ip_output.c revision 1.227 1 /* $NetBSD: ip_output.c,v 1.227 2014/05/23 00:02:14 rmind Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.227 2014/05/23 00:02:14 rmind Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_mrouting.h"
99
100 #include <sys/param.h>
101 #include <sys/kmem.h>
102 #include <sys/mbuf.h>
103 #include <sys/protosw.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/kauth.h>
107 #ifdef IPSEC
108 #include <sys/domain.h>
109 #endif
110 #include <sys/systm.h>
111
112 #include <net/if.h>
113 #include <net/route.h>
114 #include <net/pfil.h>
115
116 #include <netinet/in.h>
117 #include <netinet/in_systm.h>
118 #include <netinet/ip.h>
119 #include <netinet/in_pcb.h>
120 #include <netinet/in_var.h>
121 #include <netinet/ip_var.h>
122 #include <netinet/ip_private.h>
123 #include <netinet/in_offload.h>
124 #include <netinet/portalgo.h>
125 #include <netinet/udp.h>
126
127 #ifdef MROUTING
128 #include <netinet/ip_mroute.h>
129 #endif
130
131 #include <netipsec/ipsec.h>
132 #include <netipsec/key.h>
133
134 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
135 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
136 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
137 static void ip_mloopback(struct ifnet *, struct mbuf *,
138 const struct sockaddr_in *);
139 static int ip_setmoptions(struct inpcb *, const struct sockopt *);
140 static int ip_getmoptions(struct inpcb *, struct sockopt *);
141
142 extern pfil_head_t *inet_pfil_hook; /* XXX */
143
144 int ip_do_loopback_cksum = 0;
145
146 /*
147 * IP output. The packet in mbuf chain m contains a skeletal IP
148 * header (with len, off, ttl, proto, tos, src, dst).
149 * The mbuf chain containing the packet will be freed.
150 * The mbuf opt, if present, will not be freed.
151 */
152 int
153 ip_output(struct mbuf *m0, ...)
154 {
155 struct rtentry *rt;
156 struct ip *ip;
157 struct ifnet *ifp;
158 struct mbuf *m = m0;
159 int hlen = sizeof (struct ip);
160 int len, error = 0;
161 struct route iproute;
162 const struct sockaddr_in *dst;
163 struct in_ifaddr *ia;
164 struct ifaddr *xifa;
165 struct mbuf *opt;
166 struct route *ro;
167 int flags, sw_csum;
168 u_long mtu;
169 struct ip_moptions *imo;
170 struct socket *so;
171 va_list ap;
172 struct secpolicy *sp = NULL;
173 bool natt_frag = false;
174 bool __unused done = false;
175 union {
176 struct sockaddr dst;
177 struct sockaddr_in dst4;
178 } u;
179 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
180 * to the nexthop
181 */
182
183 len = 0;
184 va_start(ap, m0);
185 opt = va_arg(ap, struct mbuf *);
186 ro = va_arg(ap, struct route *);
187 flags = va_arg(ap, int);
188 imo = va_arg(ap, struct ip_moptions *);
189 so = va_arg(ap, struct socket *);
190 va_end(ap);
191
192 MCLAIM(m, &ip_tx_mowner);
193
194 KASSERT((m->m_flags & M_PKTHDR) != 0);
195 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
196 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
197 (M_CSUM_TCPv4|M_CSUM_UDPv4));
198
199 if (opt) {
200 m = ip_insertoptions(m, opt, &len);
201 if (len >= sizeof(struct ip))
202 hlen = len;
203 }
204 ip = mtod(m, struct ip *);
205
206 /*
207 * Fill in IP header.
208 */
209 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
210 ip->ip_v = IPVERSION;
211 ip->ip_off = htons(0);
212 /* ip->ip_id filled in after we find out source ia */
213 ip->ip_hl = hlen >> 2;
214 IP_STATINC(IP_STAT_LOCALOUT);
215 } else {
216 hlen = ip->ip_hl << 2;
217 }
218
219 /*
220 * Route packet.
221 */
222 memset(&iproute, 0, sizeof(iproute));
223 if (ro == NULL)
224 ro = &iproute;
225 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
226 dst = satocsin(rtcache_getdst(ro));
227
228 /*
229 * If there is a cached route, check that it is to the same
230 * destination and is still up. If not, free it and try again.
231 * The address family should also be checked in case of sharing
232 * the cache with IPv6.
233 */
234 if (dst && (dst->sin_family != AF_INET ||
235 !in_hosteq(dst->sin_addr, ip->ip_dst)))
236 rtcache_free(ro);
237
238 if ((rt = rtcache_validate(ro)) == NULL &&
239 (rt = rtcache_update(ro, 1)) == NULL) {
240 dst = &u.dst4;
241 rtcache_setdst(ro, &u.dst);
242 }
243
244 /*
245 * If routing to interface only, short circuit routing lookup.
246 */
247 if (flags & IP_ROUTETOIF) {
248 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
249 IP_STATINC(IP_STAT_NOROUTE);
250 error = ENETUNREACH;
251 goto bad;
252 }
253 ifp = ia->ia_ifp;
254 mtu = ifp->if_mtu;
255 ip->ip_ttl = 1;
256 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
257 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
258 imo != NULL && imo->imo_multicast_ifp != NULL) {
259 ifp = imo->imo_multicast_ifp;
260 mtu = ifp->if_mtu;
261 IFP_TO_IA(ifp, ia);
262 } else {
263 if (rt == NULL)
264 rt = rtcache_init(ro);
265 if (rt == NULL) {
266 IP_STATINC(IP_STAT_NOROUTE);
267 error = EHOSTUNREACH;
268 goto bad;
269 }
270 ia = ifatoia(rt->rt_ifa);
271 ifp = rt->rt_ifp;
272 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
273 mtu = ifp->if_mtu;
274 rt->rt_use++;
275 if (rt->rt_flags & RTF_GATEWAY)
276 dst = satosin(rt->rt_gateway);
277 }
278
279 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
280 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
281 struct in_multi *inm;
282
283 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
284 M_BCAST : M_MCAST;
285 /*
286 * See if the caller provided any multicast options
287 */
288 if (imo != NULL)
289 ip->ip_ttl = imo->imo_multicast_ttl;
290 else
291 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
292
293 /*
294 * if we don't know the outgoing ifp yet, we can't generate
295 * output
296 */
297 if (!ifp) {
298 IP_STATINC(IP_STAT_NOROUTE);
299 error = ENETUNREACH;
300 goto bad;
301 }
302
303 /*
304 * If the packet is multicast or broadcast, confirm that
305 * the outgoing interface can transmit it.
306 */
307 if (((m->m_flags & M_MCAST) &&
308 (ifp->if_flags & IFF_MULTICAST) == 0) ||
309 ((m->m_flags & M_BCAST) &&
310 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
311 IP_STATINC(IP_STAT_NOROUTE);
312 error = ENETUNREACH;
313 goto bad;
314 }
315 /*
316 * If source address not specified yet, use an address
317 * of outgoing interface.
318 */
319 if (in_nullhost(ip->ip_src)) {
320 struct in_ifaddr *xia;
321
322 IFP_TO_IA(ifp, xia);
323 if (!xia) {
324 error = EADDRNOTAVAIL;
325 goto bad;
326 }
327 xifa = &xia->ia_ifa;
328 if (xifa->ifa_getifa != NULL) {
329 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
330 }
331 ip->ip_src = xia->ia_addr.sin_addr;
332 }
333
334 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
335 if (inm != NULL &&
336 (imo == NULL || imo->imo_multicast_loop)) {
337 /*
338 * If we belong to the destination multicast group
339 * on the outgoing interface, and the caller did not
340 * forbid loopback, loop back a copy.
341 */
342 ip_mloopback(ifp, m, &u.dst4);
343 }
344 #ifdef MROUTING
345 else {
346 /*
347 * If we are acting as a multicast router, perform
348 * multicast forwarding as if the packet had just
349 * arrived on the interface to which we are about
350 * to send. The multicast forwarding function
351 * recursively calls this function, using the
352 * IP_FORWARDING flag to prevent infinite recursion.
353 *
354 * Multicasts that are looped back by ip_mloopback(),
355 * above, will be forwarded by the ip_input() routine,
356 * if necessary.
357 */
358 extern struct socket *ip_mrouter;
359
360 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
361 if (ip_mforward(m, ifp) != 0) {
362 m_freem(m);
363 goto done;
364 }
365 }
366 }
367 #endif
368 /*
369 * Multicasts with a time-to-live of zero may be looped-
370 * back, above, but must not be transmitted on a network.
371 * Also, multicasts addressed to the loopback interface
372 * are not sent -- the above call to ip_mloopback() will
373 * loop back a copy if this host actually belongs to the
374 * destination group on the loopback interface.
375 */
376 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
377 m_freem(m);
378 goto done;
379 }
380
381 goto sendit;
382 }
383 /*
384 * If source address not specified yet, use address
385 * of outgoing interface.
386 */
387 if (in_nullhost(ip->ip_src)) {
388 xifa = &ia->ia_ifa;
389 if (xifa->ifa_getifa != NULL)
390 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
391 ip->ip_src = ia->ia_addr.sin_addr;
392 }
393
394 /*
395 * packets with Class-D address as source are not valid per
396 * RFC 1112
397 */
398 if (IN_MULTICAST(ip->ip_src.s_addr)) {
399 IP_STATINC(IP_STAT_ODROPPED);
400 error = EADDRNOTAVAIL;
401 goto bad;
402 }
403
404 /*
405 * Look for broadcast address and
406 * and verify user is allowed to send
407 * such a packet.
408 */
409 if (in_broadcast(dst->sin_addr, ifp)) {
410 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
411 error = EADDRNOTAVAIL;
412 goto bad;
413 }
414 if ((flags & IP_ALLOWBROADCAST) == 0) {
415 error = EACCES;
416 goto bad;
417 }
418 /* don't allow broadcast messages to be fragmented */
419 if (ntohs(ip->ip_len) > ifp->if_mtu) {
420 error = EMSGSIZE;
421 goto bad;
422 }
423 m->m_flags |= M_BCAST;
424 } else
425 m->m_flags &= ~M_BCAST;
426
427 sendit:
428 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
429 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
430 ip->ip_id = 0;
431 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
432 ip->ip_id = ip_newid(ia);
433 } else {
434
435 /*
436 * TSO capable interfaces (typically?) increment
437 * ip_id for each segment.
438 * "allocate" enough ids here to increase the chance
439 * for them to be unique.
440 *
441 * note that the following calculation is not
442 * needed to be precise. wasting some ip_id is fine.
443 */
444
445 unsigned int segsz = m->m_pkthdr.segsz;
446 unsigned int datasz = ntohs(ip->ip_len) - hlen;
447 unsigned int num = howmany(datasz, segsz);
448
449 ip->ip_id = ip_newid_range(ia, num);
450 }
451 }
452 /*
453 * If we're doing Path MTU Discovery, we need to set DF unless
454 * the route's MTU is locked.
455 */
456 if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
457 (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
458 ip->ip_off |= htons(IP_DF);
459
460 #ifdef IPSEC
461 /* Perform IPsec processing, if any. */
462 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, &done);
463 if (error || done) {
464 goto done;
465 }
466 #endif
467
468 /*
469 * Run through list of hooks for output packets.
470 */
471 if ((error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
472 goto done;
473 if (m == NULL)
474 goto done;
475
476 ip = mtod(m, struct ip *);
477 hlen = ip->ip_hl << 2;
478
479 m->m_pkthdr.csum_data |= hlen << 16;
480
481 #if IFA_STATS
482 /*
483 * search for the source address structure to
484 * maintain output statistics.
485 */
486 INADDR_TO_IA(ip->ip_src, ia);
487 #endif
488
489 /* Maybe skip checksums on loopback interfaces. */
490 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
491 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
492 }
493 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
494 /*
495 * If small enough for mtu of path, or if using TCP segmentation
496 * offload, can just send directly.
497 */
498 if (ntohs(ip->ip_len) <= mtu ||
499 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
500 #if IFA_STATS
501 if (ia)
502 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
503 #endif
504 /*
505 * Always initialize the sum to 0! Some HW assisted
506 * checksumming requires this.
507 */
508 ip->ip_sum = 0;
509
510 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
511 /*
512 * Perform any checksums that the hardware can't do
513 * for us.
514 *
515 * XXX Does any hardware require the {th,uh}_sum
516 * XXX fields to be 0?
517 */
518 if (sw_csum & M_CSUM_IPv4) {
519 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
520 ip->ip_sum = in_cksum(m, hlen);
521 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
522 }
523 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
524 if (IN_NEED_CHECKSUM(ifp,
525 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
526 in_delayed_cksum(m);
527 }
528 m->m_pkthdr.csum_flags &=
529 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
530 }
531 }
532
533 if (__predict_true(
534 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
535 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
536 KERNEL_LOCK(1, NULL);
537 error =
538 (*ifp->if_output)(ifp, m,
539 (m->m_flags & M_MCAST) ?
540 sintocsa(rdst) : sintocsa(dst),
541 rt);
542 KERNEL_UNLOCK_ONE(NULL);
543 } else {
544 error =
545 ip_tso_output(ifp, m,
546 (m->m_flags & M_MCAST) ?
547 sintocsa(rdst) : sintocsa(dst),
548 rt);
549 }
550 goto done;
551 }
552
553 /*
554 * We can't use HW checksumming if we're about to
555 * to fragment the packet.
556 *
557 * XXX Some hardware can do this.
558 */
559 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
560 if (IN_NEED_CHECKSUM(ifp,
561 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
562 in_delayed_cksum(m);
563 }
564 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
565 }
566
567 /*
568 * Too large for interface; fragment if possible.
569 * Must be able to put at least 8 bytes per fragment.
570 */
571 if (ntohs(ip->ip_off) & IP_DF) {
572 if (flags & IP_RETURNMTU) {
573 struct inpcb *inp;
574
575 KASSERT(so && solocked(so));
576 inp = sotoinpcb(so);
577 inp->inp_errormtu = mtu;
578 }
579 error = EMSGSIZE;
580 IP_STATINC(IP_STAT_CANTFRAG);
581 goto bad;
582 }
583
584 error = ip_fragment(m, ifp, mtu);
585 if (error) {
586 m = NULL;
587 goto bad;
588 }
589
590 for (; m; m = m0) {
591 m0 = m->m_nextpkt;
592 m->m_nextpkt = 0;
593 if (error == 0) {
594 #if IFA_STATS
595 if (ia)
596 ia->ia_ifa.ifa_data.ifad_outbytes +=
597 ntohs(ip->ip_len);
598 #endif
599 /*
600 * If we get there, the packet has not been handled by
601 * IPsec whereas it should have. Now that it has been
602 * fragmented, re-inject it in ip_output so that IPsec
603 * processing can occur.
604 */
605 if (natt_frag) {
606 error = ip_output(m, opt, ro,
607 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
608 imo, so);
609 } else {
610 KASSERT((m->m_pkthdr.csum_flags &
611 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
612 KERNEL_LOCK(1, NULL);
613 error = (*ifp->if_output)(ifp, m,
614 (m->m_flags & M_MCAST) ?
615 sintocsa(rdst) : sintocsa(dst), rt);
616 KERNEL_UNLOCK_ONE(NULL);
617 }
618 } else
619 m_freem(m);
620 }
621
622 if (error == 0)
623 IP_STATINC(IP_STAT_FRAGMENTED);
624 done:
625 rtcache_free(&iproute);
626 if (sp) {
627 #ifdef IPSEC
628 KEY_FREESP(&sp);
629 #endif
630 }
631 return error;
632 bad:
633 m_freem(m);
634 goto done;
635 }
636
637 int
638 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
639 {
640 struct ip *ip, *mhip;
641 struct mbuf *m0;
642 int len, hlen, off;
643 int mhlen, firstlen;
644 struct mbuf **mnext;
645 int sw_csum = m->m_pkthdr.csum_flags;
646 int fragments = 0;
647 int s;
648 int error = 0;
649
650 ip = mtod(m, struct ip *);
651 hlen = ip->ip_hl << 2;
652 if (ifp != NULL)
653 sw_csum &= ~ifp->if_csum_flags_tx;
654
655 len = (mtu - hlen) &~ 7;
656 if (len < 8) {
657 m_freem(m);
658 return (EMSGSIZE);
659 }
660
661 firstlen = len;
662 mnext = &m->m_nextpkt;
663
664 /*
665 * Loop through length of segment after first fragment,
666 * make new header and copy data of each part and link onto chain.
667 */
668 m0 = m;
669 mhlen = sizeof (struct ip);
670 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
671 MGETHDR(m, M_DONTWAIT, MT_HEADER);
672 if (m == 0) {
673 error = ENOBUFS;
674 IP_STATINC(IP_STAT_ODROPPED);
675 goto sendorfree;
676 }
677 MCLAIM(m, m0->m_owner);
678 *mnext = m;
679 mnext = &m->m_nextpkt;
680 m->m_data += max_linkhdr;
681 mhip = mtod(m, struct ip *);
682 *mhip = *ip;
683 /* we must inherit MCAST and BCAST flags */
684 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
685 if (hlen > sizeof (struct ip)) {
686 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
687 mhip->ip_hl = mhlen >> 2;
688 }
689 m->m_len = mhlen;
690 mhip->ip_off = ((off - hlen) >> 3) +
691 (ntohs(ip->ip_off) & ~IP_MF);
692 if (ip->ip_off & htons(IP_MF))
693 mhip->ip_off |= IP_MF;
694 if (off + len >= ntohs(ip->ip_len))
695 len = ntohs(ip->ip_len) - off;
696 else
697 mhip->ip_off |= IP_MF;
698 HTONS(mhip->ip_off);
699 mhip->ip_len = htons((u_int16_t)(len + mhlen));
700 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
701 if (m->m_next == 0) {
702 error = ENOBUFS; /* ??? */
703 IP_STATINC(IP_STAT_ODROPPED);
704 goto sendorfree;
705 }
706 m->m_pkthdr.len = mhlen + len;
707 m->m_pkthdr.rcvif = NULL;
708 mhip->ip_sum = 0;
709 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
710 if (sw_csum & M_CSUM_IPv4) {
711 mhip->ip_sum = in_cksum(m, mhlen);
712 } else {
713 /*
714 * checksum is hw-offloaded or not necessary.
715 */
716 m->m_pkthdr.csum_flags |=
717 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
718 m->m_pkthdr.csum_data |= mhlen << 16;
719 KASSERT(!(ifp != NULL &&
720 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
721 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
722 }
723 IP_STATINC(IP_STAT_OFRAGMENTS);
724 fragments++;
725 }
726 /*
727 * Update first fragment by trimming what's been copied out
728 * and updating header, then send each fragment (in order).
729 */
730 m = m0;
731 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
732 m->m_pkthdr.len = hlen + firstlen;
733 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
734 ip->ip_off |= htons(IP_MF);
735 ip->ip_sum = 0;
736 if (sw_csum & M_CSUM_IPv4) {
737 ip->ip_sum = in_cksum(m, hlen);
738 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
739 } else {
740 /*
741 * checksum is hw-offloaded or not necessary.
742 */
743 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
744 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
745 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
746 sizeof(struct ip));
747 }
748 sendorfree:
749 /*
750 * If there is no room for all the fragments, don't queue
751 * any of them.
752 */
753 if (ifp != NULL) {
754 s = splnet();
755 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
756 error == 0) {
757 error = ENOBUFS;
758 IP_STATINC(IP_STAT_ODROPPED);
759 IFQ_INC_DROPS(&ifp->if_snd);
760 }
761 splx(s);
762 }
763 if (error) {
764 for (m = m0; m; m = m0) {
765 m0 = m->m_nextpkt;
766 m->m_nextpkt = NULL;
767 m_freem(m);
768 }
769 }
770 return (error);
771 }
772
773 /*
774 * Process a delayed payload checksum calculation.
775 */
776 void
777 in_delayed_cksum(struct mbuf *m)
778 {
779 struct ip *ip;
780 u_int16_t csum, offset;
781
782 ip = mtod(m, struct ip *);
783 offset = ip->ip_hl << 2;
784 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
785 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
786 csum = 0xffff;
787
788 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
789
790 if ((offset + sizeof(u_int16_t)) > m->m_len) {
791 /* This happen when ip options were inserted
792 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
793 m->m_len, offset, ip->ip_p);
794 */
795 m_copyback(m, offset, sizeof(csum), (void *) &csum);
796 } else
797 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
798 }
799
800 /*
801 * Determine the maximum length of the options to be inserted;
802 * we would far rather allocate too much space rather than too little.
803 */
804
805 u_int
806 ip_optlen(struct inpcb *inp)
807 {
808 struct mbuf *m = inp->inp_options;
809
810 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
811 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
812 }
813 return 0;
814 }
815
816 /*
817 * Insert IP options into preformed packet.
818 * Adjust IP destination as required for IP source routing,
819 * as indicated by a non-zero in_addr at the start of the options.
820 */
821 static struct mbuf *
822 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
823 {
824 struct ipoption *p = mtod(opt, struct ipoption *);
825 struct mbuf *n;
826 struct ip *ip = mtod(m, struct ip *);
827 unsigned optlen;
828
829 optlen = opt->m_len - sizeof(p->ipopt_dst);
830 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
831 return (m); /* XXX should fail */
832 if (!in_nullhost(p->ipopt_dst))
833 ip->ip_dst = p->ipopt_dst;
834 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
835 MGETHDR(n, M_DONTWAIT, MT_HEADER);
836 if (n == 0)
837 return (m);
838 MCLAIM(n, m->m_owner);
839 M_MOVE_PKTHDR(n, m);
840 m->m_len -= sizeof(struct ip);
841 m->m_data += sizeof(struct ip);
842 n->m_next = m;
843 m = n;
844 m->m_len = optlen + sizeof(struct ip);
845 m->m_data += max_linkhdr;
846 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
847 } else {
848 m->m_data -= optlen;
849 m->m_len += optlen;
850 memmove(mtod(m, void *), ip, sizeof(struct ip));
851 }
852 m->m_pkthdr.len += optlen;
853 ip = mtod(m, struct ip *);
854 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
855 *phlen = sizeof(struct ip) + optlen;
856 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
857 return (m);
858 }
859
860 /*
861 * Copy options from ip to jp,
862 * omitting those not copied during fragmentation.
863 */
864 int
865 ip_optcopy(struct ip *ip, struct ip *jp)
866 {
867 u_char *cp, *dp;
868 int opt, optlen, cnt;
869
870 cp = (u_char *)(ip + 1);
871 dp = (u_char *)(jp + 1);
872 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
873 for (; cnt > 0; cnt -= optlen, cp += optlen) {
874 opt = cp[0];
875 if (opt == IPOPT_EOL)
876 break;
877 if (opt == IPOPT_NOP) {
878 /* Preserve for IP mcast tunnel's LSRR alignment. */
879 *dp++ = IPOPT_NOP;
880 optlen = 1;
881 continue;
882 }
883
884 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
885 optlen = cp[IPOPT_OLEN];
886 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
887
888 /* Invalid lengths should have been caught by ip_dooptions. */
889 if (optlen > cnt)
890 optlen = cnt;
891 if (IPOPT_COPIED(opt)) {
892 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
893 dp += optlen;
894 }
895 }
896 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
897 *dp++ = IPOPT_EOL;
898 return (optlen);
899 }
900
901 /*
902 * IP socket option processing.
903 */
904 int
905 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
906 {
907 struct inpcb *inp = sotoinpcb(so);
908 struct ip *ip = &inp->inp_ip;
909 int inpflags = inp->inp_flags;
910 int optval = 0, error = 0;
911
912 if (sopt->sopt_level != IPPROTO_IP) {
913 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
914 return 0;
915 return ENOPROTOOPT;
916 }
917
918 switch (op) {
919 case PRCO_SETOPT:
920 switch (sopt->sopt_name) {
921 case IP_OPTIONS:
922 #ifdef notyet
923 case IP_RETOPTS:
924 #endif
925 error = ip_pcbopts(inp, sopt);
926 break;
927
928 case IP_TOS:
929 case IP_TTL:
930 case IP_MINTTL:
931 case IP_PKTINFO:
932 case IP_RECVOPTS:
933 case IP_RECVRETOPTS:
934 case IP_RECVDSTADDR:
935 case IP_RECVIF:
936 case IP_RECVPKTINFO:
937 case IP_RECVTTL:
938 error = sockopt_getint(sopt, &optval);
939 if (error)
940 break;
941
942 switch (sopt->sopt_name) {
943 case IP_TOS:
944 ip->ip_tos = optval;
945 break;
946
947 case IP_TTL:
948 ip->ip_ttl = optval;
949 break;
950
951 case IP_MINTTL:
952 if (optval > 0 && optval <= MAXTTL)
953 inp->inp_ip_minttl = optval;
954 else
955 error = EINVAL;
956 break;
957 #define OPTSET(bit) \
958 if (optval) \
959 inpflags |= bit; \
960 else \
961 inpflags &= ~bit;
962
963 case IP_PKTINFO:
964 OPTSET(INP_PKTINFO);
965 break;
966
967 case IP_RECVOPTS:
968 OPTSET(INP_RECVOPTS);
969 break;
970
971 case IP_RECVPKTINFO:
972 OPTSET(INP_RECVPKTINFO);
973 break;
974
975 case IP_RECVRETOPTS:
976 OPTSET(INP_RECVRETOPTS);
977 break;
978
979 case IP_RECVDSTADDR:
980 OPTSET(INP_RECVDSTADDR);
981 break;
982
983 case IP_RECVIF:
984 OPTSET(INP_RECVIF);
985 break;
986
987 case IP_RECVTTL:
988 OPTSET(INP_RECVTTL);
989 break;
990 }
991 break;
992 #undef OPTSET
993
994 case IP_MULTICAST_IF:
995 case IP_MULTICAST_TTL:
996 case IP_MULTICAST_LOOP:
997 case IP_ADD_MEMBERSHIP:
998 case IP_DROP_MEMBERSHIP:
999 error = ip_setmoptions(inp, sopt);
1000 break;
1001
1002 case IP_PORTRANGE:
1003 error = sockopt_getint(sopt, &optval);
1004 if (error)
1005 break;
1006
1007 switch (optval) {
1008 case IP_PORTRANGE_DEFAULT:
1009 case IP_PORTRANGE_HIGH:
1010 inpflags &= ~(INP_LOWPORT);
1011 break;
1012
1013 case IP_PORTRANGE_LOW:
1014 inpflags |= INP_LOWPORT;
1015 break;
1016
1017 default:
1018 error = EINVAL;
1019 break;
1020 }
1021 break;
1022
1023 case IP_PORTALGO:
1024 error = sockopt_getint(sopt, &optval);
1025 if (error)
1026 break;
1027
1028 error = portalgo_algo_index_select(
1029 (struct inpcb_hdr *)inp, optval);
1030 break;
1031
1032 #if defined(IPSEC)
1033 case IP_IPSEC_POLICY:
1034 error = ipsec4_set_policy(inp, sopt->sopt_name,
1035 sopt->sopt_data, sopt->sopt_size, curlwp->l_cred);
1036 break;
1037 #endif /*IPSEC*/
1038
1039 default:
1040 error = ENOPROTOOPT;
1041 break;
1042 }
1043 break;
1044
1045 case PRCO_GETOPT:
1046 switch (sopt->sopt_name) {
1047 case IP_OPTIONS:
1048 case IP_RETOPTS: {
1049 struct mbuf *mopts = inp->inp_options;
1050
1051 if (mopts) {
1052 struct mbuf *m;
1053
1054 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1055 if (m == NULL) {
1056 error = ENOBUFS;
1057 break;
1058 }
1059 error = sockopt_setmbuf(sopt, m);
1060 }
1061 break;
1062 }
1063 case IP_PKTINFO:
1064 case IP_TOS:
1065 case IP_TTL:
1066 case IP_MINTTL:
1067 case IP_RECVOPTS:
1068 case IP_RECVRETOPTS:
1069 case IP_RECVDSTADDR:
1070 case IP_RECVIF:
1071 case IP_RECVPKTINFO:
1072 case IP_RECVTTL:
1073 case IP_ERRORMTU:
1074 switch (sopt->sopt_name) {
1075 case IP_TOS:
1076 optval = ip->ip_tos;
1077 break;
1078
1079 case IP_TTL:
1080 optval = ip->ip_ttl;
1081 break;
1082
1083 case IP_MINTTL:
1084 optval = inp->inp_ip_minttl;
1085 break;
1086
1087 case IP_ERRORMTU:
1088 optval = inp->inp_errormtu;
1089 break;
1090
1091 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1092
1093 case IP_PKTINFO:
1094 optval = OPTBIT(INP_PKTINFO);
1095 break;
1096
1097 case IP_RECVOPTS:
1098 optval = OPTBIT(INP_RECVOPTS);
1099 break;
1100
1101 case IP_RECVPKTINFO:
1102 optval = OPTBIT(INP_RECVPKTINFO);
1103 break;
1104
1105 case IP_RECVRETOPTS:
1106 optval = OPTBIT(INP_RECVRETOPTS);
1107 break;
1108
1109 case IP_RECVDSTADDR:
1110 optval = OPTBIT(INP_RECVDSTADDR);
1111 break;
1112
1113 case IP_RECVIF:
1114 optval = OPTBIT(INP_RECVIF);
1115 break;
1116
1117 case IP_RECVTTL:
1118 optval = OPTBIT(INP_RECVTTL);
1119 break;
1120 }
1121 error = sockopt_setint(sopt, optval);
1122 break;
1123
1124 #if 0 /* defined(IPSEC) */
1125 case IP_IPSEC_POLICY:
1126 {
1127 struct mbuf *m = NULL;
1128
1129 /* XXX this will return EINVAL as sopt is empty */
1130 error = ipsec4_get_policy(inp, sopt->sopt_data,
1131 sopt->sopt_size, &m);
1132 if (error == 0)
1133 error = sockopt_setmbuf(sopt, m);
1134 break;
1135 }
1136 #endif /*IPSEC*/
1137
1138 case IP_MULTICAST_IF:
1139 case IP_MULTICAST_TTL:
1140 case IP_MULTICAST_LOOP:
1141 case IP_ADD_MEMBERSHIP:
1142 case IP_DROP_MEMBERSHIP:
1143 error = ip_getmoptions(inp, sopt);
1144 break;
1145
1146 case IP_PORTRANGE:
1147 if (inpflags & INP_LOWPORT)
1148 optval = IP_PORTRANGE_LOW;
1149 else
1150 optval = IP_PORTRANGE_DEFAULT;
1151 error = sockopt_setint(sopt, optval);
1152 break;
1153
1154 case IP_PORTALGO:
1155 optval = inp->inp_portalgo;
1156 error = sockopt_setint(sopt, optval);
1157 break;
1158
1159 default:
1160 error = ENOPROTOOPT;
1161 break;
1162 }
1163 break;
1164 }
1165
1166 if (!error) {
1167 inp->inp_flags = inpflags;
1168 }
1169 return error;
1170 }
1171
1172 /*
1173 * Set up IP options in pcb for insertion in output packets.
1174 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1175 * with destination address if source routed.
1176 */
1177 static int
1178 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1179 {
1180 struct mbuf *m;
1181 const u_char *cp;
1182 u_char *dp;
1183 int cnt;
1184
1185 /* Turn off any old options. */
1186 if (inp->inp_options) {
1187 m_free(inp->inp_options);
1188 }
1189 inp->inp_options = NULL;
1190 if ((cnt = sopt->sopt_size) == 0) {
1191 /* Only turning off any previous options. */
1192 return 0;
1193 }
1194 cp = sopt->sopt_data;
1195
1196 #ifndef __vax__
1197 if (cnt % sizeof(int32_t))
1198 return (EINVAL);
1199 #endif
1200
1201 m = m_get(M_DONTWAIT, MT_SOOPTS);
1202 if (m == NULL)
1203 return (ENOBUFS);
1204
1205 dp = mtod(m, u_char *);
1206 memset(dp, 0, sizeof(struct in_addr));
1207 dp += sizeof(struct in_addr);
1208 m->m_len = sizeof(struct in_addr);
1209
1210 /*
1211 * IP option list according to RFC791. Each option is of the form
1212 *
1213 * [optval] [olen] [(olen - 2) data bytes]
1214 *
1215 * We validate the list and copy options to an mbuf for prepending
1216 * to data packets. The IP first-hop destination address will be
1217 * stored before actual options and is zero if unset.
1218 */
1219 while (cnt > 0) {
1220 uint8_t optval, olen, offset;
1221
1222 optval = cp[IPOPT_OPTVAL];
1223
1224 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1225 olen = 1;
1226 } else {
1227 if (cnt < IPOPT_OLEN + 1)
1228 goto bad;
1229
1230 olen = cp[IPOPT_OLEN];
1231 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1232 goto bad;
1233 }
1234
1235 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1236 /*
1237 * user process specifies route as:
1238 * ->A->B->C->D
1239 * D must be our final destination (but we can't
1240 * check that since we may not have connected yet).
1241 * A is first hop destination, which doesn't appear in
1242 * actual IP option, but is stored before the options.
1243 */
1244 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1245 goto bad;
1246
1247 offset = cp[IPOPT_OFFSET];
1248 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1249 sizeof(struct in_addr));
1250
1251 cp += sizeof(struct in_addr);
1252 cnt -= sizeof(struct in_addr);
1253 olen -= sizeof(struct in_addr);
1254
1255 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1256 goto bad;
1257
1258 memcpy(dp, cp, olen);
1259 dp[IPOPT_OPTVAL] = optval;
1260 dp[IPOPT_OLEN] = olen;
1261 dp[IPOPT_OFFSET] = offset;
1262 break;
1263 } else {
1264 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1265 goto bad;
1266
1267 memcpy(dp, cp, olen);
1268 break;
1269 }
1270
1271 dp += olen;
1272 m->m_len += olen;
1273
1274 if (optval == IPOPT_EOL)
1275 break;
1276
1277 cp += olen;
1278 cnt -= olen;
1279 }
1280
1281 inp->inp_options = m;
1282 return 0;
1283 bad:
1284 (void)m_free(m);
1285 return EINVAL;
1286 }
1287
1288 /*
1289 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1290 */
1291 static struct ifnet *
1292 ip_multicast_if(struct in_addr *a, int *ifindexp)
1293 {
1294 int ifindex;
1295 struct ifnet *ifp = NULL;
1296 struct in_ifaddr *ia;
1297
1298 if (ifindexp)
1299 *ifindexp = 0;
1300 if (ntohl(a->s_addr) >> 24 == 0) {
1301 ifindex = ntohl(a->s_addr) & 0xffffff;
1302 ifp = if_byindex(ifindex);
1303 if (!ifp)
1304 return NULL;
1305 if (ifindexp)
1306 *ifindexp = ifindex;
1307 } else {
1308 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1309 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1310 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1311 ifp = ia->ia_ifp;
1312 break;
1313 }
1314 }
1315 }
1316 return ifp;
1317 }
1318
1319 static int
1320 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1321 {
1322 u_int tval;
1323 u_char cval;
1324 int error;
1325
1326 if (sopt == NULL)
1327 return EINVAL;
1328
1329 switch (sopt->sopt_size) {
1330 case sizeof(u_char):
1331 error = sockopt_get(sopt, &cval, sizeof(u_char));
1332 tval = cval;
1333 break;
1334
1335 case sizeof(u_int):
1336 error = sockopt_get(sopt, &tval, sizeof(u_int));
1337 break;
1338
1339 default:
1340 error = EINVAL;
1341 }
1342
1343 if (error)
1344 return error;
1345
1346 if (tval > maxval)
1347 return EINVAL;
1348
1349 *val = tval;
1350 return 0;
1351 }
1352
1353 /*
1354 * Set the IP multicast options in response to user setsockopt().
1355 */
1356 static int
1357 ip_setmoptions(struct inpcb *inp, const struct sockopt *sopt)
1358 {
1359 struct ip_moptions *imo = inp->inp_moptions;
1360 struct in_addr addr;
1361 struct ip_mreq lmreq, *mreq;
1362 struct ifnet *ifp;
1363 int i, ifindex, error = 0;
1364
1365 if (!imo) {
1366 /*
1367 * No multicast option buffer attached to the pcb;
1368 * allocate one and initialize to default values.
1369 */
1370 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1371 if (imo == NULL)
1372 return ENOBUFS;
1373
1374 imo->imo_multicast_ifp = NULL;
1375 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1376 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1377 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1378 imo->imo_num_memberships = 0;
1379 inp->inp_moptions = imo;
1380 }
1381
1382 switch (sopt->sopt_name) {
1383 case IP_MULTICAST_IF:
1384 /*
1385 * Select the interface for outgoing multicast packets.
1386 */
1387 error = sockopt_get(sopt, &addr, sizeof(addr));
1388 if (error)
1389 break;
1390
1391 /*
1392 * INADDR_ANY is used to remove a previous selection.
1393 * When no interface is selected, a default one is
1394 * chosen every time a multicast packet is sent.
1395 */
1396 if (in_nullhost(addr)) {
1397 imo->imo_multicast_ifp = NULL;
1398 break;
1399 }
1400 /*
1401 * The selected interface is identified by its local
1402 * IP address. Find the interface and confirm that
1403 * it supports multicasting.
1404 */
1405 ifp = ip_multicast_if(&addr, &ifindex);
1406 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1407 error = EADDRNOTAVAIL;
1408 break;
1409 }
1410 imo->imo_multicast_ifp = ifp;
1411 if (ifindex)
1412 imo->imo_multicast_addr = addr;
1413 else
1414 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1415 break;
1416
1417 case IP_MULTICAST_TTL:
1418 /*
1419 * Set the IP time-to-live for outgoing multicast packets.
1420 */
1421 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1422 break;
1423
1424 case IP_MULTICAST_LOOP:
1425 /*
1426 * Set the loopback flag for outgoing multicast packets.
1427 * Must be zero or one.
1428 */
1429 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1430 break;
1431
1432 case IP_ADD_MEMBERSHIP:
1433 /*
1434 * Add a multicast group membership.
1435 * Group must be a valid IP multicast address.
1436 */
1437 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1438 if (error)
1439 break;
1440
1441 mreq = &lmreq;
1442
1443 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1444 error = EINVAL;
1445 break;
1446 }
1447 /*
1448 * If no interface address was provided, use the interface of
1449 * the route to the given multicast address.
1450 */
1451 if (in_nullhost(mreq->imr_interface)) {
1452 struct rtentry *rt;
1453 union {
1454 struct sockaddr dst;
1455 struct sockaddr_in dst4;
1456 } u;
1457 struct route ro;
1458
1459 memset(&ro, 0, sizeof(ro));
1460
1461 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1462 rtcache_setdst(&ro, &u.dst);
1463 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1464 : NULL;
1465 rtcache_free(&ro);
1466 } else {
1467 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1468 }
1469 /*
1470 * See if we found an interface, and confirm that it
1471 * supports multicast.
1472 */
1473 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1474 error = EADDRNOTAVAIL;
1475 break;
1476 }
1477 /*
1478 * See if the membership already exists or if all the
1479 * membership slots are full.
1480 */
1481 for (i = 0; i < imo->imo_num_memberships; ++i) {
1482 if (imo->imo_membership[i]->inm_ifp == ifp &&
1483 in_hosteq(imo->imo_membership[i]->inm_addr,
1484 mreq->imr_multiaddr))
1485 break;
1486 }
1487 if (i < imo->imo_num_memberships) {
1488 error = EADDRINUSE;
1489 break;
1490 }
1491 if (i == IP_MAX_MEMBERSHIPS) {
1492 error = ETOOMANYREFS;
1493 break;
1494 }
1495 /*
1496 * Everything looks good; add a new record to the multicast
1497 * address list for the given interface.
1498 */
1499 if ((imo->imo_membership[i] =
1500 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1501 error = ENOBUFS;
1502 break;
1503 }
1504 ++imo->imo_num_memberships;
1505 break;
1506
1507 case IP_DROP_MEMBERSHIP:
1508 /*
1509 * Drop a multicast group membership.
1510 * Group must be a valid IP multicast address.
1511 */
1512 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1513 if (error)
1514 break;
1515
1516 mreq = &lmreq;
1517
1518 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1519 error = EINVAL;
1520 break;
1521 }
1522 /*
1523 * If an interface address was specified, get a pointer
1524 * to its ifnet structure.
1525 */
1526 if (in_nullhost(mreq->imr_interface))
1527 ifp = NULL;
1528 else {
1529 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1530 if (ifp == NULL) {
1531 error = EADDRNOTAVAIL;
1532 break;
1533 }
1534 }
1535 /*
1536 * Find the membership in the membership array.
1537 */
1538 for (i = 0; i < imo->imo_num_memberships; ++i) {
1539 if ((ifp == NULL ||
1540 imo->imo_membership[i]->inm_ifp == ifp) &&
1541 in_hosteq(imo->imo_membership[i]->inm_addr,
1542 mreq->imr_multiaddr))
1543 break;
1544 }
1545 if (i == imo->imo_num_memberships) {
1546 error = EADDRNOTAVAIL;
1547 break;
1548 }
1549 /*
1550 * Give up the multicast address record to which the
1551 * membership points.
1552 */
1553 in_delmulti(imo->imo_membership[i]);
1554 /*
1555 * Remove the gap in the membership array.
1556 */
1557 for (++i; i < imo->imo_num_memberships; ++i)
1558 imo->imo_membership[i-1] = imo->imo_membership[i];
1559 --imo->imo_num_memberships;
1560 break;
1561
1562 default:
1563 error = EOPNOTSUPP;
1564 break;
1565 }
1566
1567 /*
1568 * If all options have default values, no need to keep the mbuf.
1569 */
1570 if (imo->imo_multicast_ifp == NULL &&
1571 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1572 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1573 imo->imo_num_memberships == 0) {
1574 kmem_free(imo, sizeof(*imo));
1575 inp->inp_moptions = NULL;
1576 }
1577
1578 return error;
1579 }
1580
1581 /*
1582 * Return the IP multicast options in response to user getsockopt().
1583 */
1584 static int
1585 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1586 {
1587 struct ip_moptions *imo = inp->inp_moptions;
1588 struct in_addr addr;
1589 struct in_ifaddr *ia;
1590 uint8_t optval;
1591 int error = 0;
1592
1593 switch (sopt->sopt_name) {
1594 case IP_MULTICAST_IF:
1595 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1596 addr = zeroin_addr;
1597 else if (imo->imo_multicast_addr.s_addr) {
1598 /* return the value user has set */
1599 addr = imo->imo_multicast_addr;
1600 } else {
1601 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1602 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1603 }
1604 error = sockopt_set(sopt, &addr, sizeof(addr));
1605 break;
1606
1607 case IP_MULTICAST_TTL:
1608 optval = imo ? imo->imo_multicast_ttl
1609 : IP_DEFAULT_MULTICAST_TTL;
1610
1611 error = sockopt_set(sopt, &optval, sizeof(optval));
1612 break;
1613
1614 case IP_MULTICAST_LOOP:
1615 optval = imo ? imo->imo_multicast_loop
1616 : IP_DEFAULT_MULTICAST_LOOP;
1617
1618 error = sockopt_set(sopt, &optval, sizeof(optval));
1619 break;
1620
1621 default:
1622 error = EOPNOTSUPP;
1623 }
1624
1625 return error;
1626 }
1627
1628 /*
1629 * Discard the IP multicast options.
1630 */
1631 void
1632 ip_freemoptions(struct ip_moptions *imo)
1633 {
1634 int i;
1635
1636 if (imo != NULL) {
1637 for (i = 0; i < imo->imo_num_memberships; ++i)
1638 in_delmulti(imo->imo_membership[i]);
1639 kmem_free(imo, sizeof(*imo));
1640 }
1641 }
1642
1643 /*
1644 * Routine called from ip_output() to loop back a copy of an IP multicast
1645 * packet to the input queue of a specified interface. Note that this
1646 * calls the output routine of the loopback "driver", but with an interface
1647 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1648 */
1649 static void
1650 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1651 {
1652 struct ip *ip;
1653 struct mbuf *copym;
1654
1655 copym = m_copypacket(m, M_DONTWAIT);
1656 if (copym != NULL
1657 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1658 copym = m_pullup(copym, sizeof(struct ip));
1659 if (copym == NULL)
1660 return;
1661 /*
1662 * We don't bother to fragment if the IP length is greater
1663 * than the interface's MTU. Can this possibly matter?
1664 */
1665 ip = mtod(copym, struct ip *);
1666
1667 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1668 in_delayed_cksum(copym);
1669 copym->m_pkthdr.csum_flags &=
1670 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1671 }
1672
1673 ip->ip_sum = 0;
1674 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1675 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1676 }
1677