Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.226
      1 /*	$NetBSD: ip_output.c,v 1.226 2014/05/22 23:42:53 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.226 2014/05/22 23:42:53 rmind Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 
    100 #include <sys/param.h>
    101 #include <sys/kmem.h>
    102 #include <sys/mbuf.h>
    103 #include <sys/protosw.h>
    104 #include <sys/socket.h>
    105 #include <sys/socketvar.h>
    106 #include <sys/kauth.h>
    107 #ifdef IPSEC
    108 #include <sys/domain.h>
    109 #endif
    110 #include <sys/systm.h>
    111 
    112 #include <net/if.h>
    113 #include <net/route.h>
    114 #include <net/pfil.h>
    115 
    116 #include <netinet/in.h>
    117 #include <netinet/in_systm.h>
    118 #include <netinet/ip.h>
    119 #include <netinet/in_pcb.h>
    120 #include <netinet/in_var.h>
    121 #include <netinet/ip_var.h>
    122 #include <netinet/ip_private.h>
    123 #include <netinet/in_offload.h>
    124 #include <netinet/portalgo.h>
    125 #include <netinet/udp.h>
    126 
    127 #ifdef MROUTING
    128 #include <netinet/ip_mroute.h>
    129 #endif
    130 
    131 #include <netipsec/ipsec.h>
    132 #include <netipsec/key.h>
    133 
    134 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    135 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    136 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    137 static void ip_mloopback(struct ifnet *, struct mbuf *,
    138     const struct sockaddr_in *);
    139 static int ip_setmoptions(struct inpcb *, const struct sockopt *);
    140 static int ip_getmoptions(struct inpcb *, struct sockopt *);
    141 
    142 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    143 
    144 int	ip_do_loopback_cksum = 0;
    145 
    146 /*
    147  * IP output.  The packet in mbuf chain m contains a skeletal IP
    148  * header (with len, off, ttl, proto, tos, src, dst).
    149  * The mbuf chain containing the packet will be freed.
    150  * The mbuf opt, if present, will not be freed.
    151  */
    152 int
    153 ip_output(struct mbuf *m0, ...)
    154 {
    155 	struct rtentry *rt;
    156 	struct ip *ip;
    157 	struct ifnet *ifp;
    158 	struct mbuf *m = m0;
    159 	int hlen = sizeof (struct ip);
    160 	int len, error = 0;
    161 	struct route iproute;
    162 	const struct sockaddr_in *dst;
    163 	struct in_ifaddr *ia;
    164 	struct ifaddr *xifa;
    165 	struct mbuf *opt;
    166 	struct route *ro;
    167 	int flags, sw_csum;
    168 	u_long mtu;
    169 	struct ip_moptions *imo;
    170 	struct socket *so;
    171 	va_list ap;
    172 	struct secpolicy *sp = NULL;
    173 	bool natt_frag = false;
    174 	bool __unused done = false;
    175 	union {
    176 		struct sockaddr		dst;
    177 		struct sockaddr_in	dst4;
    178 	} u;
    179 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    180 					 * to the nexthop
    181 					 */
    182 
    183 	len = 0;
    184 	va_start(ap, m0);
    185 	opt = va_arg(ap, struct mbuf *);
    186 	ro = va_arg(ap, struct route *);
    187 	flags = va_arg(ap, int);
    188 	imo = va_arg(ap, struct ip_moptions *);
    189 	so = va_arg(ap, struct socket *);
    190 	va_end(ap);
    191 
    192 	MCLAIM(m, &ip_tx_mowner);
    193 
    194 	KASSERT(solocked(so));
    195 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    196 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    197 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    198 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    199 
    200 	if (opt) {
    201 		m = ip_insertoptions(m, opt, &len);
    202 		if (len >= sizeof(struct ip))
    203 			hlen = len;
    204 	}
    205 	ip = mtod(m, struct ip *);
    206 
    207 	/*
    208 	 * Fill in IP header.
    209 	 */
    210 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    211 		ip->ip_v = IPVERSION;
    212 		ip->ip_off = htons(0);
    213 		/* ip->ip_id filled in after we find out source ia */
    214 		ip->ip_hl = hlen >> 2;
    215 		IP_STATINC(IP_STAT_LOCALOUT);
    216 	} else {
    217 		hlen = ip->ip_hl << 2;
    218 	}
    219 
    220 	/*
    221 	 * Route packet.
    222 	 */
    223 	memset(&iproute, 0, sizeof(iproute));
    224 	if (ro == NULL)
    225 		ro = &iproute;
    226 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    227 	dst = satocsin(rtcache_getdst(ro));
    228 
    229 	/*
    230 	 * If there is a cached route, check that it is to the same
    231 	 * destination and is still up.  If not, free it and try again.
    232 	 * The address family should also be checked in case of sharing
    233 	 * the cache with IPv6.
    234 	 */
    235 	if (dst && (dst->sin_family != AF_INET ||
    236 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    237 		rtcache_free(ro);
    238 
    239 	if ((rt = rtcache_validate(ro)) == NULL &&
    240 	    (rt = rtcache_update(ro, 1)) == NULL) {
    241 		dst = &u.dst4;
    242 		rtcache_setdst(ro, &u.dst);
    243 	}
    244 
    245 	/*
    246 	 * If routing to interface only, short circuit routing lookup.
    247 	 */
    248 	if (flags & IP_ROUTETOIF) {
    249 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    250 			IP_STATINC(IP_STAT_NOROUTE);
    251 			error = ENETUNREACH;
    252 			goto bad;
    253 		}
    254 		ifp = ia->ia_ifp;
    255 		mtu = ifp->if_mtu;
    256 		ip->ip_ttl = 1;
    257 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    258 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    259 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    260 		ifp = imo->imo_multicast_ifp;
    261 		mtu = ifp->if_mtu;
    262 		IFP_TO_IA(ifp, ia);
    263 	} else {
    264 		if (rt == NULL)
    265 			rt = rtcache_init(ro);
    266 		if (rt == NULL) {
    267 			IP_STATINC(IP_STAT_NOROUTE);
    268 			error = EHOSTUNREACH;
    269 			goto bad;
    270 		}
    271 		ia = ifatoia(rt->rt_ifa);
    272 		ifp = rt->rt_ifp;
    273 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    274 			mtu = ifp->if_mtu;
    275 		rt->rt_use++;
    276 		if (rt->rt_flags & RTF_GATEWAY)
    277 			dst = satosin(rt->rt_gateway);
    278 	}
    279 
    280 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    281 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    282 		struct in_multi *inm;
    283 
    284 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    285 			M_BCAST : M_MCAST;
    286 		/*
    287 		 * See if the caller provided any multicast options
    288 		 */
    289 		if (imo != NULL)
    290 			ip->ip_ttl = imo->imo_multicast_ttl;
    291 		else
    292 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    293 
    294 		/*
    295 		 * if we don't know the outgoing ifp yet, we can't generate
    296 		 * output
    297 		 */
    298 		if (!ifp) {
    299 			IP_STATINC(IP_STAT_NOROUTE);
    300 			error = ENETUNREACH;
    301 			goto bad;
    302 		}
    303 
    304 		/*
    305 		 * If the packet is multicast or broadcast, confirm that
    306 		 * the outgoing interface can transmit it.
    307 		 */
    308 		if (((m->m_flags & M_MCAST) &&
    309 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    310 		    ((m->m_flags & M_BCAST) &&
    311 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    312 			IP_STATINC(IP_STAT_NOROUTE);
    313 			error = ENETUNREACH;
    314 			goto bad;
    315 		}
    316 		/*
    317 		 * If source address not specified yet, use an address
    318 		 * of outgoing interface.
    319 		 */
    320 		if (in_nullhost(ip->ip_src)) {
    321 			struct in_ifaddr *xia;
    322 
    323 			IFP_TO_IA(ifp, xia);
    324 			if (!xia) {
    325 				error = EADDRNOTAVAIL;
    326 				goto bad;
    327 			}
    328 			xifa = &xia->ia_ifa;
    329 			if (xifa->ifa_getifa != NULL) {
    330 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    331 			}
    332 			ip->ip_src = xia->ia_addr.sin_addr;
    333 		}
    334 
    335 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    336 		if (inm != NULL &&
    337 		   (imo == NULL || imo->imo_multicast_loop)) {
    338 			/*
    339 			 * If we belong to the destination multicast group
    340 			 * on the outgoing interface, and the caller did not
    341 			 * forbid loopback, loop back a copy.
    342 			 */
    343 			ip_mloopback(ifp, m, &u.dst4);
    344 		}
    345 #ifdef MROUTING
    346 		else {
    347 			/*
    348 			 * If we are acting as a multicast router, perform
    349 			 * multicast forwarding as if the packet had just
    350 			 * arrived on the interface to which we are about
    351 			 * to send.  The multicast forwarding function
    352 			 * recursively calls this function, using the
    353 			 * IP_FORWARDING flag to prevent infinite recursion.
    354 			 *
    355 			 * Multicasts that are looped back by ip_mloopback(),
    356 			 * above, will be forwarded by the ip_input() routine,
    357 			 * if necessary.
    358 			 */
    359 			extern struct socket *ip_mrouter;
    360 
    361 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    362 				if (ip_mforward(m, ifp) != 0) {
    363 					m_freem(m);
    364 					goto done;
    365 				}
    366 			}
    367 		}
    368 #endif
    369 		/*
    370 		 * Multicasts with a time-to-live of zero may be looped-
    371 		 * back, above, but must not be transmitted on a network.
    372 		 * Also, multicasts addressed to the loopback interface
    373 		 * are not sent -- the above call to ip_mloopback() will
    374 		 * loop back a copy if this host actually belongs to the
    375 		 * destination group on the loopback interface.
    376 		 */
    377 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    378 			m_freem(m);
    379 			goto done;
    380 		}
    381 
    382 		goto sendit;
    383 	}
    384 	/*
    385 	 * If source address not specified yet, use address
    386 	 * of outgoing interface.
    387 	 */
    388 	if (in_nullhost(ip->ip_src)) {
    389 		xifa = &ia->ia_ifa;
    390 		if (xifa->ifa_getifa != NULL)
    391 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    392 		ip->ip_src = ia->ia_addr.sin_addr;
    393 	}
    394 
    395 	/*
    396 	 * packets with Class-D address as source are not valid per
    397 	 * RFC 1112
    398 	 */
    399 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    400 		IP_STATINC(IP_STAT_ODROPPED);
    401 		error = EADDRNOTAVAIL;
    402 		goto bad;
    403 	}
    404 
    405 	/*
    406 	 * Look for broadcast address and
    407 	 * and verify user is allowed to send
    408 	 * such a packet.
    409 	 */
    410 	if (in_broadcast(dst->sin_addr, ifp)) {
    411 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    412 			error = EADDRNOTAVAIL;
    413 			goto bad;
    414 		}
    415 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    416 			error = EACCES;
    417 			goto bad;
    418 		}
    419 		/* don't allow broadcast messages to be fragmented */
    420 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    421 			error = EMSGSIZE;
    422 			goto bad;
    423 		}
    424 		m->m_flags |= M_BCAST;
    425 	} else
    426 		m->m_flags &= ~M_BCAST;
    427 
    428 sendit:
    429 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    430 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    431 			ip->ip_id = 0;
    432 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    433 			ip->ip_id = ip_newid(ia);
    434 		} else {
    435 
    436 			/*
    437 			 * TSO capable interfaces (typically?) increment
    438 			 * ip_id for each segment.
    439 			 * "allocate" enough ids here to increase the chance
    440 			 * for them to be unique.
    441 			 *
    442 			 * note that the following calculation is not
    443 			 * needed to be precise.  wasting some ip_id is fine.
    444 			 */
    445 
    446 			unsigned int segsz = m->m_pkthdr.segsz;
    447 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    448 			unsigned int num = howmany(datasz, segsz);
    449 
    450 			ip->ip_id = ip_newid_range(ia, num);
    451 		}
    452 	}
    453 	/*
    454 	 * If we're doing Path MTU Discovery, we need to set DF unless
    455 	 * the route's MTU is locked.
    456 	 */
    457 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    458 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    459 		ip->ip_off |= htons(IP_DF);
    460 
    461 #ifdef IPSEC
    462 	/* Perform IPsec processing, if any. */
    463 	error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, &done);
    464 	if (error || done) {
    465 		goto done;
    466 	}
    467 #endif
    468 
    469 	/*
    470 	 * Run through list of hooks for output packets.
    471 	 */
    472 	if ((error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    473 		goto done;
    474 	if (m == NULL)
    475 		goto done;
    476 
    477 	ip = mtod(m, struct ip *);
    478 	hlen = ip->ip_hl << 2;
    479 
    480 	m->m_pkthdr.csum_data |= hlen << 16;
    481 
    482 #if IFA_STATS
    483 	/*
    484 	 * search for the source address structure to
    485 	 * maintain output statistics.
    486 	 */
    487 	INADDR_TO_IA(ip->ip_src, ia);
    488 #endif
    489 
    490 	/* Maybe skip checksums on loopback interfaces. */
    491 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    492 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    493 	}
    494 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    495 	/*
    496 	 * If small enough for mtu of path, or if using TCP segmentation
    497 	 * offload, can just send directly.
    498 	 */
    499 	if (ntohs(ip->ip_len) <= mtu ||
    500 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    501 #if IFA_STATS
    502 		if (ia)
    503 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    504 #endif
    505 		/*
    506 		 * Always initialize the sum to 0!  Some HW assisted
    507 		 * checksumming requires this.
    508 		 */
    509 		ip->ip_sum = 0;
    510 
    511 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    512 			/*
    513 			 * Perform any checksums that the hardware can't do
    514 			 * for us.
    515 			 *
    516 			 * XXX Does any hardware require the {th,uh}_sum
    517 			 * XXX fields to be 0?
    518 			 */
    519 			if (sw_csum & M_CSUM_IPv4) {
    520 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    521 				ip->ip_sum = in_cksum(m, hlen);
    522 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    523 			}
    524 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    525 				if (IN_NEED_CHECKSUM(ifp,
    526 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    527 					in_delayed_cksum(m);
    528 				}
    529 				m->m_pkthdr.csum_flags &=
    530 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    531 			}
    532 		}
    533 
    534 		if (__predict_true(
    535 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    536 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    537 			KERNEL_LOCK(1, NULL);
    538 			error =
    539 			    (*ifp->if_output)(ifp, m,
    540 				(m->m_flags & M_MCAST) ?
    541 				    sintocsa(rdst) : sintocsa(dst),
    542 				rt);
    543 			KERNEL_UNLOCK_ONE(NULL);
    544 		} else {
    545 			error =
    546 			    ip_tso_output(ifp, m,
    547 				(m->m_flags & M_MCAST) ?
    548 				    sintocsa(rdst) : sintocsa(dst),
    549 				rt);
    550 		}
    551 		goto done;
    552 	}
    553 
    554 	/*
    555 	 * We can't use HW checksumming if we're about to
    556 	 * to fragment the packet.
    557 	 *
    558 	 * XXX Some hardware can do this.
    559 	 */
    560 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    561 		if (IN_NEED_CHECKSUM(ifp,
    562 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    563 			in_delayed_cksum(m);
    564 		}
    565 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    566 	}
    567 
    568 	/*
    569 	 * Too large for interface; fragment if possible.
    570 	 * Must be able to put at least 8 bytes per fragment.
    571 	 */
    572 	if (ntohs(ip->ip_off) & IP_DF) {
    573 		if (flags & IP_RETURNMTU) {
    574 			struct inpcb *inp = sotoinpcb(so);
    575 			inp->inp_errormtu = mtu;
    576 		}
    577 		error = EMSGSIZE;
    578 		IP_STATINC(IP_STAT_CANTFRAG);
    579 		goto bad;
    580 	}
    581 
    582 	error = ip_fragment(m, ifp, mtu);
    583 	if (error) {
    584 		m = NULL;
    585 		goto bad;
    586 	}
    587 
    588 	for (; m; m = m0) {
    589 		m0 = m->m_nextpkt;
    590 		m->m_nextpkt = 0;
    591 		if (error == 0) {
    592 #if IFA_STATS
    593 			if (ia)
    594 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    595 				    ntohs(ip->ip_len);
    596 #endif
    597 			/*
    598 			 * If we get there, the packet has not been handled by
    599 			 * IPsec whereas it should have. Now that it has been
    600 			 * fragmented, re-inject it in ip_output so that IPsec
    601 			 * processing can occur.
    602 			 */
    603 			if (natt_frag) {
    604 				error = ip_output(m, opt, ro,
    605 				    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    606 				    imo, so);
    607 			} else {
    608 				KASSERT((m->m_pkthdr.csum_flags &
    609 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    610 				KERNEL_LOCK(1, NULL);
    611 				error = (*ifp->if_output)(ifp, m,
    612 				    (m->m_flags & M_MCAST) ?
    613 				    sintocsa(rdst) : sintocsa(dst), rt);
    614 				KERNEL_UNLOCK_ONE(NULL);
    615 			}
    616 		} else
    617 			m_freem(m);
    618 	}
    619 
    620 	if (error == 0)
    621 		IP_STATINC(IP_STAT_FRAGMENTED);
    622 done:
    623 	rtcache_free(&iproute);
    624 	if (sp) {
    625 #ifdef IPSEC
    626 		KEY_FREESP(&sp);
    627 #endif
    628 	}
    629 	return error;
    630 bad:
    631 	m_freem(m);
    632 	goto done;
    633 }
    634 
    635 int
    636 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    637 {
    638 	struct ip *ip, *mhip;
    639 	struct mbuf *m0;
    640 	int len, hlen, off;
    641 	int mhlen, firstlen;
    642 	struct mbuf **mnext;
    643 	int sw_csum = m->m_pkthdr.csum_flags;
    644 	int fragments = 0;
    645 	int s;
    646 	int error = 0;
    647 
    648 	ip = mtod(m, struct ip *);
    649 	hlen = ip->ip_hl << 2;
    650 	if (ifp != NULL)
    651 		sw_csum &= ~ifp->if_csum_flags_tx;
    652 
    653 	len = (mtu - hlen) &~ 7;
    654 	if (len < 8) {
    655 		m_freem(m);
    656 		return (EMSGSIZE);
    657 	}
    658 
    659 	firstlen = len;
    660 	mnext = &m->m_nextpkt;
    661 
    662 	/*
    663 	 * Loop through length of segment after first fragment,
    664 	 * make new header and copy data of each part and link onto chain.
    665 	 */
    666 	m0 = m;
    667 	mhlen = sizeof (struct ip);
    668 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    669 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    670 		if (m == 0) {
    671 			error = ENOBUFS;
    672 			IP_STATINC(IP_STAT_ODROPPED);
    673 			goto sendorfree;
    674 		}
    675 		MCLAIM(m, m0->m_owner);
    676 		*mnext = m;
    677 		mnext = &m->m_nextpkt;
    678 		m->m_data += max_linkhdr;
    679 		mhip = mtod(m, struct ip *);
    680 		*mhip = *ip;
    681 		/* we must inherit MCAST and BCAST flags */
    682 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    683 		if (hlen > sizeof (struct ip)) {
    684 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    685 			mhip->ip_hl = mhlen >> 2;
    686 		}
    687 		m->m_len = mhlen;
    688 		mhip->ip_off = ((off - hlen) >> 3) +
    689 		    (ntohs(ip->ip_off) & ~IP_MF);
    690 		if (ip->ip_off & htons(IP_MF))
    691 			mhip->ip_off |= IP_MF;
    692 		if (off + len >= ntohs(ip->ip_len))
    693 			len = ntohs(ip->ip_len) - off;
    694 		else
    695 			mhip->ip_off |= IP_MF;
    696 		HTONS(mhip->ip_off);
    697 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    698 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    699 		if (m->m_next == 0) {
    700 			error = ENOBUFS;	/* ??? */
    701 			IP_STATINC(IP_STAT_ODROPPED);
    702 			goto sendorfree;
    703 		}
    704 		m->m_pkthdr.len = mhlen + len;
    705 		m->m_pkthdr.rcvif = NULL;
    706 		mhip->ip_sum = 0;
    707 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    708 		if (sw_csum & M_CSUM_IPv4) {
    709 			mhip->ip_sum = in_cksum(m, mhlen);
    710 		} else {
    711 			/*
    712 			 * checksum is hw-offloaded or not necessary.
    713 			 */
    714 			m->m_pkthdr.csum_flags |=
    715 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    716 			m->m_pkthdr.csum_data |= mhlen << 16;
    717 			KASSERT(!(ifp != NULL &&
    718 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    719 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    720 		}
    721 		IP_STATINC(IP_STAT_OFRAGMENTS);
    722 		fragments++;
    723 	}
    724 	/*
    725 	 * Update first fragment by trimming what's been copied out
    726 	 * and updating header, then send each fragment (in order).
    727 	 */
    728 	m = m0;
    729 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    730 	m->m_pkthdr.len = hlen + firstlen;
    731 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    732 	ip->ip_off |= htons(IP_MF);
    733 	ip->ip_sum = 0;
    734 	if (sw_csum & M_CSUM_IPv4) {
    735 		ip->ip_sum = in_cksum(m, hlen);
    736 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    737 	} else {
    738 		/*
    739 		 * checksum is hw-offloaded or not necessary.
    740 		 */
    741 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    742 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    743 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    744 			sizeof(struct ip));
    745 	}
    746 sendorfree:
    747 	/*
    748 	 * If there is no room for all the fragments, don't queue
    749 	 * any of them.
    750 	 */
    751 	if (ifp != NULL) {
    752 		s = splnet();
    753 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    754 		    error == 0) {
    755 			error = ENOBUFS;
    756 			IP_STATINC(IP_STAT_ODROPPED);
    757 			IFQ_INC_DROPS(&ifp->if_snd);
    758 		}
    759 		splx(s);
    760 	}
    761 	if (error) {
    762 		for (m = m0; m; m = m0) {
    763 			m0 = m->m_nextpkt;
    764 			m->m_nextpkt = NULL;
    765 			m_freem(m);
    766 		}
    767 	}
    768 	return (error);
    769 }
    770 
    771 /*
    772  * Process a delayed payload checksum calculation.
    773  */
    774 void
    775 in_delayed_cksum(struct mbuf *m)
    776 {
    777 	struct ip *ip;
    778 	u_int16_t csum, offset;
    779 
    780 	ip = mtod(m, struct ip *);
    781 	offset = ip->ip_hl << 2;
    782 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    783 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    784 		csum = 0xffff;
    785 
    786 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    787 
    788 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    789 		/* This happen when ip options were inserted
    790 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    791 		    m->m_len, offset, ip->ip_p);
    792 		 */
    793 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    794 	} else
    795 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    796 }
    797 
    798 /*
    799  * Determine the maximum length of the options to be inserted;
    800  * we would far rather allocate too much space rather than too little.
    801  */
    802 
    803 u_int
    804 ip_optlen(struct inpcb *inp)
    805 {
    806 	struct mbuf *m = inp->inp_options;
    807 
    808 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    809 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    810 	}
    811 	return 0;
    812 }
    813 
    814 /*
    815  * Insert IP options into preformed packet.
    816  * Adjust IP destination as required for IP source routing,
    817  * as indicated by a non-zero in_addr at the start of the options.
    818  */
    819 static struct mbuf *
    820 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    821 {
    822 	struct ipoption *p = mtod(opt, struct ipoption *);
    823 	struct mbuf *n;
    824 	struct ip *ip = mtod(m, struct ip *);
    825 	unsigned optlen;
    826 
    827 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    828 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    829 		return (m);		/* XXX should fail */
    830 	if (!in_nullhost(p->ipopt_dst))
    831 		ip->ip_dst = p->ipopt_dst;
    832 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    833 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    834 		if (n == 0)
    835 			return (m);
    836 		MCLAIM(n, m->m_owner);
    837 		M_MOVE_PKTHDR(n, m);
    838 		m->m_len -= sizeof(struct ip);
    839 		m->m_data += sizeof(struct ip);
    840 		n->m_next = m;
    841 		m = n;
    842 		m->m_len = optlen + sizeof(struct ip);
    843 		m->m_data += max_linkhdr;
    844 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    845 	} else {
    846 		m->m_data -= optlen;
    847 		m->m_len += optlen;
    848 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    849 	}
    850 	m->m_pkthdr.len += optlen;
    851 	ip = mtod(m, struct ip *);
    852 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    853 	*phlen = sizeof(struct ip) + optlen;
    854 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    855 	return (m);
    856 }
    857 
    858 /*
    859  * Copy options from ip to jp,
    860  * omitting those not copied during fragmentation.
    861  */
    862 int
    863 ip_optcopy(struct ip *ip, struct ip *jp)
    864 {
    865 	u_char *cp, *dp;
    866 	int opt, optlen, cnt;
    867 
    868 	cp = (u_char *)(ip + 1);
    869 	dp = (u_char *)(jp + 1);
    870 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    871 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    872 		opt = cp[0];
    873 		if (opt == IPOPT_EOL)
    874 			break;
    875 		if (opt == IPOPT_NOP) {
    876 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    877 			*dp++ = IPOPT_NOP;
    878 			optlen = 1;
    879 			continue;
    880 		}
    881 
    882 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
    883 		optlen = cp[IPOPT_OLEN];
    884 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
    885 
    886 		/* Invalid lengths should have been caught by ip_dooptions. */
    887 		if (optlen > cnt)
    888 			optlen = cnt;
    889 		if (IPOPT_COPIED(opt)) {
    890 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
    891 			dp += optlen;
    892 		}
    893 	}
    894 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
    895 		*dp++ = IPOPT_EOL;
    896 	return (optlen);
    897 }
    898 
    899 /*
    900  * IP socket option processing.
    901  */
    902 int
    903 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    904 {
    905 	struct inpcb *inp = sotoinpcb(so);
    906 	struct ip *ip = &inp->inp_ip;
    907 	int inpflags = inp->inp_flags;
    908 	int optval = 0, error = 0;
    909 
    910 	if (sopt->sopt_level != IPPROTO_IP) {
    911 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
    912 			return 0;
    913 		return ENOPROTOOPT;
    914 	}
    915 
    916 	switch (op) {
    917 	case PRCO_SETOPT:
    918 		switch (sopt->sopt_name) {
    919 		case IP_OPTIONS:
    920 #ifdef notyet
    921 		case IP_RETOPTS:
    922 #endif
    923 			error = ip_pcbopts(inp, sopt);
    924 			break;
    925 
    926 		case IP_TOS:
    927 		case IP_TTL:
    928 		case IP_MINTTL:
    929 		case IP_PKTINFO:
    930 		case IP_RECVOPTS:
    931 		case IP_RECVRETOPTS:
    932 		case IP_RECVDSTADDR:
    933 		case IP_RECVIF:
    934 		case IP_RECVPKTINFO:
    935 		case IP_RECVTTL:
    936 			error = sockopt_getint(sopt, &optval);
    937 			if (error)
    938 				break;
    939 
    940 			switch (sopt->sopt_name) {
    941 			case IP_TOS:
    942 				ip->ip_tos = optval;
    943 				break;
    944 
    945 			case IP_TTL:
    946 				ip->ip_ttl = optval;
    947 				break;
    948 
    949 			case IP_MINTTL:
    950 				if (optval > 0 && optval <= MAXTTL)
    951 					inp->inp_ip_minttl = optval;
    952 				else
    953 					error = EINVAL;
    954 				break;
    955 #define	OPTSET(bit) \
    956 	if (optval) \
    957 		inpflags |= bit; \
    958 	else \
    959 		inpflags &= ~bit;
    960 
    961 			case IP_PKTINFO:
    962 				OPTSET(INP_PKTINFO);
    963 				break;
    964 
    965 			case IP_RECVOPTS:
    966 				OPTSET(INP_RECVOPTS);
    967 				break;
    968 
    969 			case IP_RECVPKTINFO:
    970 				OPTSET(INP_RECVPKTINFO);
    971 				break;
    972 
    973 			case IP_RECVRETOPTS:
    974 				OPTSET(INP_RECVRETOPTS);
    975 				break;
    976 
    977 			case IP_RECVDSTADDR:
    978 				OPTSET(INP_RECVDSTADDR);
    979 				break;
    980 
    981 			case IP_RECVIF:
    982 				OPTSET(INP_RECVIF);
    983 				break;
    984 
    985 			case IP_RECVTTL:
    986 				OPTSET(INP_RECVTTL);
    987 				break;
    988 			}
    989 		break;
    990 #undef OPTSET
    991 
    992 		case IP_MULTICAST_IF:
    993 		case IP_MULTICAST_TTL:
    994 		case IP_MULTICAST_LOOP:
    995 		case IP_ADD_MEMBERSHIP:
    996 		case IP_DROP_MEMBERSHIP:
    997 			error = ip_setmoptions(inp, sopt);
    998 			break;
    999 
   1000 		case IP_PORTRANGE:
   1001 			error = sockopt_getint(sopt, &optval);
   1002 			if (error)
   1003 				break;
   1004 
   1005 			switch (optval) {
   1006 			case IP_PORTRANGE_DEFAULT:
   1007 			case IP_PORTRANGE_HIGH:
   1008 				inpflags &= ~(INP_LOWPORT);
   1009 				break;
   1010 
   1011 			case IP_PORTRANGE_LOW:
   1012 				inpflags |= INP_LOWPORT;
   1013 				break;
   1014 
   1015 			default:
   1016 				error = EINVAL;
   1017 				break;
   1018 			}
   1019 			break;
   1020 
   1021 		case IP_PORTALGO:
   1022 			error = sockopt_getint(sopt, &optval);
   1023 			if (error)
   1024 				break;
   1025 
   1026 			error = portalgo_algo_index_select(
   1027 			    (struct inpcb_hdr *)inp, optval);
   1028 			break;
   1029 
   1030 #if defined(IPSEC)
   1031 		case IP_IPSEC_POLICY:
   1032 			error = ipsec4_set_policy(inp, sopt->sopt_name,
   1033 			    sopt->sopt_data, sopt->sopt_size, curlwp->l_cred);
   1034 			break;
   1035 #endif /*IPSEC*/
   1036 
   1037 		default:
   1038 			error = ENOPROTOOPT;
   1039 			break;
   1040 		}
   1041 		break;
   1042 
   1043 	case PRCO_GETOPT:
   1044 		switch (sopt->sopt_name) {
   1045 		case IP_OPTIONS:
   1046 		case IP_RETOPTS: {
   1047 			struct mbuf *mopts = inp->inp_options;
   1048 
   1049 			if (mopts) {
   1050 				struct mbuf *m;
   1051 
   1052 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1053 				if (m == NULL) {
   1054 					error = ENOBUFS;
   1055 					break;
   1056 				}
   1057 				error = sockopt_setmbuf(sopt, m);
   1058 			}
   1059 			break;
   1060 		}
   1061 		case IP_PKTINFO:
   1062 		case IP_TOS:
   1063 		case IP_TTL:
   1064 		case IP_MINTTL:
   1065 		case IP_RECVOPTS:
   1066 		case IP_RECVRETOPTS:
   1067 		case IP_RECVDSTADDR:
   1068 		case IP_RECVIF:
   1069 		case IP_RECVPKTINFO:
   1070 		case IP_RECVTTL:
   1071 		case IP_ERRORMTU:
   1072 			switch (sopt->sopt_name) {
   1073 			case IP_TOS:
   1074 				optval = ip->ip_tos;
   1075 				break;
   1076 
   1077 			case IP_TTL:
   1078 				optval = ip->ip_ttl;
   1079 				break;
   1080 
   1081 			case IP_MINTTL:
   1082 				optval = inp->inp_ip_minttl;
   1083 				break;
   1084 
   1085 			case IP_ERRORMTU:
   1086 				optval = inp->inp_errormtu;
   1087 				break;
   1088 
   1089 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1090 
   1091 			case IP_PKTINFO:
   1092 				optval = OPTBIT(INP_PKTINFO);
   1093 				break;
   1094 
   1095 			case IP_RECVOPTS:
   1096 				optval = OPTBIT(INP_RECVOPTS);
   1097 				break;
   1098 
   1099 			case IP_RECVPKTINFO:
   1100 				optval = OPTBIT(INP_RECVPKTINFO);
   1101 				break;
   1102 
   1103 			case IP_RECVRETOPTS:
   1104 				optval = OPTBIT(INP_RECVRETOPTS);
   1105 				break;
   1106 
   1107 			case IP_RECVDSTADDR:
   1108 				optval = OPTBIT(INP_RECVDSTADDR);
   1109 				break;
   1110 
   1111 			case IP_RECVIF:
   1112 				optval = OPTBIT(INP_RECVIF);
   1113 				break;
   1114 
   1115 			case IP_RECVTTL:
   1116 				optval = OPTBIT(INP_RECVTTL);
   1117 				break;
   1118 			}
   1119 			error = sockopt_setint(sopt, optval);
   1120 			break;
   1121 
   1122 #if 0	/* defined(IPSEC) */
   1123 		case IP_IPSEC_POLICY:
   1124 		{
   1125 			struct mbuf *m = NULL;
   1126 
   1127 			/* XXX this will return EINVAL as sopt is empty */
   1128 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1129 			    sopt->sopt_size, &m);
   1130 			if (error == 0)
   1131 				error = sockopt_setmbuf(sopt, m);
   1132 			break;
   1133 		}
   1134 #endif /*IPSEC*/
   1135 
   1136 		case IP_MULTICAST_IF:
   1137 		case IP_MULTICAST_TTL:
   1138 		case IP_MULTICAST_LOOP:
   1139 		case IP_ADD_MEMBERSHIP:
   1140 		case IP_DROP_MEMBERSHIP:
   1141 			error = ip_getmoptions(inp, sopt);
   1142 			break;
   1143 
   1144 		case IP_PORTRANGE:
   1145 			if (inpflags & INP_LOWPORT)
   1146 				optval = IP_PORTRANGE_LOW;
   1147 			else
   1148 				optval = IP_PORTRANGE_DEFAULT;
   1149 			error = sockopt_setint(sopt, optval);
   1150 			break;
   1151 
   1152 		case IP_PORTALGO:
   1153 			optval = inp->inp_portalgo;
   1154 			error = sockopt_setint(sopt, optval);
   1155 			break;
   1156 
   1157 		default:
   1158 			error = ENOPROTOOPT;
   1159 			break;
   1160 		}
   1161 		break;
   1162 	}
   1163 
   1164 	if (!error) {
   1165 		inp->inp_flags = inpflags;
   1166 	}
   1167 	return error;
   1168 }
   1169 
   1170 /*
   1171  * Set up IP options in pcb for insertion in output packets.
   1172  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1173  * with destination address if source routed.
   1174  */
   1175 static int
   1176 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1177 {
   1178 	struct mbuf *m;
   1179 	const u_char *cp;
   1180 	u_char *dp;
   1181 	int cnt;
   1182 
   1183 	/* Turn off any old options. */
   1184 	if (inp->inp_options) {
   1185 		m_free(inp->inp_options);
   1186 	}
   1187 	inp->inp_options = NULL;
   1188 	if ((cnt = sopt->sopt_size) == 0) {
   1189 		/* Only turning off any previous options. */
   1190 		return 0;
   1191 	}
   1192 	cp = sopt->sopt_data;
   1193 
   1194 #ifndef	__vax__
   1195 	if (cnt % sizeof(int32_t))
   1196 		return (EINVAL);
   1197 #endif
   1198 
   1199 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1200 	if (m == NULL)
   1201 		return (ENOBUFS);
   1202 
   1203 	dp = mtod(m, u_char *);
   1204 	memset(dp, 0, sizeof(struct in_addr));
   1205 	dp += sizeof(struct in_addr);
   1206 	m->m_len = sizeof(struct in_addr);
   1207 
   1208 	/*
   1209 	 * IP option list according to RFC791. Each option is of the form
   1210 	 *
   1211 	 *	[optval] [olen] [(olen - 2) data bytes]
   1212 	 *
   1213 	 * We validate the list and copy options to an mbuf for prepending
   1214 	 * to data packets. The IP first-hop destination address will be
   1215 	 * stored before actual options and is zero if unset.
   1216 	 */
   1217 	while (cnt > 0) {
   1218 		uint8_t optval, olen, offset;
   1219 
   1220 		optval = cp[IPOPT_OPTVAL];
   1221 
   1222 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1223 			olen = 1;
   1224 		} else {
   1225 			if (cnt < IPOPT_OLEN + 1)
   1226 				goto bad;
   1227 
   1228 			olen = cp[IPOPT_OLEN];
   1229 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1230 				goto bad;
   1231 		}
   1232 
   1233 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1234 			/*
   1235 			 * user process specifies route as:
   1236 			 *	->A->B->C->D
   1237 			 * D must be our final destination (but we can't
   1238 			 * check that since we may not have connected yet).
   1239 			 * A is first hop destination, which doesn't appear in
   1240 			 * actual IP option, but is stored before the options.
   1241 			 */
   1242 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1243 				goto bad;
   1244 
   1245 			offset = cp[IPOPT_OFFSET];
   1246 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1247 			    sizeof(struct in_addr));
   1248 
   1249 			cp += sizeof(struct in_addr);
   1250 			cnt -= sizeof(struct in_addr);
   1251 			olen -= sizeof(struct in_addr);
   1252 
   1253 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1254 				goto bad;
   1255 
   1256 			memcpy(dp, cp, olen);
   1257 			dp[IPOPT_OPTVAL] = optval;
   1258 			dp[IPOPT_OLEN] = olen;
   1259 			dp[IPOPT_OFFSET] = offset;
   1260 			break;
   1261 		} else {
   1262 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1263 				goto bad;
   1264 
   1265 			memcpy(dp, cp, olen);
   1266 			break;
   1267 		}
   1268 
   1269 		dp += olen;
   1270 		m->m_len += olen;
   1271 
   1272 		if (optval == IPOPT_EOL)
   1273 			break;
   1274 
   1275 		cp += olen;
   1276 		cnt -= olen;
   1277 	}
   1278 
   1279 	inp->inp_options = m;
   1280 	return 0;
   1281 bad:
   1282 	(void)m_free(m);
   1283 	return EINVAL;
   1284 }
   1285 
   1286 /*
   1287  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1288  */
   1289 static struct ifnet *
   1290 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1291 {
   1292 	int ifindex;
   1293 	struct ifnet *ifp = NULL;
   1294 	struct in_ifaddr *ia;
   1295 
   1296 	if (ifindexp)
   1297 		*ifindexp = 0;
   1298 	if (ntohl(a->s_addr) >> 24 == 0) {
   1299 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1300 		ifp = if_byindex(ifindex);
   1301 		if (!ifp)
   1302 			return NULL;
   1303 		if (ifindexp)
   1304 			*ifindexp = ifindex;
   1305 	} else {
   1306 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1307 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1308 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1309 				ifp = ia->ia_ifp;
   1310 				break;
   1311 			}
   1312 		}
   1313 	}
   1314 	return ifp;
   1315 }
   1316 
   1317 static int
   1318 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1319 {
   1320 	u_int tval;
   1321 	u_char cval;
   1322 	int error;
   1323 
   1324 	if (sopt == NULL)
   1325 		return EINVAL;
   1326 
   1327 	switch (sopt->sopt_size) {
   1328 	case sizeof(u_char):
   1329 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1330 		tval = cval;
   1331 		break;
   1332 
   1333 	case sizeof(u_int):
   1334 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1335 		break;
   1336 
   1337 	default:
   1338 		error = EINVAL;
   1339 	}
   1340 
   1341 	if (error)
   1342 		return error;
   1343 
   1344 	if (tval > maxval)
   1345 		return EINVAL;
   1346 
   1347 	*val = tval;
   1348 	return 0;
   1349 }
   1350 
   1351 /*
   1352  * Set the IP multicast options in response to user setsockopt().
   1353  */
   1354 static int
   1355 ip_setmoptions(struct inpcb *inp, const struct sockopt *sopt)
   1356 {
   1357 	struct ip_moptions *imo = inp->inp_moptions;
   1358 	struct in_addr addr;
   1359 	struct ip_mreq lmreq, *mreq;
   1360 	struct ifnet *ifp;
   1361 	int i, ifindex, error = 0;
   1362 
   1363 	if (!imo) {
   1364 		/*
   1365 		 * No multicast option buffer attached to the pcb;
   1366 		 * allocate one and initialize to default values.
   1367 		 */
   1368 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1369 		if (imo == NULL)
   1370 			return ENOBUFS;
   1371 
   1372 		imo->imo_multicast_ifp = NULL;
   1373 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1374 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1375 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1376 		imo->imo_num_memberships = 0;
   1377 		inp->inp_moptions = imo;
   1378 	}
   1379 
   1380 	switch (sopt->sopt_name) {
   1381 	case IP_MULTICAST_IF:
   1382 		/*
   1383 		 * Select the interface for outgoing multicast packets.
   1384 		 */
   1385 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1386 		if (error)
   1387 			break;
   1388 
   1389 		/*
   1390 		 * INADDR_ANY is used to remove a previous selection.
   1391 		 * When no interface is selected, a default one is
   1392 		 * chosen every time a multicast packet is sent.
   1393 		 */
   1394 		if (in_nullhost(addr)) {
   1395 			imo->imo_multicast_ifp = NULL;
   1396 			break;
   1397 		}
   1398 		/*
   1399 		 * The selected interface is identified by its local
   1400 		 * IP address.  Find the interface and confirm that
   1401 		 * it supports multicasting.
   1402 		 */
   1403 		ifp = ip_multicast_if(&addr, &ifindex);
   1404 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1405 			error = EADDRNOTAVAIL;
   1406 			break;
   1407 		}
   1408 		imo->imo_multicast_ifp = ifp;
   1409 		if (ifindex)
   1410 			imo->imo_multicast_addr = addr;
   1411 		else
   1412 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1413 		break;
   1414 
   1415 	case IP_MULTICAST_TTL:
   1416 		/*
   1417 		 * Set the IP time-to-live for outgoing multicast packets.
   1418 		 */
   1419 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1420 		break;
   1421 
   1422 	case IP_MULTICAST_LOOP:
   1423 		/*
   1424 		 * Set the loopback flag for outgoing multicast packets.
   1425 		 * Must be zero or one.
   1426 		 */
   1427 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1428 		break;
   1429 
   1430 	case IP_ADD_MEMBERSHIP:
   1431 		/*
   1432 		 * Add a multicast group membership.
   1433 		 * Group must be a valid IP multicast address.
   1434 		 */
   1435 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1436 		if (error)
   1437 			break;
   1438 
   1439 		mreq = &lmreq;
   1440 
   1441 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1442 			error = EINVAL;
   1443 			break;
   1444 		}
   1445 		/*
   1446 		 * If no interface address was provided, use the interface of
   1447 		 * the route to the given multicast address.
   1448 		 */
   1449 		if (in_nullhost(mreq->imr_interface)) {
   1450 			struct rtentry *rt;
   1451 			union {
   1452 				struct sockaddr		dst;
   1453 				struct sockaddr_in	dst4;
   1454 			} u;
   1455 			struct route ro;
   1456 
   1457 			memset(&ro, 0, sizeof(ro));
   1458 
   1459 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1460 			rtcache_setdst(&ro, &u.dst);
   1461 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1462 			                                        : NULL;
   1463 			rtcache_free(&ro);
   1464 		} else {
   1465 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1466 		}
   1467 		/*
   1468 		 * See if we found an interface, and confirm that it
   1469 		 * supports multicast.
   1470 		 */
   1471 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1472 			error = EADDRNOTAVAIL;
   1473 			break;
   1474 		}
   1475 		/*
   1476 		 * See if the membership already exists or if all the
   1477 		 * membership slots are full.
   1478 		 */
   1479 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1480 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1481 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1482 				      mreq->imr_multiaddr))
   1483 				break;
   1484 		}
   1485 		if (i < imo->imo_num_memberships) {
   1486 			error = EADDRINUSE;
   1487 			break;
   1488 		}
   1489 		if (i == IP_MAX_MEMBERSHIPS) {
   1490 			error = ETOOMANYREFS;
   1491 			break;
   1492 		}
   1493 		/*
   1494 		 * Everything looks good; add a new record to the multicast
   1495 		 * address list for the given interface.
   1496 		 */
   1497 		if ((imo->imo_membership[i] =
   1498 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1499 			error = ENOBUFS;
   1500 			break;
   1501 		}
   1502 		++imo->imo_num_memberships;
   1503 		break;
   1504 
   1505 	case IP_DROP_MEMBERSHIP:
   1506 		/*
   1507 		 * Drop a multicast group membership.
   1508 		 * Group must be a valid IP multicast address.
   1509 		 */
   1510 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1511 		if (error)
   1512 			break;
   1513 
   1514 		mreq = &lmreq;
   1515 
   1516 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1517 			error = EINVAL;
   1518 			break;
   1519 		}
   1520 		/*
   1521 		 * If an interface address was specified, get a pointer
   1522 		 * to its ifnet structure.
   1523 		 */
   1524 		if (in_nullhost(mreq->imr_interface))
   1525 			ifp = NULL;
   1526 		else {
   1527 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1528 			if (ifp == NULL) {
   1529 				error = EADDRNOTAVAIL;
   1530 				break;
   1531 			}
   1532 		}
   1533 		/*
   1534 		 * Find the membership in the membership array.
   1535 		 */
   1536 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1537 			if ((ifp == NULL ||
   1538 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1539 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1540 				       mreq->imr_multiaddr))
   1541 				break;
   1542 		}
   1543 		if (i == imo->imo_num_memberships) {
   1544 			error = EADDRNOTAVAIL;
   1545 			break;
   1546 		}
   1547 		/*
   1548 		 * Give up the multicast address record to which the
   1549 		 * membership points.
   1550 		 */
   1551 		in_delmulti(imo->imo_membership[i]);
   1552 		/*
   1553 		 * Remove the gap in the membership array.
   1554 		 */
   1555 		for (++i; i < imo->imo_num_memberships; ++i)
   1556 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1557 		--imo->imo_num_memberships;
   1558 		break;
   1559 
   1560 	default:
   1561 		error = EOPNOTSUPP;
   1562 		break;
   1563 	}
   1564 
   1565 	/*
   1566 	 * If all options have default values, no need to keep the mbuf.
   1567 	 */
   1568 	if (imo->imo_multicast_ifp == NULL &&
   1569 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1570 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1571 	    imo->imo_num_memberships == 0) {
   1572 		kmem_free(imo, sizeof(*imo));
   1573 		inp->inp_moptions = NULL;
   1574 	}
   1575 
   1576 	return error;
   1577 }
   1578 
   1579 /*
   1580  * Return the IP multicast options in response to user getsockopt().
   1581  */
   1582 static int
   1583 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
   1584 {
   1585 	struct ip_moptions *imo = inp->inp_moptions;
   1586 	struct in_addr addr;
   1587 	struct in_ifaddr *ia;
   1588 	uint8_t optval;
   1589 	int error = 0;
   1590 
   1591 	switch (sopt->sopt_name) {
   1592 	case IP_MULTICAST_IF:
   1593 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1594 			addr = zeroin_addr;
   1595 		else if (imo->imo_multicast_addr.s_addr) {
   1596 			/* return the value user has set */
   1597 			addr = imo->imo_multicast_addr;
   1598 		} else {
   1599 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1600 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1601 		}
   1602 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1603 		break;
   1604 
   1605 	case IP_MULTICAST_TTL:
   1606 		optval = imo ? imo->imo_multicast_ttl
   1607 			     : IP_DEFAULT_MULTICAST_TTL;
   1608 
   1609 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1610 		break;
   1611 
   1612 	case IP_MULTICAST_LOOP:
   1613 		optval = imo ? imo->imo_multicast_loop
   1614 			     : IP_DEFAULT_MULTICAST_LOOP;
   1615 
   1616 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1617 		break;
   1618 
   1619 	default:
   1620 		error = EOPNOTSUPP;
   1621 	}
   1622 
   1623 	return error;
   1624 }
   1625 
   1626 /*
   1627  * Discard the IP multicast options.
   1628  */
   1629 void
   1630 ip_freemoptions(struct ip_moptions *imo)
   1631 {
   1632 	int i;
   1633 
   1634 	if (imo != NULL) {
   1635 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1636 			in_delmulti(imo->imo_membership[i]);
   1637 		kmem_free(imo, sizeof(*imo));
   1638 	}
   1639 }
   1640 
   1641 /*
   1642  * Routine called from ip_output() to loop back a copy of an IP multicast
   1643  * packet to the input queue of a specified interface.  Note that this
   1644  * calls the output routine of the loopback "driver", but with an interface
   1645  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1646  */
   1647 static void
   1648 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1649 {
   1650 	struct ip *ip;
   1651 	struct mbuf *copym;
   1652 
   1653 	copym = m_copypacket(m, M_DONTWAIT);
   1654 	if (copym != NULL
   1655 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1656 		copym = m_pullup(copym, sizeof(struct ip));
   1657 	if (copym == NULL)
   1658 		return;
   1659 	/*
   1660 	 * We don't bother to fragment if the IP length is greater
   1661 	 * than the interface's MTU.  Can this possibly matter?
   1662 	 */
   1663 	ip = mtod(copym, struct ip *);
   1664 
   1665 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1666 		in_delayed_cksum(copym);
   1667 		copym->m_pkthdr.csum_flags &=
   1668 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1669 	}
   1670 
   1671 	ip->ip_sum = 0;
   1672 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1673 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1674 }
   1675