Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.230
      1 /*	$NetBSD: ip_output.c,v 1.230 2014/06/06 00:11:19 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.230 2014/06/06 00:11:19 rmind Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 
    100 #include <sys/param.h>
    101 #include <sys/kmem.h>
    102 #include <sys/mbuf.h>
    103 #include <sys/protosw.h>
    104 #include <sys/socket.h>
    105 #include <sys/socketvar.h>
    106 #include <sys/kauth.h>
    107 #ifdef IPSEC
    108 #include <sys/domain.h>
    109 #endif
    110 #include <sys/systm.h>
    111 
    112 #include <net/if.h>
    113 #include <net/route.h>
    114 #include <net/pfil.h>
    115 
    116 #include <netinet/in.h>
    117 #include <netinet/in_systm.h>
    118 #include <netinet/ip.h>
    119 #include <netinet/in_pcb.h>
    120 #include <netinet/in_var.h>
    121 #include <netinet/ip_var.h>
    122 #include <netinet/ip_private.h>
    123 #include <netinet/in_offload.h>
    124 #include <netinet/portalgo.h>
    125 #include <netinet/udp.h>
    126 
    127 #ifdef MROUTING
    128 #include <netinet/ip_mroute.h>
    129 #endif
    130 
    131 #include <netipsec/ipsec.h>
    132 #include <netipsec/key.h>
    133 
    134 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    135 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    136 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    137 static void ip_mloopback(struct ifnet *, struct mbuf *,
    138     const struct sockaddr_in *);
    139 static int ip_setmoptions(struct inpcb *, const struct sockopt *);
    140 static int ip_getmoptions(struct inpcb *, struct sockopt *);
    141 
    142 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    143 
    144 int	ip_do_loopback_cksum = 0;
    145 
    146 /*
    147  * IP output.  The packet in mbuf chain m contains a skeletal IP
    148  * header (with len, off, ttl, proto, tos, src, dst).
    149  * The mbuf chain containing the packet will be freed.
    150  * The mbuf opt, if present, will not be freed.
    151  */
    152 int
    153 ip_output(struct mbuf *m0, ...)
    154 {
    155 	struct rtentry *rt;
    156 	struct ip *ip;
    157 	struct ifnet *ifp;
    158 	struct mbuf *m = m0;
    159 	int hlen = sizeof (struct ip);
    160 	int len, error = 0;
    161 	struct route iproute;
    162 	const struct sockaddr_in *dst;
    163 	struct in_ifaddr *ia;
    164 	struct mbuf *opt;
    165 	struct route *ro;
    166 	int flags, sw_csum;
    167 	u_long mtu;
    168 	struct ip_moptions *imo;
    169 	struct socket *so;
    170 	va_list ap;
    171 #ifdef IPSEC
    172 	struct secpolicy *sp = NULL;
    173 #endif
    174 	bool natt_frag = false;
    175 	bool rtmtu_nolock;
    176 	union {
    177 		struct sockaddr		dst;
    178 		struct sockaddr_in	dst4;
    179 	} u;
    180 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    181 					 * to the nexthop
    182 					 */
    183 
    184 	len = 0;
    185 	va_start(ap, m0);
    186 	opt = va_arg(ap, struct mbuf *);
    187 	ro = va_arg(ap, struct route *);
    188 	flags = va_arg(ap, int);
    189 	imo = va_arg(ap, struct ip_moptions *);
    190 	so = va_arg(ap, struct socket *);
    191 	va_end(ap);
    192 
    193 	MCLAIM(m, &ip_tx_mowner);
    194 
    195 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    196 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    197 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    198 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    199 
    200 	if (opt) {
    201 		m = ip_insertoptions(m, opt, &len);
    202 		if (len >= sizeof(struct ip))
    203 			hlen = len;
    204 	}
    205 	ip = mtod(m, struct ip *);
    206 
    207 	/*
    208 	 * Fill in IP header.
    209 	 */
    210 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    211 		ip->ip_v = IPVERSION;
    212 		ip->ip_off = htons(0);
    213 		/* ip->ip_id filled in after we find out source ia */
    214 		ip->ip_hl = hlen >> 2;
    215 		IP_STATINC(IP_STAT_LOCALOUT);
    216 	} else {
    217 		hlen = ip->ip_hl << 2;
    218 	}
    219 
    220 	/*
    221 	 * Route packet.
    222 	 */
    223 	if (ro == NULL) {
    224 		memset(&iproute, 0, sizeof(iproute));
    225 		ro = &iproute;
    226 	}
    227 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    228 	dst = satocsin(rtcache_getdst(ro));
    229 
    230 	/*
    231 	 * If there is a cached route, check that it is to the same
    232 	 * destination and is still up.  If not, free it and try again.
    233 	 * The address family should also be checked in case of sharing
    234 	 * the cache with IPv6.
    235 	 */
    236 	if (dst && (dst->sin_family != AF_INET ||
    237 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    238 		rtcache_free(ro);
    239 
    240 	if ((rt = rtcache_validate(ro)) == NULL &&
    241 	    (rt = rtcache_update(ro, 1)) == NULL) {
    242 		dst = &u.dst4;
    243 		rtcache_setdst(ro, &u.dst);
    244 	}
    245 
    246 	/*
    247 	 * If routing to interface only, short circuit routing lookup.
    248 	 */
    249 	if (flags & IP_ROUTETOIF) {
    250 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    251 			IP_STATINC(IP_STAT_NOROUTE);
    252 			error = ENETUNREACH;
    253 			goto bad;
    254 		}
    255 		ifp = ia->ia_ifp;
    256 		mtu = ifp->if_mtu;
    257 		ip->ip_ttl = 1;
    258 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    259 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    260 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    261 		ifp = imo->imo_multicast_ifp;
    262 		mtu = ifp->if_mtu;
    263 		IFP_TO_IA(ifp, ia);
    264 	} else {
    265 		if (rt == NULL)
    266 			rt = rtcache_init(ro);
    267 		if (rt == NULL) {
    268 			IP_STATINC(IP_STAT_NOROUTE);
    269 			error = EHOSTUNREACH;
    270 			goto bad;
    271 		}
    272 		ia = ifatoia(rt->rt_ifa);
    273 		ifp = rt->rt_ifp;
    274 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    275 			mtu = ifp->if_mtu;
    276 		rt->rt_use++;
    277 		if (rt->rt_flags & RTF_GATEWAY)
    278 			dst = satosin(rt->rt_gateway);
    279 	}
    280 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    281 
    282 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    283 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    284 		bool inmgroup;
    285 
    286 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    287 			M_BCAST : M_MCAST;
    288 		/*
    289 		 * See if the caller provided any multicast options
    290 		 */
    291 		if (imo != NULL)
    292 			ip->ip_ttl = imo->imo_multicast_ttl;
    293 		else
    294 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    295 
    296 		/*
    297 		 * if we don't know the outgoing ifp yet, we can't generate
    298 		 * output
    299 		 */
    300 		if (!ifp) {
    301 			IP_STATINC(IP_STAT_NOROUTE);
    302 			error = ENETUNREACH;
    303 			goto bad;
    304 		}
    305 
    306 		/*
    307 		 * If the packet is multicast or broadcast, confirm that
    308 		 * the outgoing interface can transmit it.
    309 		 */
    310 		if (((m->m_flags & M_MCAST) &&
    311 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    312 		    ((m->m_flags & M_BCAST) &&
    313 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    314 			IP_STATINC(IP_STAT_NOROUTE);
    315 			error = ENETUNREACH;
    316 			goto bad;
    317 		}
    318 		/*
    319 		 * If source address not specified yet, use an address
    320 		 * of outgoing interface.
    321 		 */
    322 		if (in_nullhost(ip->ip_src)) {
    323 			struct in_ifaddr *xia;
    324 			struct ifaddr *xifa;
    325 
    326 			IFP_TO_IA(ifp, xia);
    327 			if (!xia) {
    328 				error = EADDRNOTAVAIL;
    329 				goto bad;
    330 			}
    331 			xifa = &xia->ia_ifa;
    332 			if (xifa->ifa_getifa != NULL) {
    333 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    334 			}
    335 			ip->ip_src = xia->ia_addr.sin_addr;
    336 		}
    337 
    338 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    339 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    340 			/*
    341 			 * If we belong to the destination multicast group
    342 			 * on the outgoing interface, and the caller did not
    343 			 * forbid loopback, loop back a copy.
    344 			 */
    345 			ip_mloopback(ifp, m, &u.dst4);
    346 		}
    347 #ifdef MROUTING
    348 		else {
    349 			/*
    350 			 * If we are acting as a multicast router, perform
    351 			 * multicast forwarding as if the packet had just
    352 			 * arrived on the interface to which we are about
    353 			 * to send.  The multicast forwarding function
    354 			 * recursively calls this function, using the
    355 			 * IP_FORWARDING flag to prevent infinite recursion.
    356 			 *
    357 			 * Multicasts that are looped back by ip_mloopback(),
    358 			 * above, will be forwarded by the ip_input() routine,
    359 			 * if necessary.
    360 			 */
    361 			extern struct socket *ip_mrouter;
    362 
    363 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    364 				if (ip_mforward(m, ifp) != 0) {
    365 					m_freem(m);
    366 					goto done;
    367 				}
    368 			}
    369 		}
    370 #endif
    371 		/*
    372 		 * Multicasts with a time-to-live of zero may be looped-
    373 		 * back, above, but must not be transmitted on a network.
    374 		 * Also, multicasts addressed to the loopback interface
    375 		 * are not sent -- the above call to ip_mloopback() will
    376 		 * loop back a copy if this host actually belongs to the
    377 		 * destination group on the loopback interface.
    378 		 */
    379 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    380 			m_freem(m);
    381 			goto done;
    382 		}
    383 		goto sendit;
    384 	}
    385 
    386 	/*
    387 	 * If source address not specified yet, use address
    388 	 * of outgoing interface.
    389 	 */
    390 	if (in_nullhost(ip->ip_src)) {
    391 		struct ifaddr *xifa;
    392 
    393 		xifa = &ia->ia_ifa;
    394 		if (xifa->ifa_getifa != NULL)
    395 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    396 		ip->ip_src = ia->ia_addr.sin_addr;
    397 	}
    398 
    399 	/*
    400 	 * packets with Class-D address as source are not valid per
    401 	 * RFC 1112
    402 	 */
    403 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    404 		IP_STATINC(IP_STAT_ODROPPED);
    405 		error = EADDRNOTAVAIL;
    406 		goto bad;
    407 	}
    408 
    409 	/*
    410 	 * Look for broadcast address and and verify user is allowed to
    411 	 * send such a packet.
    412 	 */
    413 	if (in_broadcast(dst->sin_addr, ifp)) {
    414 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    415 			error = EADDRNOTAVAIL;
    416 			goto bad;
    417 		}
    418 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    419 			error = EACCES;
    420 			goto bad;
    421 		}
    422 		/* don't allow broadcast messages to be fragmented */
    423 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    424 			error = EMSGSIZE;
    425 			goto bad;
    426 		}
    427 		m->m_flags |= M_BCAST;
    428 	} else
    429 		m->m_flags &= ~M_BCAST;
    430 
    431 sendit:
    432 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    433 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    434 			ip->ip_id = 0;
    435 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    436 			ip->ip_id = ip_newid(ia);
    437 		} else {
    438 
    439 			/*
    440 			 * TSO capable interfaces (typically?) increment
    441 			 * ip_id for each segment.
    442 			 * "allocate" enough ids here to increase the chance
    443 			 * for them to be unique.
    444 			 *
    445 			 * note that the following calculation is not
    446 			 * needed to be precise.  wasting some ip_id is fine.
    447 			 */
    448 
    449 			unsigned int segsz = m->m_pkthdr.segsz;
    450 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    451 			unsigned int num = howmany(datasz, segsz);
    452 
    453 			ip->ip_id = ip_newid_range(ia, num);
    454 		}
    455 	}
    456 
    457 	/*
    458 	 * If we're doing Path MTU Discovery, we need to set DF unless
    459 	 * the route's MTU is locked.
    460 	 */
    461 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    462 		ip->ip_off |= htons(IP_DF);
    463 	}
    464 
    465 #ifdef IPSEC
    466 	if (ipsec_used) {
    467 		bool ipsec_done = false;
    468 
    469 		/* Perform IPsec processing, if any. */
    470 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    471 		    &ipsec_done);
    472 		if (error || ipsec_done)
    473 			goto done;
    474 	}
    475 #endif
    476 
    477 	/*
    478 	 * Run through list of hooks for output packets.
    479 	 */
    480 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    481 	if (error)
    482 		goto done;
    483 	if (m == NULL)
    484 		goto done;
    485 
    486 	ip = mtod(m, struct ip *);
    487 	hlen = ip->ip_hl << 2;
    488 
    489 	m->m_pkthdr.csum_data |= hlen << 16;
    490 
    491 #if IFA_STATS
    492 	/*
    493 	 * search for the source address structure to
    494 	 * maintain output statistics.
    495 	 */
    496 	INADDR_TO_IA(ip->ip_src, ia);
    497 #endif
    498 
    499 	/* Maybe skip checksums on loopback interfaces. */
    500 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    501 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    502 	}
    503 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    504 	/*
    505 	 * If small enough for mtu of path, or if using TCP segmentation
    506 	 * offload, can just send directly.
    507 	 */
    508 	if (ntohs(ip->ip_len) <= mtu ||
    509 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    510 		const struct sockaddr *sa;
    511 
    512 #if IFA_STATS
    513 		if (ia)
    514 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    515 #endif
    516 		/*
    517 		 * Always initialize the sum to 0!  Some HW assisted
    518 		 * checksumming requires this.
    519 		 */
    520 		ip->ip_sum = 0;
    521 
    522 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    523 			/*
    524 			 * Perform any checksums that the hardware can't do
    525 			 * for us.
    526 			 *
    527 			 * XXX Does any hardware require the {th,uh}_sum
    528 			 * XXX fields to be 0?
    529 			 */
    530 			if (sw_csum & M_CSUM_IPv4) {
    531 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    532 				ip->ip_sum = in_cksum(m, hlen);
    533 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    534 			}
    535 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    536 				if (IN_NEED_CHECKSUM(ifp,
    537 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    538 					in_delayed_cksum(m);
    539 				}
    540 				m->m_pkthdr.csum_flags &=
    541 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    542 			}
    543 		}
    544 
    545 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    546 		if (__predict_true(
    547 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    548 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    549 			KERNEL_LOCK(1, NULL);
    550 			error = (*ifp->if_output)(ifp, m, sa, rt);
    551 			KERNEL_UNLOCK_ONE(NULL);
    552 		} else {
    553 			error = ip_tso_output(ifp, m, sa, rt);
    554 		}
    555 		goto done;
    556 	}
    557 
    558 	/*
    559 	 * We can't use HW checksumming if we're about to
    560 	 * to fragment the packet.
    561 	 *
    562 	 * XXX Some hardware can do this.
    563 	 */
    564 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    565 		if (IN_NEED_CHECKSUM(ifp,
    566 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    567 			in_delayed_cksum(m);
    568 		}
    569 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    570 	}
    571 
    572 	/*
    573 	 * Too large for interface; fragment if possible.
    574 	 * Must be able to put at least 8 bytes per fragment.
    575 	 */
    576 	if (ntohs(ip->ip_off) & IP_DF) {
    577 		if (flags & IP_RETURNMTU) {
    578 			struct inpcb *inp;
    579 
    580 			KASSERT(so && solocked(so));
    581 			inp = sotoinpcb(so);
    582 			inp->inp_errormtu = mtu;
    583 		}
    584 		error = EMSGSIZE;
    585 		IP_STATINC(IP_STAT_CANTFRAG);
    586 		goto bad;
    587 	}
    588 
    589 	error = ip_fragment(m, ifp, mtu);
    590 	if (error) {
    591 		m = NULL;
    592 		goto bad;
    593 	}
    594 
    595 	for (; m; m = m0) {
    596 		m0 = m->m_nextpkt;
    597 		m->m_nextpkt = 0;
    598 		if (error) {
    599 			m_freem(m);
    600 			continue;
    601 		}
    602 #if IFA_STATS
    603 		if (ia)
    604 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    605 #endif
    606 		/*
    607 		 * If we get there, the packet has not been handled by
    608 		 * IPsec whereas it should have. Now that it has been
    609 		 * fragmented, re-inject it in ip_output so that IPsec
    610 		 * processing can occur.
    611 		 */
    612 		if (natt_frag) {
    613 			error = ip_output(m, opt, ro,
    614 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    615 			    imo, so);
    616 		} else {
    617 			KASSERT((m->m_pkthdr.csum_flags &
    618 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    619 			KERNEL_LOCK(1, NULL);
    620 			error = (*ifp->if_output)(ifp, m,
    621 			    (m->m_flags & M_MCAST) ?
    622 			    sintocsa(rdst) : sintocsa(dst), rt);
    623 			KERNEL_UNLOCK_ONE(NULL);
    624 		}
    625 	}
    626 	if (error == 0) {
    627 		IP_STATINC(IP_STAT_FRAGMENTED);
    628 	}
    629 done:
    630 	if (ro == &iproute) {
    631 		rtcache_free(&iproute);
    632 	}
    633 #ifdef IPSEC
    634 	if (sp) {
    635 		KEY_FREESP(&sp);
    636 	}
    637 #endif
    638 	return error;
    639 bad:
    640 	m_freem(m);
    641 	goto done;
    642 }
    643 
    644 int
    645 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    646 {
    647 	struct ip *ip, *mhip;
    648 	struct mbuf *m0;
    649 	int len, hlen, off;
    650 	int mhlen, firstlen;
    651 	struct mbuf **mnext;
    652 	int sw_csum = m->m_pkthdr.csum_flags;
    653 	int fragments = 0;
    654 	int s;
    655 	int error = 0;
    656 
    657 	ip = mtod(m, struct ip *);
    658 	hlen = ip->ip_hl << 2;
    659 	if (ifp != NULL)
    660 		sw_csum &= ~ifp->if_csum_flags_tx;
    661 
    662 	len = (mtu - hlen) &~ 7;
    663 	if (len < 8) {
    664 		m_freem(m);
    665 		return (EMSGSIZE);
    666 	}
    667 
    668 	firstlen = len;
    669 	mnext = &m->m_nextpkt;
    670 
    671 	/*
    672 	 * Loop through length of segment after first fragment,
    673 	 * make new header and copy data of each part and link onto chain.
    674 	 */
    675 	m0 = m;
    676 	mhlen = sizeof (struct ip);
    677 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    678 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    679 		if (m == 0) {
    680 			error = ENOBUFS;
    681 			IP_STATINC(IP_STAT_ODROPPED);
    682 			goto sendorfree;
    683 		}
    684 		MCLAIM(m, m0->m_owner);
    685 		*mnext = m;
    686 		mnext = &m->m_nextpkt;
    687 		m->m_data += max_linkhdr;
    688 		mhip = mtod(m, struct ip *);
    689 		*mhip = *ip;
    690 		/* we must inherit MCAST and BCAST flags */
    691 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    692 		if (hlen > sizeof (struct ip)) {
    693 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    694 			mhip->ip_hl = mhlen >> 2;
    695 		}
    696 		m->m_len = mhlen;
    697 		mhip->ip_off = ((off - hlen) >> 3) +
    698 		    (ntohs(ip->ip_off) & ~IP_MF);
    699 		if (ip->ip_off & htons(IP_MF))
    700 			mhip->ip_off |= IP_MF;
    701 		if (off + len >= ntohs(ip->ip_len))
    702 			len = ntohs(ip->ip_len) - off;
    703 		else
    704 			mhip->ip_off |= IP_MF;
    705 		HTONS(mhip->ip_off);
    706 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    707 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    708 		if (m->m_next == 0) {
    709 			error = ENOBUFS;	/* ??? */
    710 			IP_STATINC(IP_STAT_ODROPPED);
    711 			goto sendorfree;
    712 		}
    713 		m->m_pkthdr.len = mhlen + len;
    714 		m->m_pkthdr.rcvif = NULL;
    715 		mhip->ip_sum = 0;
    716 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    717 		if (sw_csum & M_CSUM_IPv4) {
    718 			mhip->ip_sum = in_cksum(m, mhlen);
    719 		} else {
    720 			/*
    721 			 * checksum is hw-offloaded or not necessary.
    722 			 */
    723 			m->m_pkthdr.csum_flags |=
    724 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    725 			m->m_pkthdr.csum_data |= mhlen << 16;
    726 			KASSERT(!(ifp != NULL &&
    727 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    728 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    729 		}
    730 		IP_STATINC(IP_STAT_OFRAGMENTS);
    731 		fragments++;
    732 	}
    733 	/*
    734 	 * Update first fragment by trimming what's been copied out
    735 	 * and updating header, then send each fragment (in order).
    736 	 */
    737 	m = m0;
    738 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    739 	m->m_pkthdr.len = hlen + firstlen;
    740 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    741 	ip->ip_off |= htons(IP_MF);
    742 	ip->ip_sum = 0;
    743 	if (sw_csum & M_CSUM_IPv4) {
    744 		ip->ip_sum = in_cksum(m, hlen);
    745 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    746 	} else {
    747 		/*
    748 		 * checksum is hw-offloaded or not necessary.
    749 		 */
    750 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    751 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    752 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    753 			sizeof(struct ip));
    754 	}
    755 sendorfree:
    756 	/*
    757 	 * If there is no room for all the fragments, don't queue
    758 	 * any of them.
    759 	 */
    760 	if (ifp != NULL) {
    761 		s = splnet();
    762 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    763 		    error == 0) {
    764 			error = ENOBUFS;
    765 			IP_STATINC(IP_STAT_ODROPPED);
    766 			IFQ_INC_DROPS(&ifp->if_snd);
    767 		}
    768 		splx(s);
    769 	}
    770 	if (error) {
    771 		for (m = m0; m; m = m0) {
    772 			m0 = m->m_nextpkt;
    773 			m->m_nextpkt = NULL;
    774 			m_freem(m);
    775 		}
    776 	}
    777 	return (error);
    778 }
    779 
    780 /*
    781  * Process a delayed payload checksum calculation.
    782  */
    783 void
    784 in_delayed_cksum(struct mbuf *m)
    785 {
    786 	struct ip *ip;
    787 	u_int16_t csum, offset;
    788 
    789 	ip = mtod(m, struct ip *);
    790 	offset = ip->ip_hl << 2;
    791 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    792 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    793 		csum = 0xffff;
    794 
    795 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    796 
    797 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    798 		/* This happen when ip options were inserted
    799 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    800 		    m->m_len, offset, ip->ip_p);
    801 		 */
    802 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    803 	} else
    804 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    805 }
    806 
    807 /*
    808  * Determine the maximum length of the options to be inserted;
    809  * we would far rather allocate too much space rather than too little.
    810  */
    811 
    812 u_int
    813 ip_optlen(struct inpcb *inp)
    814 {
    815 	struct mbuf *m = inp->inp_options;
    816 
    817 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    818 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    819 	}
    820 	return 0;
    821 }
    822 
    823 /*
    824  * Insert IP options into preformed packet.
    825  * Adjust IP destination as required for IP source routing,
    826  * as indicated by a non-zero in_addr at the start of the options.
    827  */
    828 static struct mbuf *
    829 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    830 {
    831 	struct ipoption *p = mtod(opt, struct ipoption *);
    832 	struct mbuf *n;
    833 	struct ip *ip = mtod(m, struct ip *);
    834 	unsigned optlen;
    835 
    836 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    837 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    838 		return (m);		/* XXX should fail */
    839 	if (!in_nullhost(p->ipopt_dst))
    840 		ip->ip_dst = p->ipopt_dst;
    841 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    842 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    843 		if (n == 0)
    844 			return (m);
    845 		MCLAIM(n, m->m_owner);
    846 		M_MOVE_PKTHDR(n, m);
    847 		m->m_len -= sizeof(struct ip);
    848 		m->m_data += sizeof(struct ip);
    849 		n->m_next = m;
    850 		m = n;
    851 		m->m_len = optlen + sizeof(struct ip);
    852 		m->m_data += max_linkhdr;
    853 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    854 	} else {
    855 		m->m_data -= optlen;
    856 		m->m_len += optlen;
    857 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    858 	}
    859 	m->m_pkthdr.len += optlen;
    860 	ip = mtod(m, struct ip *);
    861 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    862 	*phlen = sizeof(struct ip) + optlen;
    863 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    864 	return (m);
    865 }
    866 
    867 /*
    868  * Copy options from ip to jp,
    869  * omitting those not copied during fragmentation.
    870  */
    871 int
    872 ip_optcopy(struct ip *ip, struct ip *jp)
    873 {
    874 	u_char *cp, *dp;
    875 	int opt, optlen, cnt;
    876 
    877 	cp = (u_char *)(ip + 1);
    878 	dp = (u_char *)(jp + 1);
    879 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    880 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    881 		opt = cp[0];
    882 		if (opt == IPOPT_EOL)
    883 			break;
    884 		if (opt == IPOPT_NOP) {
    885 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    886 			*dp++ = IPOPT_NOP;
    887 			optlen = 1;
    888 			continue;
    889 		}
    890 
    891 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
    892 		optlen = cp[IPOPT_OLEN];
    893 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
    894 
    895 		/* Invalid lengths should have been caught by ip_dooptions. */
    896 		if (optlen > cnt)
    897 			optlen = cnt;
    898 		if (IPOPT_COPIED(opt)) {
    899 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
    900 			dp += optlen;
    901 		}
    902 	}
    903 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
    904 		*dp++ = IPOPT_EOL;
    905 	return (optlen);
    906 }
    907 
    908 /*
    909  * IP socket option processing.
    910  */
    911 int
    912 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    913 {
    914 	struct inpcb *inp = sotoinpcb(so);
    915 	struct ip *ip = &inp->inp_ip;
    916 	int inpflags = inp->inp_flags;
    917 	int optval = 0, error = 0;
    918 
    919 	if (sopt->sopt_level != IPPROTO_IP) {
    920 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
    921 			return 0;
    922 		return ENOPROTOOPT;
    923 	}
    924 
    925 	switch (op) {
    926 	case PRCO_SETOPT:
    927 		switch (sopt->sopt_name) {
    928 		case IP_OPTIONS:
    929 #ifdef notyet
    930 		case IP_RETOPTS:
    931 #endif
    932 			error = ip_pcbopts(inp, sopt);
    933 			break;
    934 
    935 		case IP_TOS:
    936 		case IP_TTL:
    937 		case IP_MINTTL:
    938 		case IP_PKTINFO:
    939 		case IP_RECVOPTS:
    940 		case IP_RECVRETOPTS:
    941 		case IP_RECVDSTADDR:
    942 		case IP_RECVIF:
    943 		case IP_RECVPKTINFO:
    944 		case IP_RECVTTL:
    945 			error = sockopt_getint(sopt, &optval);
    946 			if (error)
    947 				break;
    948 
    949 			switch (sopt->sopt_name) {
    950 			case IP_TOS:
    951 				ip->ip_tos = optval;
    952 				break;
    953 
    954 			case IP_TTL:
    955 				ip->ip_ttl = optval;
    956 				break;
    957 
    958 			case IP_MINTTL:
    959 				if (optval > 0 && optval <= MAXTTL)
    960 					inp->inp_ip_minttl = optval;
    961 				else
    962 					error = EINVAL;
    963 				break;
    964 #define	OPTSET(bit) \
    965 	if (optval) \
    966 		inpflags |= bit; \
    967 	else \
    968 		inpflags &= ~bit;
    969 
    970 			case IP_PKTINFO:
    971 				OPTSET(INP_PKTINFO);
    972 				break;
    973 
    974 			case IP_RECVOPTS:
    975 				OPTSET(INP_RECVOPTS);
    976 				break;
    977 
    978 			case IP_RECVPKTINFO:
    979 				OPTSET(INP_RECVPKTINFO);
    980 				break;
    981 
    982 			case IP_RECVRETOPTS:
    983 				OPTSET(INP_RECVRETOPTS);
    984 				break;
    985 
    986 			case IP_RECVDSTADDR:
    987 				OPTSET(INP_RECVDSTADDR);
    988 				break;
    989 
    990 			case IP_RECVIF:
    991 				OPTSET(INP_RECVIF);
    992 				break;
    993 
    994 			case IP_RECVTTL:
    995 				OPTSET(INP_RECVTTL);
    996 				break;
    997 			}
    998 		break;
    999 #undef OPTSET
   1000 
   1001 		case IP_MULTICAST_IF:
   1002 		case IP_MULTICAST_TTL:
   1003 		case IP_MULTICAST_LOOP:
   1004 		case IP_ADD_MEMBERSHIP:
   1005 		case IP_DROP_MEMBERSHIP:
   1006 			error = ip_setmoptions(inp, sopt);
   1007 			break;
   1008 
   1009 		case IP_PORTRANGE:
   1010 			error = sockopt_getint(sopt, &optval);
   1011 			if (error)
   1012 				break;
   1013 
   1014 			switch (optval) {
   1015 			case IP_PORTRANGE_DEFAULT:
   1016 			case IP_PORTRANGE_HIGH:
   1017 				inpflags &= ~(INP_LOWPORT);
   1018 				break;
   1019 
   1020 			case IP_PORTRANGE_LOW:
   1021 				inpflags |= INP_LOWPORT;
   1022 				break;
   1023 
   1024 			default:
   1025 				error = EINVAL;
   1026 				break;
   1027 			}
   1028 			break;
   1029 
   1030 		case IP_PORTALGO:
   1031 			error = sockopt_getint(sopt, &optval);
   1032 			if (error)
   1033 				break;
   1034 
   1035 			error = portalgo_algo_index_select(
   1036 			    (struct inpcb_hdr *)inp, optval);
   1037 			break;
   1038 
   1039 #if defined(IPSEC)
   1040 		case IP_IPSEC_POLICY:
   1041 			if (ipsec_enabled) {
   1042 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1043 				    sopt->sopt_data, sopt->sopt_size,
   1044 				    curlwp->l_cred);
   1045 				break;
   1046 			}
   1047 			/*FALLTHROUGH*/
   1048 #endif /* IPSEC */
   1049 
   1050 		default:
   1051 			error = ENOPROTOOPT;
   1052 			break;
   1053 		}
   1054 		break;
   1055 
   1056 	case PRCO_GETOPT:
   1057 		switch (sopt->sopt_name) {
   1058 		case IP_OPTIONS:
   1059 		case IP_RETOPTS: {
   1060 			struct mbuf *mopts = inp->inp_options;
   1061 
   1062 			if (mopts) {
   1063 				struct mbuf *m;
   1064 
   1065 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1066 				if (m == NULL) {
   1067 					error = ENOBUFS;
   1068 					break;
   1069 				}
   1070 				error = sockopt_setmbuf(sopt, m);
   1071 			}
   1072 			break;
   1073 		}
   1074 		case IP_PKTINFO:
   1075 		case IP_TOS:
   1076 		case IP_TTL:
   1077 		case IP_MINTTL:
   1078 		case IP_RECVOPTS:
   1079 		case IP_RECVRETOPTS:
   1080 		case IP_RECVDSTADDR:
   1081 		case IP_RECVIF:
   1082 		case IP_RECVPKTINFO:
   1083 		case IP_RECVTTL:
   1084 		case IP_ERRORMTU:
   1085 			switch (sopt->sopt_name) {
   1086 			case IP_TOS:
   1087 				optval = ip->ip_tos;
   1088 				break;
   1089 
   1090 			case IP_TTL:
   1091 				optval = ip->ip_ttl;
   1092 				break;
   1093 
   1094 			case IP_MINTTL:
   1095 				optval = inp->inp_ip_minttl;
   1096 				break;
   1097 
   1098 			case IP_ERRORMTU:
   1099 				optval = inp->inp_errormtu;
   1100 				break;
   1101 
   1102 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1103 
   1104 			case IP_PKTINFO:
   1105 				optval = OPTBIT(INP_PKTINFO);
   1106 				break;
   1107 
   1108 			case IP_RECVOPTS:
   1109 				optval = OPTBIT(INP_RECVOPTS);
   1110 				break;
   1111 
   1112 			case IP_RECVPKTINFO:
   1113 				optval = OPTBIT(INP_RECVPKTINFO);
   1114 				break;
   1115 
   1116 			case IP_RECVRETOPTS:
   1117 				optval = OPTBIT(INP_RECVRETOPTS);
   1118 				break;
   1119 
   1120 			case IP_RECVDSTADDR:
   1121 				optval = OPTBIT(INP_RECVDSTADDR);
   1122 				break;
   1123 
   1124 			case IP_RECVIF:
   1125 				optval = OPTBIT(INP_RECVIF);
   1126 				break;
   1127 
   1128 			case IP_RECVTTL:
   1129 				optval = OPTBIT(INP_RECVTTL);
   1130 				break;
   1131 			}
   1132 			error = sockopt_setint(sopt, optval);
   1133 			break;
   1134 
   1135 #if 0	/* defined(IPSEC) */
   1136 		case IP_IPSEC_POLICY:
   1137 		{
   1138 			struct mbuf *m = NULL;
   1139 
   1140 			/* XXX this will return EINVAL as sopt is empty */
   1141 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1142 			    sopt->sopt_size, &m);
   1143 			if (error == 0)
   1144 				error = sockopt_setmbuf(sopt, m);
   1145 			break;
   1146 		}
   1147 #endif /*IPSEC*/
   1148 
   1149 		case IP_MULTICAST_IF:
   1150 		case IP_MULTICAST_TTL:
   1151 		case IP_MULTICAST_LOOP:
   1152 		case IP_ADD_MEMBERSHIP:
   1153 		case IP_DROP_MEMBERSHIP:
   1154 			error = ip_getmoptions(inp, sopt);
   1155 			break;
   1156 
   1157 		case IP_PORTRANGE:
   1158 			if (inpflags & INP_LOWPORT)
   1159 				optval = IP_PORTRANGE_LOW;
   1160 			else
   1161 				optval = IP_PORTRANGE_DEFAULT;
   1162 			error = sockopt_setint(sopt, optval);
   1163 			break;
   1164 
   1165 		case IP_PORTALGO:
   1166 			optval = inp->inp_portalgo;
   1167 			error = sockopt_setint(sopt, optval);
   1168 			break;
   1169 
   1170 		default:
   1171 			error = ENOPROTOOPT;
   1172 			break;
   1173 		}
   1174 		break;
   1175 	}
   1176 
   1177 	if (!error) {
   1178 		inp->inp_flags = inpflags;
   1179 	}
   1180 	return error;
   1181 }
   1182 
   1183 /*
   1184  * Set up IP options in pcb for insertion in output packets.
   1185  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1186  * with destination address if source routed.
   1187  */
   1188 static int
   1189 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1190 {
   1191 	struct mbuf *m;
   1192 	const u_char *cp;
   1193 	u_char *dp;
   1194 	int cnt;
   1195 
   1196 	/* Turn off any old options. */
   1197 	if (inp->inp_options) {
   1198 		m_free(inp->inp_options);
   1199 	}
   1200 	inp->inp_options = NULL;
   1201 	if ((cnt = sopt->sopt_size) == 0) {
   1202 		/* Only turning off any previous options. */
   1203 		return 0;
   1204 	}
   1205 	cp = sopt->sopt_data;
   1206 
   1207 #ifndef	__vax__
   1208 	if (cnt % sizeof(int32_t))
   1209 		return (EINVAL);
   1210 #endif
   1211 
   1212 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1213 	if (m == NULL)
   1214 		return (ENOBUFS);
   1215 
   1216 	dp = mtod(m, u_char *);
   1217 	memset(dp, 0, sizeof(struct in_addr));
   1218 	dp += sizeof(struct in_addr);
   1219 	m->m_len = sizeof(struct in_addr);
   1220 
   1221 	/*
   1222 	 * IP option list according to RFC791. Each option is of the form
   1223 	 *
   1224 	 *	[optval] [olen] [(olen - 2) data bytes]
   1225 	 *
   1226 	 * We validate the list and copy options to an mbuf for prepending
   1227 	 * to data packets. The IP first-hop destination address will be
   1228 	 * stored before actual options and is zero if unset.
   1229 	 */
   1230 	while (cnt > 0) {
   1231 		uint8_t optval, olen, offset;
   1232 
   1233 		optval = cp[IPOPT_OPTVAL];
   1234 
   1235 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1236 			olen = 1;
   1237 		} else {
   1238 			if (cnt < IPOPT_OLEN + 1)
   1239 				goto bad;
   1240 
   1241 			olen = cp[IPOPT_OLEN];
   1242 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1243 				goto bad;
   1244 		}
   1245 
   1246 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1247 			/*
   1248 			 * user process specifies route as:
   1249 			 *	->A->B->C->D
   1250 			 * D must be our final destination (but we can't
   1251 			 * check that since we may not have connected yet).
   1252 			 * A is first hop destination, which doesn't appear in
   1253 			 * actual IP option, but is stored before the options.
   1254 			 */
   1255 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1256 				goto bad;
   1257 
   1258 			offset = cp[IPOPT_OFFSET];
   1259 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1260 			    sizeof(struct in_addr));
   1261 
   1262 			cp += sizeof(struct in_addr);
   1263 			cnt -= sizeof(struct in_addr);
   1264 			olen -= sizeof(struct in_addr);
   1265 
   1266 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1267 				goto bad;
   1268 
   1269 			memcpy(dp, cp, olen);
   1270 			dp[IPOPT_OPTVAL] = optval;
   1271 			dp[IPOPT_OLEN] = olen;
   1272 			dp[IPOPT_OFFSET] = offset;
   1273 			break;
   1274 		} else {
   1275 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1276 				goto bad;
   1277 
   1278 			memcpy(dp, cp, olen);
   1279 			break;
   1280 		}
   1281 
   1282 		dp += olen;
   1283 		m->m_len += olen;
   1284 
   1285 		if (optval == IPOPT_EOL)
   1286 			break;
   1287 
   1288 		cp += olen;
   1289 		cnt -= olen;
   1290 	}
   1291 
   1292 	inp->inp_options = m;
   1293 	return 0;
   1294 bad:
   1295 	(void)m_free(m);
   1296 	return EINVAL;
   1297 }
   1298 
   1299 /*
   1300  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1301  */
   1302 static struct ifnet *
   1303 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1304 {
   1305 	int ifindex;
   1306 	struct ifnet *ifp = NULL;
   1307 	struct in_ifaddr *ia;
   1308 
   1309 	if (ifindexp)
   1310 		*ifindexp = 0;
   1311 	if (ntohl(a->s_addr) >> 24 == 0) {
   1312 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1313 		ifp = if_byindex(ifindex);
   1314 		if (!ifp)
   1315 			return NULL;
   1316 		if (ifindexp)
   1317 			*ifindexp = ifindex;
   1318 	} else {
   1319 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1320 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1321 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1322 				ifp = ia->ia_ifp;
   1323 				break;
   1324 			}
   1325 		}
   1326 	}
   1327 	return ifp;
   1328 }
   1329 
   1330 static int
   1331 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1332 {
   1333 	u_int tval;
   1334 	u_char cval;
   1335 	int error;
   1336 
   1337 	if (sopt == NULL)
   1338 		return EINVAL;
   1339 
   1340 	switch (sopt->sopt_size) {
   1341 	case sizeof(u_char):
   1342 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1343 		tval = cval;
   1344 		break;
   1345 
   1346 	case sizeof(u_int):
   1347 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1348 		break;
   1349 
   1350 	default:
   1351 		error = EINVAL;
   1352 	}
   1353 
   1354 	if (error)
   1355 		return error;
   1356 
   1357 	if (tval > maxval)
   1358 		return EINVAL;
   1359 
   1360 	*val = tval;
   1361 	return 0;
   1362 }
   1363 
   1364 /*
   1365  * Set the IP multicast options in response to user setsockopt().
   1366  */
   1367 static int
   1368 ip_setmoptions(struct inpcb *inp, const struct sockopt *sopt)
   1369 {
   1370 	struct ip_moptions *imo = inp->inp_moptions;
   1371 	struct in_addr addr;
   1372 	struct ip_mreq lmreq, *mreq;
   1373 	struct ifnet *ifp;
   1374 	int i, ifindex, error = 0;
   1375 
   1376 	if (!imo) {
   1377 		/*
   1378 		 * No multicast option buffer attached to the pcb;
   1379 		 * allocate one and initialize to default values.
   1380 		 */
   1381 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1382 		if (imo == NULL)
   1383 			return ENOBUFS;
   1384 
   1385 		imo->imo_multicast_ifp = NULL;
   1386 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1387 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1388 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1389 		imo->imo_num_memberships = 0;
   1390 		inp->inp_moptions = imo;
   1391 	}
   1392 
   1393 	switch (sopt->sopt_name) {
   1394 	case IP_MULTICAST_IF:
   1395 		/*
   1396 		 * Select the interface for outgoing multicast packets.
   1397 		 */
   1398 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1399 		if (error)
   1400 			break;
   1401 
   1402 		/*
   1403 		 * INADDR_ANY is used to remove a previous selection.
   1404 		 * When no interface is selected, a default one is
   1405 		 * chosen every time a multicast packet is sent.
   1406 		 */
   1407 		if (in_nullhost(addr)) {
   1408 			imo->imo_multicast_ifp = NULL;
   1409 			break;
   1410 		}
   1411 		/*
   1412 		 * The selected interface is identified by its local
   1413 		 * IP address.  Find the interface and confirm that
   1414 		 * it supports multicasting.
   1415 		 */
   1416 		ifp = ip_multicast_if(&addr, &ifindex);
   1417 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1418 			error = EADDRNOTAVAIL;
   1419 			break;
   1420 		}
   1421 		imo->imo_multicast_ifp = ifp;
   1422 		if (ifindex)
   1423 			imo->imo_multicast_addr = addr;
   1424 		else
   1425 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1426 		break;
   1427 
   1428 	case IP_MULTICAST_TTL:
   1429 		/*
   1430 		 * Set the IP time-to-live for outgoing multicast packets.
   1431 		 */
   1432 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1433 		break;
   1434 
   1435 	case IP_MULTICAST_LOOP:
   1436 		/*
   1437 		 * Set the loopback flag for outgoing multicast packets.
   1438 		 * Must be zero or one.
   1439 		 */
   1440 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1441 		break;
   1442 
   1443 	case IP_ADD_MEMBERSHIP:
   1444 		/*
   1445 		 * Add a multicast group membership.
   1446 		 * Group must be a valid IP multicast address.
   1447 		 */
   1448 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1449 		if (error)
   1450 			break;
   1451 
   1452 		mreq = &lmreq;
   1453 
   1454 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1455 			error = EINVAL;
   1456 			break;
   1457 		}
   1458 		/*
   1459 		 * If no interface address was provided, use the interface of
   1460 		 * the route to the given multicast address.
   1461 		 */
   1462 		if (in_nullhost(mreq->imr_interface)) {
   1463 			struct rtentry *rt;
   1464 			union {
   1465 				struct sockaddr		dst;
   1466 				struct sockaddr_in	dst4;
   1467 			} u;
   1468 			struct route ro;
   1469 
   1470 			memset(&ro, 0, sizeof(ro));
   1471 
   1472 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1473 			rtcache_setdst(&ro, &u.dst);
   1474 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1475 			                                        : NULL;
   1476 			rtcache_free(&ro);
   1477 		} else {
   1478 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1479 		}
   1480 		/*
   1481 		 * See if we found an interface, and confirm that it
   1482 		 * supports multicast.
   1483 		 */
   1484 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1485 			error = EADDRNOTAVAIL;
   1486 			break;
   1487 		}
   1488 		/*
   1489 		 * See if the membership already exists or if all the
   1490 		 * membership slots are full.
   1491 		 */
   1492 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1493 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1494 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1495 				      mreq->imr_multiaddr))
   1496 				break;
   1497 		}
   1498 		if (i < imo->imo_num_memberships) {
   1499 			error = EADDRINUSE;
   1500 			break;
   1501 		}
   1502 		if (i == IP_MAX_MEMBERSHIPS) {
   1503 			error = ETOOMANYREFS;
   1504 			break;
   1505 		}
   1506 		/*
   1507 		 * Everything looks good; add a new record to the multicast
   1508 		 * address list for the given interface.
   1509 		 */
   1510 		if ((imo->imo_membership[i] =
   1511 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1512 			error = ENOBUFS;
   1513 			break;
   1514 		}
   1515 		++imo->imo_num_memberships;
   1516 		break;
   1517 
   1518 	case IP_DROP_MEMBERSHIP:
   1519 		/*
   1520 		 * Drop a multicast group membership.
   1521 		 * Group must be a valid IP multicast address.
   1522 		 */
   1523 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1524 		if (error)
   1525 			break;
   1526 
   1527 		mreq = &lmreq;
   1528 
   1529 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1530 			error = EINVAL;
   1531 			break;
   1532 		}
   1533 		/*
   1534 		 * If an interface address was specified, get a pointer
   1535 		 * to its ifnet structure.
   1536 		 */
   1537 		if (in_nullhost(mreq->imr_interface))
   1538 			ifp = NULL;
   1539 		else {
   1540 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1541 			if (ifp == NULL) {
   1542 				error = EADDRNOTAVAIL;
   1543 				break;
   1544 			}
   1545 		}
   1546 		/*
   1547 		 * Find the membership in the membership array.
   1548 		 */
   1549 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1550 			if ((ifp == NULL ||
   1551 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1552 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1553 				       mreq->imr_multiaddr))
   1554 				break;
   1555 		}
   1556 		if (i == imo->imo_num_memberships) {
   1557 			error = EADDRNOTAVAIL;
   1558 			break;
   1559 		}
   1560 		/*
   1561 		 * Give up the multicast address record to which the
   1562 		 * membership points.
   1563 		 */
   1564 		in_delmulti(imo->imo_membership[i]);
   1565 		/*
   1566 		 * Remove the gap in the membership array.
   1567 		 */
   1568 		for (++i; i < imo->imo_num_memberships; ++i)
   1569 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1570 		--imo->imo_num_memberships;
   1571 		break;
   1572 
   1573 	default:
   1574 		error = EOPNOTSUPP;
   1575 		break;
   1576 	}
   1577 
   1578 	/*
   1579 	 * If all options have default values, no need to keep the mbuf.
   1580 	 */
   1581 	if (imo->imo_multicast_ifp == NULL &&
   1582 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1583 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1584 	    imo->imo_num_memberships == 0) {
   1585 		kmem_free(imo, sizeof(*imo));
   1586 		inp->inp_moptions = NULL;
   1587 	}
   1588 
   1589 	return error;
   1590 }
   1591 
   1592 /*
   1593  * Return the IP multicast options in response to user getsockopt().
   1594  */
   1595 static int
   1596 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
   1597 {
   1598 	struct ip_moptions *imo = inp->inp_moptions;
   1599 	struct in_addr addr;
   1600 	struct in_ifaddr *ia;
   1601 	uint8_t optval;
   1602 	int error = 0;
   1603 
   1604 	switch (sopt->sopt_name) {
   1605 	case IP_MULTICAST_IF:
   1606 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1607 			addr = zeroin_addr;
   1608 		else if (imo->imo_multicast_addr.s_addr) {
   1609 			/* return the value user has set */
   1610 			addr = imo->imo_multicast_addr;
   1611 		} else {
   1612 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1613 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1614 		}
   1615 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1616 		break;
   1617 
   1618 	case IP_MULTICAST_TTL:
   1619 		optval = imo ? imo->imo_multicast_ttl
   1620 			     : IP_DEFAULT_MULTICAST_TTL;
   1621 
   1622 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1623 		break;
   1624 
   1625 	case IP_MULTICAST_LOOP:
   1626 		optval = imo ? imo->imo_multicast_loop
   1627 			     : IP_DEFAULT_MULTICAST_LOOP;
   1628 
   1629 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1630 		break;
   1631 
   1632 	default:
   1633 		error = EOPNOTSUPP;
   1634 	}
   1635 
   1636 	return error;
   1637 }
   1638 
   1639 /*
   1640  * Discard the IP multicast options.
   1641  */
   1642 void
   1643 ip_freemoptions(struct ip_moptions *imo)
   1644 {
   1645 	int i;
   1646 
   1647 	if (imo != NULL) {
   1648 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1649 			in_delmulti(imo->imo_membership[i]);
   1650 		kmem_free(imo, sizeof(*imo));
   1651 	}
   1652 }
   1653 
   1654 /*
   1655  * Routine called from ip_output() to loop back a copy of an IP multicast
   1656  * packet to the input queue of a specified interface.  Note that this
   1657  * calls the output routine of the loopback "driver", but with an interface
   1658  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1659  */
   1660 static void
   1661 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1662 {
   1663 	struct ip *ip;
   1664 	struct mbuf *copym;
   1665 
   1666 	copym = m_copypacket(m, M_DONTWAIT);
   1667 	if (copym != NULL
   1668 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1669 		copym = m_pullup(copym, sizeof(struct ip));
   1670 	if (copym == NULL)
   1671 		return;
   1672 	/*
   1673 	 * We don't bother to fragment if the IP length is greater
   1674 	 * than the interface's MTU.  Can this possibly matter?
   1675 	 */
   1676 	ip = mtod(copym, struct ip *);
   1677 
   1678 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1679 		in_delayed_cksum(copym);
   1680 		copym->m_pkthdr.csum_flags &=
   1681 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1682 	}
   1683 
   1684 	ip->ip_sum = 0;
   1685 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1686 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1687 }
   1688