ip_output.c revision 1.230 1 /* $NetBSD: ip_output.c,v 1.230 2014/06/06 00:11:19 rmind Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.230 2014/06/06 00:11:19 rmind Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_mrouting.h"
99
100 #include <sys/param.h>
101 #include <sys/kmem.h>
102 #include <sys/mbuf.h>
103 #include <sys/protosw.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/kauth.h>
107 #ifdef IPSEC
108 #include <sys/domain.h>
109 #endif
110 #include <sys/systm.h>
111
112 #include <net/if.h>
113 #include <net/route.h>
114 #include <net/pfil.h>
115
116 #include <netinet/in.h>
117 #include <netinet/in_systm.h>
118 #include <netinet/ip.h>
119 #include <netinet/in_pcb.h>
120 #include <netinet/in_var.h>
121 #include <netinet/ip_var.h>
122 #include <netinet/ip_private.h>
123 #include <netinet/in_offload.h>
124 #include <netinet/portalgo.h>
125 #include <netinet/udp.h>
126
127 #ifdef MROUTING
128 #include <netinet/ip_mroute.h>
129 #endif
130
131 #include <netipsec/ipsec.h>
132 #include <netipsec/key.h>
133
134 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
135 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
136 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
137 static void ip_mloopback(struct ifnet *, struct mbuf *,
138 const struct sockaddr_in *);
139 static int ip_setmoptions(struct inpcb *, const struct sockopt *);
140 static int ip_getmoptions(struct inpcb *, struct sockopt *);
141
142 extern pfil_head_t *inet_pfil_hook; /* XXX */
143
144 int ip_do_loopback_cksum = 0;
145
146 /*
147 * IP output. The packet in mbuf chain m contains a skeletal IP
148 * header (with len, off, ttl, proto, tos, src, dst).
149 * The mbuf chain containing the packet will be freed.
150 * The mbuf opt, if present, will not be freed.
151 */
152 int
153 ip_output(struct mbuf *m0, ...)
154 {
155 struct rtentry *rt;
156 struct ip *ip;
157 struct ifnet *ifp;
158 struct mbuf *m = m0;
159 int hlen = sizeof (struct ip);
160 int len, error = 0;
161 struct route iproute;
162 const struct sockaddr_in *dst;
163 struct in_ifaddr *ia;
164 struct mbuf *opt;
165 struct route *ro;
166 int flags, sw_csum;
167 u_long mtu;
168 struct ip_moptions *imo;
169 struct socket *so;
170 va_list ap;
171 #ifdef IPSEC
172 struct secpolicy *sp = NULL;
173 #endif
174 bool natt_frag = false;
175 bool rtmtu_nolock;
176 union {
177 struct sockaddr dst;
178 struct sockaddr_in dst4;
179 } u;
180 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
181 * to the nexthop
182 */
183
184 len = 0;
185 va_start(ap, m0);
186 opt = va_arg(ap, struct mbuf *);
187 ro = va_arg(ap, struct route *);
188 flags = va_arg(ap, int);
189 imo = va_arg(ap, struct ip_moptions *);
190 so = va_arg(ap, struct socket *);
191 va_end(ap);
192
193 MCLAIM(m, &ip_tx_mowner);
194
195 KASSERT((m->m_flags & M_PKTHDR) != 0);
196 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
197 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
198 (M_CSUM_TCPv4|M_CSUM_UDPv4));
199
200 if (opt) {
201 m = ip_insertoptions(m, opt, &len);
202 if (len >= sizeof(struct ip))
203 hlen = len;
204 }
205 ip = mtod(m, struct ip *);
206
207 /*
208 * Fill in IP header.
209 */
210 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
211 ip->ip_v = IPVERSION;
212 ip->ip_off = htons(0);
213 /* ip->ip_id filled in after we find out source ia */
214 ip->ip_hl = hlen >> 2;
215 IP_STATINC(IP_STAT_LOCALOUT);
216 } else {
217 hlen = ip->ip_hl << 2;
218 }
219
220 /*
221 * Route packet.
222 */
223 if (ro == NULL) {
224 memset(&iproute, 0, sizeof(iproute));
225 ro = &iproute;
226 }
227 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
228 dst = satocsin(rtcache_getdst(ro));
229
230 /*
231 * If there is a cached route, check that it is to the same
232 * destination and is still up. If not, free it and try again.
233 * The address family should also be checked in case of sharing
234 * the cache with IPv6.
235 */
236 if (dst && (dst->sin_family != AF_INET ||
237 !in_hosteq(dst->sin_addr, ip->ip_dst)))
238 rtcache_free(ro);
239
240 if ((rt = rtcache_validate(ro)) == NULL &&
241 (rt = rtcache_update(ro, 1)) == NULL) {
242 dst = &u.dst4;
243 rtcache_setdst(ro, &u.dst);
244 }
245
246 /*
247 * If routing to interface only, short circuit routing lookup.
248 */
249 if (flags & IP_ROUTETOIF) {
250 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
251 IP_STATINC(IP_STAT_NOROUTE);
252 error = ENETUNREACH;
253 goto bad;
254 }
255 ifp = ia->ia_ifp;
256 mtu = ifp->if_mtu;
257 ip->ip_ttl = 1;
258 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
259 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
260 imo != NULL && imo->imo_multicast_ifp != NULL) {
261 ifp = imo->imo_multicast_ifp;
262 mtu = ifp->if_mtu;
263 IFP_TO_IA(ifp, ia);
264 } else {
265 if (rt == NULL)
266 rt = rtcache_init(ro);
267 if (rt == NULL) {
268 IP_STATINC(IP_STAT_NOROUTE);
269 error = EHOSTUNREACH;
270 goto bad;
271 }
272 ia = ifatoia(rt->rt_ifa);
273 ifp = rt->rt_ifp;
274 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
275 mtu = ifp->if_mtu;
276 rt->rt_use++;
277 if (rt->rt_flags & RTF_GATEWAY)
278 dst = satosin(rt->rt_gateway);
279 }
280 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
281
282 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
283 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
284 bool inmgroup;
285
286 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
287 M_BCAST : M_MCAST;
288 /*
289 * See if the caller provided any multicast options
290 */
291 if (imo != NULL)
292 ip->ip_ttl = imo->imo_multicast_ttl;
293 else
294 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
295
296 /*
297 * if we don't know the outgoing ifp yet, we can't generate
298 * output
299 */
300 if (!ifp) {
301 IP_STATINC(IP_STAT_NOROUTE);
302 error = ENETUNREACH;
303 goto bad;
304 }
305
306 /*
307 * If the packet is multicast or broadcast, confirm that
308 * the outgoing interface can transmit it.
309 */
310 if (((m->m_flags & M_MCAST) &&
311 (ifp->if_flags & IFF_MULTICAST) == 0) ||
312 ((m->m_flags & M_BCAST) &&
313 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
314 IP_STATINC(IP_STAT_NOROUTE);
315 error = ENETUNREACH;
316 goto bad;
317 }
318 /*
319 * If source address not specified yet, use an address
320 * of outgoing interface.
321 */
322 if (in_nullhost(ip->ip_src)) {
323 struct in_ifaddr *xia;
324 struct ifaddr *xifa;
325
326 IFP_TO_IA(ifp, xia);
327 if (!xia) {
328 error = EADDRNOTAVAIL;
329 goto bad;
330 }
331 xifa = &xia->ia_ifa;
332 if (xifa->ifa_getifa != NULL) {
333 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
334 }
335 ip->ip_src = xia->ia_addr.sin_addr;
336 }
337
338 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
339 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
340 /*
341 * If we belong to the destination multicast group
342 * on the outgoing interface, and the caller did not
343 * forbid loopback, loop back a copy.
344 */
345 ip_mloopback(ifp, m, &u.dst4);
346 }
347 #ifdef MROUTING
348 else {
349 /*
350 * If we are acting as a multicast router, perform
351 * multicast forwarding as if the packet had just
352 * arrived on the interface to which we are about
353 * to send. The multicast forwarding function
354 * recursively calls this function, using the
355 * IP_FORWARDING flag to prevent infinite recursion.
356 *
357 * Multicasts that are looped back by ip_mloopback(),
358 * above, will be forwarded by the ip_input() routine,
359 * if necessary.
360 */
361 extern struct socket *ip_mrouter;
362
363 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
364 if (ip_mforward(m, ifp) != 0) {
365 m_freem(m);
366 goto done;
367 }
368 }
369 }
370 #endif
371 /*
372 * Multicasts with a time-to-live of zero may be looped-
373 * back, above, but must not be transmitted on a network.
374 * Also, multicasts addressed to the loopback interface
375 * are not sent -- the above call to ip_mloopback() will
376 * loop back a copy if this host actually belongs to the
377 * destination group on the loopback interface.
378 */
379 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
380 m_freem(m);
381 goto done;
382 }
383 goto sendit;
384 }
385
386 /*
387 * If source address not specified yet, use address
388 * of outgoing interface.
389 */
390 if (in_nullhost(ip->ip_src)) {
391 struct ifaddr *xifa;
392
393 xifa = &ia->ia_ifa;
394 if (xifa->ifa_getifa != NULL)
395 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
396 ip->ip_src = ia->ia_addr.sin_addr;
397 }
398
399 /*
400 * packets with Class-D address as source are not valid per
401 * RFC 1112
402 */
403 if (IN_MULTICAST(ip->ip_src.s_addr)) {
404 IP_STATINC(IP_STAT_ODROPPED);
405 error = EADDRNOTAVAIL;
406 goto bad;
407 }
408
409 /*
410 * Look for broadcast address and and verify user is allowed to
411 * send such a packet.
412 */
413 if (in_broadcast(dst->sin_addr, ifp)) {
414 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
415 error = EADDRNOTAVAIL;
416 goto bad;
417 }
418 if ((flags & IP_ALLOWBROADCAST) == 0) {
419 error = EACCES;
420 goto bad;
421 }
422 /* don't allow broadcast messages to be fragmented */
423 if (ntohs(ip->ip_len) > ifp->if_mtu) {
424 error = EMSGSIZE;
425 goto bad;
426 }
427 m->m_flags |= M_BCAST;
428 } else
429 m->m_flags &= ~M_BCAST;
430
431 sendit:
432 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
433 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
434 ip->ip_id = 0;
435 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
436 ip->ip_id = ip_newid(ia);
437 } else {
438
439 /*
440 * TSO capable interfaces (typically?) increment
441 * ip_id for each segment.
442 * "allocate" enough ids here to increase the chance
443 * for them to be unique.
444 *
445 * note that the following calculation is not
446 * needed to be precise. wasting some ip_id is fine.
447 */
448
449 unsigned int segsz = m->m_pkthdr.segsz;
450 unsigned int datasz = ntohs(ip->ip_len) - hlen;
451 unsigned int num = howmany(datasz, segsz);
452
453 ip->ip_id = ip_newid_range(ia, num);
454 }
455 }
456
457 /*
458 * If we're doing Path MTU Discovery, we need to set DF unless
459 * the route's MTU is locked.
460 */
461 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
462 ip->ip_off |= htons(IP_DF);
463 }
464
465 #ifdef IPSEC
466 if (ipsec_used) {
467 bool ipsec_done = false;
468
469 /* Perform IPsec processing, if any. */
470 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
471 &ipsec_done);
472 if (error || ipsec_done)
473 goto done;
474 }
475 #endif
476
477 /*
478 * Run through list of hooks for output packets.
479 */
480 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
481 if (error)
482 goto done;
483 if (m == NULL)
484 goto done;
485
486 ip = mtod(m, struct ip *);
487 hlen = ip->ip_hl << 2;
488
489 m->m_pkthdr.csum_data |= hlen << 16;
490
491 #if IFA_STATS
492 /*
493 * search for the source address structure to
494 * maintain output statistics.
495 */
496 INADDR_TO_IA(ip->ip_src, ia);
497 #endif
498
499 /* Maybe skip checksums on loopback interfaces. */
500 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
501 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
502 }
503 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
504 /*
505 * If small enough for mtu of path, or if using TCP segmentation
506 * offload, can just send directly.
507 */
508 if (ntohs(ip->ip_len) <= mtu ||
509 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
510 const struct sockaddr *sa;
511
512 #if IFA_STATS
513 if (ia)
514 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
515 #endif
516 /*
517 * Always initialize the sum to 0! Some HW assisted
518 * checksumming requires this.
519 */
520 ip->ip_sum = 0;
521
522 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
523 /*
524 * Perform any checksums that the hardware can't do
525 * for us.
526 *
527 * XXX Does any hardware require the {th,uh}_sum
528 * XXX fields to be 0?
529 */
530 if (sw_csum & M_CSUM_IPv4) {
531 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
532 ip->ip_sum = in_cksum(m, hlen);
533 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
534 }
535 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
536 if (IN_NEED_CHECKSUM(ifp,
537 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
538 in_delayed_cksum(m);
539 }
540 m->m_pkthdr.csum_flags &=
541 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
542 }
543 }
544
545 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
546 if (__predict_true(
547 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
548 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
549 KERNEL_LOCK(1, NULL);
550 error = (*ifp->if_output)(ifp, m, sa, rt);
551 KERNEL_UNLOCK_ONE(NULL);
552 } else {
553 error = ip_tso_output(ifp, m, sa, rt);
554 }
555 goto done;
556 }
557
558 /*
559 * We can't use HW checksumming if we're about to
560 * to fragment the packet.
561 *
562 * XXX Some hardware can do this.
563 */
564 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
565 if (IN_NEED_CHECKSUM(ifp,
566 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
567 in_delayed_cksum(m);
568 }
569 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
570 }
571
572 /*
573 * Too large for interface; fragment if possible.
574 * Must be able to put at least 8 bytes per fragment.
575 */
576 if (ntohs(ip->ip_off) & IP_DF) {
577 if (flags & IP_RETURNMTU) {
578 struct inpcb *inp;
579
580 KASSERT(so && solocked(so));
581 inp = sotoinpcb(so);
582 inp->inp_errormtu = mtu;
583 }
584 error = EMSGSIZE;
585 IP_STATINC(IP_STAT_CANTFRAG);
586 goto bad;
587 }
588
589 error = ip_fragment(m, ifp, mtu);
590 if (error) {
591 m = NULL;
592 goto bad;
593 }
594
595 for (; m; m = m0) {
596 m0 = m->m_nextpkt;
597 m->m_nextpkt = 0;
598 if (error) {
599 m_freem(m);
600 continue;
601 }
602 #if IFA_STATS
603 if (ia)
604 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
605 #endif
606 /*
607 * If we get there, the packet has not been handled by
608 * IPsec whereas it should have. Now that it has been
609 * fragmented, re-inject it in ip_output so that IPsec
610 * processing can occur.
611 */
612 if (natt_frag) {
613 error = ip_output(m, opt, ro,
614 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
615 imo, so);
616 } else {
617 KASSERT((m->m_pkthdr.csum_flags &
618 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
619 KERNEL_LOCK(1, NULL);
620 error = (*ifp->if_output)(ifp, m,
621 (m->m_flags & M_MCAST) ?
622 sintocsa(rdst) : sintocsa(dst), rt);
623 KERNEL_UNLOCK_ONE(NULL);
624 }
625 }
626 if (error == 0) {
627 IP_STATINC(IP_STAT_FRAGMENTED);
628 }
629 done:
630 if (ro == &iproute) {
631 rtcache_free(&iproute);
632 }
633 #ifdef IPSEC
634 if (sp) {
635 KEY_FREESP(&sp);
636 }
637 #endif
638 return error;
639 bad:
640 m_freem(m);
641 goto done;
642 }
643
644 int
645 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
646 {
647 struct ip *ip, *mhip;
648 struct mbuf *m0;
649 int len, hlen, off;
650 int mhlen, firstlen;
651 struct mbuf **mnext;
652 int sw_csum = m->m_pkthdr.csum_flags;
653 int fragments = 0;
654 int s;
655 int error = 0;
656
657 ip = mtod(m, struct ip *);
658 hlen = ip->ip_hl << 2;
659 if (ifp != NULL)
660 sw_csum &= ~ifp->if_csum_flags_tx;
661
662 len = (mtu - hlen) &~ 7;
663 if (len < 8) {
664 m_freem(m);
665 return (EMSGSIZE);
666 }
667
668 firstlen = len;
669 mnext = &m->m_nextpkt;
670
671 /*
672 * Loop through length of segment after first fragment,
673 * make new header and copy data of each part and link onto chain.
674 */
675 m0 = m;
676 mhlen = sizeof (struct ip);
677 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
678 MGETHDR(m, M_DONTWAIT, MT_HEADER);
679 if (m == 0) {
680 error = ENOBUFS;
681 IP_STATINC(IP_STAT_ODROPPED);
682 goto sendorfree;
683 }
684 MCLAIM(m, m0->m_owner);
685 *mnext = m;
686 mnext = &m->m_nextpkt;
687 m->m_data += max_linkhdr;
688 mhip = mtod(m, struct ip *);
689 *mhip = *ip;
690 /* we must inherit MCAST and BCAST flags */
691 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
692 if (hlen > sizeof (struct ip)) {
693 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
694 mhip->ip_hl = mhlen >> 2;
695 }
696 m->m_len = mhlen;
697 mhip->ip_off = ((off - hlen) >> 3) +
698 (ntohs(ip->ip_off) & ~IP_MF);
699 if (ip->ip_off & htons(IP_MF))
700 mhip->ip_off |= IP_MF;
701 if (off + len >= ntohs(ip->ip_len))
702 len = ntohs(ip->ip_len) - off;
703 else
704 mhip->ip_off |= IP_MF;
705 HTONS(mhip->ip_off);
706 mhip->ip_len = htons((u_int16_t)(len + mhlen));
707 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
708 if (m->m_next == 0) {
709 error = ENOBUFS; /* ??? */
710 IP_STATINC(IP_STAT_ODROPPED);
711 goto sendorfree;
712 }
713 m->m_pkthdr.len = mhlen + len;
714 m->m_pkthdr.rcvif = NULL;
715 mhip->ip_sum = 0;
716 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
717 if (sw_csum & M_CSUM_IPv4) {
718 mhip->ip_sum = in_cksum(m, mhlen);
719 } else {
720 /*
721 * checksum is hw-offloaded or not necessary.
722 */
723 m->m_pkthdr.csum_flags |=
724 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
725 m->m_pkthdr.csum_data |= mhlen << 16;
726 KASSERT(!(ifp != NULL &&
727 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
728 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
729 }
730 IP_STATINC(IP_STAT_OFRAGMENTS);
731 fragments++;
732 }
733 /*
734 * Update first fragment by trimming what's been copied out
735 * and updating header, then send each fragment (in order).
736 */
737 m = m0;
738 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
739 m->m_pkthdr.len = hlen + firstlen;
740 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
741 ip->ip_off |= htons(IP_MF);
742 ip->ip_sum = 0;
743 if (sw_csum & M_CSUM_IPv4) {
744 ip->ip_sum = in_cksum(m, hlen);
745 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
746 } else {
747 /*
748 * checksum is hw-offloaded or not necessary.
749 */
750 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
751 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
752 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
753 sizeof(struct ip));
754 }
755 sendorfree:
756 /*
757 * If there is no room for all the fragments, don't queue
758 * any of them.
759 */
760 if (ifp != NULL) {
761 s = splnet();
762 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
763 error == 0) {
764 error = ENOBUFS;
765 IP_STATINC(IP_STAT_ODROPPED);
766 IFQ_INC_DROPS(&ifp->if_snd);
767 }
768 splx(s);
769 }
770 if (error) {
771 for (m = m0; m; m = m0) {
772 m0 = m->m_nextpkt;
773 m->m_nextpkt = NULL;
774 m_freem(m);
775 }
776 }
777 return (error);
778 }
779
780 /*
781 * Process a delayed payload checksum calculation.
782 */
783 void
784 in_delayed_cksum(struct mbuf *m)
785 {
786 struct ip *ip;
787 u_int16_t csum, offset;
788
789 ip = mtod(m, struct ip *);
790 offset = ip->ip_hl << 2;
791 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
792 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
793 csum = 0xffff;
794
795 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
796
797 if ((offset + sizeof(u_int16_t)) > m->m_len) {
798 /* This happen when ip options were inserted
799 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
800 m->m_len, offset, ip->ip_p);
801 */
802 m_copyback(m, offset, sizeof(csum), (void *) &csum);
803 } else
804 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
805 }
806
807 /*
808 * Determine the maximum length of the options to be inserted;
809 * we would far rather allocate too much space rather than too little.
810 */
811
812 u_int
813 ip_optlen(struct inpcb *inp)
814 {
815 struct mbuf *m = inp->inp_options;
816
817 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
818 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
819 }
820 return 0;
821 }
822
823 /*
824 * Insert IP options into preformed packet.
825 * Adjust IP destination as required for IP source routing,
826 * as indicated by a non-zero in_addr at the start of the options.
827 */
828 static struct mbuf *
829 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
830 {
831 struct ipoption *p = mtod(opt, struct ipoption *);
832 struct mbuf *n;
833 struct ip *ip = mtod(m, struct ip *);
834 unsigned optlen;
835
836 optlen = opt->m_len - sizeof(p->ipopt_dst);
837 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
838 return (m); /* XXX should fail */
839 if (!in_nullhost(p->ipopt_dst))
840 ip->ip_dst = p->ipopt_dst;
841 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
842 MGETHDR(n, M_DONTWAIT, MT_HEADER);
843 if (n == 0)
844 return (m);
845 MCLAIM(n, m->m_owner);
846 M_MOVE_PKTHDR(n, m);
847 m->m_len -= sizeof(struct ip);
848 m->m_data += sizeof(struct ip);
849 n->m_next = m;
850 m = n;
851 m->m_len = optlen + sizeof(struct ip);
852 m->m_data += max_linkhdr;
853 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
854 } else {
855 m->m_data -= optlen;
856 m->m_len += optlen;
857 memmove(mtod(m, void *), ip, sizeof(struct ip));
858 }
859 m->m_pkthdr.len += optlen;
860 ip = mtod(m, struct ip *);
861 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
862 *phlen = sizeof(struct ip) + optlen;
863 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
864 return (m);
865 }
866
867 /*
868 * Copy options from ip to jp,
869 * omitting those not copied during fragmentation.
870 */
871 int
872 ip_optcopy(struct ip *ip, struct ip *jp)
873 {
874 u_char *cp, *dp;
875 int opt, optlen, cnt;
876
877 cp = (u_char *)(ip + 1);
878 dp = (u_char *)(jp + 1);
879 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
880 for (; cnt > 0; cnt -= optlen, cp += optlen) {
881 opt = cp[0];
882 if (opt == IPOPT_EOL)
883 break;
884 if (opt == IPOPT_NOP) {
885 /* Preserve for IP mcast tunnel's LSRR alignment. */
886 *dp++ = IPOPT_NOP;
887 optlen = 1;
888 continue;
889 }
890
891 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
892 optlen = cp[IPOPT_OLEN];
893 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
894
895 /* Invalid lengths should have been caught by ip_dooptions. */
896 if (optlen > cnt)
897 optlen = cnt;
898 if (IPOPT_COPIED(opt)) {
899 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
900 dp += optlen;
901 }
902 }
903 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
904 *dp++ = IPOPT_EOL;
905 return (optlen);
906 }
907
908 /*
909 * IP socket option processing.
910 */
911 int
912 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
913 {
914 struct inpcb *inp = sotoinpcb(so);
915 struct ip *ip = &inp->inp_ip;
916 int inpflags = inp->inp_flags;
917 int optval = 0, error = 0;
918
919 if (sopt->sopt_level != IPPROTO_IP) {
920 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
921 return 0;
922 return ENOPROTOOPT;
923 }
924
925 switch (op) {
926 case PRCO_SETOPT:
927 switch (sopt->sopt_name) {
928 case IP_OPTIONS:
929 #ifdef notyet
930 case IP_RETOPTS:
931 #endif
932 error = ip_pcbopts(inp, sopt);
933 break;
934
935 case IP_TOS:
936 case IP_TTL:
937 case IP_MINTTL:
938 case IP_PKTINFO:
939 case IP_RECVOPTS:
940 case IP_RECVRETOPTS:
941 case IP_RECVDSTADDR:
942 case IP_RECVIF:
943 case IP_RECVPKTINFO:
944 case IP_RECVTTL:
945 error = sockopt_getint(sopt, &optval);
946 if (error)
947 break;
948
949 switch (sopt->sopt_name) {
950 case IP_TOS:
951 ip->ip_tos = optval;
952 break;
953
954 case IP_TTL:
955 ip->ip_ttl = optval;
956 break;
957
958 case IP_MINTTL:
959 if (optval > 0 && optval <= MAXTTL)
960 inp->inp_ip_minttl = optval;
961 else
962 error = EINVAL;
963 break;
964 #define OPTSET(bit) \
965 if (optval) \
966 inpflags |= bit; \
967 else \
968 inpflags &= ~bit;
969
970 case IP_PKTINFO:
971 OPTSET(INP_PKTINFO);
972 break;
973
974 case IP_RECVOPTS:
975 OPTSET(INP_RECVOPTS);
976 break;
977
978 case IP_RECVPKTINFO:
979 OPTSET(INP_RECVPKTINFO);
980 break;
981
982 case IP_RECVRETOPTS:
983 OPTSET(INP_RECVRETOPTS);
984 break;
985
986 case IP_RECVDSTADDR:
987 OPTSET(INP_RECVDSTADDR);
988 break;
989
990 case IP_RECVIF:
991 OPTSET(INP_RECVIF);
992 break;
993
994 case IP_RECVTTL:
995 OPTSET(INP_RECVTTL);
996 break;
997 }
998 break;
999 #undef OPTSET
1000
1001 case IP_MULTICAST_IF:
1002 case IP_MULTICAST_TTL:
1003 case IP_MULTICAST_LOOP:
1004 case IP_ADD_MEMBERSHIP:
1005 case IP_DROP_MEMBERSHIP:
1006 error = ip_setmoptions(inp, sopt);
1007 break;
1008
1009 case IP_PORTRANGE:
1010 error = sockopt_getint(sopt, &optval);
1011 if (error)
1012 break;
1013
1014 switch (optval) {
1015 case IP_PORTRANGE_DEFAULT:
1016 case IP_PORTRANGE_HIGH:
1017 inpflags &= ~(INP_LOWPORT);
1018 break;
1019
1020 case IP_PORTRANGE_LOW:
1021 inpflags |= INP_LOWPORT;
1022 break;
1023
1024 default:
1025 error = EINVAL;
1026 break;
1027 }
1028 break;
1029
1030 case IP_PORTALGO:
1031 error = sockopt_getint(sopt, &optval);
1032 if (error)
1033 break;
1034
1035 error = portalgo_algo_index_select(
1036 (struct inpcb_hdr *)inp, optval);
1037 break;
1038
1039 #if defined(IPSEC)
1040 case IP_IPSEC_POLICY:
1041 if (ipsec_enabled) {
1042 error = ipsec4_set_policy(inp, sopt->sopt_name,
1043 sopt->sopt_data, sopt->sopt_size,
1044 curlwp->l_cred);
1045 break;
1046 }
1047 /*FALLTHROUGH*/
1048 #endif /* IPSEC */
1049
1050 default:
1051 error = ENOPROTOOPT;
1052 break;
1053 }
1054 break;
1055
1056 case PRCO_GETOPT:
1057 switch (sopt->sopt_name) {
1058 case IP_OPTIONS:
1059 case IP_RETOPTS: {
1060 struct mbuf *mopts = inp->inp_options;
1061
1062 if (mopts) {
1063 struct mbuf *m;
1064
1065 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1066 if (m == NULL) {
1067 error = ENOBUFS;
1068 break;
1069 }
1070 error = sockopt_setmbuf(sopt, m);
1071 }
1072 break;
1073 }
1074 case IP_PKTINFO:
1075 case IP_TOS:
1076 case IP_TTL:
1077 case IP_MINTTL:
1078 case IP_RECVOPTS:
1079 case IP_RECVRETOPTS:
1080 case IP_RECVDSTADDR:
1081 case IP_RECVIF:
1082 case IP_RECVPKTINFO:
1083 case IP_RECVTTL:
1084 case IP_ERRORMTU:
1085 switch (sopt->sopt_name) {
1086 case IP_TOS:
1087 optval = ip->ip_tos;
1088 break;
1089
1090 case IP_TTL:
1091 optval = ip->ip_ttl;
1092 break;
1093
1094 case IP_MINTTL:
1095 optval = inp->inp_ip_minttl;
1096 break;
1097
1098 case IP_ERRORMTU:
1099 optval = inp->inp_errormtu;
1100 break;
1101
1102 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1103
1104 case IP_PKTINFO:
1105 optval = OPTBIT(INP_PKTINFO);
1106 break;
1107
1108 case IP_RECVOPTS:
1109 optval = OPTBIT(INP_RECVOPTS);
1110 break;
1111
1112 case IP_RECVPKTINFO:
1113 optval = OPTBIT(INP_RECVPKTINFO);
1114 break;
1115
1116 case IP_RECVRETOPTS:
1117 optval = OPTBIT(INP_RECVRETOPTS);
1118 break;
1119
1120 case IP_RECVDSTADDR:
1121 optval = OPTBIT(INP_RECVDSTADDR);
1122 break;
1123
1124 case IP_RECVIF:
1125 optval = OPTBIT(INP_RECVIF);
1126 break;
1127
1128 case IP_RECVTTL:
1129 optval = OPTBIT(INP_RECVTTL);
1130 break;
1131 }
1132 error = sockopt_setint(sopt, optval);
1133 break;
1134
1135 #if 0 /* defined(IPSEC) */
1136 case IP_IPSEC_POLICY:
1137 {
1138 struct mbuf *m = NULL;
1139
1140 /* XXX this will return EINVAL as sopt is empty */
1141 error = ipsec4_get_policy(inp, sopt->sopt_data,
1142 sopt->sopt_size, &m);
1143 if (error == 0)
1144 error = sockopt_setmbuf(sopt, m);
1145 break;
1146 }
1147 #endif /*IPSEC*/
1148
1149 case IP_MULTICAST_IF:
1150 case IP_MULTICAST_TTL:
1151 case IP_MULTICAST_LOOP:
1152 case IP_ADD_MEMBERSHIP:
1153 case IP_DROP_MEMBERSHIP:
1154 error = ip_getmoptions(inp, sopt);
1155 break;
1156
1157 case IP_PORTRANGE:
1158 if (inpflags & INP_LOWPORT)
1159 optval = IP_PORTRANGE_LOW;
1160 else
1161 optval = IP_PORTRANGE_DEFAULT;
1162 error = sockopt_setint(sopt, optval);
1163 break;
1164
1165 case IP_PORTALGO:
1166 optval = inp->inp_portalgo;
1167 error = sockopt_setint(sopt, optval);
1168 break;
1169
1170 default:
1171 error = ENOPROTOOPT;
1172 break;
1173 }
1174 break;
1175 }
1176
1177 if (!error) {
1178 inp->inp_flags = inpflags;
1179 }
1180 return error;
1181 }
1182
1183 /*
1184 * Set up IP options in pcb for insertion in output packets.
1185 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1186 * with destination address if source routed.
1187 */
1188 static int
1189 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1190 {
1191 struct mbuf *m;
1192 const u_char *cp;
1193 u_char *dp;
1194 int cnt;
1195
1196 /* Turn off any old options. */
1197 if (inp->inp_options) {
1198 m_free(inp->inp_options);
1199 }
1200 inp->inp_options = NULL;
1201 if ((cnt = sopt->sopt_size) == 0) {
1202 /* Only turning off any previous options. */
1203 return 0;
1204 }
1205 cp = sopt->sopt_data;
1206
1207 #ifndef __vax__
1208 if (cnt % sizeof(int32_t))
1209 return (EINVAL);
1210 #endif
1211
1212 m = m_get(M_DONTWAIT, MT_SOOPTS);
1213 if (m == NULL)
1214 return (ENOBUFS);
1215
1216 dp = mtod(m, u_char *);
1217 memset(dp, 0, sizeof(struct in_addr));
1218 dp += sizeof(struct in_addr);
1219 m->m_len = sizeof(struct in_addr);
1220
1221 /*
1222 * IP option list according to RFC791. Each option is of the form
1223 *
1224 * [optval] [olen] [(olen - 2) data bytes]
1225 *
1226 * We validate the list and copy options to an mbuf for prepending
1227 * to data packets. The IP first-hop destination address will be
1228 * stored before actual options and is zero if unset.
1229 */
1230 while (cnt > 0) {
1231 uint8_t optval, olen, offset;
1232
1233 optval = cp[IPOPT_OPTVAL];
1234
1235 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1236 olen = 1;
1237 } else {
1238 if (cnt < IPOPT_OLEN + 1)
1239 goto bad;
1240
1241 olen = cp[IPOPT_OLEN];
1242 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1243 goto bad;
1244 }
1245
1246 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1247 /*
1248 * user process specifies route as:
1249 * ->A->B->C->D
1250 * D must be our final destination (but we can't
1251 * check that since we may not have connected yet).
1252 * A is first hop destination, which doesn't appear in
1253 * actual IP option, but is stored before the options.
1254 */
1255 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1256 goto bad;
1257
1258 offset = cp[IPOPT_OFFSET];
1259 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1260 sizeof(struct in_addr));
1261
1262 cp += sizeof(struct in_addr);
1263 cnt -= sizeof(struct in_addr);
1264 olen -= sizeof(struct in_addr);
1265
1266 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1267 goto bad;
1268
1269 memcpy(dp, cp, olen);
1270 dp[IPOPT_OPTVAL] = optval;
1271 dp[IPOPT_OLEN] = olen;
1272 dp[IPOPT_OFFSET] = offset;
1273 break;
1274 } else {
1275 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1276 goto bad;
1277
1278 memcpy(dp, cp, olen);
1279 break;
1280 }
1281
1282 dp += olen;
1283 m->m_len += olen;
1284
1285 if (optval == IPOPT_EOL)
1286 break;
1287
1288 cp += olen;
1289 cnt -= olen;
1290 }
1291
1292 inp->inp_options = m;
1293 return 0;
1294 bad:
1295 (void)m_free(m);
1296 return EINVAL;
1297 }
1298
1299 /*
1300 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1301 */
1302 static struct ifnet *
1303 ip_multicast_if(struct in_addr *a, int *ifindexp)
1304 {
1305 int ifindex;
1306 struct ifnet *ifp = NULL;
1307 struct in_ifaddr *ia;
1308
1309 if (ifindexp)
1310 *ifindexp = 0;
1311 if (ntohl(a->s_addr) >> 24 == 0) {
1312 ifindex = ntohl(a->s_addr) & 0xffffff;
1313 ifp = if_byindex(ifindex);
1314 if (!ifp)
1315 return NULL;
1316 if (ifindexp)
1317 *ifindexp = ifindex;
1318 } else {
1319 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1320 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1321 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1322 ifp = ia->ia_ifp;
1323 break;
1324 }
1325 }
1326 }
1327 return ifp;
1328 }
1329
1330 static int
1331 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1332 {
1333 u_int tval;
1334 u_char cval;
1335 int error;
1336
1337 if (sopt == NULL)
1338 return EINVAL;
1339
1340 switch (sopt->sopt_size) {
1341 case sizeof(u_char):
1342 error = sockopt_get(sopt, &cval, sizeof(u_char));
1343 tval = cval;
1344 break;
1345
1346 case sizeof(u_int):
1347 error = sockopt_get(sopt, &tval, sizeof(u_int));
1348 break;
1349
1350 default:
1351 error = EINVAL;
1352 }
1353
1354 if (error)
1355 return error;
1356
1357 if (tval > maxval)
1358 return EINVAL;
1359
1360 *val = tval;
1361 return 0;
1362 }
1363
1364 /*
1365 * Set the IP multicast options in response to user setsockopt().
1366 */
1367 static int
1368 ip_setmoptions(struct inpcb *inp, const struct sockopt *sopt)
1369 {
1370 struct ip_moptions *imo = inp->inp_moptions;
1371 struct in_addr addr;
1372 struct ip_mreq lmreq, *mreq;
1373 struct ifnet *ifp;
1374 int i, ifindex, error = 0;
1375
1376 if (!imo) {
1377 /*
1378 * No multicast option buffer attached to the pcb;
1379 * allocate one and initialize to default values.
1380 */
1381 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1382 if (imo == NULL)
1383 return ENOBUFS;
1384
1385 imo->imo_multicast_ifp = NULL;
1386 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1387 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1388 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1389 imo->imo_num_memberships = 0;
1390 inp->inp_moptions = imo;
1391 }
1392
1393 switch (sopt->sopt_name) {
1394 case IP_MULTICAST_IF:
1395 /*
1396 * Select the interface for outgoing multicast packets.
1397 */
1398 error = sockopt_get(sopt, &addr, sizeof(addr));
1399 if (error)
1400 break;
1401
1402 /*
1403 * INADDR_ANY is used to remove a previous selection.
1404 * When no interface is selected, a default one is
1405 * chosen every time a multicast packet is sent.
1406 */
1407 if (in_nullhost(addr)) {
1408 imo->imo_multicast_ifp = NULL;
1409 break;
1410 }
1411 /*
1412 * The selected interface is identified by its local
1413 * IP address. Find the interface and confirm that
1414 * it supports multicasting.
1415 */
1416 ifp = ip_multicast_if(&addr, &ifindex);
1417 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1418 error = EADDRNOTAVAIL;
1419 break;
1420 }
1421 imo->imo_multicast_ifp = ifp;
1422 if (ifindex)
1423 imo->imo_multicast_addr = addr;
1424 else
1425 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1426 break;
1427
1428 case IP_MULTICAST_TTL:
1429 /*
1430 * Set the IP time-to-live for outgoing multicast packets.
1431 */
1432 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1433 break;
1434
1435 case IP_MULTICAST_LOOP:
1436 /*
1437 * Set the loopback flag for outgoing multicast packets.
1438 * Must be zero or one.
1439 */
1440 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1441 break;
1442
1443 case IP_ADD_MEMBERSHIP:
1444 /*
1445 * Add a multicast group membership.
1446 * Group must be a valid IP multicast address.
1447 */
1448 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1449 if (error)
1450 break;
1451
1452 mreq = &lmreq;
1453
1454 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1455 error = EINVAL;
1456 break;
1457 }
1458 /*
1459 * If no interface address was provided, use the interface of
1460 * the route to the given multicast address.
1461 */
1462 if (in_nullhost(mreq->imr_interface)) {
1463 struct rtentry *rt;
1464 union {
1465 struct sockaddr dst;
1466 struct sockaddr_in dst4;
1467 } u;
1468 struct route ro;
1469
1470 memset(&ro, 0, sizeof(ro));
1471
1472 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1473 rtcache_setdst(&ro, &u.dst);
1474 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1475 : NULL;
1476 rtcache_free(&ro);
1477 } else {
1478 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1479 }
1480 /*
1481 * See if we found an interface, and confirm that it
1482 * supports multicast.
1483 */
1484 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1485 error = EADDRNOTAVAIL;
1486 break;
1487 }
1488 /*
1489 * See if the membership already exists or if all the
1490 * membership slots are full.
1491 */
1492 for (i = 0; i < imo->imo_num_memberships; ++i) {
1493 if (imo->imo_membership[i]->inm_ifp == ifp &&
1494 in_hosteq(imo->imo_membership[i]->inm_addr,
1495 mreq->imr_multiaddr))
1496 break;
1497 }
1498 if (i < imo->imo_num_memberships) {
1499 error = EADDRINUSE;
1500 break;
1501 }
1502 if (i == IP_MAX_MEMBERSHIPS) {
1503 error = ETOOMANYREFS;
1504 break;
1505 }
1506 /*
1507 * Everything looks good; add a new record to the multicast
1508 * address list for the given interface.
1509 */
1510 if ((imo->imo_membership[i] =
1511 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1512 error = ENOBUFS;
1513 break;
1514 }
1515 ++imo->imo_num_memberships;
1516 break;
1517
1518 case IP_DROP_MEMBERSHIP:
1519 /*
1520 * Drop a multicast group membership.
1521 * Group must be a valid IP multicast address.
1522 */
1523 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1524 if (error)
1525 break;
1526
1527 mreq = &lmreq;
1528
1529 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1530 error = EINVAL;
1531 break;
1532 }
1533 /*
1534 * If an interface address was specified, get a pointer
1535 * to its ifnet structure.
1536 */
1537 if (in_nullhost(mreq->imr_interface))
1538 ifp = NULL;
1539 else {
1540 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1541 if (ifp == NULL) {
1542 error = EADDRNOTAVAIL;
1543 break;
1544 }
1545 }
1546 /*
1547 * Find the membership in the membership array.
1548 */
1549 for (i = 0; i < imo->imo_num_memberships; ++i) {
1550 if ((ifp == NULL ||
1551 imo->imo_membership[i]->inm_ifp == ifp) &&
1552 in_hosteq(imo->imo_membership[i]->inm_addr,
1553 mreq->imr_multiaddr))
1554 break;
1555 }
1556 if (i == imo->imo_num_memberships) {
1557 error = EADDRNOTAVAIL;
1558 break;
1559 }
1560 /*
1561 * Give up the multicast address record to which the
1562 * membership points.
1563 */
1564 in_delmulti(imo->imo_membership[i]);
1565 /*
1566 * Remove the gap in the membership array.
1567 */
1568 for (++i; i < imo->imo_num_memberships; ++i)
1569 imo->imo_membership[i-1] = imo->imo_membership[i];
1570 --imo->imo_num_memberships;
1571 break;
1572
1573 default:
1574 error = EOPNOTSUPP;
1575 break;
1576 }
1577
1578 /*
1579 * If all options have default values, no need to keep the mbuf.
1580 */
1581 if (imo->imo_multicast_ifp == NULL &&
1582 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1583 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1584 imo->imo_num_memberships == 0) {
1585 kmem_free(imo, sizeof(*imo));
1586 inp->inp_moptions = NULL;
1587 }
1588
1589 return error;
1590 }
1591
1592 /*
1593 * Return the IP multicast options in response to user getsockopt().
1594 */
1595 static int
1596 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1597 {
1598 struct ip_moptions *imo = inp->inp_moptions;
1599 struct in_addr addr;
1600 struct in_ifaddr *ia;
1601 uint8_t optval;
1602 int error = 0;
1603
1604 switch (sopt->sopt_name) {
1605 case IP_MULTICAST_IF:
1606 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1607 addr = zeroin_addr;
1608 else if (imo->imo_multicast_addr.s_addr) {
1609 /* return the value user has set */
1610 addr = imo->imo_multicast_addr;
1611 } else {
1612 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1613 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1614 }
1615 error = sockopt_set(sopt, &addr, sizeof(addr));
1616 break;
1617
1618 case IP_MULTICAST_TTL:
1619 optval = imo ? imo->imo_multicast_ttl
1620 : IP_DEFAULT_MULTICAST_TTL;
1621
1622 error = sockopt_set(sopt, &optval, sizeof(optval));
1623 break;
1624
1625 case IP_MULTICAST_LOOP:
1626 optval = imo ? imo->imo_multicast_loop
1627 : IP_DEFAULT_MULTICAST_LOOP;
1628
1629 error = sockopt_set(sopt, &optval, sizeof(optval));
1630 break;
1631
1632 default:
1633 error = EOPNOTSUPP;
1634 }
1635
1636 return error;
1637 }
1638
1639 /*
1640 * Discard the IP multicast options.
1641 */
1642 void
1643 ip_freemoptions(struct ip_moptions *imo)
1644 {
1645 int i;
1646
1647 if (imo != NULL) {
1648 for (i = 0; i < imo->imo_num_memberships; ++i)
1649 in_delmulti(imo->imo_membership[i]);
1650 kmem_free(imo, sizeof(*imo));
1651 }
1652 }
1653
1654 /*
1655 * Routine called from ip_output() to loop back a copy of an IP multicast
1656 * packet to the input queue of a specified interface. Note that this
1657 * calls the output routine of the loopback "driver", but with an interface
1658 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1659 */
1660 static void
1661 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1662 {
1663 struct ip *ip;
1664 struct mbuf *copym;
1665
1666 copym = m_copypacket(m, M_DONTWAIT);
1667 if (copym != NULL
1668 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1669 copym = m_pullup(copym, sizeof(struct ip));
1670 if (copym == NULL)
1671 return;
1672 /*
1673 * We don't bother to fragment if the IP length is greater
1674 * than the interface's MTU. Can this possibly matter?
1675 */
1676 ip = mtod(copym, struct ip *);
1677
1678 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1679 in_delayed_cksum(copym);
1680 copym->m_pkthdr.csum_flags &=
1681 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1682 }
1683
1684 ip->ip_sum = 0;
1685 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1686 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1687 }
1688