ip_output.c revision 1.225 1 /* $NetBSD: ip_output.c,v 1.225 2014/05/17 21:26:20 rmind Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.225 2014/05/17 21:26:20 rmind Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_mrouting.h"
99
100 #include <sys/param.h>
101 #include <sys/malloc.h>
102 #include <sys/kmem.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127 #include <netinet/portalgo.h>
128 #include <netinet/udp.h>
129
130 #ifdef MROUTING
131 #include <netinet/ip_mroute.h>
132 #endif
133
134 #include <netipsec/ipsec.h>
135 #include <netipsec/key.h>
136
137 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
138 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
139 static void ip_mloopback(struct ifnet *, struct mbuf *,
140 const struct sockaddr_in *);
141
142 extern pfil_head_t *inet_pfil_hook; /* XXX */
143
144 int ip_do_loopback_cksum = 0;
145
146 /*
147 * IP output. The packet in mbuf chain m contains a skeletal IP
148 * header (with len, off, ttl, proto, tos, src, dst).
149 * The mbuf chain containing the packet will be freed.
150 * The mbuf opt, if present, will not be freed.
151 */
152 int
153 ip_output(struct mbuf *m0, ...)
154 {
155 struct rtentry *rt;
156 struct ip *ip;
157 struct ifnet *ifp;
158 struct mbuf *m = m0;
159 int hlen = sizeof (struct ip);
160 int len, error = 0;
161 struct route iproute;
162 const struct sockaddr_in *dst;
163 struct in_ifaddr *ia;
164 struct ifaddr *xifa;
165 struct mbuf *opt;
166 struct route *ro;
167 int flags, sw_csum, *mtu_p;
168 u_long mtu;
169 struct ip_moptions *imo;
170 struct socket *so;
171 va_list ap;
172 struct secpolicy *sp = NULL;
173 bool natt_frag = false;
174 bool __unused done = false;
175 union {
176 struct sockaddr dst;
177 struct sockaddr_in dst4;
178 } u;
179 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
180 * to the nexthop
181 */
182
183 len = 0;
184 va_start(ap, m0);
185 opt = va_arg(ap, struct mbuf *);
186 ro = va_arg(ap, struct route *);
187 flags = va_arg(ap, int);
188 imo = va_arg(ap, struct ip_moptions *);
189 so = va_arg(ap, struct socket *);
190 if (flags & IP_RETURNMTU)
191 mtu_p = va_arg(ap, int *);
192 else
193 mtu_p = NULL;
194 va_end(ap);
195
196 MCLAIM(m, &ip_tx_mowner);
197
198 #ifdef DIAGNOSTIC
199 if ((m->m_flags & M_PKTHDR) == 0)
200 panic("ip_output: no HDR");
201
202 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
203 panic("ip_output: IPv6 checksum offload flags: %d",
204 m->m_pkthdr.csum_flags);
205 }
206
207 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
208 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
209 panic("ip_output: conflicting checksum offload flags: %d",
210 m->m_pkthdr.csum_flags);
211 }
212 #endif
213 if (opt) {
214 m = ip_insertoptions(m, opt, &len);
215 if (len >= sizeof(struct ip))
216 hlen = len;
217 }
218 ip = mtod(m, struct ip *);
219 /*
220 * Fill in IP header.
221 */
222 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
223 ip->ip_v = IPVERSION;
224 ip->ip_off = htons(0);
225 /* ip->ip_id filled in after we find out source ia */
226 ip->ip_hl = hlen >> 2;
227 IP_STATINC(IP_STAT_LOCALOUT);
228 } else {
229 hlen = ip->ip_hl << 2;
230 }
231 /*
232 * Route packet.
233 */
234 memset(&iproute, 0, sizeof(iproute));
235 if (ro == NULL)
236 ro = &iproute;
237 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
238 dst = satocsin(rtcache_getdst(ro));
239 /*
240 * If there is a cached route,
241 * check that it is to the same destination
242 * and is still up. If not, free it and try again.
243 * The address family should also be checked in case of sharing the
244 * cache with IPv6.
245 */
246 if (dst == NULL)
247 ;
248 else if (dst->sin_family != AF_INET ||
249 !in_hosteq(dst->sin_addr, ip->ip_dst))
250 rtcache_free(ro);
251
252 if ((rt = rtcache_validate(ro)) == NULL &&
253 (rt = rtcache_update(ro, 1)) == NULL) {
254 dst = &u.dst4;
255 rtcache_setdst(ro, &u.dst);
256 }
257 /*
258 * If routing to interface only,
259 * short circuit routing lookup.
260 */
261 if (flags & IP_ROUTETOIF) {
262 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
263 IP_STATINC(IP_STAT_NOROUTE);
264 error = ENETUNREACH;
265 goto bad;
266 }
267 ifp = ia->ia_ifp;
268 mtu = ifp->if_mtu;
269 ip->ip_ttl = 1;
270 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
271 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
272 imo != NULL && imo->imo_multicast_ifp != NULL) {
273 ifp = imo->imo_multicast_ifp;
274 mtu = ifp->if_mtu;
275 IFP_TO_IA(ifp, ia);
276 } else {
277 if (rt == NULL)
278 rt = rtcache_init(ro);
279 if (rt == NULL) {
280 IP_STATINC(IP_STAT_NOROUTE);
281 error = EHOSTUNREACH;
282 goto bad;
283 }
284 ia = ifatoia(rt->rt_ifa);
285 ifp = rt->rt_ifp;
286 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
287 mtu = ifp->if_mtu;
288 rt->rt_use++;
289 if (rt->rt_flags & RTF_GATEWAY)
290 dst = satosin(rt->rt_gateway);
291 }
292 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
293 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
294 struct in_multi *inm;
295
296 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
297 M_BCAST : M_MCAST;
298 /*
299 * See if the caller provided any multicast options
300 */
301 if (imo != NULL)
302 ip->ip_ttl = imo->imo_multicast_ttl;
303 else
304 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
305
306 /*
307 * if we don't know the outgoing ifp yet, we can't generate
308 * output
309 */
310 if (!ifp) {
311 IP_STATINC(IP_STAT_NOROUTE);
312 error = ENETUNREACH;
313 goto bad;
314 }
315
316 /*
317 * If the packet is multicast or broadcast, confirm that
318 * the outgoing interface can transmit it.
319 */
320 if (((m->m_flags & M_MCAST) &&
321 (ifp->if_flags & IFF_MULTICAST) == 0) ||
322 ((m->m_flags & M_BCAST) &&
323 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /*
329 * If source address not specified yet, use an address
330 * of outgoing interface.
331 */
332 if (in_nullhost(ip->ip_src)) {
333 struct in_ifaddr *xia;
334
335 IFP_TO_IA(ifp, xia);
336 if (!xia) {
337 error = EADDRNOTAVAIL;
338 goto bad;
339 }
340 xifa = &xia->ia_ifa;
341 if (xifa->ifa_getifa != NULL) {
342 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
343 }
344 ip->ip_src = xia->ia_addr.sin_addr;
345 }
346
347 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
348 if (inm != NULL &&
349 (imo == NULL || imo->imo_multicast_loop)) {
350 /*
351 * If we belong to the destination multicast group
352 * on the outgoing interface, and the caller did not
353 * forbid loopback, loop back a copy.
354 */
355 ip_mloopback(ifp, m, &u.dst4);
356 }
357 #ifdef MROUTING
358 else {
359 /*
360 * If we are acting as a multicast router, perform
361 * multicast forwarding as if the packet had just
362 * arrived on the interface to which we are about
363 * to send. The multicast forwarding function
364 * recursively calls this function, using the
365 * IP_FORWARDING flag to prevent infinite recursion.
366 *
367 * Multicasts that are looped back by ip_mloopback(),
368 * above, will be forwarded by the ip_input() routine,
369 * if necessary.
370 */
371 extern struct socket *ip_mrouter;
372
373 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
374 if (ip_mforward(m, ifp) != 0) {
375 m_freem(m);
376 goto done;
377 }
378 }
379 }
380 #endif
381 /*
382 * Multicasts with a time-to-live of zero may be looped-
383 * back, above, but must not be transmitted on a network.
384 * Also, multicasts addressed to the loopback interface
385 * are not sent -- the above call to ip_mloopback() will
386 * loop back a copy if this host actually belongs to the
387 * destination group on the loopback interface.
388 */
389 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
390 m_freem(m);
391 goto done;
392 }
393
394 goto sendit;
395 }
396 /*
397 * If source address not specified yet, use address
398 * of outgoing interface.
399 */
400 if (in_nullhost(ip->ip_src)) {
401 xifa = &ia->ia_ifa;
402 if (xifa->ifa_getifa != NULL)
403 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
404 ip->ip_src = ia->ia_addr.sin_addr;
405 }
406
407 /*
408 * packets with Class-D address as source are not valid per
409 * RFC 1112
410 */
411 if (IN_MULTICAST(ip->ip_src.s_addr)) {
412 IP_STATINC(IP_STAT_ODROPPED);
413 error = EADDRNOTAVAIL;
414 goto bad;
415 }
416
417 /*
418 * Look for broadcast address and
419 * and verify user is allowed to send
420 * such a packet.
421 */
422 if (in_broadcast(dst->sin_addr, ifp)) {
423 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
424 error = EADDRNOTAVAIL;
425 goto bad;
426 }
427 if ((flags & IP_ALLOWBROADCAST) == 0) {
428 error = EACCES;
429 goto bad;
430 }
431 /* don't allow broadcast messages to be fragmented */
432 if (ntohs(ip->ip_len) > ifp->if_mtu) {
433 error = EMSGSIZE;
434 goto bad;
435 }
436 m->m_flags |= M_BCAST;
437 } else
438 m->m_flags &= ~M_BCAST;
439
440 sendit:
441 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
442 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
443 ip->ip_id = 0;
444 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
445 ip->ip_id = ip_newid(ia);
446 } else {
447
448 /*
449 * TSO capable interfaces (typically?) increment
450 * ip_id for each segment.
451 * "allocate" enough ids here to increase the chance
452 * for them to be unique.
453 *
454 * note that the following calculation is not
455 * needed to be precise. wasting some ip_id is fine.
456 */
457
458 unsigned int segsz = m->m_pkthdr.segsz;
459 unsigned int datasz = ntohs(ip->ip_len) - hlen;
460 unsigned int num = howmany(datasz, segsz);
461
462 ip->ip_id = ip_newid_range(ia, num);
463 }
464 }
465 /*
466 * If we're doing Path MTU Discovery, we need to set DF unless
467 * the route's MTU is locked.
468 */
469 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
470 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
471 ip->ip_off |= htons(IP_DF);
472
473 #ifdef IPSEC
474 /* Perform IPsec processing, if any. */
475 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, &done);
476 if (error || done) {
477 goto done;
478 }
479 #endif
480
481 /*
482 * Run through list of hooks for output packets.
483 */
484 if ((error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
485 goto done;
486 if (m == NULL)
487 goto done;
488
489 ip = mtod(m, struct ip *);
490 hlen = ip->ip_hl << 2;
491
492 m->m_pkthdr.csum_data |= hlen << 16;
493
494 #if IFA_STATS
495 /*
496 * search for the source address structure to
497 * maintain output statistics.
498 */
499 INADDR_TO_IA(ip->ip_src, ia);
500 #endif
501
502 /* Maybe skip checksums on loopback interfaces. */
503 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
504 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
505 }
506 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
507 /*
508 * If small enough for mtu of path, or if using TCP segmentation
509 * offload, can just send directly.
510 */
511 if (ntohs(ip->ip_len) <= mtu ||
512 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
513 #if IFA_STATS
514 if (ia)
515 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
516 #endif
517 /*
518 * Always initialize the sum to 0! Some HW assisted
519 * checksumming requires this.
520 */
521 ip->ip_sum = 0;
522
523 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
524 /*
525 * Perform any checksums that the hardware can't do
526 * for us.
527 *
528 * XXX Does any hardware require the {th,uh}_sum
529 * XXX fields to be 0?
530 */
531 if (sw_csum & M_CSUM_IPv4) {
532 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
533 ip->ip_sum = in_cksum(m, hlen);
534 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
535 }
536 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
537 if (IN_NEED_CHECKSUM(ifp,
538 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
539 in_delayed_cksum(m);
540 }
541 m->m_pkthdr.csum_flags &=
542 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
543 }
544 }
545
546 if (__predict_true(
547 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
548 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
549 KERNEL_LOCK(1, NULL);
550 error =
551 (*ifp->if_output)(ifp, m,
552 (m->m_flags & M_MCAST) ?
553 sintocsa(rdst) : sintocsa(dst),
554 rt);
555 KERNEL_UNLOCK_ONE(NULL);
556 } else {
557 error =
558 ip_tso_output(ifp, m,
559 (m->m_flags & M_MCAST) ?
560 sintocsa(rdst) : sintocsa(dst),
561 rt);
562 }
563 goto done;
564 }
565
566 /*
567 * We can't use HW checksumming if we're about to
568 * to fragment the packet.
569 *
570 * XXX Some hardware can do this.
571 */
572 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
573 if (IN_NEED_CHECKSUM(ifp,
574 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
575 in_delayed_cksum(m);
576 }
577 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
578 }
579
580 /*
581 * Too large for interface; fragment if possible.
582 * Must be able to put at least 8 bytes per fragment.
583 */
584 if (ntohs(ip->ip_off) & IP_DF) {
585 if (flags & IP_RETURNMTU)
586 *mtu_p = mtu;
587 error = EMSGSIZE;
588 IP_STATINC(IP_STAT_CANTFRAG);
589 goto bad;
590 }
591
592 error = ip_fragment(m, ifp, mtu);
593 if (error) {
594 m = NULL;
595 goto bad;
596 }
597
598 for (; m; m = m0) {
599 m0 = m->m_nextpkt;
600 m->m_nextpkt = 0;
601 if (error == 0) {
602 #if IFA_STATS
603 if (ia)
604 ia->ia_ifa.ifa_data.ifad_outbytes +=
605 ntohs(ip->ip_len);
606 #endif
607 /*
608 * If we get there, the packet has not been handled by
609 * IPsec whereas it should have. Now that it has been
610 * fragmented, re-inject it in ip_output so that IPsec
611 * processing can occur.
612 */
613 if (natt_frag) {
614 error = ip_output(m, opt, ro,
615 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
616 imo, so, mtu_p);
617 } else {
618 KASSERT((m->m_pkthdr.csum_flags &
619 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
620 KERNEL_LOCK(1, NULL);
621 error = (*ifp->if_output)(ifp, m,
622 (m->m_flags & M_MCAST) ?
623 sintocsa(rdst) : sintocsa(dst),
624 rt);
625 KERNEL_UNLOCK_ONE(NULL);
626 }
627 } else
628 m_freem(m);
629 }
630
631 if (error == 0)
632 IP_STATINC(IP_STAT_FRAGMENTED);
633 done:
634 rtcache_free(&iproute);
635 if (sp) {
636 #ifdef IPSEC
637 KEY_FREESP(&sp);
638 #endif
639 }
640 return error;
641 bad:
642 m_freem(m);
643 goto done;
644 }
645
646 int
647 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
648 {
649 struct ip *ip, *mhip;
650 struct mbuf *m0;
651 int len, hlen, off;
652 int mhlen, firstlen;
653 struct mbuf **mnext;
654 int sw_csum = m->m_pkthdr.csum_flags;
655 int fragments = 0;
656 int s;
657 int error = 0;
658
659 ip = mtod(m, struct ip *);
660 hlen = ip->ip_hl << 2;
661 if (ifp != NULL)
662 sw_csum &= ~ifp->if_csum_flags_tx;
663
664 len = (mtu - hlen) &~ 7;
665 if (len < 8) {
666 m_freem(m);
667 return (EMSGSIZE);
668 }
669
670 firstlen = len;
671 mnext = &m->m_nextpkt;
672
673 /*
674 * Loop through length of segment after first fragment,
675 * make new header and copy data of each part and link onto chain.
676 */
677 m0 = m;
678 mhlen = sizeof (struct ip);
679 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
680 MGETHDR(m, M_DONTWAIT, MT_HEADER);
681 if (m == 0) {
682 error = ENOBUFS;
683 IP_STATINC(IP_STAT_ODROPPED);
684 goto sendorfree;
685 }
686 MCLAIM(m, m0->m_owner);
687 *mnext = m;
688 mnext = &m->m_nextpkt;
689 m->m_data += max_linkhdr;
690 mhip = mtod(m, struct ip *);
691 *mhip = *ip;
692 /* we must inherit MCAST and BCAST flags */
693 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
694 if (hlen > sizeof (struct ip)) {
695 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
696 mhip->ip_hl = mhlen >> 2;
697 }
698 m->m_len = mhlen;
699 mhip->ip_off = ((off - hlen) >> 3) +
700 (ntohs(ip->ip_off) & ~IP_MF);
701 if (ip->ip_off & htons(IP_MF))
702 mhip->ip_off |= IP_MF;
703 if (off + len >= ntohs(ip->ip_len))
704 len = ntohs(ip->ip_len) - off;
705 else
706 mhip->ip_off |= IP_MF;
707 HTONS(mhip->ip_off);
708 mhip->ip_len = htons((u_int16_t)(len + mhlen));
709 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
710 if (m->m_next == 0) {
711 error = ENOBUFS; /* ??? */
712 IP_STATINC(IP_STAT_ODROPPED);
713 goto sendorfree;
714 }
715 m->m_pkthdr.len = mhlen + len;
716 m->m_pkthdr.rcvif = NULL;
717 mhip->ip_sum = 0;
718 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
719 if (sw_csum & M_CSUM_IPv4) {
720 mhip->ip_sum = in_cksum(m, mhlen);
721 } else {
722 /*
723 * checksum is hw-offloaded or not necessary.
724 */
725 m->m_pkthdr.csum_flags |=
726 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
727 m->m_pkthdr.csum_data |= mhlen << 16;
728 KASSERT(!(ifp != NULL &&
729 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
730 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
731 }
732 IP_STATINC(IP_STAT_OFRAGMENTS);
733 fragments++;
734 }
735 /*
736 * Update first fragment by trimming what's been copied out
737 * and updating header, then send each fragment (in order).
738 */
739 m = m0;
740 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
741 m->m_pkthdr.len = hlen + firstlen;
742 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
743 ip->ip_off |= htons(IP_MF);
744 ip->ip_sum = 0;
745 if (sw_csum & M_CSUM_IPv4) {
746 ip->ip_sum = in_cksum(m, hlen);
747 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
748 } else {
749 /*
750 * checksum is hw-offloaded or not necessary.
751 */
752 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
753 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
754 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
755 sizeof(struct ip));
756 }
757 sendorfree:
758 /*
759 * If there is no room for all the fragments, don't queue
760 * any of them.
761 */
762 if (ifp != NULL) {
763 s = splnet();
764 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
765 error == 0) {
766 error = ENOBUFS;
767 IP_STATINC(IP_STAT_ODROPPED);
768 IFQ_INC_DROPS(&ifp->if_snd);
769 }
770 splx(s);
771 }
772 if (error) {
773 for (m = m0; m; m = m0) {
774 m0 = m->m_nextpkt;
775 m->m_nextpkt = NULL;
776 m_freem(m);
777 }
778 }
779 return (error);
780 }
781
782 /*
783 * Process a delayed payload checksum calculation.
784 */
785 void
786 in_delayed_cksum(struct mbuf *m)
787 {
788 struct ip *ip;
789 u_int16_t csum, offset;
790
791 ip = mtod(m, struct ip *);
792 offset = ip->ip_hl << 2;
793 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
794 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
795 csum = 0xffff;
796
797 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
798
799 if ((offset + sizeof(u_int16_t)) > m->m_len) {
800 /* This happen when ip options were inserted
801 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
802 m->m_len, offset, ip->ip_p);
803 */
804 m_copyback(m, offset, sizeof(csum), (void *) &csum);
805 } else
806 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
807 }
808
809 /*
810 * Determine the maximum length of the options to be inserted;
811 * we would far rather allocate too much space rather than too little.
812 */
813
814 u_int
815 ip_optlen(struct inpcb *inp)
816 {
817 struct mbuf *m = inp->inp_options;
818
819 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
820 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
821 else
822 return 0;
823 }
824
825
826 /*
827 * Insert IP options into preformed packet.
828 * Adjust IP destination as required for IP source routing,
829 * as indicated by a non-zero in_addr at the start of the options.
830 */
831 static struct mbuf *
832 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
833 {
834 struct ipoption *p = mtod(opt, struct ipoption *);
835 struct mbuf *n;
836 struct ip *ip = mtod(m, struct ip *);
837 unsigned optlen;
838
839 optlen = opt->m_len - sizeof(p->ipopt_dst);
840 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
841 return (m); /* XXX should fail */
842 if (!in_nullhost(p->ipopt_dst))
843 ip->ip_dst = p->ipopt_dst;
844 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
845 MGETHDR(n, M_DONTWAIT, MT_HEADER);
846 if (n == 0)
847 return (m);
848 MCLAIM(n, m->m_owner);
849 M_MOVE_PKTHDR(n, m);
850 m->m_len -= sizeof(struct ip);
851 m->m_data += sizeof(struct ip);
852 n->m_next = m;
853 m = n;
854 m->m_len = optlen + sizeof(struct ip);
855 m->m_data += max_linkhdr;
856 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
857 } else {
858 m->m_data -= optlen;
859 m->m_len += optlen;
860 memmove(mtod(m, void *), ip, sizeof(struct ip));
861 }
862 m->m_pkthdr.len += optlen;
863 ip = mtod(m, struct ip *);
864 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
865 *phlen = sizeof(struct ip) + optlen;
866 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
867 return (m);
868 }
869
870 /*
871 * Copy options from ip to jp,
872 * omitting those not copied during fragmentation.
873 */
874 int
875 ip_optcopy(struct ip *ip, struct ip *jp)
876 {
877 u_char *cp, *dp;
878 int opt, optlen, cnt;
879
880 cp = (u_char *)(ip + 1);
881 dp = (u_char *)(jp + 1);
882 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
883 for (; cnt > 0; cnt -= optlen, cp += optlen) {
884 opt = cp[0];
885 if (opt == IPOPT_EOL)
886 break;
887 if (opt == IPOPT_NOP) {
888 /* Preserve for IP mcast tunnel's LSRR alignment. */
889 *dp++ = IPOPT_NOP;
890 optlen = 1;
891 continue;
892 }
893 #ifdef DIAGNOSTIC
894 if (cnt < IPOPT_OLEN + sizeof(*cp))
895 panic("malformed IPv4 option passed to ip_optcopy");
896 #endif
897 optlen = cp[IPOPT_OLEN];
898 #ifdef DIAGNOSTIC
899 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
900 panic("malformed IPv4 option passed to ip_optcopy");
901 #endif
902 /* bogus lengths should have been caught by ip_dooptions */
903 if (optlen > cnt)
904 optlen = cnt;
905 if (IPOPT_COPIED(opt)) {
906 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
907 dp += optlen;
908 }
909 }
910 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
911 *dp++ = IPOPT_EOL;
912 return (optlen);
913 }
914
915 /*
916 * IP socket option processing.
917 */
918 int
919 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
920 {
921 struct inpcb *inp = sotoinpcb(so);
922 int optval = 0;
923 int error = 0;
924 #if defined(IPSEC)
925 struct lwp *l = curlwp; /*XXX*/
926 #endif
927
928 if (sopt->sopt_level != IPPROTO_IP) {
929 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
930 return 0;
931 return ENOPROTOOPT;
932 }
933
934 switch (op) {
935 case PRCO_SETOPT:
936 switch (sopt->sopt_name) {
937 case IP_OPTIONS:
938 #ifdef notyet
939 case IP_RETOPTS:
940 #endif
941 error = ip_pcbopts(&inp->inp_options, sopt);
942 break;
943
944 case IP_TOS:
945 case IP_TTL:
946 case IP_MINTTL:
947 case IP_PKTINFO:
948 case IP_RECVOPTS:
949 case IP_RECVRETOPTS:
950 case IP_RECVDSTADDR:
951 case IP_RECVIF:
952 case IP_RECVPKTINFO:
953 case IP_RECVTTL:
954 error = sockopt_getint(sopt, &optval);
955 if (error)
956 break;
957
958 switch (sopt->sopt_name) {
959 case IP_TOS:
960 inp->inp_ip.ip_tos = optval;
961 break;
962
963 case IP_TTL:
964 inp->inp_ip.ip_ttl = optval;
965 break;
966
967 case IP_MINTTL:
968 if (optval > 0 && optval <= MAXTTL)
969 inp->inp_ip_minttl = optval;
970 else
971 error = EINVAL;
972 break;
973 #define OPTSET(bit) \
974 if (optval) \
975 inp->inp_flags |= bit; \
976 else \
977 inp->inp_flags &= ~bit;
978
979 case IP_PKTINFO:
980 OPTSET(INP_PKTINFO);
981 break;
982
983 case IP_RECVOPTS:
984 OPTSET(INP_RECVOPTS);
985 break;
986
987 case IP_RECVPKTINFO:
988 OPTSET(INP_RECVPKTINFO);
989 break;
990
991 case IP_RECVRETOPTS:
992 OPTSET(INP_RECVRETOPTS);
993 break;
994
995 case IP_RECVDSTADDR:
996 OPTSET(INP_RECVDSTADDR);
997 break;
998
999 case IP_RECVIF:
1000 OPTSET(INP_RECVIF);
1001 break;
1002
1003 case IP_RECVTTL:
1004 OPTSET(INP_RECVTTL);
1005 break;
1006 }
1007 break;
1008 #undef OPTSET
1009
1010 case IP_MULTICAST_IF:
1011 case IP_MULTICAST_TTL:
1012 case IP_MULTICAST_LOOP:
1013 case IP_ADD_MEMBERSHIP:
1014 case IP_DROP_MEMBERSHIP:
1015 error = ip_setmoptions(&inp->inp_moptions, sopt);
1016 break;
1017
1018 case IP_PORTRANGE:
1019 error = sockopt_getint(sopt, &optval);
1020 if (error)
1021 break;
1022
1023 /* INP_LOCK(inp); */
1024 switch (optval) {
1025 case IP_PORTRANGE_DEFAULT:
1026 case IP_PORTRANGE_HIGH:
1027 inp->inp_flags &= ~(INP_LOWPORT);
1028 break;
1029
1030 case IP_PORTRANGE_LOW:
1031 inp->inp_flags |= INP_LOWPORT;
1032 break;
1033
1034 default:
1035 error = EINVAL;
1036 break;
1037 }
1038 /* INP_UNLOCK(inp); */
1039 break;
1040
1041 case IP_PORTALGO:
1042 error = sockopt_getint(sopt, &optval);
1043 if (error)
1044 break;
1045
1046 error = portalgo_algo_index_select(
1047 (struct inpcb_hdr *)inp, optval);
1048 break;
1049
1050 #if defined(IPSEC)
1051 case IP_IPSEC_POLICY:
1052 error = ipsec4_set_policy(inp, sopt->sopt_name,
1053 sopt->sopt_data, sopt->sopt_size, l->l_cred);
1054 break;
1055 #endif /*IPSEC*/
1056
1057 default:
1058 error = ENOPROTOOPT;
1059 break;
1060 }
1061 break;
1062
1063 case PRCO_GETOPT:
1064 switch (sopt->sopt_name) {
1065 case IP_OPTIONS:
1066 case IP_RETOPTS:
1067 if (inp->inp_options) {
1068 struct mbuf *m;
1069
1070 m = m_copym(inp->inp_options, 0, M_COPYALL,
1071 M_DONTWAIT);
1072 if (m == NULL) {
1073 error = ENOBUFS;
1074 break;
1075 }
1076
1077 error = sockopt_setmbuf(sopt, m);
1078 }
1079 break;
1080
1081 case IP_PKTINFO:
1082 case IP_TOS:
1083 case IP_TTL:
1084 case IP_MINTTL:
1085 case IP_RECVOPTS:
1086 case IP_RECVRETOPTS:
1087 case IP_RECVDSTADDR:
1088 case IP_RECVIF:
1089 case IP_RECVPKTINFO:
1090 case IP_RECVTTL:
1091 case IP_ERRORMTU:
1092 switch (sopt->sopt_name) {
1093 case IP_TOS:
1094 optval = inp->inp_ip.ip_tos;
1095 break;
1096
1097 case IP_TTL:
1098 optval = inp->inp_ip.ip_ttl;
1099 break;
1100
1101 case IP_MINTTL:
1102 optval = inp->inp_ip_minttl;
1103 break;
1104
1105 case IP_ERRORMTU:
1106 optval = inp->inp_errormtu;
1107 break;
1108
1109 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1110
1111 case IP_PKTINFO:
1112 optval = OPTBIT(INP_PKTINFO);
1113 break;
1114
1115 case IP_RECVOPTS:
1116 optval = OPTBIT(INP_RECVOPTS);
1117 break;
1118
1119 case IP_RECVPKTINFO:
1120 optval = OPTBIT(INP_RECVPKTINFO);
1121 break;
1122
1123 case IP_RECVRETOPTS:
1124 optval = OPTBIT(INP_RECVRETOPTS);
1125 break;
1126
1127 case IP_RECVDSTADDR:
1128 optval = OPTBIT(INP_RECVDSTADDR);
1129 break;
1130
1131 case IP_RECVIF:
1132 optval = OPTBIT(INP_RECVIF);
1133 break;
1134
1135 case IP_RECVTTL:
1136 optval = OPTBIT(INP_RECVTTL);
1137 break;
1138 }
1139 error = sockopt_setint(sopt, optval);
1140 break;
1141
1142 #if 0 /* defined(IPSEC) */
1143 case IP_IPSEC_POLICY:
1144 {
1145 struct mbuf *m = NULL;
1146
1147 /* XXX this will return EINVAL as sopt is empty */
1148 error = ipsec4_get_policy(inp, sopt->sopt_data,
1149 sopt->sopt_size, &m);
1150 if (error == 0)
1151 error = sockopt_setmbuf(sopt, m);
1152 break;
1153 }
1154 #endif /*IPSEC*/
1155
1156 case IP_MULTICAST_IF:
1157 case IP_MULTICAST_TTL:
1158 case IP_MULTICAST_LOOP:
1159 case IP_ADD_MEMBERSHIP:
1160 case IP_DROP_MEMBERSHIP:
1161 error = ip_getmoptions(inp->inp_moptions, sopt);
1162 break;
1163
1164 case IP_PORTRANGE:
1165 if (inp->inp_flags & INP_LOWPORT)
1166 optval = IP_PORTRANGE_LOW;
1167 else
1168 optval = IP_PORTRANGE_DEFAULT;
1169
1170 error = sockopt_setint(sopt, optval);
1171
1172 break;
1173
1174 case IP_PORTALGO:
1175 optval = ((struct inpcb_hdr *)inp)->inph_portalgo;
1176 error = sockopt_setint(sopt, optval);
1177 break;
1178
1179 default:
1180 error = ENOPROTOOPT;
1181 break;
1182 }
1183 break;
1184 }
1185 return (error);
1186 }
1187
1188 /*
1189 * Set up IP options in pcb for insertion in output packets.
1190 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1191 * with destination address if source routed.
1192 */
1193 int
1194 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1195 {
1196 struct mbuf *m;
1197 const u_char *cp;
1198 u_char *dp;
1199 int cnt;
1200 uint8_t optval, olen, offset;
1201
1202 /* turn off any old options */
1203 if (*pcbopt)
1204 (void)m_free(*pcbopt);
1205 *pcbopt = NULL;
1206
1207 cp = sopt->sopt_data;
1208 cnt = sopt->sopt_size;
1209
1210 if (cnt == 0)
1211 return (0); /* Only turning off any previous options */
1212
1213 #ifndef __vax__
1214 if (cnt % sizeof(int32_t))
1215 return (EINVAL);
1216 #endif
1217
1218 m = m_get(M_DONTWAIT, MT_SOOPTS);
1219 if (m == NULL)
1220 return (ENOBUFS);
1221
1222 dp = mtod(m, u_char *);
1223 memset(dp, 0, sizeof(struct in_addr));
1224 dp += sizeof(struct in_addr);
1225 m->m_len = sizeof(struct in_addr);
1226
1227 /*
1228 * IP option list according to RFC791. Each option is of the form
1229 *
1230 * [optval] [olen] [(olen - 2) data bytes]
1231 *
1232 * we validate the list and copy options to an mbuf for prepending
1233 * to data packets. The IP first-hop destination address will be
1234 * stored before actual options and is zero if unset.
1235 */
1236 while (cnt > 0) {
1237 optval = cp[IPOPT_OPTVAL];
1238
1239 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1240 olen = 1;
1241 } else {
1242 if (cnt < IPOPT_OLEN + 1)
1243 goto bad;
1244
1245 olen = cp[IPOPT_OLEN];
1246 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1247 goto bad;
1248 }
1249
1250 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1251 /*
1252 * user process specifies route as:
1253 * ->A->B->C->D
1254 * D must be our final destination (but we can't
1255 * check that since we may not have connected yet).
1256 * A is first hop destination, which doesn't appear in
1257 * actual IP option, but is stored before the options.
1258 */
1259 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1260 goto bad;
1261
1262 offset = cp[IPOPT_OFFSET];
1263 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1264 sizeof(struct in_addr));
1265
1266 cp += sizeof(struct in_addr);
1267 cnt -= sizeof(struct in_addr);
1268 olen -= sizeof(struct in_addr);
1269
1270 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1271 goto bad;
1272
1273 memcpy(dp, cp, olen);
1274 dp[IPOPT_OPTVAL] = optval;
1275 dp[IPOPT_OLEN] = olen;
1276 dp[IPOPT_OFFSET] = offset;
1277 break;
1278 } else {
1279 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1280 goto bad;
1281
1282 memcpy(dp, cp, olen);
1283 break;
1284 }
1285
1286 dp += olen;
1287 m->m_len += olen;
1288
1289 if (optval == IPOPT_EOL)
1290 break;
1291
1292 cp += olen;
1293 cnt -= olen;
1294 }
1295
1296 *pcbopt = m;
1297 return (0);
1298
1299 bad:
1300 (void)m_free(m);
1301 return (EINVAL);
1302 }
1303
1304 /*
1305 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1306 */
1307 static struct ifnet *
1308 ip_multicast_if(struct in_addr *a, int *ifindexp)
1309 {
1310 int ifindex;
1311 struct ifnet *ifp = NULL;
1312 struct in_ifaddr *ia;
1313
1314 if (ifindexp)
1315 *ifindexp = 0;
1316 if (ntohl(a->s_addr) >> 24 == 0) {
1317 ifindex = ntohl(a->s_addr) & 0xffffff;
1318 ifp = if_byindex(ifindex);
1319 if (!ifp)
1320 return NULL;
1321 if (ifindexp)
1322 *ifindexp = ifindex;
1323 } else {
1324 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1325 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1326 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1327 ifp = ia->ia_ifp;
1328 break;
1329 }
1330 }
1331 }
1332 return ifp;
1333 }
1334
1335 static int
1336 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1337 {
1338 u_int tval;
1339 u_char cval;
1340 int error;
1341
1342 if (sopt == NULL)
1343 return EINVAL;
1344
1345 switch (sopt->sopt_size) {
1346 case sizeof(u_char):
1347 error = sockopt_get(sopt, &cval, sizeof(u_char));
1348 tval = cval;
1349 break;
1350
1351 case sizeof(u_int):
1352 error = sockopt_get(sopt, &tval, sizeof(u_int));
1353 break;
1354
1355 default:
1356 error = EINVAL;
1357 }
1358
1359 if (error)
1360 return error;
1361
1362 if (tval > maxval)
1363 return EINVAL;
1364
1365 *val = tval;
1366 return 0;
1367 }
1368
1369 /*
1370 * Set the IP multicast options in response to user setsockopt().
1371 */
1372 int
1373 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1374 {
1375 struct in_addr addr;
1376 struct ip_mreq lmreq, *mreq;
1377 struct ifnet *ifp;
1378 struct ip_moptions *imo = *imop;
1379 int i, ifindex, error = 0;
1380
1381 if (imo == NULL) {
1382 /*
1383 * No multicast option buffer attached to the pcb;
1384 * allocate one and initialize to default values.
1385 */
1386 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1387 if (imo == NULL)
1388 return ENOBUFS;
1389
1390 imo->imo_multicast_ifp = NULL;
1391 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1392 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1393 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1394 imo->imo_num_memberships = 0;
1395 *imop = imo;
1396 }
1397
1398 switch (sopt->sopt_name) {
1399 case IP_MULTICAST_IF:
1400 /*
1401 * Select the interface for outgoing multicast packets.
1402 */
1403 error = sockopt_get(sopt, &addr, sizeof(addr));
1404 if (error)
1405 break;
1406
1407 /*
1408 * INADDR_ANY is used to remove a previous selection.
1409 * When no interface is selected, a default one is
1410 * chosen every time a multicast packet is sent.
1411 */
1412 if (in_nullhost(addr)) {
1413 imo->imo_multicast_ifp = NULL;
1414 break;
1415 }
1416 /*
1417 * The selected interface is identified by its local
1418 * IP address. Find the interface and confirm that
1419 * it supports multicasting.
1420 */
1421 ifp = ip_multicast_if(&addr, &ifindex);
1422 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1423 error = EADDRNOTAVAIL;
1424 break;
1425 }
1426 imo->imo_multicast_ifp = ifp;
1427 if (ifindex)
1428 imo->imo_multicast_addr = addr;
1429 else
1430 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1431 break;
1432
1433 case IP_MULTICAST_TTL:
1434 /*
1435 * Set the IP time-to-live for outgoing multicast packets.
1436 */
1437 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1438 break;
1439
1440 case IP_MULTICAST_LOOP:
1441 /*
1442 * Set the loopback flag for outgoing multicast packets.
1443 * Must be zero or one.
1444 */
1445 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1446 break;
1447
1448 case IP_ADD_MEMBERSHIP:
1449 /*
1450 * Add a multicast group membership.
1451 * Group must be a valid IP multicast address.
1452 */
1453 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1454 if (error)
1455 break;
1456
1457 mreq = &lmreq;
1458
1459 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1460 error = EINVAL;
1461 break;
1462 }
1463 /*
1464 * If no interface address was provided, use the interface of
1465 * the route to the given multicast address.
1466 */
1467 if (in_nullhost(mreq->imr_interface)) {
1468 struct rtentry *rt;
1469 union {
1470 struct sockaddr dst;
1471 struct sockaddr_in dst4;
1472 } u;
1473 struct route ro;
1474
1475 memset(&ro, 0, sizeof(ro));
1476
1477 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1478 rtcache_setdst(&ro, &u.dst);
1479 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1480 : NULL;
1481 rtcache_free(&ro);
1482 } else {
1483 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1484 }
1485 /*
1486 * See if we found an interface, and confirm that it
1487 * supports multicast.
1488 */
1489 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1490 error = EADDRNOTAVAIL;
1491 break;
1492 }
1493 /*
1494 * See if the membership already exists or if all the
1495 * membership slots are full.
1496 */
1497 for (i = 0; i < imo->imo_num_memberships; ++i) {
1498 if (imo->imo_membership[i]->inm_ifp == ifp &&
1499 in_hosteq(imo->imo_membership[i]->inm_addr,
1500 mreq->imr_multiaddr))
1501 break;
1502 }
1503 if (i < imo->imo_num_memberships) {
1504 error = EADDRINUSE;
1505 break;
1506 }
1507 if (i == IP_MAX_MEMBERSHIPS) {
1508 error = ETOOMANYREFS;
1509 break;
1510 }
1511 /*
1512 * Everything looks good; add a new record to the multicast
1513 * address list for the given interface.
1514 */
1515 if ((imo->imo_membership[i] =
1516 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1517 error = ENOBUFS;
1518 break;
1519 }
1520 ++imo->imo_num_memberships;
1521 break;
1522
1523 case IP_DROP_MEMBERSHIP:
1524 /*
1525 * Drop a multicast group membership.
1526 * Group must be a valid IP multicast address.
1527 */
1528 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1529 if (error)
1530 break;
1531
1532 mreq = &lmreq;
1533
1534 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1535 error = EINVAL;
1536 break;
1537 }
1538 /*
1539 * If an interface address was specified, get a pointer
1540 * to its ifnet structure.
1541 */
1542 if (in_nullhost(mreq->imr_interface))
1543 ifp = NULL;
1544 else {
1545 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1546 if (ifp == NULL) {
1547 error = EADDRNOTAVAIL;
1548 break;
1549 }
1550 }
1551 /*
1552 * Find the membership in the membership array.
1553 */
1554 for (i = 0; i < imo->imo_num_memberships; ++i) {
1555 if ((ifp == NULL ||
1556 imo->imo_membership[i]->inm_ifp == ifp) &&
1557 in_hosteq(imo->imo_membership[i]->inm_addr,
1558 mreq->imr_multiaddr))
1559 break;
1560 }
1561 if (i == imo->imo_num_memberships) {
1562 error = EADDRNOTAVAIL;
1563 break;
1564 }
1565 /*
1566 * Give up the multicast address record to which the
1567 * membership points.
1568 */
1569 in_delmulti(imo->imo_membership[i]);
1570 /*
1571 * Remove the gap in the membership array.
1572 */
1573 for (++i; i < imo->imo_num_memberships; ++i)
1574 imo->imo_membership[i-1] = imo->imo_membership[i];
1575 --imo->imo_num_memberships;
1576 break;
1577
1578 default:
1579 error = EOPNOTSUPP;
1580 break;
1581 }
1582
1583 /*
1584 * If all options have default values, no need to keep the mbuf.
1585 */
1586 if (imo->imo_multicast_ifp == NULL &&
1587 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1588 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1589 imo->imo_num_memberships == 0) {
1590 kmem_free(imo, sizeof(*imo));
1591 *imop = NULL;
1592 }
1593
1594 return error;
1595 }
1596
1597 /*
1598 * Return the IP multicast options in response to user getsockopt().
1599 */
1600 int
1601 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1602 {
1603 struct in_addr addr;
1604 struct in_ifaddr *ia;
1605 int error;
1606 uint8_t optval;
1607
1608 error = 0;
1609
1610 switch (sopt->sopt_name) {
1611 case IP_MULTICAST_IF:
1612 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1613 addr = zeroin_addr;
1614 else if (imo->imo_multicast_addr.s_addr) {
1615 /* return the value user has set */
1616 addr = imo->imo_multicast_addr;
1617 } else {
1618 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1619 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1620 }
1621 error = sockopt_set(sopt, &addr, sizeof(addr));
1622 break;
1623
1624 case IP_MULTICAST_TTL:
1625 optval = imo ? imo->imo_multicast_ttl
1626 : IP_DEFAULT_MULTICAST_TTL;
1627
1628 error = sockopt_set(sopt, &optval, sizeof(optval));
1629 break;
1630
1631 case IP_MULTICAST_LOOP:
1632 optval = imo ? imo->imo_multicast_loop
1633 : IP_DEFAULT_MULTICAST_LOOP;
1634
1635 error = sockopt_set(sopt, &optval, sizeof(optval));
1636 break;
1637
1638 default:
1639 error = EOPNOTSUPP;
1640 }
1641
1642 return (error);
1643 }
1644
1645 /*
1646 * Discard the IP multicast options.
1647 */
1648 void
1649 ip_freemoptions(struct ip_moptions *imo)
1650 {
1651 int i;
1652
1653 if (imo != NULL) {
1654 for (i = 0; i < imo->imo_num_memberships; ++i)
1655 in_delmulti(imo->imo_membership[i]);
1656 kmem_free(imo, sizeof(*imo));
1657 }
1658 }
1659
1660 /*
1661 * Routine called from ip_output() to loop back a copy of an IP multicast
1662 * packet to the input queue of a specified interface. Note that this
1663 * calls the output routine of the loopback "driver", but with an interface
1664 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1665 */
1666 static void
1667 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1668 {
1669 struct ip *ip;
1670 struct mbuf *copym;
1671
1672 copym = m_copypacket(m, M_DONTWAIT);
1673 if (copym != NULL
1674 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1675 copym = m_pullup(copym, sizeof(struct ip));
1676 if (copym == NULL)
1677 return;
1678 /*
1679 * We don't bother to fragment if the IP length is greater
1680 * than the interface's MTU. Can this possibly matter?
1681 */
1682 ip = mtod(copym, struct ip *);
1683
1684 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1685 in_delayed_cksum(copym);
1686 copym->m_pkthdr.csum_flags &=
1687 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1688 }
1689
1690 ip->ip_sum = 0;
1691 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1692 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1693 }
1694