Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.227
      1 /*	$NetBSD: ip_output.c,v 1.227 2014/05/23 00:02:14 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.227 2014/05/23 00:02:14 rmind Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 
    100 #include <sys/param.h>
    101 #include <sys/kmem.h>
    102 #include <sys/mbuf.h>
    103 #include <sys/protosw.h>
    104 #include <sys/socket.h>
    105 #include <sys/socketvar.h>
    106 #include <sys/kauth.h>
    107 #ifdef IPSEC
    108 #include <sys/domain.h>
    109 #endif
    110 #include <sys/systm.h>
    111 
    112 #include <net/if.h>
    113 #include <net/route.h>
    114 #include <net/pfil.h>
    115 
    116 #include <netinet/in.h>
    117 #include <netinet/in_systm.h>
    118 #include <netinet/ip.h>
    119 #include <netinet/in_pcb.h>
    120 #include <netinet/in_var.h>
    121 #include <netinet/ip_var.h>
    122 #include <netinet/ip_private.h>
    123 #include <netinet/in_offload.h>
    124 #include <netinet/portalgo.h>
    125 #include <netinet/udp.h>
    126 
    127 #ifdef MROUTING
    128 #include <netinet/ip_mroute.h>
    129 #endif
    130 
    131 #include <netipsec/ipsec.h>
    132 #include <netipsec/key.h>
    133 
    134 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    135 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    136 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    137 static void ip_mloopback(struct ifnet *, struct mbuf *,
    138     const struct sockaddr_in *);
    139 static int ip_setmoptions(struct inpcb *, const struct sockopt *);
    140 static int ip_getmoptions(struct inpcb *, struct sockopt *);
    141 
    142 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    143 
    144 int	ip_do_loopback_cksum = 0;
    145 
    146 /*
    147  * IP output.  The packet in mbuf chain m contains a skeletal IP
    148  * header (with len, off, ttl, proto, tos, src, dst).
    149  * The mbuf chain containing the packet will be freed.
    150  * The mbuf opt, if present, will not be freed.
    151  */
    152 int
    153 ip_output(struct mbuf *m0, ...)
    154 {
    155 	struct rtentry *rt;
    156 	struct ip *ip;
    157 	struct ifnet *ifp;
    158 	struct mbuf *m = m0;
    159 	int hlen = sizeof (struct ip);
    160 	int len, error = 0;
    161 	struct route iproute;
    162 	const struct sockaddr_in *dst;
    163 	struct in_ifaddr *ia;
    164 	struct ifaddr *xifa;
    165 	struct mbuf *opt;
    166 	struct route *ro;
    167 	int flags, sw_csum;
    168 	u_long mtu;
    169 	struct ip_moptions *imo;
    170 	struct socket *so;
    171 	va_list ap;
    172 	struct secpolicy *sp = NULL;
    173 	bool natt_frag = false;
    174 	bool __unused done = false;
    175 	union {
    176 		struct sockaddr		dst;
    177 		struct sockaddr_in	dst4;
    178 	} u;
    179 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    180 					 * to the nexthop
    181 					 */
    182 
    183 	len = 0;
    184 	va_start(ap, m0);
    185 	opt = va_arg(ap, struct mbuf *);
    186 	ro = va_arg(ap, struct route *);
    187 	flags = va_arg(ap, int);
    188 	imo = va_arg(ap, struct ip_moptions *);
    189 	so = va_arg(ap, struct socket *);
    190 	va_end(ap);
    191 
    192 	MCLAIM(m, &ip_tx_mowner);
    193 
    194 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    195 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    196 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    197 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    198 
    199 	if (opt) {
    200 		m = ip_insertoptions(m, opt, &len);
    201 		if (len >= sizeof(struct ip))
    202 			hlen = len;
    203 	}
    204 	ip = mtod(m, struct ip *);
    205 
    206 	/*
    207 	 * Fill in IP header.
    208 	 */
    209 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    210 		ip->ip_v = IPVERSION;
    211 		ip->ip_off = htons(0);
    212 		/* ip->ip_id filled in after we find out source ia */
    213 		ip->ip_hl = hlen >> 2;
    214 		IP_STATINC(IP_STAT_LOCALOUT);
    215 	} else {
    216 		hlen = ip->ip_hl << 2;
    217 	}
    218 
    219 	/*
    220 	 * Route packet.
    221 	 */
    222 	memset(&iproute, 0, sizeof(iproute));
    223 	if (ro == NULL)
    224 		ro = &iproute;
    225 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    226 	dst = satocsin(rtcache_getdst(ro));
    227 
    228 	/*
    229 	 * If there is a cached route, check that it is to the same
    230 	 * destination and is still up.  If not, free it and try again.
    231 	 * The address family should also be checked in case of sharing
    232 	 * the cache with IPv6.
    233 	 */
    234 	if (dst && (dst->sin_family != AF_INET ||
    235 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    236 		rtcache_free(ro);
    237 
    238 	if ((rt = rtcache_validate(ro)) == NULL &&
    239 	    (rt = rtcache_update(ro, 1)) == NULL) {
    240 		dst = &u.dst4;
    241 		rtcache_setdst(ro, &u.dst);
    242 	}
    243 
    244 	/*
    245 	 * If routing to interface only, short circuit routing lookup.
    246 	 */
    247 	if (flags & IP_ROUTETOIF) {
    248 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    249 			IP_STATINC(IP_STAT_NOROUTE);
    250 			error = ENETUNREACH;
    251 			goto bad;
    252 		}
    253 		ifp = ia->ia_ifp;
    254 		mtu = ifp->if_mtu;
    255 		ip->ip_ttl = 1;
    256 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    257 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    258 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    259 		ifp = imo->imo_multicast_ifp;
    260 		mtu = ifp->if_mtu;
    261 		IFP_TO_IA(ifp, ia);
    262 	} else {
    263 		if (rt == NULL)
    264 			rt = rtcache_init(ro);
    265 		if (rt == NULL) {
    266 			IP_STATINC(IP_STAT_NOROUTE);
    267 			error = EHOSTUNREACH;
    268 			goto bad;
    269 		}
    270 		ia = ifatoia(rt->rt_ifa);
    271 		ifp = rt->rt_ifp;
    272 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    273 			mtu = ifp->if_mtu;
    274 		rt->rt_use++;
    275 		if (rt->rt_flags & RTF_GATEWAY)
    276 			dst = satosin(rt->rt_gateway);
    277 	}
    278 
    279 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    280 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    281 		struct in_multi *inm;
    282 
    283 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    284 			M_BCAST : M_MCAST;
    285 		/*
    286 		 * See if the caller provided any multicast options
    287 		 */
    288 		if (imo != NULL)
    289 			ip->ip_ttl = imo->imo_multicast_ttl;
    290 		else
    291 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    292 
    293 		/*
    294 		 * if we don't know the outgoing ifp yet, we can't generate
    295 		 * output
    296 		 */
    297 		if (!ifp) {
    298 			IP_STATINC(IP_STAT_NOROUTE);
    299 			error = ENETUNREACH;
    300 			goto bad;
    301 		}
    302 
    303 		/*
    304 		 * If the packet is multicast or broadcast, confirm that
    305 		 * the outgoing interface can transmit it.
    306 		 */
    307 		if (((m->m_flags & M_MCAST) &&
    308 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    309 		    ((m->m_flags & M_BCAST) &&
    310 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    311 			IP_STATINC(IP_STAT_NOROUTE);
    312 			error = ENETUNREACH;
    313 			goto bad;
    314 		}
    315 		/*
    316 		 * If source address not specified yet, use an address
    317 		 * of outgoing interface.
    318 		 */
    319 		if (in_nullhost(ip->ip_src)) {
    320 			struct in_ifaddr *xia;
    321 
    322 			IFP_TO_IA(ifp, xia);
    323 			if (!xia) {
    324 				error = EADDRNOTAVAIL;
    325 				goto bad;
    326 			}
    327 			xifa = &xia->ia_ifa;
    328 			if (xifa->ifa_getifa != NULL) {
    329 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    330 			}
    331 			ip->ip_src = xia->ia_addr.sin_addr;
    332 		}
    333 
    334 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    335 		if (inm != NULL &&
    336 		   (imo == NULL || imo->imo_multicast_loop)) {
    337 			/*
    338 			 * If we belong to the destination multicast group
    339 			 * on the outgoing interface, and the caller did not
    340 			 * forbid loopback, loop back a copy.
    341 			 */
    342 			ip_mloopback(ifp, m, &u.dst4);
    343 		}
    344 #ifdef MROUTING
    345 		else {
    346 			/*
    347 			 * If we are acting as a multicast router, perform
    348 			 * multicast forwarding as if the packet had just
    349 			 * arrived on the interface to which we are about
    350 			 * to send.  The multicast forwarding function
    351 			 * recursively calls this function, using the
    352 			 * IP_FORWARDING flag to prevent infinite recursion.
    353 			 *
    354 			 * Multicasts that are looped back by ip_mloopback(),
    355 			 * above, will be forwarded by the ip_input() routine,
    356 			 * if necessary.
    357 			 */
    358 			extern struct socket *ip_mrouter;
    359 
    360 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    361 				if (ip_mforward(m, ifp) != 0) {
    362 					m_freem(m);
    363 					goto done;
    364 				}
    365 			}
    366 		}
    367 #endif
    368 		/*
    369 		 * Multicasts with a time-to-live of zero may be looped-
    370 		 * back, above, but must not be transmitted on a network.
    371 		 * Also, multicasts addressed to the loopback interface
    372 		 * are not sent -- the above call to ip_mloopback() will
    373 		 * loop back a copy if this host actually belongs to the
    374 		 * destination group on the loopback interface.
    375 		 */
    376 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    377 			m_freem(m);
    378 			goto done;
    379 		}
    380 
    381 		goto sendit;
    382 	}
    383 	/*
    384 	 * If source address not specified yet, use address
    385 	 * of outgoing interface.
    386 	 */
    387 	if (in_nullhost(ip->ip_src)) {
    388 		xifa = &ia->ia_ifa;
    389 		if (xifa->ifa_getifa != NULL)
    390 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    391 		ip->ip_src = ia->ia_addr.sin_addr;
    392 	}
    393 
    394 	/*
    395 	 * packets with Class-D address as source are not valid per
    396 	 * RFC 1112
    397 	 */
    398 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    399 		IP_STATINC(IP_STAT_ODROPPED);
    400 		error = EADDRNOTAVAIL;
    401 		goto bad;
    402 	}
    403 
    404 	/*
    405 	 * Look for broadcast address and
    406 	 * and verify user is allowed to send
    407 	 * such a packet.
    408 	 */
    409 	if (in_broadcast(dst->sin_addr, ifp)) {
    410 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    411 			error = EADDRNOTAVAIL;
    412 			goto bad;
    413 		}
    414 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    415 			error = EACCES;
    416 			goto bad;
    417 		}
    418 		/* don't allow broadcast messages to be fragmented */
    419 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    420 			error = EMSGSIZE;
    421 			goto bad;
    422 		}
    423 		m->m_flags |= M_BCAST;
    424 	} else
    425 		m->m_flags &= ~M_BCAST;
    426 
    427 sendit:
    428 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    429 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    430 			ip->ip_id = 0;
    431 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    432 			ip->ip_id = ip_newid(ia);
    433 		} else {
    434 
    435 			/*
    436 			 * TSO capable interfaces (typically?) increment
    437 			 * ip_id for each segment.
    438 			 * "allocate" enough ids here to increase the chance
    439 			 * for them to be unique.
    440 			 *
    441 			 * note that the following calculation is not
    442 			 * needed to be precise.  wasting some ip_id is fine.
    443 			 */
    444 
    445 			unsigned int segsz = m->m_pkthdr.segsz;
    446 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    447 			unsigned int num = howmany(datasz, segsz);
    448 
    449 			ip->ip_id = ip_newid_range(ia, num);
    450 		}
    451 	}
    452 	/*
    453 	 * If we're doing Path MTU Discovery, we need to set DF unless
    454 	 * the route's MTU is locked.
    455 	 */
    456 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
    457 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    458 		ip->ip_off |= htons(IP_DF);
    459 
    460 #ifdef IPSEC
    461 	/* Perform IPsec processing, if any. */
    462 	error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, &done);
    463 	if (error || done) {
    464 		goto done;
    465 	}
    466 #endif
    467 
    468 	/*
    469 	 * Run through list of hooks for output packets.
    470 	 */
    471 	if ((error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    472 		goto done;
    473 	if (m == NULL)
    474 		goto done;
    475 
    476 	ip = mtod(m, struct ip *);
    477 	hlen = ip->ip_hl << 2;
    478 
    479 	m->m_pkthdr.csum_data |= hlen << 16;
    480 
    481 #if IFA_STATS
    482 	/*
    483 	 * search for the source address structure to
    484 	 * maintain output statistics.
    485 	 */
    486 	INADDR_TO_IA(ip->ip_src, ia);
    487 #endif
    488 
    489 	/* Maybe skip checksums on loopback interfaces. */
    490 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    491 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    492 	}
    493 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    494 	/*
    495 	 * If small enough for mtu of path, or if using TCP segmentation
    496 	 * offload, can just send directly.
    497 	 */
    498 	if (ntohs(ip->ip_len) <= mtu ||
    499 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    500 #if IFA_STATS
    501 		if (ia)
    502 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    503 #endif
    504 		/*
    505 		 * Always initialize the sum to 0!  Some HW assisted
    506 		 * checksumming requires this.
    507 		 */
    508 		ip->ip_sum = 0;
    509 
    510 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    511 			/*
    512 			 * Perform any checksums that the hardware can't do
    513 			 * for us.
    514 			 *
    515 			 * XXX Does any hardware require the {th,uh}_sum
    516 			 * XXX fields to be 0?
    517 			 */
    518 			if (sw_csum & M_CSUM_IPv4) {
    519 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    520 				ip->ip_sum = in_cksum(m, hlen);
    521 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    522 			}
    523 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    524 				if (IN_NEED_CHECKSUM(ifp,
    525 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    526 					in_delayed_cksum(m);
    527 				}
    528 				m->m_pkthdr.csum_flags &=
    529 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    530 			}
    531 		}
    532 
    533 		if (__predict_true(
    534 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    535 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    536 			KERNEL_LOCK(1, NULL);
    537 			error =
    538 			    (*ifp->if_output)(ifp, m,
    539 				(m->m_flags & M_MCAST) ?
    540 				    sintocsa(rdst) : sintocsa(dst),
    541 				rt);
    542 			KERNEL_UNLOCK_ONE(NULL);
    543 		} else {
    544 			error =
    545 			    ip_tso_output(ifp, m,
    546 				(m->m_flags & M_MCAST) ?
    547 				    sintocsa(rdst) : sintocsa(dst),
    548 				rt);
    549 		}
    550 		goto done;
    551 	}
    552 
    553 	/*
    554 	 * We can't use HW checksumming if we're about to
    555 	 * to fragment the packet.
    556 	 *
    557 	 * XXX Some hardware can do this.
    558 	 */
    559 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    560 		if (IN_NEED_CHECKSUM(ifp,
    561 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    562 			in_delayed_cksum(m);
    563 		}
    564 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    565 	}
    566 
    567 	/*
    568 	 * Too large for interface; fragment if possible.
    569 	 * Must be able to put at least 8 bytes per fragment.
    570 	 */
    571 	if (ntohs(ip->ip_off) & IP_DF) {
    572 		if (flags & IP_RETURNMTU) {
    573 			struct inpcb *inp;
    574 
    575 			KASSERT(so && solocked(so));
    576 			inp = sotoinpcb(so);
    577 			inp->inp_errormtu = mtu;
    578 		}
    579 		error = EMSGSIZE;
    580 		IP_STATINC(IP_STAT_CANTFRAG);
    581 		goto bad;
    582 	}
    583 
    584 	error = ip_fragment(m, ifp, mtu);
    585 	if (error) {
    586 		m = NULL;
    587 		goto bad;
    588 	}
    589 
    590 	for (; m; m = m0) {
    591 		m0 = m->m_nextpkt;
    592 		m->m_nextpkt = 0;
    593 		if (error == 0) {
    594 #if IFA_STATS
    595 			if (ia)
    596 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    597 				    ntohs(ip->ip_len);
    598 #endif
    599 			/*
    600 			 * If we get there, the packet has not been handled by
    601 			 * IPsec whereas it should have. Now that it has been
    602 			 * fragmented, re-inject it in ip_output so that IPsec
    603 			 * processing can occur.
    604 			 */
    605 			if (natt_frag) {
    606 				error = ip_output(m, opt, ro,
    607 				    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    608 				    imo, so);
    609 			} else {
    610 				KASSERT((m->m_pkthdr.csum_flags &
    611 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    612 				KERNEL_LOCK(1, NULL);
    613 				error = (*ifp->if_output)(ifp, m,
    614 				    (m->m_flags & M_MCAST) ?
    615 				    sintocsa(rdst) : sintocsa(dst), rt);
    616 				KERNEL_UNLOCK_ONE(NULL);
    617 			}
    618 		} else
    619 			m_freem(m);
    620 	}
    621 
    622 	if (error == 0)
    623 		IP_STATINC(IP_STAT_FRAGMENTED);
    624 done:
    625 	rtcache_free(&iproute);
    626 	if (sp) {
    627 #ifdef IPSEC
    628 		KEY_FREESP(&sp);
    629 #endif
    630 	}
    631 	return error;
    632 bad:
    633 	m_freem(m);
    634 	goto done;
    635 }
    636 
    637 int
    638 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    639 {
    640 	struct ip *ip, *mhip;
    641 	struct mbuf *m0;
    642 	int len, hlen, off;
    643 	int mhlen, firstlen;
    644 	struct mbuf **mnext;
    645 	int sw_csum = m->m_pkthdr.csum_flags;
    646 	int fragments = 0;
    647 	int s;
    648 	int error = 0;
    649 
    650 	ip = mtod(m, struct ip *);
    651 	hlen = ip->ip_hl << 2;
    652 	if (ifp != NULL)
    653 		sw_csum &= ~ifp->if_csum_flags_tx;
    654 
    655 	len = (mtu - hlen) &~ 7;
    656 	if (len < 8) {
    657 		m_freem(m);
    658 		return (EMSGSIZE);
    659 	}
    660 
    661 	firstlen = len;
    662 	mnext = &m->m_nextpkt;
    663 
    664 	/*
    665 	 * Loop through length of segment after first fragment,
    666 	 * make new header and copy data of each part and link onto chain.
    667 	 */
    668 	m0 = m;
    669 	mhlen = sizeof (struct ip);
    670 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    671 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    672 		if (m == 0) {
    673 			error = ENOBUFS;
    674 			IP_STATINC(IP_STAT_ODROPPED);
    675 			goto sendorfree;
    676 		}
    677 		MCLAIM(m, m0->m_owner);
    678 		*mnext = m;
    679 		mnext = &m->m_nextpkt;
    680 		m->m_data += max_linkhdr;
    681 		mhip = mtod(m, struct ip *);
    682 		*mhip = *ip;
    683 		/* we must inherit MCAST and BCAST flags */
    684 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    685 		if (hlen > sizeof (struct ip)) {
    686 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    687 			mhip->ip_hl = mhlen >> 2;
    688 		}
    689 		m->m_len = mhlen;
    690 		mhip->ip_off = ((off - hlen) >> 3) +
    691 		    (ntohs(ip->ip_off) & ~IP_MF);
    692 		if (ip->ip_off & htons(IP_MF))
    693 			mhip->ip_off |= IP_MF;
    694 		if (off + len >= ntohs(ip->ip_len))
    695 			len = ntohs(ip->ip_len) - off;
    696 		else
    697 			mhip->ip_off |= IP_MF;
    698 		HTONS(mhip->ip_off);
    699 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    700 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    701 		if (m->m_next == 0) {
    702 			error = ENOBUFS;	/* ??? */
    703 			IP_STATINC(IP_STAT_ODROPPED);
    704 			goto sendorfree;
    705 		}
    706 		m->m_pkthdr.len = mhlen + len;
    707 		m->m_pkthdr.rcvif = NULL;
    708 		mhip->ip_sum = 0;
    709 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    710 		if (sw_csum & M_CSUM_IPv4) {
    711 			mhip->ip_sum = in_cksum(m, mhlen);
    712 		} else {
    713 			/*
    714 			 * checksum is hw-offloaded or not necessary.
    715 			 */
    716 			m->m_pkthdr.csum_flags |=
    717 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    718 			m->m_pkthdr.csum_data |= mhlen << 16;
    719 			KASSERT(!(ifp != NULL &&
    720 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    721 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    722 		}
    723 		IP_STATINC(IP_STAT_OFRAGMENTS);
    724 		fragments++;
    725 	}
    726 	/*
    727 	 * Update first fragment by trimming what's been copied out
    728 	 * and updating header, then send each fragment (in order).
    729 	 */
    730 	m = m0;
    731 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    732 	m->m_pkthdr.len = hlen + firstlen;
    733 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    734 	ip->ip_off |= htons(IP_MF);
    735 	ip->ip_sum = 0;
    736 	if (sw_csum & M_CSUM_IPv4) {
    737 		ip->ip_sum = in_cksum(m, hlen);
    738 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    739 	} else {
    740 		/*
    741 		 * checksum is hw-offloaded or not necessary.
    742 		 */
    743 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    744 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    745 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    746 			sizeof(struct ip));
    747 	}
    748 sendorfree:
    749 	/*
    750 	 * If there is no room for all the fragments, don't queue
    751 	 * any of them.
    752 	 */
    753 	if (ifp != NULL) {
    754 		s = splnet();
    755 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    756 		    error == 0) {
    757 			error = ENOBUFS;
    758 			IP_STATINC(IP_STAT_ODROPPED);
    759 			IFQ_INC_DROPS(&ifp->if_snd);
    760 		}
    761 		splx(s);
    762 	}
    763 	if (error) {
    764 		for (m = m0; m; m = m0) {
    765 			m0 = m->m_nextpkt;
    766 			m->m_nextpkt = NULL;
    767 			m_freem(m);
    768 		}
    769 	}
    770 	return (error);
    771 }
    772 
    773 /*
    774  * Process a delayed payload checksum calculation.
    775  */
    776 void
    777 in_delayed_cksum(struct mbuf *m)
    778 {
    779 	struct ip *ip;
    780 	u_int16_t csum, offset;
    781 
    782 	ip = mtod(m, struct ip *);
    783 	offset = ip->ip_hl << 2;
    784 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    785 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    786 		csum = 0xffff;
    787 
    788 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    789 
    790 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    791 		/* This happen when ip options were inserted
    792 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    793 		    m->m_len, offset, ip->ip_p);
    794 		 */
    795 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    796 	} else
    797 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    798 }
    799 
    800 /*
    801  * Determine the maximum length of the options to be inserted;
    802  * we would far rather allocate too much space rather than too little.
    803  */
    804 
    805 u_int
    806 ip_optlen(struct inpcb *inp)
    807 {
    808 	struct mbuf *m = inp->inp_options;
    809 
    810 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    811 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    812 	}
    813 	return 0;
    814 }
    815 
    816 /*
    817  * Insert IP options into preformed packet.
    818  * Adjust IP destination as required for IP source routing,
    819  * as indicated by a non-zero in_addr at the start of the options.
    820  */
    821 static struct mbuf *
    822 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    823 {
    824 	struct ipoption *p = mtod(opt, struct ipoption *);
    825 	struct mbuf *n;
    826 	struct ip *ip = mtod(m, struct ip *);
    827 	unsigned optlen;
    828 
    829 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    830 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    831 		return (m);		/* XXX should fail */
    832 	if (!in_nullhost(p->ipopt_dst))
    833 		ip->ip_dst = p->ipopt_dst;
    834 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    835 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    836 		if (n == 0)
    837 			return (m);
    838 		MCLAIM(n, m->m_owner);
    839 		M_MOVE_PKTHDR(n, m);
    840 		m->m_len -= sizeof(struct ip);
    841 		m->m_data += sizeof(struct ip);
    842 		n->m_next = m;
    843 		m = n;
    844 		m->m_len = optlen + sizeof(struct ip);
    845 		m->m_data += max_linkhdr;
    846 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    847 	} else {
    848 		m->m_data -= optlen;
    849 		m->m_len += optlen;
    850 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    851 	}
    852 	m->m_pkthdr.len += optlen;
    853 	ip = mtod(m, struct ip *);
    854 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    855 	*phlen = sizeof(struct ip) + optlen;
    856 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    857 	return (m);
    858 }
    859 
    860 /*
    861  * Copy options from ip to jp,
    862  * omitting those not copied during fragmentation.
    863  */
    864 int
    865 ip_optcopy(struct ip *ip, struct ip *jp)
    866 {
    867 	u_char *cp, *dp;
    868 	int opt, optlen, cnt;
    869 
    870 	cp = (u_char *)(ip + 1);
    871 	dp = (u_char *)(jp + 1);
    872 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    873 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    874 		opt = cp[0];
    875 		if (opt == IPOPT_EOL)
    876 			break;
    877 		if (opt == IPOPT_NOP) {
    878 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    879 			*dp++ = IPOPT_NOP;
    880 			optlen = 1;
    881 			continue;
    882 		}
    883 
    884 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
    885 		optlen = cp[IPOPT_OLEN];
    886 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
    887 
    888 		/* Invalid lengths should have been caught by ip_dooptions. */
    889 		if (optlen > cnt)
    890 			optlen = cnt;
    891 		if (IPOPT_COPIED(opt)) {
    892 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
    893 			dp += optlen;
    894 		}
    895 	}
    896 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
    897 		*dp++ = IPOPT_EOL;
    898 	return (optlen);
    899 }
    900 
    901 /*
    902  * IP socket option processing.
    903  */
    904 int
    905 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    906 {
    907 	struct inpcb *inp = sotoinpcb(so);
    908 	struct ip *ip = &inp->inp_ip;
    909 	int inpflags = inp->inp_flags;
    910 	int optval = 0, error = 0;
    911 
    912 	if (sopt->sopt_level != IPPROTO_IP) {
    913 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
    914 			return 0;
    915 		return ENOPROTOOPT;
    916 	}
    917 
    918 	switch (op) {
    919 	case PRCO_SETOPT:
    920 		switch (sopt->sopt_name) {
    921 		case IP_OPTIONS:
    922 #ifdef notyet
    923 		case IP_RETOPTS:
    924 #endif
    925 			error = ip_pcbopts(inp, sopt);
    926 			break;
    927 
    928 		case IP_TOS:
    929 		case IP_TTL:
    930 		case IP_MINTTL:
    931 		case IP_PKTINFO:
    932 		case IP_RECVOPTS:
    933 		case IP_RECVRETOPTS:
    934 		case IP_RECVDSTADDR:
    935 		case IP_RECVIF:
    936 		case IP_RECVPKTINFO:
    937 		case IP_RECVTTL:
    938 			error = sockopt_getint(sopt, &optval);
    939 			if (error)
    940 				break;
    941 
    942 			switch (sopt->sopt_name) {
    943 			case IP_TOS:
    944 				ip->ip_tos = optval;
    945 				break;
    946 
    947 			case IP_TTL:
    948 				ip->ip_ttl = optval;
    949 				break;
    950 
    951 			case IP_MINTTL:
    952 				if (optval > 0 && optval <= MAXTTL)
    953 					inp->inp_ip_minttl = optval;
    954 				else
    955 					error = EINVAL;
    956 				break;
    957 #define	OPTSET(bit) \
    958 	if (optval) \
    959 		inpflags |= bit; \
    960 	else \
    961 		inpflags &= ~bit;
    962 
    963 			case IP_PKTINFO:
    964 				OPTSET(INP_PKTINFO);
    965 				break;
    966 
    967 			case IP_RECVOPTS:
    968 				OPTSET(INP_RECVOPTS);
    969 				break;
    970 
    971 			case IP_RECVPKTINFO:
    972 				OPTSET(INP_RECVPKTINFO);
    973 				break;
    974 
    975 			case IP_RECVRETOPTS:
    976 				OPTSET(INP_RECVRETOPTS);
    977 				break;
    978 
    979 			case IP_RECVDSTADDR:
    980 				OPTSET(INP_RECVDSTADDR);
    981 				break;
    982 
    983 			case IP_RECVIF:
    984 				OPTSET(INP_RECVIF);
    985 				break;
    986 
    987 			case IP_RECVTTL:
    988 				OPTSET(INP_RECVTTL);
    989 				break;
    990 			}
    991 		break;
    992 #undef OPTSET
    993 
    994 		case IP_MULTICAST_IF:
    995 		case IP_MULTICAST_TTL:
    996 		case IP_MULTICAST_LOOP:
    997 		case IP_ADD_MEMBERSHIP:
    998 		case IP_DROP_MEMBERSHIP:
    999 			error = ip_setmoptions(inp, sopt);
   1000 			break;
   1001 
   1002 		case IP_PORTRANGE:
   1003 			error = sockopt_getint(sopt, &optval);
   1004 			if (error)
   1005 				break;
   1006 
   1007 			switch (optval) {
   1008 			case IP_PORTRANGE_DEFAULT:
   1009 			case IP_PORTRANGE_HIGH:
   1010 				inpflags &= ~(INP_LOWPORT);
   1011 				break;
   1012 
   1013 			case IP_PORTRANGE_LOW:
   1014 				inpflags |= INP_LOWPORT;
   1015 				break;
   1016 
   1017 			default:
   1018 				error = EINVAL;
   1019 				break;
   1020 			}
   1021 			break;
   1022 
   1023 		case IP_PORTALGO:
   1024 			error = sockopt_getint(sopt, &optval);
   1025 			if (error)
   1026 				break;
   1027 
   1028 			error = portalgo_algo_index_select(
   1029 			    (struct inpcb_hdr *)inp, optval);
   1030 			break;
   1031 
   1032 #if defined(IPSEC)
   1033 		case IP_IPSEC_POLICY:
   1034 			error = ipsec4_set_policy(inp, sopt->sopt_name,
   1035 			    sopt->sopt_data, sopt->sopt_size, curlwp->l_cred);
   1036 			break;
   1037 #endif /*IPSEC*/
   1038 
   1039 		default:
   1040 			error = ENOPROTOOPT;
   1041 			break;
   1042 		}
   1043 		break;
   1044 
   1045 	case PRCO_GETOPT:
   1046 		switch (sopt->sopt_name) {
   1047 		case IP_OPTIONS:
   1048 		case IP_RETOPTS: {
   1049 			struct mbuf *mopts = inp->inp_options;
   1050 
   1051 			if (mopts) {
   1052 				struct mbuf *m;
   1053 
   1054 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1055 				if (m == NULL) {
   1056 					error = ENOBUFS;
   1057 					break;
   1058 				}
   1059 				error = sockopt_setmbuf(sopt, m);
   1060 			}
   1061 			break;
   1062 		}
   1063 		case IP_PKTINFO:
   1064 		case IP_TOS:
   1065 		case IP_TTL:
   1066 		case IP_MINTTL:
   1067 		case IP_RECVOPTS:
   1068 		case IP_RECVRETOPTS:
   1069 		case IP_RECVDSTADDR:
   1070 		case IP_RECVIF:
   1071 		case IP_RECVPKTINFO:
   1072 		case IP_RECVTTL:
   1073 		case IP_ERRORMTU:
   1074 			switch (sopt->sopt_name) {
   1075 			case IP_TOS:
   1076 				optval = ip->ip_tos;
   1077 				break;
   1078 
   1079 			case IP_TTL:
   1080 				optval = ip->ip_ttl;
   1081 				break;
   1082 
   1083 			case IP_MINTTL:
   1084 				optval = inp->inp_ip_minttl;
   1085 				break;
   1086 
   1087 			case IP_ERRORMTU:
   1088 				optval = inp->inp_errormtu;
   1089 				break;
   1090 
   1091 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1092 
   1093 			case IP_PKTINFO:
   1094 				optval = OPTBIT(INP_PKTINFO);
   1095 				break;
   1096 
   1097 			case IP_RECVOPTS:
   1098 				optval = OPTBIT(INP_RECVOPTS);
   1099 				break;
   1100 
   1101 			case IP_RECVPKTINFO:
   1102 				optval = OPTBIT(INP_RECVPKTINFO);
   1103 				break;
   1104 
   1105 			case IP_RECVRETOPTS:
   1106 				optval = OPTBIT(INP_RECVRETOPTS);
   1107 				break;
   1108 
   1109 			case IP_RECVDSTADDR:
   1110 				optval = OPTBIT(INP_RECVDSTADDR);
   1111 				break;
   1112 
   1113 			case IP_RECVIF:
   1114 				optval = OPTBIT(INP_RECVIF);
   1115 				break;
   1116 
   1117 			case IP_RECVTTL:
   1118 				optval = OPTBIT(INP_RECVTTL);
   1119 				break;
   1120 			}
   1121 			error = sockopt_setint(sopt, optval);
   1122 			break;
   1123 
   1124 #if 0	/* defined(IPSEC) */
   1125 		case IP_IPSEC_POLICY:
   1126 		{
   1127 			struct mbuf *m = NULL;
   1128 
   1129 			/* XXX this will return EINVAL as sopt is empty */
   1130 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1131 			    sopt->sopt_size, &m);
   1132 			if (error == 0)
   1133 				error = sockopt_setmbuf(sopt, m);
   1134 			break;
   1135 		}
   1136 #endif /*IPSEC*/
   1137 
   1138 		case IP_MULTICAST_IF:
   1139 		case IP_MULTICAST_TTL:
   1140 		case IP_MULTICAST_LOOP:
   1141 		case IP_ADD_MEMBERSHIP:
   1142 		case IP_DROP_MEMBERSHIP:
   1143 			error = ip_getmoptions(inp, sopt);
   1144 			break;
   1145 
   1146 		case IP_PORTRANGE:
   1147 			if (inpflags & INP_LOWPORT)
   1148 				optval = IP_PORTRANGE_LOW;
   1149 			else
   1150 				optval = IP_PORTRANGE_DEFAULT;
   1151 			error = sockopt_setint(sopt, optval);
   1152 			break;
   1153 
   1154 		case IP_PORTALGO:
   1155 			optval = inp->inp_portalgo;
   1156 			error = sockopt_setint(sopt, optval);
   1157 			break;
   1158 
   1159 		default:
   1160 			error = ENOPROTOOPT;
   1161 			break;
   1162 		}
   1163 		break;
   1164 	}
   1165 
   1166 	if (!error) {
   1167 		inp->inp_flags = inpflags;
   1168 	}
   1169 	return error;
   1170 }
   1171 
   1172 /*
   1173  * Set up IP options in pcb for insertion in output packets.
   1174  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1175  * with destination address if source routed.
   1176  */
   1177 static int
   1178 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1179 {
   1180 	struct mbuf *m;
   1181 	const u_char *cp;
   1182 	u_char *dp;
   1183 	int cnt;
   1184 
   1185 	/* Turn off any old options. */
   1186 	if (inp->inp_options) {
   1187 		m_free(inp->inp_options);
   1188 	}
   1189 	inp->inp_options = NULL;
   1190 	if ((cnt = sopt->sopt_size) == 0) {
   1191 		/* Only turning off any previous options. */
   1192 		return 0;
   1193 	}
   1194 	cp = sopt->sopt_data;
   1195 
   1196 #ifndef	__vax__
   1197 	if (cnt % sizeof(int32_t))
   1198 		return (EINVAL);
   1199 #endif
   1200 
   1201 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1202 	if (m == NULL)
   1203 		return (ENOBUFS);
   1204 
   1205 	dp = mtod(m, u_char *);
   1206 	memset(dp, 0, sizeof(struct in_addr));
   1207 	dp += sizeof(struct in_addr);
   1208 	m->m_len = sizeof(struct in_addr);
   1209 
   1210 	/*
   1211 	 * IP option list according to RFC791. Each option is of the form
   1212 	 *
   1213 	 *	[optval] [olen] [(olen - 2) data bytes]
   1214 	 *
   1215 	 * We validate the list and copy options to an mbuf for prepending
   1216 	 * to data packets. The IP first-hop destination address will be
   1217 	 * stored before actual options and is zero if unset.
   1218 	 */
   1219 	while (cnt > 0) {
   1220 		uint8_t optval, olen, offset;
   1221 
   1222 		optval = cp[IPOPT_OPTVAL];
   1223 
   1224 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1225 			olen = 1;
   1226 		} else {
   1227 			if (cnt < IPOPT_OLEN + 1)
   1228 				goto bad;
   1229 
   1230 			olen = cp[IPOPT_OLEN];
   1231 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1232 				goto bad;
   1233 		}
   1234 
   1235 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1236 			/*
   1237 			 * user process specifies route as:
   1238 			 *	->A->B->C->D
   1239 			 * D must be our final destination (but we can't
   1240 			 * check that since we may not have connected yet).
   1241 			 * A is first hop destination, which doesn't appear in
   1242 			 * actual IP option, but is stored before the options.
   1243 			 */
   1244 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1245 				goto bad;
   1246 
   1247 			offset = cp[IPOPT_OFFSET];
   1248 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1249 			    sizeof(struct in_addr));
   1250 
   1251 			cp += sizeof(struct in_addr);
   1252 			cnt -= sizeof(struct in_addr);
   1253 			olen -= sizeof(struct in_addr);
   1254 
   1255 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1256 				goto bad;
   1257 
   1258 			memcpy(dp, cp, olen);
   1259 			dp[IPOPT_OPTVAL] = optval;
   1260 			dp[IPOPT_OLEN] = olen;
   1261 			dp[IPOPT_OFFSET] = offset;
   1262 			break;
   1263 		} else {
   1264 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1265 				goto bad;
   1266 
   1267 			memcpy(dp, cp, olen);
   1268 			break;
   1269 		}
   1270 
   1271 		dp += olen;
   1272 		m->m_len += olen;
   1273 
   1274 		if (optval == IPOPT_EOL)
   1275 			break;
   1276 
   1277 		cp += olen;
   1278 		cnt -= olen;
   1279 	}
   1280 
   1281 	inp->inp_options = m;
   1282 	return 0;
   1283 bad:
   1284 	(void)m_free(m);
   1285 	return EINVAL;
   1286 }
   1287 
   1288 /*
   1289  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1290  */
   1291 static struct ifnet *
   1292 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1293 {
   1294 	int ifindex;
   1295 	struct ifnet *ifp = NULL;
   1296 	struct in_ifaddr *ia;
   1297 
   1298 	if (ifindexp)
   1299 		*ifindexp = 0;
   1300 	if (ntohl(a->s_addr) >> 24 == 0) {
   1301 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1302 		ifp = if_byindex(ifindex);
   1303 		if (!ifp)
   1304 			return NULL;
   1305 		if (ifindexp)
   1306 			*ifindexp = ifindex;
   1307 	} else {
   1308 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1309 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1310 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1311 				ifp = ia->ia_ifp;
   1312 				break;
   1313 			}
   1314 		}
   1315 	}
   1316 	return ifp;
   1317 }
   1318 
   1319 static int
   1320 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1321 {
   1322 	u_int tval;
   1323 	u_char cval;
   1324 	int error;
   1325 
   1326 	if (sopt == NULL)
   1327 		return EINVAL;
   1328 
   1329 	switch (sopt->sopt_size) {
   1330 	case sizeof(u_char):
   1331 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1332 		tval = cval;
   1333 		break;
   1334 
   1335 	case sizeof(u_int):
   1336 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1337 		break;
   1338 
   1339 	default:
   1340 		error = EINVAL;
   1341 	}
   1342 
   1343 	if (error)
   1344 		return error;
   1345 
   1346 	if (tval > maxval)
   1347 		return EINVAL;
   1348 
   1349 	*val = tval;
   1350 	return 0;
   1351 }
   1352 
   1353 /*
   1354  * Set the IP multicast options in response to user setsockopt().
   1355  */
   1356 static int
   1357 ip_setmoptions(struct inpcb *inp, const struct sockopt *sopt)
   1358 {
   1359 	struct ip_moptions *imo = inp->inp_moptions;
   1360 	struct in_addr addr;
   1361 	struct ip_mreq lmreq, *mreq;
   1362 	struct ifnet *ifp;
   1363 	int i, ifindex, error = 0;
   1364 
   1365 	if (!imo) {
   1366 		/*
   1367 		 * No multicast option buffer attached to the pcb;
   1368 		 * allocate one and initialize to default values.
   1369 		 */
   1370 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1371 		if (imo == NULL)
   1372 			return ENOBUFS;
   1373 
   1374 		imo->imo_multicast_ifp = NULL;
   1375 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1376 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1377 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1378 		imo->imo_num_memberships = 0;
   1379 		inp->inp_moptions = imo;
   1380 	}
   1381 
   1382 	switch (sopt->sopt_name) {
   1383 	case IP_MULTICAST_IF:
   1384 		/*
   1385 		 * Select the interface for outgoing multicast packets.
   1386 		 */
   1387 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1388 		if (error)
   1389 			break;
   1390 
   1391 		/*
   1392 		 * INADDR_ANY is used to remove a previous selection.
   1393 		 * When no interface is selected, a default one is
   1394 		 * chosen every time a multicast packet is sent.
   1395 		 */
   1396 		if (in_nullhost(addr)) {
   1397 			imo->imo_multicast_ifp = NULL;
   1398 			break;
   1399 		}
   1400 		/*
   1401 		 * The selected interface is identified by its local
   1402 		 * IP address.  Find the interface and confirm that
   1403 		 * it supports multicasting.
   1404 		 */
   1405 		ifp = ip_multicast_if(&addr, &ifindex);
   1406 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1407 			error = EADDRNOTAVAIL;
   1408 			break;
   1409 		}
   1410 		imo->imo_multicast_ifp = ifp;
   1411 		if (ifindex)
   1412 			imo->imo_multicast_addr = addr;
   1413 		else
   1414 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1415 		break;
   1416 
   1417 	case IP_MULTICAST_TTL:
   1418 		/*
   1419 		 * Set the IP time-to-live for outgoing multicast packets.
   1420 		 */
   1421 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1422 		break;
   1423 
   1424 	case IP_MULTICAST_LOOP:
   1425 		/*
   1426 		 * Set the loopback flag for outgoing multicast packets.
   1427 		 * Must be zero or one.
   1428 		 */
   1429 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1430 		break;
   1431 
   1432 	case IP_ADD_MEMBERSHIP:
   1433 		/*
   1434 		 * Add a multicast group membership.
   1435 		 * Group must be a valid IP multicast address.
   1436 		 */
   1437 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1438 		if (error)
   1439 			break;
   1440 
   1441 		mreq = &lmreq;
   1442 
   1443 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1444 			error = EINVAL;
   1445 			break;
   1446 		}
   1447 		/*
   1448 		 * If no interface address was provided, use the interface of
   1449 		 * the route to the given multicast address.
   1450 		 */
   1451 		if (in_nullhost(mreq->imr_interface)) {
   1452 			struct rtentry *rt;
   1453 			union {
   1454 				struct sockaddr		dst;
   1455 				struct sockaddr_in	dst4;
   1456 			} u;
   1457 			struct route ro;
   1458 
   1459 			memset(&ro, 0, sizeof(ro));
   1460 
   1461 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1462 			rtcache_setdst(&ro, &u.dst);
   1463 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1464 			                                        : NULL;
   1465 			rtcache_free(&ro);
   1466 		} else {
   1467 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1468 		}
   1469 		/*
   1470 		 * See if we found an interface, and confirm that it
   1471 		 * supports multicast.
   1472 		 */
   1473 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1474 			error = EADDRNOTAVAIL;
   1475 			break;
   1476 		}
   1477 		/*
   1478 		 * See if the membership already exists or if all the
   1479 		 * membership slots are full.
   1480 		 */
   1481 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1482 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1483 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1484 				      mreq->imr_multiaddr))
   1485 				break;
   1486 		}
   1487 		if (i < imo->imo_num_memberships) {
   1488 			error = EADDRINUSE;
   1489 			break;
   1490 		}
   1491 		if (i == IP_MAX_MEMBERSHIPS) {
   1492 			error = ETOOMANYREFS;
   1493 			break;
   1494 		}
   1495 		/*
   1496 		 * Everything looks good; add a new record to the multicast
   1497 		 * address list for the given interface.
   1498 		 */
   1499 		if ((imo->imo_membership[i] =
   1500 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1501 			error = ENOBUFS;
   1502 			break;
   1503 		}
   1504 		++imo->imo_num_memberships;
   1505 		break;
   1506 
   1507 	case IP_DROP_MEMBERSHIP:
   1508 		/*
   1509 		 * Drop a multicast group membership.
   1510 		 * Group must be a valid IP multicast address.
   1511 		 */
   1512 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1513 		if (error)
   1514 			break;
   1515 
   1516 		mreq = &lmreq;
   1517 
   1518 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1519 			error = EINVAL;
   1520 			break;
   1521 		}
   1522 		/*
   1523 		 * If an interface address was specified, get a pointer
   1524 		 * to its ifnet structure.
   1525 		 */
   1526 		if (in_nullhost(mreq->imr_interface))
   1527 			ifp = NULL;
   1528 		else {
   1529 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1530 			if (ifp == NULL) {
   1531 				error = EADDRNOTAVAIL;
   1532 				break;
   1533 			}
   1534 		}
   1535 		/*
   1536 		 * Find the membership in the membership array.
   1537 		 */
   1538 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1539 			if ((ifp == NULL ||
   1540 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1541 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1542 				       mreq->imr_multiaddr))
   1543 				break;
   1544 		}
   1545 		if (i == imo->imo_num_memberships) {
   1546 			error = EADDRNOTAVAIL;
   1547 			break;
   1548 		}
   1549 		/*
   1550 		 * Give up the multicast address record to which the
   1551 		 * membership points.
   1552 		 */
   1553 		in_delmulti(imo->imo_membership[i]);
   1554 		/*
   1555 		 * Remove the gap in the membership array.
   1556 		 */
   1557 		for (++i; i < imo->imo_num_memberships; ++i)
   1558 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1559 		--imo->imo_num_memberships;
   1560 		break;
   1561 
   1562 	default:
   1563 		error = EOPNOTSUPP;
   1564 		break;
   1565 	}
   1566 
   1567 	/*
   1568 	 * If all options have default values, no need to keep the mbuf.
   1569 	 */
   1570 	if (imo->imo_multicast_ifp == NULL &&
   1571 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1572 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1573 	    imo->imo_num_memberships == 0) {
   1574 		kmem_free(imo, sizeof(*imo));
   1575 		inp->inp_moptions = NULL;
   1576 	}
   1577 
   1578 	return error;
   1579 }
   1580 
   1581 /*
   1582  * Return the IP multicast options in response to user getsockopt().
   1583  */
   1584 static int
   1585 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
   1586 {
   1587 	struct ip_moptions *imo = inp->inp_moptions;
   1588 	struct in_addr addr;
   1589 	struct in_ifaddr *ia;
   1590 	uint8_t optval;
   1591 	int error = 0;
   1592 
   1593 	switch (sopt->sopt_name) {
   1594 	case IP_MULTICAST_IF:
   1595 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1596 			addr = zeroin_addr;
   1597 		else if (imo->imo_multicast_addr.s_addr) {
   1598 			/* return the value user has set */
   1599 			addr = imo->imo_multicast_addr;
   1600 		} else {
   1601 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1602 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1603 		}
   1604 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1605 		break;
   1606 
   1607 	case IP_MULTICAST_TTL:
   1608 		optval = imo ? imo->imo_multicast_ttl
   1609 			     : IP_DEFAULT_MULTICAST_TTL;
   1610 
   1611 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1612 		break;
   1613 
   1614 	case IP_MULTICAST_LOOP:
   1615 		optval = imo ? imo->imo_multicast_loop
   1616 			     : IP_DEFAULT_MULTICAST_LOOP;
   1617 
   1618 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1619 		break;
   1620 
   1621 	default:
   1622 		error = EOPNOTSUPP;
   1623 	}
   1624 
   1625 	return error;
   1626 }
   1627 
   1628 /*
   1629  * Discard the IP multicast options.
   1630  */
   1631 void
   1632 ip_freemoptions(struct ip_moptions *imo)
   1633 {
   1634 	int i;
   1635 
   1636 	if (imo != NULL) {
   1637 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1638 			in_delmulti(imo->imo_membership[i]);
   1639 		kmem_free(imo, sizeof(*imo));
   1640 	}
   1641 }
   1642 
   1643 /*
   1644  * Routine called from ip_output() to loop back a copy of an IP multicast
   1645  * packet to the input queue of a specified interface.  Note that this
   1646  * calls the output routine of the loopback "driver", but with an interface
   1647  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1648  */
   1649 static void
   1650 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1651 {
   1652 	struct ip *ip;
   1653 	struct mbuf *copym;
   1654 
   1655 	copym = m_copypacket(m, M_DONTWAIT);
   1656 	if (copym != NULL
   1657 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1658 		copym = m_pullup(copym, sizeof(struct ip));
   1659 	if (copym == NULL)
   1660 		return;
   1661 	/*
   1662 	 * We don't bother to fragment if the IP length is greater
   1663 	 * than the interface's MTU.  Can this possibly matter?
   1664 	 */
   1665 	ip = mtod(copym, struct ip *);
   1666 
   1667 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1668 		in_delayed_cksum(copym);
   1669 		copym->m_pkthdr.csum_flags &=
   1670 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1671 	}
   1672 
   1673 	ip->ip_sum = 0;
   1674 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1675 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1676 }
   1677