * RFC 1112
413 */
414 if (IN_MULTICAST(ip->ip_src.s_addr)) {
415 IP_STATINC(IP_STAT_ODROPPED);
416 error = EADDRNOTAVAIL;
417 goto bad;
418 }
419
420 /*
421 * Look for broadcast address and
422 * and verify user is allowed to send
423 * such a packet.
424 */
425 if (in_broadcast(dst->sin_addr, ifp)) {
426 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430 if ((flags & IP_ALLOWBROADCAST) == 0) {
431 error = EACCES;
432 goto bad;
433 }
434 /* don't allow broadcast messages to be fragmented */
435 if (ntohs(ip->ip_len) > ifp->if_mtu) {
436 error = EMSGSIZE;
437 goto bad;
438 }
439 m->m_flags |= M_BCAST;
440 } else
441 m->m_flags &= ~M_BCAST;
442
443 sendit:
444 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
445 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
446 ip->ip_id = 0;
447 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
448 ip->ip_id = ip_newid(ia);
449 } else {
450
451 /*
452 * TSO capable interfaces (typically?) increment
453 * ip_id for each segment.
454 * "allocate" enough ids here to increase the chance
455 * for them to be unique.
456 *
457 * note that the following calculation is not
458 * needed to be precise. wasting some ip_id is fine.
459 */
460
461 unsigned int segsz = m->m_pkthdr.segsz;
462 unsigned int datasz = ntohs(ip->ip_len) - hlen;
463 unsigned int num = howmany(datasz, segsz);
464
465 ip->ip_id = ip_newid_range(ia, num);
466 }
467 }
468 /*
469 * If we're doing Path MTU Discovery, we need to set DF unless
470 * the route's MTU is locked.
471 */
472 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
473 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
474 ip->ip_off |= htons(IP_DF);
475
476 #ifdef IPSEC
477 /* Perform IPsec processing, if any. */
478 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, &done);
479 if (error || done) {
480 goto done;
481 }
482 #endif
483
484 #ifdef PFIL_HOOKS
485 /*
486 * Run through list of hooks for output packets.
487 */
488 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
489 goto done;
490 if (m == NULL)
491 goto done;
492
493 ip = mtod(m, struct ip *);
494 hlen = ip->ip_hl << 2;
495 #endif /* PFIL_HOOKS */
496
497 m->m_pkthdr.csum_data |= hlen << 16;
498
499 #if IFA_STATS
500 /*
501 * search for the source address structure to
502 * maintain output statistics.
503 */
504 INADDR_TO_IA(ip->ip_src, ia);
505 #endif
506
507 /* Maybe skip checksums on loopback interfaces. */
508 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
509 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
510 }
511 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
512 /*
513 * If small enough for mtu of path, or if using TCP segmentation
514 * offload, can just send directly.
515 */
516 if (ntohs(ip->ip_len) <= mtu ||
517 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
518 #if IFA_STATS
519 if (ia)
520 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
521 #endif
522 /*
523 * Always initialize the sum to 0! Some HW assisted
524 * checksumming requires this.
525 */
526 ip->ip_sum = 0;
527
528 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
529 /*
530 * Perform any checksums that the hardware can't do
531 * for us.
532 *
533 * XXX Does any hardware require the {th,uh}_sum
534 * XXX fields to be 0?
535 */
536 if (sw_csum & M_CSUM_IPv4) {
537 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
538 ip->ip_sum = in_cksum(m, hlen);
539 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
540 }
541 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
542 if (IN_NEED_CHECKSUM(ifp,
543 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
544 in_delayed_cksum(m);
545 }
546 m->m_pkthdr.csum_flags &=
547 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
548 }
549 }
550
551 if (__predict_true(
552 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
553 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
554 KERNEL_LOCK(1, NULL);
555 error =
556 (*ifp->if_output)(ifp, m,
557 (m->m_flags & M_MCAST) ?
558 sintocsa(rdst) : sintocsa(dst),
559 rt);
560 KERNEL_UNLOCK_ONE(NULL);
561 } else {
562 error =
563 ip_tso_output(ifp, m,
564 (m->m_flags & M_MCAST) ?
565 sintocsa(rdst) : sintocsa(dst),
566 rt);
567 }
568 goto done;
569 }
570
571 /*
572 * We can't use HW checksumming if we're about to
573 * to fragment the packet.
574 *
575 * XXX Some hardware can do this.
576 */
577 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
578 if (IN_NEED_CHECKSUM(ifp,
579 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
580 in_delayed_cksum(m);
581 }
582 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
583 }
584
585 /*
586 * Too large for interface; fragment if possible.
587 * Must be able to put at least 8 bytes per fragment.
588 */
589 if (ntohs(ip->ip_off) & IP_DF) {
590 if (flags & IP_RETURNMTU)
591 *mtu_p = mtu;
592 error = EMSGSIZE;
593 IP_STATINC(IP_STAT_CANTFRAG);
594 goto bad;
595 }
596
597 error = ip_fragment(m, ifp, mtu);
598 if (error) {
599 m = NULL;
600 goto bad;
601 }
602
603 for (; m; m = m0) {
604 m0 = m->m_nextpkt;
605 m->m_nextpkt = 0;
606 if (error == 0) {
607 #if IFA_STATS
608 if (ia)
609 ia->ia_ifa.ifa_data.ifad_outbytes +=
610 ntohs(ip->ip_len);
611 #endif
612 /*
613 * If we get there, the packet has not been handled by
614 * IPsec whereas it should have. Now that it has been
615 * fragmented, re-inject it in ip_output so that IPsec
616 * processing can occur.
617 */
618 if (natt_frag) {
619 error = ip_output(m, opt, ro,
620 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
621 imo, so, mtu_p);
622 } else {
623 KASSERT((m->m_pkthdr.csum_flags &
624 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
625 KERNEL_LOCK(1, NULL);
626 error = (*ifp->if_output)(ifp, m,
627 (m->m_flags & M_MCAST) ?
628 sintocsa(rdst) : sintocsa(dst),
629 rt);
630 KERNEL_UNLOCK_ONE(NULL);
631 }
632 } else
633 m_freem(m);
634 }
635
636 if (error == 0)
637 IP_STATINC(IP_STAT_FRAGMENTED);
638 done:
639 rtcache_free(&iproute);
640 if (sp) {
641 #ifdef IPSEC
642 KEY_FREESP(&sp);
643 #endif
644 }
645 return error;
646 bad:
647 m_freem(m);
648 goto done;
649 }
650
651 int
652 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
653 {
654 struct ip *ip, *mhip;
655 struct mbuf *m0;
656 int len, hlen, off;
657 int mhlen, firstlen;
658 struct mbuf **mnext;
659 int sw_csum = m->m_pkthdr.csum_flags;
660 int fragments = 0;
661 int s;
662 int error = 0;
663
664 ip = mtod(m, struct ip *);
665 hlen = ip->ip_hl << 2;
666 if (ifp != NULL)
667 sw_csum &= ~ifp->if_csum_flags_tx;
668
669 len = (mtu - hlen) &~ 7;
670 if (len < 8) {
671 m_freem(m);
672 return (EMSGSIZE);
673 }
674
675 firstlen = len;
676 mnext = &m->m_nextpkt;
677
678 /*
679 * Loop through length of segment after first fragment,
680 * make new header and copy data of each part and link onto chain.
681 */
682 m0 = m;
683 mhlen = sizeof (struct ip);
684 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
685 MGETHDR(m, M_DONTWAIT, MT_HEADER);
686 if (m == 0) {
687 error = ENOBUFS;
688 IP_STATINC(IP_STAT_ODROPPED);
689 goto sendorfree;
690 }
691 MCLAIM(m, m0->m_owner);
692 *mnext = m;
693 mnext = &m->m_nextpkt;
694 m->m_data += max_linkhdr;
695 mhip = mtod(m, struct ip *);
696 *mhip = *ip;
697 /* we must inherit MCAST and BCAST flags */
698 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
699 if (hlen > sizeof (struct ip)) {
700 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
701 mhip->ip_hl = mhlen >> 2;
702 }
703 m->m_len = mhlen;
704 mhip->ip_off = ((off - hlen) >> 3) +
705 (ntohs(ip->ip_off) & ~IP_MF);
706 if (ip->ip_off & htons(IP_MF))
707 mhip->ip_off |= IP_MF;
708 if (off + len >= ntohs(ip->ip_len))
709 len = ntohs(ip->ip_len) - off;
710 else
711 mhip->ip_off |= IP_MF;
712 HTONS(mhip->ip_off);
713 mhip->ip_len = htons((u_int16_t)(len + mhlen));
714 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
715 if (m->m_next == 0) {
716 error = ENOBUFS; /* ??? */
717 IP_STATINC(IP_STAT_ODROPPED);
718 goto sendorfree;
719 }
720 m->m_pkthdr.len = mhlen + len;
721 m->m_pkthdr.rcvif = NULL;
722 mhip->ip_sum = 0;
723 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
724 if (sw_csum & M_CSUM_IPv4) {
725 mhip->ip_sum = in_cksum(m, mhlen);
726 } else {
727 /*
728 * checksum is hw-offloaded or not necessary.
729 */
730 m->m_pkthdr.csum_flags |=
731 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
732 m->m_pkthdr.csum_data |= mhlen << 16;
733 KASSERT(!(ifp != NULL &&
734 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
735 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
736 }
737 IP_STATINC(IP_STAT_OFRAGMENTS);
738 fragments++;
739 }
740 /*
741 * Update first fragment by trimming what's been copied out
742 * and updating header, then send each fragment (in order).
743 */
744 m = m0;
745 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
746 m->m_pkthdr.len = hlen + firstlen;
747 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
748 ip->ip_off |= htons(IP_MF);
749 ip->ip_sum = 0;
750 if (sw_csum & M_CSUM_IPv4) {
751 ip->ip_sum = in_cksum(m, hlen);
752 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
753 } else {
754 /*
755 * checksum is hw-offloaded or not necessary.
756 */
757 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
758 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
759 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
760 sizeof(struct ip));
761 }
762 sendorfree:
763 /*
764 * If there is no room for all the fragments, don't queue
765 * any of them.
766 */
767 if (ifp != NULL) {
768 s = splnet();
769 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
770 error == 0) {
771 error = ENOBUFS;
772 IP_STATINC(IP_STAT_ODROPPED);
773 IFQ_INC_DROPS(&ifp->if_snd);
774 }
775 splx(s);
776 }
777 if (error) {
778 for (m = m0; m; m = m0) {
779 m0 = m->m_nextpkt;
780 m->m_nextpkt = NULL;
781 m_freem(m);
782 }
783 }
784 return (error);
785 }
786
787 /*
788 * Process a delayed payload checksum calculation.
789 */
790 void
791 in_delayed_cksum(struct mbuf *m)
792 {
793 struct ip *ip;
794 u_int16_t csum, offset;
795
796 ip = mtod(m, struct ip *);
797 offset = ip->ip_hl << 2;
798 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
799 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
800 csum = 0xffff;
801
802 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
803
804 if ((offset + sizeof(u_int16_t)) > m->m_len) {
805 /* This happen when ip options were inserted
806 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
807 m->m_len, offset, ip->ip_p);
808 */
809 m_copyback(m, offset, sizeof(csum), (void *) &csum);
810 } else
811 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
812 }
813
814 /*
815 * Determine the maximum length of the options to be inserted;
816 * we would far rather allocate too much space rather than too little.
817 */
818
819 u_int
820 ip_optlen(struct inpcb *inp)
821 {
822 struct mbuf *m = inp->inp_options;
823
824 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
825 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
826 else
827 return 0;
828 }
829
830
831 /*
832 * Insert IP options into preformed packet.
833 * Adjust IP destination as required for IP source routing,
834 * as indicated by a non-zero in_addr at the start of the options.
835 */
836 static struct mbuf *
837 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
838 {
839 struct ipoption *p = mtod(opt, struct ipoption *);
840 struct mbuf *n;
841 struct ip *ip = mtod(m, struct ip *);
842 unsigned optlen;
843
844 optlen = opt->m_len - sizeof(p->ipopt_dst);
845 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
846 return (m); /* XXX should fail */
847 if (!in_nullhost(p->ipopt_dst))
848 ip->ip_dst = p->ipopt_dst;
849 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
850 MGETHDR(n, M_DONTWAIT, MT_HEADER);
851 if (n == 0)
852 return (m);
853 MCLAIM(n, m->m_owner);
854 M_MOVE_PKTHDR(n, m);
855 m->m_len -= sizeof(struct ip);
856 m->m_data += sizeof(struct ip);
857 n->m_next = m;
858 m = n;
859 m->m_len = optlen + sizeof(struct ip);
860 m->m_data += max_linkhdr;
861 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
862 } else {
863 m->m_data -= optlen;
864 m->m_len += optlen;
865 memmove(mtod(m, void *), ip, sizeof(struct ip));
866 }
867 m->m_pkthdr.len += optlen;
868 ip = mtod(m, struct ip *);
869 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
870 *phlen = sizeof(struct ip) + optlen;
871 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
872 return (m);
873 }
874
875 /*
876 * Copy options from ip to jp,
877 * omitting those not copied during fragmentation.
878 */
879 int
880 ip_optcopy(struct ip *ip, struct ip *jp)
881 {
882 u_char *cp, *dp;
883 int opt, optlen, cnt;
884
885 cp = (u_char *)(ip + 1);
886 dp = (u_char *)(jp + 1);
887 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
888 for (; cnt > 0; cnt -= optlen, cp += optlen) {
889 opt = cp[0];
890 if (opt == IPOPT_EOL)
891 break;
892 if (opt == IPOPT_NOP) {
893 /* Preserve for IP mcast tunnel's LSRR alignment. */
894 *dp++ = IPOPT_NOP;
895 optlen = 1;
896 continue;
897 }
898 #ifdef DIAGNOSTIC
899 if (cnt < IPOPT_OLEN + sizeof(*cp))
900 panic("malformed IPv4 option passed to ip_optcopy");
901 #endif
902 optlen = cp[IPOPT_OLEN];
903 #ifdef DIAGNOSTIC
904 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
905 panic("malformed IPv4 option passed to ip_optcopy");
906 #endif
907 /* bogus lengths should have been caught by ip_dooptions */
908 if (optlen > cnt)
909 optlen = cnt;
910 if (IPOPT_COPIED(opt)) {
911 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
912 dp += optlen;
913 }
914 }
915 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
916 *dp++ = IPOPT_EOL;
917 return (optlen);
918 }
919
920 /*
921 * IP socket option processing.
922 */
923 int
924 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
925 {
926 struct inpcb *inp = sotoinpcb(so);
927 int optval = 0;
928 int error = 0;
929 #if defined(IPSEC)
930 struct lwp *l = curlwp; /*XXX*/
931 #endif
932
933 if (sopt->sopt_level != IPPROTO_IP) {
934 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
935 return 0;
936 return ENOPROTOOPT;
937 }
938
939 switch (op) {
940 case PRCO_SETOPT:
941 switch (sopt->sopt_name) {
942 case IP_OPTIONS:
943 #ifdef notyet
944 case IP_RETOPTS:
945 #endif
946 error = ip_pcbopts(&inp->inp_options, sopt);
947 break;
948
949 case IP_TOS:
950 case IP_TTL:
951 case IP_MINTTL:
952 case IP_PKTINFO:
953 case IP_RECVOPTS:
954 case IP_RECVRETOPTS:
955 case IP_RECVDSTADDR:
956 case IP_RECVIF:
957 case IP_RECVPKTINFO:
958 case IP_RECVTTL:
959 error = sockopt_getint(sopt, &optval);
960 if (error)
961 break;
962
963 switch (sopt->sopt_name) {
964 case IP_TOS:
965 inp->inp_ip.ip_tos = optval;
966 break;
967
968 case IP_TTL:
969 inp->inp_ip.ip_ttl = optval;
970 break;
971
972 case IP_MINTTL:
973 if (optval > 0 && optval <= MAXTTL)
974 inp->inp_ip_minttl = optval;
975 else
976 error = EINVAL;
977 break;
978 #define OPTSET(bit) \
979 if (optval) \
980 inp->inp_flags |= bit; \
981 else \
982 inp->inp_flags &= ~bit;
983
984 case IP_PKTINFO:
985 OPTSET(INP_PKTINFO);
986 break;
987
988 case IP_RECVOPTS:
989 OPTSET(INP_RECVOPTS);
990 break;
991
992 case IP_RECVPKTINFO:
993 OPTSET(INP_RECVPKTINFO);
994 break;
995
996 case IP_RECVRETOPTS:
997 OPTSET(INP_RECVRETOPTS);
998 break;
999
1000 case IP_RECVDSTADDR:
1001 OPTSET(INP_RECVDSTADDR);
1002 break;
1003
1004 case IP_RECVIF:
1005 OPTSET(INP_RECVIF);
1006 break;
1007
1008 case IP_RECVTTL:
1009 OPTSET(INP_RECVTTL);
1010 break;
1011 }
1012 break;
1013 #undef OPTSET
1014
1015 case IP_MULTICAST_IF:
1016 case IP_MULTICAST_TTL:
1017 case IP_MULTICAST_LOOP:
1018 case IP_ADD_MEMBERSHIP:
1019 case IP_DROP_MEMBERSHIP:
1020 error = ip_setmoptions(&inp->inp_moptions, sopt);
1021 break;
1022
1023 case IP_PORTRANGE:
1024 error = sockopt_getint(sopt, &optval);
1025 if (error)
1026 break;
1027
1028 /* INP_LOCK(inp); */
1029 switch (optval) {
1030 case IP_PORTRANGE_DEFAULT:
1031 case IP_PORTRANGE_HIGH:
1032 inp->inp_flags &= ~(INP_LOWPORT);
1033 break;
1034
1035 case IP_PORTRANGE_LOW:
1036 inp->inp_flags |= INP_LOWPORT;
1037 break;
1038
1039 default:
1040 error = EINVAL;
1041 break;
1042 }
1043 /* INP_UNLOCK(inp); */
1044 break;
1045
1046 case IP_PORTALGO:
1047 error = sockopt_getint(sopt, &optval);
1048 if (error)
1049 break;
1050
1051 error = portalgo_algo_index_select(
1052 (struct inpcb_hdr *)inp, optval);
1053 break;
1054
1055 #if defined(IPSEC)
1056 case IP_IPSEC_POLICY:
1057 error = ipsec4_set_policy(inp, sopt->sopt_name,
1058 sopt->sopt_data, sopt->sopt_size, l->l_cred);
1059 break;
1060 #endif /*IPSEC*/
1061
1062 default:
1063 error = ENOPROTOOPT;
1064 break;
1065 }
1066 break;
1067
1068 case PRCO_GETOPT:
1069 switch (sopt->sopt_name) {
1070 case IP_OPTIONS:
1071 case IP_RETOPTS:
1072 if (inp->inp_options) {
1073 struct mbuf *m;
1074
1075 m = m_copym(inp->inp_options, 0, M_COPYALL,
1076 M_DONTWAIT);
1077 if (m == NULL) {
1078 error = ENOBUFS;
1079 break;
1080 }
1081
1082 error = sockopt_setmbuf(sopt, m);
1083 }
1084 break;
1085
1086 case IP_PKTINFO:
1087 case IP_TOS:
1088 case IP_TTL:
1089 case IP_MINTTL:
1090 case IP_RECVOPTS:
1091 case IP_RECVRETOPTS:
1092 case IP_RECVDSTADDR:
1093 case IP_RECVIF:
1094 case IP_RECVPKTINFO:
1095 case IP_RECVTTL:
1096 case IP_ERRORMTU:
1097 switch (sopt->sopt_name) {
1098 case IP_TOS:
1099 optval = inp->inp_ip.ip_tos;
1100 break;
1101
1102 case IP_TTL:
1103 optval = inp->inp_ip.ip_ttl;
1104 break;
1105
1106 case IP_MINTTL:
1107 optval = inp->inp_ip_minttl;
1108 break;
1109
1110 case IP_ERRORMTU:
1111 optval = inp->inp_errormtu;
1112 break;
1113
1114 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1115
1116 case IP_PKTINFO:
1117 optval = OPTBIT(INP_PKTINFO);
1118 break;
1119
1120 case IP_RECVOPTS:
1121 optval = OPTBIT(INP_RECVOPTS);
1122 break;
1123
1124 case IP_RECVPKTINFO:
1125 optval = OPTBIT(INP_RECVPKTINFO);
1126 break;
1127
1128 case IP_RECVRETOPTS:
1129 optval = OPTBIT(INP_RECVRETOPTS);
1130 break;
1131
1132 case IP_RECVDSTADDR:
1133 optval = OPTBIT(INP_RECVDSTADDR);
1134 break;
1135
1136 case IP_RECVIF:
1137 optval = OPTBIT(INP_RECVIF);
1138 break;
1139
1140 case IP_RECVTTL:
1141 optval = OPTBIT(INP_RECVTTL);
1142 break;
1143 }
1144 error = sockopt_setint(sopt, optval);
1145 break;
1146
1147 #if 0 /* defined(IPSEC) */
1148 case IP_IPSEC_POLICY:
1149 {
1150 struct mbuf *m = NULL;
1151
1152 /* XXX this will return EINVAL as sopt is empty */
1153 error = ipsec4_get_policy(inp, sopt->sopt_data,
1154 sopt->sopt_size, &m);
1155 if (error == 0)
1156 error = sockopt_setmbuf(sopt, m);
1157 break;
1158 }
1159 #endif /*IPSEC*/
1160
1161 case IP_MULTICAST_IF:
1162 case IP_MULTICAST_TTL:
1163 case IP_MULTICAST_LOOP:
1164 case IP_ADD_MEMBERSHIP:
1165 case IP_DROP_MEMBERSHIP:
1166 error = ip_getmoptions(inp->inp_moptions, sopt);
1167 break;
1168
1169 case IP_PORTRANGE:
1170 if (inp->inp_flags & INP_LOWPORT)
1171 optval = IP_PORTRANGE_LOW;
1172 else
1173 optval = IP_PORTRANGE_DEFAULT;
1174
1175 error = sockopt_setint(sopt, optval);
1176
1177 break;
1178
1179 case IP_PORTALGO:
1180 optval = ((struct inpcb_hdr *)inp)->inph_portalgo;
1181 error = sockopt_setint(sopt, optval);
1182 break;
1183
1184 default:
1185 error = ENOPROTOOPT;
1186 break;
1187 }
1188 break;
1189 }
1190 return (error);
1191 }
1192
1193 /*
1194 * Set up IP options in pcb for insertion in output packets.
1195 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1196 * with destination address if source routed.
1197 */
1198 int
1199 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1200 {
1201 struct mbuf *m;
1202 const u_char *cp;
1203 u_char *dp;
1204 int cnt;
1205 uint8_t optval, olen, offset;
1206
1207 /* turn off any old options */
1208 if (*pcbopt)
1209 (void)m_free(*pcbopt);
1210 *pcbopt = NULL;
1211
1212 cp = sopt->sopt_data;
1213 cnt = sopt->sopt_size;
1214
1215 if (cnt == 0)
1216 return (0); /* Only turning off any previous options */
1217
1218 #ifndef __vax__
1219 if (cnt % sizeof(int32_t))
1220 return (EINVAL);
1221 #endif
1222
1223 m = m_get(M_DONTWAIT, MT_SOOPTS);
1224 if (m == NULL)
1225 return (ENOBUFS);
1226
1227 dp = mtod(m, u_char *);
1228 memset(dp, 0, sizeof(struct in_addr));
1229 dp += sizeof(struct in_addr);
1230 m->m_len = sizeof(struct in_addr);
1231
1232 /*
1233 * IP option list according to RFC791. Each option is of the form
1234 *
1235 * [optval] [olen] [(olen - 2) data bytes]
1236 *
1237 * we validate the list and copy options to an mbuf for prepending
1238 * to data packets. The IP first-hop destination address will be
1239 * stored before actual options and is zero if unset.
1240 */
1241 while (cnt > 0) {
1242 optval = cp[IPOPT_OPTVAL];
1243
1244 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1245 olen = 1;
1246 } else {
1247 if (cnt < IPOPT_OLEN + 1)
1248 goto bad;
1249
1250 olen = cp[IPOPT_OLEN];
1251 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1252 goto bad;
1253 }
1254
1255 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1256 /*
1257 * user process specifies route as:
1258 * ->A->B->C->D
1259 * D must be our final destination (but we can't
1260 * check that since we may not have connected yet).
1261 * A is first hop destination, which doesn't appear in
1262 * actual IP option, but is stored before the options.
1263 */
1264 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1265 goto bad;
1266
1267 offset = cp[IPOPT_OFFSET];
1268 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1269 sizeof(struct in_addr));
1270
1271 cp += sizeof(struct in_addr);
1272 cnt -= sizeof(struct in_addr);
1273 olen -= sizeof(struct in_addr);
1274
1275 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1276 goto bad;
1277
1278 memcpy(dp, cp, olen);
1279 dp[IPOPT_OPTVAL] = optval;
1280 dp[IPOPT_OLEN] = olen;
1281 dp[IPOPT_OFFSET] = offset;
1282 break;
1283 } else {
1284 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1285 goto bad;
1286
1287 memcpy(dp, cp, olen);
1288 break;
1289 }
1290
1291 dp += olen;
1292 m->m_len += olen;
1293
1294 if (optval == IPOPT_EOL)
1295 break;
1296
1297 cp += olen;
1298 cnt -= olen;
1299 }
1300
1301 *pcbopt = m;
1302 return (0);
1303
1304 bad:
1305 (void)m_free(m);
1306 return (EINVAL);
1307 }
1308
1309 /*
1310 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1311 */
1312 static struct ifnet *
1313 ip_multicast_if(struct in_addr *a, int *ifindexp)
1314 {
1315 int ifindex;
1316 struct ifnet *ifp = NULL;
1317 struct in_ifaddr *ia;
1318
1319 if (ifindexp)
1320 *ifindexp = 0;
1321 if (ntohl(a->s_addr) >> 24 == 0) {
1322 ifindex = ntohl(a->s_addr) & 0xffffff;
1323 if (ifindex < 0 || if_indexlim <= ifindex)
1324 return NULL;
1325 ifp = ifindex2ifnet[ifindex];
1326 if (!ifp)
1327 return NULL;
1328 if (ifindexp)
1329 *ifindexp = ifindex;
1330 } else {
1331 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1332 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1333 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1334 ifp = ia->ia_ifp;
1335 break;
1336 }
1337 }
1338 }
1339 return ifp;
1340 }
1341
1342 static int
1343 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1344 {
1345 u_int tval;
1346 u_char cval;
1347 int error;
1348
1349 if (sopt == NULL)
1350 return EINVAL;
1351
1352 switch (sopt->sopt_size) {
1353 case sizeof(u_char):
1354 error = sockopt_get(sopt, &cval, sizeof(u_char));
1355 tval = cval;
1356 break;
1357
1358 case sizeof(u_int):
1359 error = sockopt_get(sopt, &tval, sizeof(u_int));
1360 break;
1361
1362 default:
1363 error = EINVAL;
1364 }
1365
1366 if (error)
1367 return error;
1368
1369 if (tval > maxval)
1370 return EINVAL;
1371
1372 *val = tval;
1373 return 0;
1374 }
1375
1376 /*
1377 * Set the IP multicast options in response to user setsockopt().
1378 */
1379 int
1380 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1381 {
1382 struct in_addr addr;
1383 struct ip_mreq lmreq, *mreq;
1384 struct ifnet *ifp;
1385 struct ip_moptions *imo = *imop;
1386 int i, ifindex, error = 0;
1387
1388 if (imo == NULL) {
1389 /*
1390 * No multicast option buffer attached to the pcb;
1391 * allocate one and initialize to default values.
1392 */
1393 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1394 if (imo == NULL)
1395 return ENOBUFS;
1396
1397 imo->imo_multicast_ifp = NULL;
1398 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1399 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1400 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1401 imo->imo_num_memberships = 0;
1402 *imop = imo;
1403 }
1404
1405 switch (sopt->sopt_name) {
1406 case IP_MULTICAST_IF:
1407 /*
1408 * Select the interface for outgoing multicast packets.
1409 */
1410 error = sockopt_get(sopt, &addr, sizeof(addr));
1411 if (error)
1412 break;
1413
1414 /*
1415 * INADDR_ANY is used to remove a previous selection.
1416 * When no interface is selected, a default one is
1417 * chosen every time a multicast packet is sent.
1418 */
1419 if (in_nullhost(addr)) {
1420 imo->imo_multicast_ifp = NULL;
1421 break;
1422 }
1423 /*
1424 * The selected interface is identified by its local
1425 * IP address. Find the interface and confirm that
1426 * it supports multicasting.
1427 */
1428 ifp = ip_multicast_if(&addr, &ifindex);
1429 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1430 error = EADDRNOTAVAIL;
1431 break;
1432 }
1433 imo->imo_multicast_ifp = ifp;
1434 if (ifindex)
1435 imo->imo_multicast_addr = addr;
1436 else
1437 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1438 break;
1439
1440 case IP_MULTICAST_TTL:
1441 /*
1442 * Set the IP time-to-live for outgoing multicast packets.
1443 */
1444 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1445 break;
1446
1447 case IP_MULTICAST_LOOP:
1448 /*
1449 * Set the loopback flag for outgoing multicast packets.
1450 * Must be zero or one.
1451 */
1452 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1453 break;
1454
1455 case IP_ADD_MEMBERSHIP:
1456 /*
1457 * Add a multicast group membership.
1458 * Group must be a valid IP multicast address.
1459 */
1460 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1461 if (error)
1462 break;
1463
1464 mreq = &lmreq;
1465
1466 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1467 error = EINVAL;
1468 break;
1469 }
1470 /*
1471 * If no interface address was provided, use the interface of
1472 * the route to the given multicast address.
1473 */
1474 if (in_nullhost(mreq->imr_interface)) {
1475 struct rtentry *rt;
1476 union {
1477 struct sockaddr dst;
1478 struct sockaddr_in dst4;
1479 } u;
1480 struct route ro;
1481
1482 memset(&ro, 0, sizeof(ro));
1483
1484 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1485 rtcache_setdst(&ro, &u.dst);
1486 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1487 : NULL;
1488 rtcache_free(&ro);
1489 } else {
1490 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1491 }
1492 /*
1493 * See if we found an interface, and confirm that it
1494 * supports multicast.
1495 */
1496 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1497 error = EADDRNOTAVAIL;
1498 break;
1499 }
1500 /*
1501 * See if the membership already exists or if all the
1502 * membership slots are full.
1503 */
1504 for (i = 0; i < imo->imo_num_memberships; ++i) {
1505 if (imo->imo_membership[i]->inm_ifp == ifp &&
1506 in_hosteq(imo->imo_membership[i]->inm_addr,
1507 mreq->imr_multiaddr))
1508 break;
1509 }
1510 if (i < imo->imo_num_memberships) {
1511 error = EADDRINUSE;
1512 break;
1513 }
1514 if (i == IP_MAX_MEMBERSHIPS) {
1515 error = ETOOMANYREFS;
1516 break;
1517 }
1518 /*
1519 * Everything looks good; add a new record to the multicast
1520 * address list for the given interface.
1521 */
1522 if ((imo->imo_membership[i] =
1523 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1524 error = ENOBUFS;
1525 break;
1526 }
1527 ++imo->imo_num_memberships;
1528 break;
1529
1530 case IP_DROP_MEMBERSHIP:
1531 /*
1532 * Drop a multicast group membership.
1533 * Group must be a valid IP multicast address.
1534 */
1535 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1536 if (error)
1537 break;
1538
1539 mreq = &lmreq;
1540
1541 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1542 error = EINVAL;
1543 break;
1544 }
1545 /*
1546 * If an interface address was specified, get a pointer
1547 * to its ifnet structure.
1548 */
1549 if (in_nullhost(mreq->imr_interface))
1550 ifp = NULL;
1551 else {
1552 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1553 if (ifp == NULL) {
1554 error = EADDRNOTAVAIL;
1555 break;
1556 }
1557 }
1558 /*
1559 * Find the membership in the membership array.
1560 */
1561 for (i = 0; i < imo->imo_num_memberships; ++i) {
1562 if ((ifp == NULL ||
1563 imo->imo_membership[i]->inm_ifp == ifp) &&
1564 in_hosteq(imo->imo_membership[i]->inm_addr,
1565 mreq->imr_multiaddr))
1566 break;
1567 }
1568 if (i == imo->imo_num_memberships) {
1569 error = EADDRNOTAVAIL;
1570 break;
1571 }
1572 /*
1573 * Give up the multicast address record to which the
1574 * membership points.
1575 */
1576 in_delmulti(imo->imo_membership[i]);
1577 /*
1578 * Remove the gap in the membership array.
1579 */
1580 for (++i; i < imo->imo_num_memberships; ++i)
1581 imo->imo_membership[i-1] = imo->imo_membership[i];
1582 --imo->imo_num_memberships;
1583 break;
1584
1585 default:
1586 error = EOPNOTSUPP;
1587 break;
1588 }
1589
1590 /*
1591 * If all options have default values, no need to keep the mbuf.
1592 */
1593 if (imo->imo_multicast_ifp == NULL &&
1594 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1595 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1596 imo->imo_num_memberships == 0) {
1597 kmem_free(imo, sizeof(*imo));
1598 *imop = NULL;
1599 }
1600
1601 return error;
1602 }
1603
1604 /*
1605 * Return the IP multicast options in response to user getsockopt().
1606 */
1607 int
1608 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1609 {
1610 struct in_addr addr;
1611 struct in_ifaddr *ia;
1612 int error;
1613 uint8_t optval;
1614
1615 error = 0;
1616
1617 switch (sopt->sopt_name) {
1618 case IP_MULTICAST_IF:
1619 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1620 addr = zeroin_addr;
1621 else if (imo->imo_multicast_addr.s_addr) {
1622 /* return the value user has set */
1623 addr = imo->imo_multicast_addr;
1624 } else {
1625 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1626 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1627 }
1628 error = sockopt_set(sopt, &addr, sizeof(addr));
1629 break;
1630
1631 case IP_MULTICAST_TTL:
1632 optval = imo ? imo->imo_multicast_ttl
1633 : IP_DEFAULT_MULTICAST_TTL;
1634
1635 error = sockopt_set(sopt, &optval, sizeof(optval));
1636 break;
1637
1638 case IP_MULTICAST_LOOP:
1639 optval = imo ? imo->imo_multicast_loop
1640 : IP_DEFAULT_MULTICAST_LOOP;
1641
1642 error = sockopt_set(sopt, &optval, sizeof(optval));
1643 break;
1644
1645 default:
1646 error = EOPNOTSUPP;
1647 }
1648
1649 return (error);
1650 }
1651
1652 /*
1653 * Discard the IP multicast options.
1654 */
1655 void
1656 ip_freemoptions(struct ip_moptions *imo)
1657 {
1658 int i;
1659
1660 if (imo != NULL) {
1661 for (i = 0; i < imo->imo_num_memberships; ++i)
1662 in_delmulti(imo->imo_membership[i]);
1663 kmem_free(imo, sizeof(*imo));
1664 }
1665 }
1666
1667 /*
1668 * Routine called from ip_output() to loop back a copy of an IP multicast
1669 * packet to the input queue of a specified interface. Note that this
1670 * calls the output routine of the loopback "driver", but with an interface
1671 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1672 */
1673 static void
1674 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1675 {
1676 struct ip *ip;
1677 struct mbuf *copym;
1678
1679 copym = m_copypacket(m, M_DONTWAIT);
1680 if (copym != NULL
1681 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1682 copym = m_pullup(copym, sizeof(struct ip));
1683 if (copym == NULL)
1684 return;
1685 /*
1686 * We don't bother to fragment if the IP length is greater
1687 * than the interface's MTU. Can this possibly matter?
1688 */
1689 ip = mtod(copym, struct ip *);
1690
1691 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1692 in_delayed_cksum(copym);
1693 copym->m_pkthdr.csum_flags &=
1694 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1695 }
1696
1697 ip->ip_sum = 0;
1698 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1699 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1700 }
1701