ip_output.c revision 1.223.2.2 1 /* $NetBSD: ip_output.c,v 1.223.2.2 2013/08/28 23:59:36 rmind Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.223.2.2 2013/08/28 23:59:36 rmind Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_mrouting.h"
99
100 #include <sys/param.h>
101 #include <sys/kmem.h>
102 #include <sys/mbuf.h>
103 #include <sys/protosw.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/kauth.h>
107 #ifdef IPSEC
108 #include <sys/domain.h>
109 #endif
110 #include <sys/systm.h>
111
112 #include <net/if.h>
113 #include <net/route.h>
114 #include <net/pfil.h>
115
116 #include <netinet/in.h>
117 #include <netinet/in_systm.h>
118 #include <netinet/ip.h>
119 #include <netinet/in_pcb.h>
120 #include <netinet/in_var.h>
121 #include <netinet/ip_var.h>
122 #include <netinet/ip_private.h>
123 #include <netinet/in_offload.h>
124 #include <netinet/portalgo.h>
125 #include <netinet/udp.h>
126
127 #ifdef MROUTING
128 #include <netinet/ip_mroute.h>
129 #endif
130
131 #include <netipsec/ipsec.h>
132 #include <netipsec/key.h>
133
134 static int ip_pcbopts(inpcb_t *, const struct sockopt *);
135 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
136 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
137 static void ip_mloopback(struct ifnet *, struct mbuf *,
138 const struct sockaddr_in *);
139 static int ip_setmoptions(inpcb_t *, const struct sockopt *);
140 static int ip_getmoptions(inpcb_t *, struct sockopt *);
141
142 extern pfil_head_t *inet_pfil_hook; /* XXX */
143
144 int ip_do_loopback_cksum = 0;
145
146 /*
147 * IP output. The packet in mbuf chain m contains a skeletal IP
148 * header (with len, off, ttl, proto, tos, src, dst).
149 * The mbuf chain containing the packet will be freed.
150 * The mbuf opt, if present, will not be freed.
151 */
152 int
153 ip_output(struct mbuf *m0, ...)
154 {
155 struct rtentry *rt;
156 struct ip *ip;
157 struct ifnet *ifp;
158 struct mbuf *m = m0;
159 int hlen = sizeof (struct ip);
160 int len, error = 0;
161 struct route iproute;
162 const struct sockaddr_in *dst;
163 struct in_ifaddr *ia;
164 struct ifaddr *xifa;
165 struct mbuf *opt;
166 struct route *ro;
167 int flags, sw_csum;
168 u_long mtu;
169 struct ip_moptions *imo;
170 struct socket *so;
171 va_list ap;
172 struct secpolicy *sp = NULL;
173 bool natt_frag = false;
174 bool __unused done = false;
175 union {
176 struct sockaddr dst;
177 struct sockaddr_in dst4;
178 } u;
179 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
180 * to the nexthop
181 */
182
183 len = 0;
184 va_start(ap, m0);
185 opt = va_arg(ap, struct mbuf *);
186 ro = va_arg(ap, struct route *);
187 flags = va_arg(ap, int);
188 imo = va_arg(ap, struct ip_moptions *);
189 so = va_arg(ap, struct socket *);
190 va_end(ap);
191
192 MCLAIM(m, &ip_tx_mowner);
193
194 KASSERT((m->m_flags & M_PKTHDR) != 0);
195 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
196 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
197 (M_CSUM_TCPv4|M_CSUM_UDPv4));
198
199 if (opt) {
200 m = ip_insertoptions(m, opt, &len);
201 if (len >= sizeof(struct ip))
202 hlen = len;
203 }
204 ip = mtod(m, struct ip *);
205 /*
206 * Fill in IP header.
207 */
208 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
209 ip->ip_v = IPVERSION;
210 ip->ip_off = htons(0);
211 /* ip->ip_id filled in after we find out source ia */
212 ip->ip_hl = hlen >> 2;
213 IP_STATINC(IP_STAT_LOCALOUT);
214 } else {
215 hlen = ip->ip_hl << 2;
216 }
217 /*
218 * Route packet.
219 */
220 memset(&iproute, 0, sizeof(iproute));
221 if (ro == NULL)
222 ro = &iproute;
223 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
224 dst = satocsin(rtcache_getdst(ro));
225 /*
226 * If there is a cached route,
227 * check that it is to the same destination
228 * and is still up. If not, free it and try again.
229 * The address family should also be checked in case of sharing the
230 * cache with IPv6.
231 */
232 if (dst == NULL)
233 ;
234 else if (dst->sin_family != AF_INET ||
235 !in_hosteq(dst->sin_addr, ip->ip_dst))
236 rtcache_free(ro);
237
238 if ((rt = rtcache_validate(ro)) == NULL &&
239 (rt = rtcache_update(ro, 1)) == NULL) {
240 dst = &u.dst4;
241 rtcache_setdst(ro, &u.dst);
242 }
243 /*
244 * If routing to interface only,
245 * short circuit routing lookup.
246 */
247 if (flags & IP_ROUTETOIF) {
248 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
249 IP_STATINC(IP_STAT_NOROUTE);
250 error = ENETUNREACH;
251 goto bad;
252 }
253 ifp = ia->ia_ifp;
254 mtu = ifp->if_mtu;
255 ip->ip_ttl = 1;
256 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
257 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
258 imo != NULL && imo->imo_multicast_ifp != NULL) {
259 ifp = imo->imo_multicast_ifp;
260 mtu = ifp->if_mtu;
261 IFP_TO_IA(ifp, ia);
262 } else {
263 if (rt == NULL)
264 rt = rtcache_init(ro);
265 if (rt == NULL) {
266 IP_STATINC(IP_STAT_NOROUTE);
267 error = EHOSTUNREACH;
268 goto bad;
269 }
270 ia = ifatoia(rt->rt_ifa);
271 ifp = rt->rt_ifp;
272 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
273 mtu = ifp->if_mtu;
274 rt->rt_use++;
275 if (rt->rt_flags & RTF_GATEWAY)
276 dst = satosin(rt->rt_gateway);
277 }
278 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
279 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
280 struct in_multi *inm;
281
282 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
283 M_BCAST : M_MCAST;
284 /*
285 * See if the caller provided any multicast options
286 */
287 if (imo != NULL)
288 ip->ip_ttl = imo->imo_multicast_ttl;
289 else
290 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
291
292 /*
293 * if we don't know the outgoing ifp yet, we can't generate
294 * output
295 */
296 if (!ifp) {
297 IP_STATINC(IP_STAT_NOROUTE);
298 error = ENETUNREACH;
299 goto bad;
300 }
301
302 /*
303 * If the packet is multicast or broadcast, confirm that
304 * the outgoing interface can transmit it.
305 */
306 if (((m->m_flags & M_MCAST) &&
307 (ifp->if_flags & IFF_MULTICAST) == 0) ||
308 ((m->m_flags & M_BCAST) &&
309 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
310 IP_STATINC(IP_STAT_NOROUTE);
311 error = ENETUNREACH;
312 goto bad;
313 }
314 /*
315 * If source address not specified yet, use an address
316 * of outgoing interface.
317 */
318 if (in_nullhost(ip->ip_src)) {
319 struct in_ifaddr *xia;
320
321 IFP_TO_IA(ifp, xia);
322 if (!xia) {
323 error = EADDRNOTAVAIL;
324 goto bad;
325 }
326 xifa = &xia->ia_ifa;
327 if (xifa->ifa_getifa != NULL) {
328 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
329 }
330 ip->ip_src = xia->ia_addr.sin_addr;
331 }
332
333 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
334 if (inm != NULL &&
335 (imo == NULL || imo->imo_multicast_loop)) {
336 /*
337 * If we belong to the destination multicast group
338 * on the outgoing interface, and the caller did not
339 * forbid loopback, loop back a copy.
340 */
341 ip_mloopback(ifp, m, &u.dst4);
342 }
343 #ifdef MROUTING
344 else {
345 /*
346 * If we are acting as a multicast router, perform
347 * multicast forwarding as if the packet had just
348 * arrived on the interface to which we are about
349 * to send. The multicast forwarding function
350 * recursively calls this function, using the
351 * IP_FORWARDING flag to prevent infinite recursion.
352 *
353 * Multicasts that are looped back by ip_mloopback(),
354 * above, will be forwarded by the ip_input() routine,
355 * if necessary.
356 */
357 extern struct socket *ip_mrouter;
358
359 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
360 if (ip_mforward(m, ifp) != 0) {
361 m_freem(m);
362 goto done;
363 }
364 }
365 }
366 #endif
367 /*
368 * Multicasts with a time-to-live of zero may be looped-
369 * back, above, but must not be transmitted on a network.
370 * Also, multicasts addressed to the loopback interface
371 * are not sent -- the above call to ip_mloopback() will
372 * loop back a copy if this host actually belongs to the
373 * destination group on the loopback interface.
374 */
375 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
376 m_freem(m);
377 goto done;
378 }
379
380 goto sendit;
381 }
382 /*
383 * If source address not specified yet, use address
384 * of outgoing interface.
385 */
386 if (in_nullhost(ip->ip_src)) {
387 xifa = &ia->ia_ifa;
388 if (xifa->ifa_getifa != NULL)
389 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
390 ip->ip_src = ia->ia_addr.sin_addr;
391 }
392
393 /*
394 * packets with Class-D address as source are not valid per
395 * RFC 1112
396 */
397 if (IN_MULTICAST(ip->ip_src.s_addr)) {
398 IP_STATINC(IP_STAT_ODROPPED);
399 error = EADDRNOTAVAIL;
400 goto bad;
401 }
402
403 /*
404 * Look for broadcast address and
405 * and verify user is allowed to send
406 * such a packet.
407 */
408 if (in_broadcast(dst->sin_addr, ifp)) {
409 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
410 error = EADDRNOTAVAIL;
411 goto bad;
412 }
413 if ((flags & IP_ALLOWBROADCAST) == 0) {
414 error = EACCES;
415 goto bad;
416 }
417 /* don't allow broadcast messages to be fragmented */
418 if (ntohs(ip->ip_len) > ifp->if_mtu) {
419 error = EMSGSIZE;
420 goto bad;
421 }
422 m->m_flags |= M_BCAST;
423 } else
424 m->m_flags &= ~M_BCAST;
425
426 sendit:
427 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
428 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
429 ip->ip_id = 0;
430 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
431 ip->ip_id = ip_newid(ia);
432 } else {
433
434 /*
435 * TSO capable interfaces (typically?) increment
436 * ip_id for each segment.
437 * "allocate" enough ids here to increase the chance
438 * for them to be unique.
439 *
440 * note that the following calculation is not
441 * needed to be precise. wasting some ip_id is fine.
442 */
443
444 unsigned int segsz = m->m_pkthdr.segsz;
445 unsigned int datasz = ntohs(ip->ip_len) - hlen;
446 unsigned int num = howmany(datasz, segsz);
447
448 ip->ip_id = ip_newid_range(ia, num);
449 }
450 }
451 /*
452 * If we're doing Path MTU Discovery, we need to set DF unless
453 * the route's MTU is locked.
454 */
455 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
456 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
457 ip->ip_off |= htons(IP_DF);
458
459 #ifdef IPSEC
460 /* Perform IPsec processing, if any. */
461 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, &done);
462 if (error || done) {
463 goto done;
464 }
465 #endif
466
467 /*
468 * Run through list of hooks for output packets.
469 */
470 if ((error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
471 goto done;
472 if (m == NULL)
473 goto done;
474
475 ip = mtod(m, struct ip *);
476 hlen = ip->ip_hl << 2;
477
478 m->m_pkthdr.csum_data |= hlen << 16;
479
480 #if IFA_STATS
481 /*
482 * search for the source address structure to
483 * maintain output statistics.
484 */
485 INADDR_TO_IA(ip->ip_src, ia);
486 #endif
487
488 /* Maybe skip checksums on loopback interfaces. */
489 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
490 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
491 }
492 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
493 /*
494 * If small enough for mtu of path, or if using TCP segmentation
495 * offload, can just send directly.
496 */
497 if (ntohs(ip->ip_len) <= mtu ||
498 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
499 #if IFA_STATS
500 if (ia)
501 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
502 #endif
503 /*
504 * Always initialize the sum to 0! Some HW assisted
505 * checksumming requires this.
506 */
507 ip->ip_sum = 0;
508
509 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
510 /*
511 * Perform any checksums that the hardware can't do
512 * for us.
513 *
514 * XXX Does any hardware require the {th,uh}_sum
515 * XXX fields to be 0?
516 */
517 if (sw_csum & M_CSUM_IPv4) {
518 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
519 ip->ip_sum = in_cksum(m, hlen);
520 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
521 }
522 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
523 if (IN_NEED_CHECKSUM(ifp,
524 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
525 in_delayed_cksum(m);
526 }
527 m->m_pkthdr.csum_flags &=
528 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
529 }
530 }
531
532 if (__predict_true(
533 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
534 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
535 KERNEL_LOCK(1, NULL);
536 error =
537 (*ifp->if_output)(ifp, m,
538 (m->m_flags & M_MCAST) ?
539 sintocsa(rdst) : sintocsa(dst),
540 rt);
541 KERNEL_UNLOCK_ONE(NULL);
542 } else {
543 error =
544 ip_tso_output(ifp, m,
545 (m->m_flags & M_MCAST) ?
546 sintocsa(rdst) : sintocsa(dst),
547 rt);
548 }
549 goto done;
550 }
551
552 /*
553 * We can't use HW checksumming if we're about to
554 * to fragment the packet.
555 *
556 * XXX Some hardware can do this.
557 */
558 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
559 if (IN_NEED_CHECKSUM(ifp,
560 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
561 in_delayed_cksum(m);
562 }
563 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
564 }
565
566 /*
567 * Too large for interface; fragment if possible.
568 * Must be able to put at least 8 bytes per fragment.
569 */
570 if (ntohs(ip->ip_off) & IP_DF) {
571 if (flags & IP_RETURNMTU) {
572 inpcb_t *inp = sotoinpcb(so);
573 inpcb_set_errormtu(inp, mtu);
574 }
575 error = EMSGSIZE;
576 IP_STATINC(IP_STAT_CANTFRAG);
577 goto bad;
578 }
579
580 error = ip_fragment(m, ifp, mtu);
581 if (error) {
582 m = NULL;
583 goto bad;
584 }
585
586 for (; m; m = m0) {
587 m0 = m->m_nextpkt;
588 m->m_nextpkt = 0;
589 if (error == 0) {
590 #if IFA_STATS
591 if (ia)
592 ia->ia_ifa.ifa_data.ifad_outbytes +=
593 ntohs(ip->ip_len);
594 #endif
595 /*
596 * If we get there, the packet has not been handled by
597 * IPsec whereas it should have. Now that it has been
598 * fragmented, re-inject it in ip_output so that IPsec
599 * processing can occur.
600 */
601 if (natt_frag) {
602 error = ip_output(m, opt, ro,
603 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
604 imo, so);
605 } else {
606 KASSERT((m->m_pkthdr.csum_flags &
607 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
608 KERNEL_LOCK(1, NULL);
609 error = (*ifp->if_output)(ifp, m,
610 (m->m_flags & M_MCAST) ?
611 sintocsa(rdst) : sintocsa(dst), rt);
612 KERNEL_UNLOCK_ONE(NULL);
613 }
614 } else
615 m_freem(m);
616 }
617
618 if (error == 0)
619 IP_STATINC(IP_STAT_FRAGMENTED);
620 done:
621 rtcache_free(&iproute);
622 if (sp) {
623 #ifdef IPSEC
624 KEY_FREESP(&sp);
625 #endif
626 }
627 return error;
628 bad:
629 m_freem(m);
630 goto done;
631 }
632
633 int
634 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
635 {
636 struct ip *ip, *mhip;
637 struct mbuf *m0;
638 int len, hlen, off;
639 int mhlen, firstlen;
640 struct mbuf **mnext;
641 int sw_csum = m->m_pkthdr.csum_flags;
642 int fragments = 0;
643 int s;
644 int error = 0;
645
646 ip = mtod(m, struct ip *);
647 hlen = ip->ip_hl << 2;
648 if (ifp != NULL)
649 sw_csum &= ~ifp->if_csum_flags_tx;
650
651 len = (mtu - hlen) &~ 7;
652 if (len < 8) {
653 m_freem(m);
654 return (EMSGSIZE);
655 }
656
657 firstlen = len;
658 mnext = &m->m_nextpkt;
659
660 /*
661 * Loop through length of segment after first fragment,
662 * make new header and copy data of each part and link onto chain.
663 */
664 m0 = m;
665 mhlen = sizeof (struct ip);
666 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
667 MGETHDR(m, M_DONTWAIT, MT_HEADER);
668 if (m == 0) {
669 error = ENOBUFS;
670 IP_STATINC(IP_STAT_ODROPPED);
671 goto sendorfree;
672 }
673 MCLAIM(m, m0->m_owner);
674 *mnext = m;
675 mnext = &m->m_nextpkt;
676 m->m_data += max_linkhdr;
677 mhip = mtod(m, struct ip *);
678 *mhip = *ip;
679 /* we must inherit MCAST and BCAST flags */
680 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
681 if (hlen > sizeof (struct ip)) {
682 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
683 mhip->ip_hl = mhlen >> 2;
684 }
685 m->m_len = mhlen;
686 mhip->ip_off = ((off - hlen) >> 3) +
687 (ntohs(ip->ip_off) & ~IP_MF);
688 if (ip->ip_off & htons(IP_MF))
689 mhip->ip_off |= IP_MF;
690 if (off + len >= ntohs(ip->ip_len))
691 len = ntohs(ip->ip_len) - off;
692 else
693 mhip->ip_off |= IP_MF;
694 HTONS(mhip->ip_off);
695 mhip->ip_len = htons((u_int16_t)(len + mhlen));
696 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
697 if (m->m_next == 0) {
698 error = ENOBUFS; /* ??? */
699 IP_STATINC(IP_STAT_ODROPPED);
700 goto sendorfree;
701 }
702 m->m_pkthdr.len = mhlen + len;
703 m->m_pkthdr.rcvif = NULL;
704 mhip->ip_sum = 0;
705 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
706 if (sw_csum & M_CSUM_IPv4) {
707 mhip->ip_sum = in_cksum(m, mhlen);
708 } else {
709 /*
710 * checksum is hw-offloaded or not necessary.
711 */
712 m->m_pkthdr.csum_flags |=
713 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
714 m->m_pkthdr.csum_data |= mhlen << 16;
715 KASSERT(!(ifp != NULL &&
716 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
717 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
718 }
719 IP_STATINC(IP_STAT_OFRAGMENTS);
720 fragments++;
721 }
722 /*
723 * Update first fragment by trimming what's been copied out
724 * and updating header, then send each fragment (in order).
725 */
726 m = m0;
727 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
728 m->m_pkthdr.len = hlen + firstlen;
729 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
730 ip->ip_off |= htons(IP_MF);
731 ip->ip_sum = 0;
732 if (sw_csum & M_CSUM_IPv4) {
733 ip->ip_sum = in_cksum(m, hlen);
734 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
735 } else {
736 /*
737 * checksum is hw-offloaded or not necessary.
738 */
739 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
740 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
741 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
742 sizeof(struct ip));
743 }
744 sendorfree:
745 /*
746 * If there is no room for all the fragments, don't queue
747 * any of them.
748 */
749 if (ifp != NULL) {
750 s = splnet();
751 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
752 error == 0) {
753 error = ENOBUFS;
754 IP_STATINC(IP_STAT_ODROPPED);
755 IFQ_INC_DROPS(&ifp->if_snd);
756 }
757 splx(s);
758 }
759 if (error) {
760 for (m = m0; m; m = m0) {
761 m0 = m->m_nextpkt;
762 m->m_nextpkt = NULL;
763 m_freem(m);
764 }
765 }
766 return (error);
767 }
768
769 /*
770 * Process a delayed payload checksum calculation.
771 */
772 void
773 in_delayed_cksum(struct mbuf *m)
774 {
775 struct ip *ip;
776 u_int16_t csum, offset;
777
778 ip = mtod(m, struct ip *);
779 offset = ip->ip_hl << 2;
780 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
781 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
782 csum = 0xffff;
783
784 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
785
786 if ((offset + sizeof(u_int16_t)) > m->m_len) {
787 /* This happen when ip options were inserted
788 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
789 m->m_len, offset, ip->ip_p);
790 */
791 m_copyback(m, offset, sizeof(csum), (void *) &csum);
792 } else
793 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
794 }
795
796 /*
797 * Determine the maximum length of the options to be inserted;
798 * we would far rather allocate too much space rather than too little.
799 */
800
801 u_int
802 ip_optlen(inpcb_t *inp)
803 {
804 struct mbuf *m = inpcb_get_options(inp);
805
806 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
807 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
808 }
809 return 0;
810 }
811
812 /*
813 * Insert IP options into preformed packet.
814 * Adjust IP destination as required for IP source routing,
815 * as indicated by a non-zero in_addr at the start of the options.
816 */
817 static struct mbuf *
818 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
819 {
820 struct ipoption *p = mtod(opt, struct ipoption *);
821 struct mbuf *n;
822 struct ip *ip = mtod(m, struct ip *);
823 unsigned optlen;
824
825 optlen = opt->m_len - sizeof(p->ipopt_dst);
826 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
827 return (m); /* XXX should fail */
828 if (!in_nullhost(p->ipopt_dst))
829 ip->ip_dst = p->ipopt_dst;
830 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
831 MGETHDR(n, M_DONTWAIT, MT_HEADER);
832 if (n == 0)
833 return (m);
834 MCLAIM(n, m->m_owner);
835 M_MOVE_PKTHDR(n, m);
836 m->m_len -= sizeof(struct ip);
837 m->m_data += sizeof(struct ip);
838 n->m_next = m;
839 m = n;
840 m->m_len = optlen + sizeof(struct ip);
841 m->m_data += max_linkhdr;
842 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
843 } else {
844 m->m_data -= optlen;
845 m->m_len += optlen;
846 memmove(mtod(m, void *), ip, sizeof(struct ip));
847 }
848 m->m_pkthdr.len += optlen;
849 ip = mtod(m, struct ip *);
850 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
851 *phlen = sizeof(struct ip) + optlen;
852 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
853 return (m);
854 }
855
856 /*
857 * Copy options from ip to jp,
858 * omitting those not copied during fragmentation.
859 */
860 int
861 ip_optcopy(struct ip *ip, struct ip *jp)
862 {
863 u_char *cp, *dp;
864 int opt, optlen, cnt;
865
866 cp = (u_char *)(ip + 1);
867 dp = (u_char *)(jp + 1);
868 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
869 for (; cnt > 0; cnt -= optlen, cp += optlen) {
870 opt = cp[0];
871 if (opt == IPOPT_EOL)
872 break;
873 if (opt == IPOPT_NOP) {
874 /* Preserve for IP mcast tunnel's LSRR alignment. */
875 *dp++ = IPOPT_NOP;
876 optlen = 1;
877 continue;
878 }
879
880 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
881 optlen = cp[IPOPT_OLEN];
882 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
883
884 /* Invalid lengths should have been caught by ip_dooptions. */
885 if (optlen > cnt)
886 optlen = cnt;
887 if (IPOPT_COPIED(opt)) {
888 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
889 dp += optlen;
890 }
891 }
892 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
893 *dp++ = IPOPT_EOL;
894 return (optlen);
895 }
896
897 /*
898 * IP socket option processing.
899 */
900 int
901 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
902 {
903 inpcb_t *inp = sotoinpcb(so);
904 struct ip *ip = in_getiphdr(inp);
905 int inpflags = inpcb_get_flags(inp);
906 int optval = 0, error = 0;
907
908 if (sopt->sopt_level != IPPROTO_IP) {
909 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
910 return 0;
911 return ENOPROTOOPT;
912 }
913
914 switch (op) {
915 case PRCO_SETOPT:
916 switch (sopt->sopt_name) {
917 case IP_OPTIONS:
918 #ifdef notyet
919 case IP_RETOPTS:
920 #endif
921 error = ip_pcbopts(inp, sopt);
922 break;
923
924 case IP_TOS:
925 case IP_TTL:
926 case IP_MINTTL:
927 case IP_PKTINFO:
928 case IP_RECVOPTS:
929 case IP_RECVRETOPTS:
930 case IP_RECVDSTADDR:
931 case IP_RECVIF:
932 case IP_RECVPKTINFO:
933 case IP_RECVTTL:
934 error = sockopt_getint(sopt, &optval);
935 if (error)
936 break;
937
938 switch (sopt->sopt_name) {
939 case IP_TOS:
940 ip->ip_tos = optval;
941 break;
942
943 case IP_TTL:
944 ip->ip_ttl = optval;
945 break;
946
947 case IP_MINTTL:
948 if (optval > 0 && optval <= MAXTTL)
949 inpcb_set_minttl(inp, optval);
950 else
951 error = EINVAL;
952 break;
953 #define OPTSET(bit) \
954 if (optval) \
955 inpflags |= bit; \
956 else \
957 inpflags &= ~bit;
958
959 case IP_PKTINFO:
960 OPTSET(INP_PKTINFO);
961 break;
962
963 case IP_RECVOPTS:
964 OPTSET(INP_RECVOPTS);
965 break;
966
967 case IP_RECVPKTINFO:
968 OPTSET(INP_RECVPKTINFO);
969 break;
970
971 case IP_RECVRETOPTS:
972 OPTSET(INP_RECVRETOPTS);
973 break;
974
975 case IP_RECVDSTADDR:
976 OPTSET(INP_RECVDSTADDR);
977 break;
978
979 case IP_RECVIF:
980 OPTSET(INP_RECVIF);
981 break;
982
983 case IP_RECVTTL:
984 OPTSET(INP_RECVTTL);
985 break;
986 }
987 break;
988 #undef OPTSET
989
990 case IP_MULTICAST_IF:
991 case IP_MULTICAST_TTL:
992 case IP_MULTICAST_LOOP:
993 case IP_ADD_MEMBERSHIP:
994 case IP_DROP_MEMBERSHIP:
995 error = ip_setmoptions(inp, sopt);
996 break;
997
998 case IP_PORTRANGE:
999 error = sockopt_getint(sopt, &optval);
1000 if (error)
1001 break;
1002
1003 switch (optval) {
1004 case IP_PORTRANGE_DEFAULT:
1005 case IP_PORTRANGE_HIGH:
1006 inpflags &= ~(INP_LOWPORT);
1007 break;
1008
1009 case IP_PORTRANGE_LOW:
1010 inpflags |= INP_LOWPORT;
1011 break;
1012
1013 default:
1014 error = EINVAL;
1015 break;
1016 }
1017 break;
1018
1019 case IP_PORTALGO:
1020 error = sockopt_getint(sopt, &optval);
1021 if (error)
1022 break;
1023
1024 error = portalgo_algo_index_select(
1025 (struct inpcb_hdr *)inp, optval);
1026 break;
1027
1028 #if defined(IPSEC)
1029 case IP_IPSEC_POLICY:
1030 error = ipsec4_set_policy(inp, sopt->sopt_name,
1031 sopt->sopt_data, sopt->sopt_size, curlwp->l_cred);
1032 break;
1033 #endif /*IPSEC*/
1034
1035 default:
1036 error = ENOPROTOOPT;
1037 break;
1038 }
1039 break;
1040
1041 case PRCO_GETOPT:
1042 switch (sopt->sopt_name) {
1043 case IP_OPTIONS:
1044 case IP_RETOPTS: {
1045 struct mbuf *mopts = inpcb_get_options(inp);
1046
1047 if (mopts) {
1048 struct mbuf *m;
1049
1050 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1051 if (m == NULL) {
1052 error = ENOBUFS;
1053 break;
1054 }
1055 error = sockopt_setmbuf(sopt, m);
1056 }
1057 break;
1058 }
1059 case IP_PKTINFO:
1060 case IP_TOS:
1061 case IP_TTL:
1062 case IP_MINTTL:
1063 case IP_RECVOPTS:
1064 case IP_RECVRETOPTS:
1065 case IP_RECVDSTADDR:
1066 case IP_RECVIF:
1067 case IP_RECVPKTINFO:
1068 case IP_RECVTTL:
1069 case IP_ERRORMTU:
1070 switch (sopt->sopt_name) {
1071 case IP_TOS:
1072 optval = ip->ip_tos;
1073 break;
1074
1075 case IP_TTL:
1076 optval = ip->ip_ttl;
1077 break;
1078
1079 case IP_MINTTL:
1080 optval = inpcb_get_minttl(inp);
1081 break;
1082
1083 case IP_ERRORMTU:
1084 optval = inpcb_get_errormtu(inp);
1085 break;
1086
1087 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1088
1089 case IP_PKTINFO:
1090 optval = OPTBIT(INP_PKTINFO);
1091 break;
1092
1093 case IP_RECVOPTS:
1094 optval = OPTBIT(INP_RECVOPTS);
1095 break;
1096
1097 case IP_RECVPKTINFO:
1098 optval = OPTBIT(INP_RECVPKTINFO);
1099 break;
1100
1101 case IP_RECVRETOPTS:
1102 optval = OPTBIT(INP_RECVRETOPTS);
1103 break;
1104
1105 case IP_RECVDSTADDR:
1106 optval = OPTBIT(INP_RECVDSTADDR);
1107 break;
1108
1109 case IP_RECVIF:
1110 optval = OPTBIT(INP_RECVIF);
1111 break;
1112
1113 case IP_RECVTTL:
1114 optval = OPTBIT(INP_RECVTTL);
1115 break;
1116 }
1117 error = sockopt_setint(sopt, optval);
1118 break;
1119
1120 #if 0 /* defined(IPSEC) */
1121 case IP_IPSEC_POLICY:
1122 {
1123 struct mbuf *m = NULL;
1124
1125 /* XXX this will return EINVAL as sopt is empty */
1126 error = ipsec4_get_policy(inp, sopt->sopt_data,
1127 sopt->sopt_size, &m);
1128 if (error == 0)
1129 error = sockopt_setmbuf(sopt, m);
1130 break;
1131 }
1132 #endif /*IPSEC*/
1133
1134 case IP_MULTICAST_IF:
1135 case IP_MULTICAST_TTL:
1136 case IP_MULTICAST_LOOP:
1137 case IP_ADD_MEMBERSHIP:
1138 case IP_DROP_MEMBERSHIP:
1139 error = ip_getmoptions(inp, sopt);
1140 break;
1141
1142 case IP_PORTRANGE:
1143 if (inpflags & INP_LOWPORT)
1144 optval = IP_PORTRANGE_LOW;
1145 else
1146 optval = IP_PORTRANGE_DEFAULT;
1147 error = sockopt_setint(sopt, optval);
1148 break;
1149
1150 case IP_PORTALGO:
1151 optval = inpcb_get_portalgo(inp);
1152 error = sockopt_setint(sopt, optval);
1153 break;
1154
1155 default:
1156 error = ENOPROTOOPT;
1157 break;
1158 }
1159 break;
1160 }
1161
1162 if (!error) {
1163 inpcb_set_flags(inp, inpflags);
1164 }
1165 return error;
1166 }
1167
1168 /*
1169 * Set up IP options in pcb for insertion in output packets.
1170 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1171 * with destination address if source routed.
1172 */
1173 static int
1174 ip_pcbopts(inpcb_t *inp, const struct sockopt *sopt)
1175 {
1176 struct mbuf *m;
1177 const u_char *cp;
1178 u_char *dp;
1179 int cnt;
1180
1181 /* Turn off any old options. */
1182 inpcb_set_options(inp, NULL);
1183 if ((cnt = sopt->sopt_size) == 0) {
1184 /* Only turning off any previous options. */
1185 return 0;
1186 }
1187 cp = sopt->sopt_data;
1188
1189 #ifndef __vax__
1190 if (cnt % sizeof(int32_t))
1191 return (EINVAL);
1192 #endif
1193
1194 m = m_get(M_DONTWAIT, MT_SOOPTS);
1195 if (m == NULL)
1196 return (ENOBUFS);
1197
1198 dp = mtod(m, u_char *);
1199 memset(dp, 0, sizeof(struct in_addr));
1200 dp += sizeof(struct in_addr);
1201 m->m_len = sizeof(struct in_addr);
1202
1203 /*
1204 * IP option list according to RFC791. Each option is of the form
1205 *
1206 * [optval] [olen] [(olen - 2) data bytes]
1207 *
1208 * We validate the list and copy options to an mbuf for prepending
1209 * to data packets. The IP first-hop destination address will be
1210 * stored before actual options and is zero if unset.
1211 */
1212 while (cnt > 0) {
1213 uint8_t optval, olen, offset;
1214
1215 optval = cp[IPOPT_OPTVAL];
1216
1217 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1218 olen = 1;
1219 } else {
1220 if (cnt < IPOPT_OLEN + 1)
1221 goto bad;
1222
1223 olen = cp[IPOPT_OLEN];
1224 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1225 goto bad;
1226 }
1227
1228 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1229 /*
1230 * user process specifies route as:
1231 * ->A->B->C->D
1232 * D must be our final destination (but we can't
1233 * check that since we may not have connected yet).
1234 * A is first hop destination, which doesn't appear in
1235 * actual IP option, but is stored before the options.
1236 */
1237 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1238 goto bad;
1239
1240 offset = cp[IPOPT_OFFSET];
1241 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1242 sizeof(struct in_addr));
1243
1244 cp += sizeof(struct in_addr);
1245 cnt -= sizeof(struct in_addr);
1246 olen -= sizeof(struct in_addr);
1247
1248 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1249 goto bad;
1250
1251 memcpy(dp, cp, olen);
1252 dp[IPOPT_OPTVAL] = optval;
1253 dp[IPOPT_OLEN] = olen;
1254 dp[IPOPT_OFFSET] = offset;
1255 break;
1256 } else {
1257 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1258 goto bad;
1259
1260 memcpy(dp, cp, olen);
1261 break;
1262 }
1263
1264 dp += olen;
1265 m->m_len += olen;
1266
1267 if (optval == IPOPT_EOL)
1268 break;
1269
1270 cp += olen;
1271 cnt -= olen;
1272 }
1273 inpcb_set_options(inp, m);
1274 return 0;
1275 bad:
1276 (void)m_free(m);
1277 return (EINVAL);
1278 }
1279
1280 /*
1281 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1282 */
1283 static struct ifnet *
1284 ip_multicast_if(struct in_addr *a, int *ifindexp)
1285 {
1286 int ifindex;
1287 struct ifnet *ifp = NULL;
1288 struct in_ifaddr *ia;
1289
1290 if (ifindexp)
1291 *ifindexp = 0;
1292 if (ntohl(a->s_addr) >> 24 == 0) {
1293 ifindex = ntohl(a->s_addr) & 0xffffff;
1294 ifp = if_byindex(ifindex);
1295 if (!ifp)
1296 return NULL;
1297 if (ifindexp)
1298 *ifindexp = ifindex;
1299 } else {
1300 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1301 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1302 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1303 ifp = ia->ia_ifp;
1304 break;
1305 }
1306 }
1307 }
1308 return ifp;
1309 }
1310
1311 static int
1312 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1313 {
1314 u_int tval;
1315 u_char cval;
1316 int error;
1317
1318 if (sopt == NULL)
1319 return EINVAL;
1320
1321 switch (sopt->sopt_size) {
1322 case sizeof(u_char):
1323 error = sockopt_get(sopt, &cval, sizeof(u_char));
1324 tval = cval;
1325 break;
1326
1327 case sizeof(u_int):
1328 error = sockopt_get(sopt, &tval, sizeof(u_int));
1329 break;
1330
1331 default:
1332 error = EINVAL;
1333 }
1334
1335 if (error)
1336 return error;
1337
1338 if (tval > maxval)
1339 return EINVAL;
1340
1341 *val = tval;
1342 return 0;
1343 }
1344
1345 /*
1346 * Set the IP multicast options in response to user setsockopt().
1347 */
1348 static int
1349 ip_setmoptions(inpcb_t *inp, const struct sockopt *sopt)
1350 {
1351 struct ip_moptions *imo = inpcb_get_moptions(inp);
1352 struct in_addr addr;
1353 struct ip_mreq lmreq, *mreq;
1354 struct ifnet *ifp;
1355 int i, ifindex, error = 0;
1356
1357 if (!imo) {
1358 /*
1359 * No multicast option buffer attached to the pcb;
1360 * allocate one and initialize to default values.
1361 */
1362 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1363 if (imo == NULL)
1364 return ENOBUFS;
1365
1366 imo->imo_multicast_ifp = NULL;
1367 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1368 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1369 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1370 imo->imo_num_memberships = 0;
1371 inpcb_set_moptions(inp, imo);
1372 }
1373
1374 switch (sopt->sopt_name) {
1375 case IP_MULTICAST_IF:
1376 /*
1377 * Select the interface for outgoing multicast packets.
1378 */
1379 error = sockopt_get(sopt, &addr, sizeof(addr));
1380 if (error)
1381 break;
1382
1383 /*
1384 * INADDR_ANY is used to remove a previous selection.
1385 * When no interface is selected, a default one is
1386 * chosen every time a multicast packet is sent.
1387 */
1388 if (in_nullhost(addr)) {
1389 imo->imo_multicast_ifp = NULL;
1390 break;
1391 }
1392 /*
1393 * The selected interface is identified by its local
1394 * IP address. Find the interface and confirm that
1395 * it supports multicasting.
1396 */
1397 ifp = ip_multicast_if(&addr, &ifindex);
1398 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1399 error = EADDRNOTAVAIL;
1400 break;
1401 }
1402 imo->imo_multicast_ifp = ifp;
1403 if (ifindex)
1404 imo->imo_multicast_addr = addr;
1405 else
1406 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1407 break;
1408
1409 case IP_MULTICAST_TTL:
1410 /*
1411 * Set the IP time-to-live for outgoing multicast packets.
1412 */
1413 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1414 break;
1415
1416 case IP_MULTICAST_LOOP:
1417 /*
1418 * Set the loopback flag for outgoing multicast packets.
1419 * Must be zero or one.
1420 */
1421 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1422 break;
1423
1424 case IP_ADD_MEMBERSHIP:
1425 /*
1426 * Add a multicast group membership.
1427 * Group must be a valid IP multicast address.
1428 */
1429 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1430 if (error)
1431 break;
1432
1433 mreq = &lmreq;
1434
1435 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1436 error = EINVAL;
1437 break;
1438 }
1439 /*
1440 * If no interface address was provided, use the interface of
1441 * the route to the given multicast address.
1442 */
1443 if (in_nullhost(mreq->imr_interface)) {
1444 struct rtentry *rt;
1445 union {
1446 struct sockaddr dst;
1447 struct sockaddr_in dst4;
1448 } u;
1449 struct route ro;
1450
1451 memset(&ro, 0, sizeof(ro));
1452
1453 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1454 rtcache_setdst(&ro, &u.dst);
1455 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1456 : NULL;
1457 rtcache_free(&ro);
1458 } else {
1459 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1460 }
1461 /*
1462 * See if we found an interface, and confirm that it
1463 * supports multicast.
1464 */
1465 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1466 error = EADDRNOTAVAIL;
1467 break;
1468 }
1469 /*
1470 * See if the membership already exists or if all the
1471 * membership slots are full.
1472 */
1473 for (i = 0; i < imo->imo_num_memberships; ++i) {
1474 if (imo->imo_membership[i]->inm_ifp == ifp &&
1475 in_hosteq(imo->imo_membership[i]->inm_addr,
1476 mreq->imr_multiaddr))
1477 break;
1478 }
1479 if (i < imo->imo_num_memberships) {
1480 error = EADDRINUSE;
1481 break;
1482 }
1483 if (i == IP_MAX_MEMBERSHIPS) {
1484 error = ETOOMANYREFS;
1485 break;
1486 }
1487 /*
1488 * Everything looks good; add a new record to the multicast
1489 * address list for the given interface.
1490 */
1491 if ((imo->imo_membership[i] =
1492 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1493 error = ENOBUFS;
1494 break;
1495 }
1496 ++imo->imo_num_memberships;
1497 break;
1498
1499 case IP_DROP_MEMBERSHIP:
1500 /*
1501 * Drop a multicast group membership.
1502 * Group must be a valid IP multicast address.
1503 */
1504 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1505 if (error)
1506 break;
1507
1508 mreq = &lmreq;
1509
1510 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1511 error = EINVAL;
1512 break;
1513 }
1514 /*
1515 * If an interface address was specified, get a pointer
1516 * to its ifnet structure.
1517 */
1518 if (in_nullhost(mreq->imr_interface))
1519 ifp = NULL;
1520 else {
1521 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1522 if (ifp == NULL) {
1523 error = EADDRNOTAVAIL;
1524 break;
1525 }
1526 }
1527 /*
1528 * Find the membership in the membership array.
1529 */
1530 for (i = 0; i < imo->imo_num_memberships; ++i) {
1531 if ((ifp == NULL ||
1532 imo->imo_membership[i]->inm_ifp == ifp) &&
1533 in_hosteq(imo->imo_membership[i]->inm_addr,
1534 mreq->imr_multiaddr))
1535 break;
1536 }
1537 if (i == imo->imo_num_memberships) {
1538 error = EADDRNOTAVAIL;
1539 break;
1540 }
1541 /*
1542 * Give up the multicast address record to which the
1543 * membership points.
1544 */
1545 in_delmulti(imo->imo_membership[i]);
1546 /*
1547 * Remove the gap in the membership array.
1548 */
1549 for (++i; i < imo->imo_num_memberships; ++i)
1550 imo->imo_membership[i-1] = imo->imo_membership[i];
1551 --imo->imo_num_memberships;
1552 break;
1553
1554 default:
1555 error = EOPNOTSUPP;
1556 break;
1557 }
1558
1559 /*
1560 * If all options have default values, no need to keep the mbuf.
1561 */
1562 if (imo->imo_multicast_ifp == NULL &&
1563 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1564 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1565 imo->imo_num_memberships == 0) {
1566 kmem_free(imo, sizeof(*imo));
1567 inpcb_set_moptions(inp, NULL);
1568 }
1569
1570 return error;
1571 }
1572
1573 /*
1574 * Return the IP multicast options in response to user getsockopt().
1575 */
1576 static int
1577 ip_getmoptions(inpcb_t *inp, struct sockopt *sopt)
1578 {
1579 struct ip_moptions *imo = inpcb_get_moptions(inp);
1580 struct in_addr addr;
1581 struct in_ifaddr *ia;
1582 uint8_t optval;
1583 int error = 0;
1584
1585 switch (sopt->sopt_name) {
1586 case IP_MULTICAST_IF:
1587 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1588 addr = zeroin_addr;
1589 else if (imo->imo_multicast_addr.s_addr) {
1590 /* return the value user has set */
1591 addr = imo->imo_multicast_addr;
1592 } else {
1593 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1594 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1595 }
1596 error = sockopt_set(sopt, &addr, sizeof(addr));
1597 break;
1598
1599 case IP_MULTICAST_TTL:
1600 optval = imo ? imo->imo_multicast_ttl
1601 : IP_DEFAULT_MULTICAST_TTL;
1602
1603 error = sockopt_set(sopt, &optval, sizeof(optval));
1604 break;
1605
1606 case IP_MULTICAST_LOOP:
1607 optval = imo ? imo->imo_multicast_loop
1608 : IP_DEFAULT_MULTICAST_LOOP;
1609
1610 error = sockopt_set(sopt, &optval, sizeof(optval));
1611 break;
1612
1613 default:
1614 error = EOPNOTSUPP;
1615 }
1616
1617 return error;
1618 }
1619
1620 /*
1621 * Discard the IP multicast options.
1622 */
1623 void
1624 ip_freemoptions(struct ip_moptions *imo)
1625 {
1626 int i;
1627
1628 if (imo != NULL) {
1629 for (i = 0; i < imo->imo_num_memberships; ++i)
1630 in_delmulti(imo->imo_membership[i]);
1631 kmem_free(imo, sizeof(*imo));
1632 }
1633 }
1634
1635 /*
1636 * Routine called from ip_output() to loop back a copy of an IP multicast
1637 * packet to the input queue of a specified interface. Note that this
1638 * calls the output routine of the loopback "driver", but with an interface
1639 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1640 */
1641 static void
1642 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1643 {
1644 struct ip *ip;
1645 struct mbuf *copym;
1646
1647 copym = m_copypacket(m, M_DONTWAIT);
1648 if (copym != NULL
1649 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1650 copym = m_pullup(copym, sizeof(struct ip));
1651 if (copym == NULL)
1652 return;
1653 /*
1654 * We don't bother to fragment if the IP length is greater
1655 * than the interface's MTU. Can this possibly matter?
1656 */
1657 ip = mtod(copym, struct ip *);
1658
1659 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1660 in_delayed_cksum(copym);
1661 copym->m_pkthdr.csum_flags &=
1662 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1663 }
1664
1665 ip->ip_sum = 0;
1666 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1667 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1668 }
1669