Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.231
      1 /*	$NetBSD: ip_output.c,v 1.231 2014/10/11 21:12:51 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.231 2014/10/11 21:12:51 christos Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 
    100 #include <sys/param.h>
    101 #include <sys/kmem.h>
    102 #include <sys/mbuf.h>
    103 #include <sys/protosw.h>
    104 #include <sys/socket.h>
    105 #include <sys/socketvar.h>
    106 #include <sys/kauth.h>
    107 #ifdef IPSEC
    108 #include <sys/domain.h>
    109 #endif
    110 #include <sys/systm.h>
    111 
    112 #include <net/if.h>
    113 #include <net/route.h>
    114 #include <net/pfil.h>
    115 
    116 #include <netinet/in.h>
    117 #include <netinet/in_systm.h>
    118 #include <netinet/ip.h>
    119 #include <netinet/in_pcb.h>
    120 #include <netinet/in_var.h>
    121 #include <netinet/ip_var.h>
    122 #include <netinet/ip_private.h>
    123 #include <netinet/in_offload.h>
    124 #include <netinet/portalgo.h>
    125 #include <netinet/udp.h>
    126 
    127 #ifdef MROUTING
    128 #include <netinet/ip_mroute.h>
    129 #endif
    130 
    131 #include <netipsec/ipsec.h>
    132 #include <netipsec/key.h>
    133 
    134 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    135 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    136 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    137 static void ip_mloopback(struct ifnet *, struct mbuf *,
    138     const struct sockaddr_in *);
    139 
    140 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    141 
    142 int	ip_do_loopback_cksum = 0;
    143 
    144 /*
    145  * IP output.  The packet in mbuf chain m contains a skeletal IP
    146  * header (with len, off, ttl, proto, tos, src, dst).
    147  * The mbuf chain containing the packet will be freed.
    148  * The mbuf opt, if present, will not be freed.
    149  */
    150 int
    151 ip_output(struct mbuf *m0, ...)
    152 {
    153 	struct rtentry *rt;
    154 	struct ip *ip;
    155 	struct ifnet *ifp;
    156 	struct mbuf *m = m0;
    157 	int hlen = sizeof (struct ip);
    158 	int len, error = 0;
    159 	struct route iproute;
    160 	const struct sockaddr_in *dst;
    161 	struct in_ifaddr *ia;
    162 	struct mbuf *opt;
    163 	struct route *ro;
    164 	int flags, sw_csum;
    165 	u_long mtu;
    166 	struct ip_moptions *imo;
    167 	struct socket *so;
    168 	va_list ap;
    169 #ifdef IPSEC
    170 	struct secpolicy *sp = NULL;
    171 #endif
    172 	bool natt_frag = false;
    173 	bool rtmtu_nolock;
    174 	union {
    175 		struct sockaddr		dst;
    176 		struct sockaddr_in	dst4;
    177 	} u;
    178 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    179 					 * to the nexthop
    180 					 */
    181 
    182 	len = 0;
    183 	va_start(ap, m0);
    184 	opt = va_arg(ap, struct mbuf *);
    185 	ro = va_arg(ap, struct route *);
    186 	flags = va_arg(ap, int);
    187 	imo = va_arg(ap, struct ip_moptions *);
    188 	so = va_arg(ap, struct socket *);
    189 	va_end(ap);
    190 
    191 	MCLAIM(m, &ip_tx_mowner);
    192 
    193 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    194 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    195 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    196 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    197 
    198 	if (opt) {
    199 		m = ip_insertoptions(m, opt, &len);
    200 		if (len >= sizeof(struct ip))
    201 			hlen = len;
    202 	}
    203 	ip = mtod(m, struct ip *);
    204 
    205 	/*
    206 	 * Fill in IP header.
    207 	 */
    208 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    209 		ip->ip_v = IPVERSION;
    210 		ip->ip_off = htons(0);
    211 		/* ip->ip_id filled in after we find out source ia */
    212 		ip->ip_hl = hlen >> 2;
    213 		IP_STATINC(IP_STAT_LOCALOUT);
    214 	} else {
    215 		hlen = ip->ip_hl << 2;
    216 	}
    217 
    218 	/*
    219 	 * Route packet.
    220 	 */
    221 	if (ro == NULL) {
    222 		memset(&iproute, 0, sizeof(iproute));
    223 		ro = &iproute;
    224 	}
    225 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    226 	dst = satocsin(rtcache_getdst(ro));
    227 
    228 	/*
    229 	 * If there is a cached route, check that it is to the same
    230 	 * destination and is still up.  If not, free it and try again.
    231 	 * The address family should also be checked in case of sharing
    232 	 * the cache with IPv6.
    233 	 */
    234 	if (dst && (dst->sin_family != AF_INET ||
    235 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    236 		rtcache_free(ro);
    237 
    238 	if ((rt = rtcache_validate(ro)) == NULL &&
    239 	    (rt = rtcache_update(ro, 1)) == NULL) {
    240 		dst = &u.dst4;
    241 		rtcache_setdst(ro, &u.dst);
    242 	}
    243 
    244 	/*
    245 	 * If routing to interface only, short circuit routing lookup.
    246 	 */
    247 	if (flags & IP_ROUTETOIF) {
    248 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    249 			IP_STATINC(IP_STAT_NOROUTE);
    250 			error = ENETUNREACH;
    251 			goto bad;
    252 		}
    253 		ifp = ia->ia_ifp;
    254 		mtu = ifp->if_mtu;
    255 		ip->ip_ttl = 1;
    256 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    257 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    258 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    259 		ifp = imo->imo_multicast_ifp;
    260 		mtu = ifp->if_mtu;
    261 		IFP_TO_IA(ifp, ia);
    262 	} else {
    263 		if (rt == NULL)
    264 			rt = rtcache_init(ro);
    265 		if (rt == NULL) {
    266 			IP_STATINC(IP_STAT_NOROUTE);
    267 			error = EHOSTUNREACH;
    268 			goto bad;
    269 		}
    270 		ia = ifatoia(rt->rt_ifa);
    271 		ifp = rt->rt_ifp;
    272 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    273 			mtu = ifp->if_mtu;
    274 		rt->rt_use++;
    275 		if (rt->rt_flags & RTF_GATEWAY)
    276 			dst = satosin(rt->rt_gateway);
    277 	}
    278 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    279 
    280 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    281 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    282 		bool inmgroup;
    283 
    284 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    285 			M_BCAST : M_MCAST;
    286 		/*
    287 		 * See if the caller provided any multicast options
    288 		 */
    289 		if (imo != NULL)
    290 			ip->ip_ttl = imo->imo_multicast_ttl;
    291 		else
    292 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    293 
    294 		/*
    295 		 * if we don't know the outgoing ifp yet, we can't generate
    296 		 * output
    297 		 */
    298 		if (!ifp) {
    299 			IP_STATINC(IP_STAT_NOROUTE);
    300 			error = ENETUNREACH;
    301 			goto bad;
    302 		}
    303 
    304 		/*
    305 		 * If the packet is multicast or broadcast, confirm that
    306 		 * the outgoing interface can transmit it.
    307 		 */
    308 		if (((m->m_flags & M_MCAST) &&
    309 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    310 		    ((m->m_flags & M_BCAST) &&
    311 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    312 			IP_STATINC(IP_STAT_NOROUTE);
    313 			error = ENETUNREACH;
    314 			goto bad;
    315 		}
    316 		/*
    317 		 * If source address not specified yet, use an address
    318 		 * of outgoing interface.
    319 		 */
    320 		if (in_nullhost(ip->ip_src)) {
    321 			struct in_ifaddr *xia;
    322 			struct ifaddr *xifa;
    323 
    324 			IFP_TO_IA(ifp, xia);
    325 			if (!xia) {
    326 				error = EADDRNOTAVAIL;
    327 				goto bad;
    328 			}
    329 			xifa = &xia->ia_ifa;
    330 			if (xifa->ifa_getifa != NULL) {
    331 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    332 			}
    333 			ip->ip_src = xia->ia_addr.sin_addr;
    334 		}
    335 
    336 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    337 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    338 			/*
    339 			 * If we belong to the destination multicast group
    340 			 * on the outgoing interface, and the caller did not
    341 			 * forbid loopback, loop back a copy.
    342 			 */
    343 			ip_mloopback(ifp, m, &u.dst4);
    344 		}
    345 #ifdef MROUTING
    346 		else {
    347 			/*
    348 			 * If we are acting as a multicast router, perform
    349 			 * multicast forwarding as if the packet had just
    350 			 * arrived on the interface to which we are about
    351 			 * to send.  The multicast forwarding function
    352 			 * recursively calls this function, using the
    353 			 * IP_FORWARDING flag to prevent infinite recursion.
    354 			 *
    355 			 * Multicasts that are looped back by ip_mloopback(),
    356 			 * above, will be forwarded by the ip_input() routine,
    357 			 * if necessary.
    358 			 */
    359 			extern struct socket *ip_mrouter;
    360 
    361 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    362 				if (ip_mforward(m, ifp) != 0) {
    363 					m_freem(m);
    364 					goto done;
    365 				}
    366 			}
    367 		}
    368 #endif
    369 		/*
    370 		 * Multicasts with a time-to-live of zero may be looped-
    371 		 * back, above, but must not be transmitted on a network.
    372 		 * Also, multicasts addressed to the loopback interface
    373 		 * are not sent -- the above call to ip_mloopback() will
    374 		 * loop back a copy if this host actually belongs to the
    375 		 * destination group on the loopback interface.
    376 		 */
    377 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    378 			m_freem(m);
    379 			goto done;
    380 		}
    381 		goto sendit;
    382 	}
    383 
    384 	/*
    385 	 * If source address not specified yet, use address
    386 	 * of outgoing interface.
    387 	 */
    388 	if (in_nullhost(ip->ip_src)) {
    389 		struct ifaddr *xifa;
    390 
    391 		xifa = &ia->ia_ifa;
    392 		if (xifa->ifa_getifa != NULL)
    393 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    394 		ip->ip_src = ia->ia_addr.sin_addr;
    395 	}
    396 
    397 	/*
    398 	 * packets with Class-D address as source are not valid per
    399 	 * RFC 1112
    400 	 */
    401 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    402 		IP_STATINC(IP_STAT_ODROPPED);
    403 		error = EADDRNOTAVAIL;
    404 		goto bad;
    405 	}
    406 
    407 	/*
    408 	 * Look for broadcast address and and verify user is allowed to
    409 	 * send such a packet.
    410 	 */
    411 	if (in_broadcast(dst->sin_addr, ifp)) {
    412 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    413 			error = EADDRNOTAVAIL;
    414 			goto bad;
    415 		}
    416 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    417 			error = EACCES;
    418 			goto bad;
    419 		}
    420 		/* don't allow broadcast messages to be fragmented */
    421 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    422 			error = EMSGSIZE;
    423 			goto bad;
    424 		}
    425 		m->m_flags |= M_BCAST;
    426 	} else
    427 		m->m_flags &= ~M_BCAST;
    428 
    429 sendit:
    430 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    431 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    432 			ip->ip_id = 0;
    433 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    434 			ip->ip_id = ip_newid(ia);
    435 		} else {
    436 
    437 			/*
    438 			 * TSO capable interfaces (typically?) increment
    439 			 * ip_id for each segment.
    440 			 * "allocate" enough ids here to increase the chance
    441 			 * for them to be unique.
    442 			 *
    443 			 * note that the following calculation is not
    444 			 * needed to be precise.  wasting some ip_id is fine.
    445 			 */
    446 
    447 			unsigned int segsz = m->m_pkthdr.segsz;
    448 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    449 			unsigned int num = howmany(datasz, segsz);
    450 
    451 			ip->ip_id = ip_newid_range(ia, num);
    452 		}
    453 	}
    454 
    455 	/*
    456 	 * If we're doing Path MTU Discovery, we need to set DF unless
    457 	 * the route's MTU is locked.
    458 	 */
    459 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    460 		ip->ip_off |= htons(IP_DF);
    461 	}
    462 
    463 #ifdef IPSEC
    464 	if (ipsec_used) {
    465 		bool ipsec_done = false;
    466 
    467 		/* Perform IPsec processing, if any. */
    468 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    469 		    &ipsec_done);
    470 		if (error || ipsec_done)
    471 			goto done;
    472 	}
    473 #endif
    474 
    475 	/*
    476 	 * Run through list of hooks for output packets.
    477 	 */
    478 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    479 	if (error)
    480 		goto done;
    481 	if (m == NULL)
    482 		goto done;
    483 
    484 	ip = mtod(m, struct ip *);
    485 	hlen = ip->ip_hl << 2;
    486 
    487 	m->m_pkthdr.csum_data |= hlen << 16;
    488 
    489 #if IFA_STATS
    490 	/*
    491 	 * search for the source address structure to
    492 	 * maintain output statistics.
    493 	 */
    494 	INADDR_TO_IA(ip->ip_src, ia);
    495 #endif
    496 
    497 	/* Maybe skip checksums on loopback interfaces. */
    498 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    499 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    500 	}
    501 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    502 	/*
    503 	 * If small enough for mtu of path, or if using TCP segmentation
    504 	 * offload, can just send directly.
    505 	 */
    506 	if (ntohs(ip->ip_len) <= mtu ||
    507 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    508 		const struct sockaddr *sa;
    509 
    510 #if IFA_STATS
    511 		if (ia)
    512 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    513 #endif
    514 		/*
    515 		 * Always initialize the sum to 0!  Some HW assisted
    516 		 * checksumming requires this.
    517 		 */
    518 		ip->ip_sum = 0;
    519 
    520 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    521 			/*
    522 			 * Perform any checksums that the hardware can't do
    523 			 * for us.
    524 			 *
    525 			 * XXX Does any hardware require the {th,uh}_sum
    526 			 * XXX fields to be 0?
    527 			 */
    528 			if (sw_csum & M_CSUM_IPv4) {
    529 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    530 				ip->ip_sum = in_cksum(m, hlen);
    531 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    532 			}
    533 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    534 				if (IN_NEED_CHECKSUM(ifp,
    535 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    536 					in_delayed_cksum(m);
    537 				}
    538 				m->m_pkthdr.csum_flags &=
    539 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    540 			}
    541 		}
    542 
    543 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    544 		if (__predict_true(
    545 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    546 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    547 			KERNEL_LOCK(1, NULL);
    548 			error = (*ifp->if_output)(ifp, m, sa, rt);
    549 			KERNEL_UNLOCK_ONE(NULL);
    550 		} else {
    551 			error = ip_tso_output(ifp, m, sa, rt);
    552 		}
    553 		goto done;
    554 	}
    555 
    556 	/*
    557 	 * We can't use HW checksumming if we're about to
    558 	 * to fragment the packet.
    559 	 *
    560 	 * XXX Some hardware can do this.
    561 	 */
    562 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    563 		if (IN_NEED_CHECKSUM(ifp,
    564 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    565 			in_delayed_cksum(m);
    566 		}
    567 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    568 	}
    569 
    570 	/*
    571 	 * Too large for interface; fragment if possible.
    572 	 * Must be able to put at least 8 bytes per fragment.
    573 	 */
    574 	if (ntohs(ip->ip_off) & IP_DF) {
    575 		if (flags & IP_RETURNMTU) {
    576 			struct inpcb *inp;
    577 
    578 			KASSERT(so && solocked(so));
    579 			inp = sotoinpcb(so);
    580 			inp->inp_errormtu = mtu;
    581 		}
    582 		error = EMSGSIZE;
    583 		IP_STATINC(IP_STAT_CANTFRAG);
    584 		goto bad;
    585 	}
    586 
    587 	error = ip_fragment(m, ifp, mtu);
    588 	if (error) {
    589 		m = NULL;
    590 		goto bad;
    591 	}
    592 
    593 	for (; m; m = m0) {
    594 		m0 = m->m_nextpkt;
    595 		m->m_nextpkt = 0;
    596 		if (error) {
    597 			m_freem(m);
    598 			continue;
    599 		}
    600 #if IFA_STATS
    601 		if (ia)
    602 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    603 #endif
    604 		/*
    605 		 * If we get there, the packet has not been handled by
    606 		 * IPsec whereas it should have. Now that it has been
    607 		 * fragmented, re-inject it in ip_output so that IPsec
    608 		 * processing can occur.
    609 		 */
    610 		if (natt_frag) {
    611 			error = ip_output(m, opt, ro,
    612 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    613 			    imo, so);
    614 		} else {
    615 			KASSERT((m->m_pkthdr.csum_flags &
    616 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    617 			KERNEL_LOCK(1, NULL);
    618 			error = (*ifp->if_output)(ifp, m,
    619 			    (m->m_flags & M_MCAST) ?
    620 			    sintocsa(rdst) : sintocsa(dst), rt);
    621 			KERNEL_UNLOCK_ONE(NULL);
    622 		}
    623 	}
    624 	if (error == 0) {
    625 		IP_STATINC(IP_STAT_FRAGMENTED);
    626 	}
    627 done:
    628 	if (ro == &iproute) {
    629 		rtcache_free(&iproute);
    630 	}
    631 #ifdef IPSEC
    632 	if (sp) {
    633 		KEY_FREESP(&sp);
    634 	}
    635 #endif
    636 	return error;
    637 bad:
    638 	m_freem(m);
    639 	goto done;
    640 }
    641 
    642 int
    643 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    644 {
    645 	struct ip *ip, *mhip;
    646 	struct mbuf *m0;
    647 	int len, hlen, off;
    648 	int mhlen, firstlen;
    649 	struct mbuf **mnext;
    650 	int sw_csum = m->m_pkthdr.csum_flags;
    651 	int fragments = 0;
    652 	int s;
    653 	int error = 0;
    654 
    655 	ip = mtod(m, struct ip *);
    656 	hlen = ip->ip_hl << 2;
    657 	if (ifp != NULL)
    658 		sw_csum &= ~ifp->if_csum_flags_tx;
    659 
    660 	len = (mtu - hlen) &~ 7;
    661 	if (len < 8) {
    662 		m_freem(m);
    663 		return (EMSGSIZE);
    664 	}
    665 
    666 	firstlen = len;
    667 	mnext = &m->m_nextpkt;
    668 
    669 	/*
    670 	 * Loop through length of segment after first fragment,
    671 	 * make new header and copy data of each part and link onto chain.
    672 	 */
    673 	m0 = m;
    674 	mhlen = sizeof (struct ip);
    675 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    676 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    677 		if (m == 0) {
    678 			error = ENOBUFS;
    679 			IP_STATINC(IP_STAT_ODROPPED);
    680 			goto sendorfree;
    681 		}
    682 		MCLAIM(m, m0->m_owner);
    683 		*mnext = m;
    684 		mnext = &m->m_nextpkt;
    685 		m->m_data += max_linkhdr;
    686 		mhip = mtod(m, struct ip *);
    687 		*mhip = *ip;
    688 		/* we must inherit MCAST and BCAST flags */
    689 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    690 		if (hlen > sizeof (struct ip)) {
    691 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    692 			mhip->ip_hl = mhlen >> 2;
    693 		}
    694 		m->m_len = mhlen;
    695 		mhip->ip_off = ((off - hlen) >> 3) +
    696 		    (ntohs(ip->ip_off) & ~IP_MF);
    697 		if (ip->ip_off & htons(IP_MF))
    698 			mhip->ip_off |= IP_MF;
    699 		if (off + len >= ntohs(ip->ip_len))
    700 			len = ntohs(ip->ip_len) - off;
    701 		else
    702 			mhip->ip_off |= IP_MF;
    703 		HTONS(mhip->ip_off);
    704 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    705 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    706 		if (m->m_next == 0) {
    707 			error = ENOBUFS;	/* ??? */
    708 			IP_STATINC(IP_STAT_ODROPPED);
    709 			goto sendorfree;
    710 		}
    711 		m->m_pkthdr.len = mhlen + len;
    712 		m->m_pkthdr.rcvif = NULL;
    713 		mhip->ip_sum = 0;
    714 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    715 		if (sw_csum & M_CSUM_IPv4) {
    716 			mhip->ip_sum = in_cksum(m, mhlen);
    717 		} else {
    718 			/*
    719 			 * checksum is hw-offloaded or not necessary.
    720 			 */
    721 			m->m_pkthdr.csum_flags |=
    722 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    723 			m->m_pkthdr.csum_data |= mhlen << 16;
    724 			KASSERT(!(ifp != NULL &&
    725 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    726 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    727 		}
    728 		IP_STATINC(IP_STAT_OFRAGMENTS);
    729 		fragments++;
    730 	}
    731 	/*
    732 	 * Update first fragment by trimming what's been copied out
    733 	 * and updating header, then send each fragment (in order).
    734 	 */
    735 	m = m0;
    736 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    737 	m->m_pkthdr.len = hlen + firstlen;
    738 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    739 	ip->ip_off |= htons(IP_MF);
    740 	ip->ip_sum = 0;
    741 	if (sw_csum & M_CSUM_IPv4) {
    742 		ip->ip_sum = in_cksum(m, hlen);
    743 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    744 	} else {
    745 		/*
    746 		 * checksum is hw-offloaded or not necessary.
    747 		 */
    748 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    749 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    750 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    751 			sizeof(struct ip));
    752 	}
    753 sendorfree:
    754 	/*
    755 	 * If there is no room for all the fragments, don't queue
    756 	 * any of them.
    757 	 */
    758 	if (ifp != NULL) {
    759 		s = splnet();
    760 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    761 		    error == 0) {
    762 			error = ENOBUFS;
    763 			IP_STATINC(IP_STAT_ODROPPED);
    764 			IFQ_INC_DROPS(&ifp->if_snd);
    765 		}
    766 		splx(s);
    767 	}
    768 	if (error) {
    769 		for (m = m0; m; m = m0) {
    770 			m0 = m->m_nextpkt;
    771 			m->m_nextpkt = NULL;
    772 			m_freem(m);
    773 		}
    774 	}
    775 	return (error);
    776 }
    777 
    778 /*
    779  * Process a delayed payload checksum calculation.
    780  */
    781 void
    782 in_delayed_cksum(struct mbuf *m)
    783 {
    784 	struct ip *ip;
    785 	u_int16_t csum, offset;
    786 
    787 	ip = mtod(m, struct ip *);
    788 	offset = ip->ip_hl << 2;
    789 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    790 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    791 		csum = 0xffff;
    792 
    793 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    794 
    795 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    796 		/* This happen when ip options were inserted
    797 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    798 		    m->m_len, offset, ip->ip_p);
    799 		 */
    800 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    801 	} else
    802 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    803 }
    804 
    805 /*
    806  * Determine the maximum length of the options to be inserted;
    807  * we would far rather allocate too much space rather than too little.
    808  */
    809 
    810 u_int
    811 ip_optlen(struct inpcb *inp)
    812 {
    813 	struct mbuf *m = inp->inp_options;
    814 
    815 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    816 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    817 	}
    818 	return 0;
    819 }
    820 
    821 /*
    822  * Insert IP options into preformed packet.
    823  * Adjust IP destination as required for IP source routing,
    824  * as indicated by a non-zero in_addr at the start of the options.
    825  */
    826 static struct mbuf *
    827 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    828 {
    829 	struct ipoption *p = mtod(opt, struct ipoption *);
    830 	struct mbuf *n;
    831 	struct ip *ip = mtod(m, struct ip *);
    832 	unsigned optlen;
    833 
    834 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    835 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    836 		return (m);		/* XXX should fail */
    837 	if (!in_nullhost(p->ipopt_dst))
    838 		ip->ip_dst = p->ipopt_dst;
    839 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    840 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    841 		if (n == 0)
    842 			return (m);
    843 		MCLAIM(n, m->m_owner);
    844 		M_MOVE_PKTHDR(n, m);
    845 		m->m_len -= sizeof(struct ip);
    846 		m->m_data += sizeof(struct ip);
    847 		n->m_next = m;
    848 		m = n;
    849 		m->m_len = optlen + sizeof(struct ip);
    850 		m->m_data += max_linkhdr;
    851 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    852 	} else {
    853 		m->m_data -= optlen;
    854 		m->m_len += optlen;
    855 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    856 	}
    857 	m->m_pkthdr.len += optlen;
    858 	ip = mtod(m, struct ip *);
    859 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    860 	*phlen = sizeof(struct ip) + optlen;
    861 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    862 	return (m);
    863 }
    864 
    865 /*
    866  * Copy options from ip to jp,
    867  * omitting those not copied during fragmentation.
    868  */
    869 int
    870 ip_optcopy(struct ip *ip, struct ip *jp)
    871 {
    872 	u_char *cp, *dp;
    873 	int opt, optlen, cnt;
    874 
    875 	cp = (u_char *)(ip + 1);
    876 	dp = (u_char *)(jp + 1);
    877 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    878 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    879 		opt = cp[0];
    880 		if (opt == IPOPT_EOL)
    881 			break;
    882 		if (opt == IPOPT_NOP) {
    883 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    884 			*dp++ = IPOPT_NOP;
    885 			optlen = 1;
    886 			continue;
    887 		}
    888 
    889 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
    890 		optlen = cp[IPOPT_OLEN];
    891 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
    892 
    893 		/* Invalid lengths should have been caught by ip_dooptions. */
    894 		if (optlen > cnt)
    895 			optlen = cnt;
    896 		if (IPOPT_COPIED(opt)) {
    897 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
    898 			dp += optlen;
    899 		}
    900 	}
    901 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
    902 		*dp++ = IPOPT_EOL;
    903 	return (optlen);
    904 }
    905 
    906 /*
    907  * IP socket option processing.
    908  */
    909 int
    910 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    911 {
    912 	struct inpcb *inp = sotoinpcb(so);
    913 	struct ip *ip = &inp->inp_ip;
    914 	int inpflags = inp->inp_flags;
    915 	int optval = 0, error = 0;
    916 
    917 	if (sopt->sopt_level != IPPROTO_IP) {
    918 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
    919 			return 0;
    920 		return ENOPROTOOPT;
    921 	}
    922 
    923 	switch (op) {
    924 	case PRCO_SETOPT:
    925 		switch (sopt->sopt_name) {
    926 		case IP_OPTIONS:
    927 #ifdef notyet
    928 		case IP_RETOPTS:
    929 #endif
    930 			error = ip_pcbopts(inp, sopt);
    931 			break;
    932 
    933 		case IP_TOS:
    934 		case IP_TTL:
    935 		case IP_MINTTL:
    936 		case IP_PKTINFO:
    937 		case IP_RECVOPTS:
    938 		case IP_RECVRETOPTS:
    939 		case IP_RECVDSTADDR:
    940 		case IP_RECVIF:
    941 		case IP_RECVPKTINFO:
    942 		case IP_RECVTTL:
    943 			error = sockopt_getint(sopt, &optval);
    944 			if (error)
    945 				break;
    946 
    947 			switch (sopt->sopt_name) {
    948 			case IP_TOS:
    949 				ip->ip_tos = optval;
    950 				break;
    951 
    952 			case IP_TTL:
    953 				ip->ip_ttl = optval;
    954 				break;
    955 
    956 			case IP_MINTTL:
    957 				if (optval > 0 && optval <= MAXTTL)
    958 					inp->inp_ip_minttl = optval;
    959 				else
    960 					error = EINVAL;
    961 				break;
    962 #define	OPTSET(bit) \
    963 	if (optval) \
    964 		inpflags |= bit; \
    965 	else \
    966 		inpflags &= ~bit;
    967 
    968 			case IP_PKTINFO:
    969 				OPTSET(INP_PKTINFO);
    970 				break;
    971 
    972 			case IP_RECVOPTS:
    973 				OPTSET(INP_RECVOPTS);
    974 				break;
    975 
    976 			case IP_RECVPKTINFO:
    977 				OPTSET(INP_RECVPKTINFO);
    978 				break;
    979 
    980 			case IP_RECVRETOPTS:
    981 				OPTSET(INP_RECVRETOPTS);
    982 				break;
    983 
    984 			case IP_RECVDSTADDR:
    985 				OPTSET(INP_RECVDSTADDR);
    986 				break;
    987 
    988 			case IP_RECVIF:
    989 				OPTSET(INP_RECVIF);
    990 				break;
    991 
    992 			case IP_RECVTTL:
    993 				OPTSET(INP_RECVTTL);
    994 				break;
    995 			}
    996 		break;
    997 #undef OPTSET
    998 
    999 		case IP_MULTICAST_IF:
   1000 		case IP_MULTICAST_TTL:
   1001 		case IP_MULTICAST_LOOP:
   1002 		case IP_ADD_MEMBERSHIP:
   1003 		case IP_DROP_MEMBERSHIP:
   1004 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1005 			break;
   1006 
   1007 		case IP_PORTRANGE:
   1008 			error = sockopt_getint(sopt, &optval);
   1009 			if (error)
   1010 				break;
   1011 
   1012 			switch (optval) {
   1013 			case IP_PORTRANGE_DEFAULT:
   1014 			case IP_PORTRANGE_HIGH:
   1015 				inpflags &= ~(INP_LOWPORT);
   1016 				break;
   1017 
   1018 			case IP_PORTRANGE_LOW:
   1019 				inpflags |= INP_LOWPORT;
   1020 				break;
   1021 
   1022 			default:
   1023 				error = EINVAL;
   1024 				break;
   1025 			}
   1026 			break;
   1027 
   1028 		case IP_PORTALGO:
   1029 			error = sockopt_getint(sopt, &optval);
   1030 			if (error)
   1031 				break;
   1032 
   1033 			error = portalgo_algo_index_select(
   1034 			    (struct inpcb_hdr *)inp, optval);
   1035 			break;
   1036 
   1037 #if defined(IPSEC)
   1038 		case IP_IPSEC_POLICY:
   1039 			if (ipsec_enabled) {
   1040 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1041 				    sopt->sopt_data, sopt->sopt_size,
   1042 				    curlwp->l_cred);
   1043 				break;
   1044 			}
   1045 			/*FALLTHROUGH*/
   1046 #endif /* IPSEC */
   1047 
   1048 		default:
   1049 			error = ENOPROTOOPT;
   1050 			break;
   1051 		}
   1052 		break;
   1053 
   1054 	case PRCO_GETOPT:
   1055 		switch (sopt->sopt_name) {
   1056 		case IP_OPTIONS:
   1057 		case IP_RETOPTS: {
   1058 			struct mbuf *mopts = inp->inp_options;
   1059 
   1060 			if (mopts) {
   1061 				struct mbuf *m;
   1062 
   1063 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1064 				if (m == NULL) {
   1065 					error = ENOBUFS;
   1066 					break;
   1067 				}
   1068 				error = sockopt_setmbuf(sopt, m);
   1069 			}
   1070 			break;
   1071 		}
   1072 		case IP_PKTINFO:
   1073 		case IP_TOS:
   1074 		case IP_TTL:
   1075 		case IP_MINTTL:
   1076 		case IP_RECVOPTS:
   1077 		case IP_RECVRETOPTS:
   1078 		case IP_RECVDSTADDR:
   1079 		case IP_RECVIF:
   1080 		case IP_RECVPKTINFO:
   1081 		case IP_RECVTTL:
   1082 		case IP_ERRORMTU:
   1083 			switch (sopt->sopt_name) {
   1084 			case IP_TOS:
   1085 				optval = ip->ip_tos;
   1086 				break;
   1087 
   1088 			case IP_TTL:
   1089 				optval = ip->ip_ttl;
   1090 				break;
   1091 
   1092 			case IP_MINTTL:
   1093 				optval = inp->inp_ip_minttl;
   1094 				break;
   1095 
   1096 			case IP_ERRORMTU:
   1097 				optval = inp->inp_errormtu;
   1098 				break;
   1099 
   1100 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1101 
   1102 			case IP_PKTINFO:
   1103 				optval = OPTBIT(INP_PKTINFO);
   1104 				break;
   1105 
   1106 			case IP_RECVOPTS:
   1107 				optval = OPTBIT(INP_RECVOPTS);
   1108 				break;
   1109 
   1110 			case IP_RECVPKTINFO:
   1111 				optval = OPTBIT(INP_RECVPKTINFO);
   1112 				break;
   1113 
   1114 			case IP_RECVRETOPTS:
   1115 				optval = OPTBIT(INP_RECVRETOPTS);
   1116 				break;
   1117 
   1118 			case IP_RECVDSTADDR:
   1119 				optval = OPTBIT(INP_RECVDSTADDR);
   1120 				break;
   1121 
   1122 			case IP_RECVIF:
   1123 				optval = OPTBIT(INP_RECVIF);
   1124 				break;
   1125 
   1126 			case IP_RECVTTL:
   1127 				optval = OPTBIT(INP_RECVTTL);
   1128 				break;
   1129 			}
   1130 			error = sockopt_setint(sopt, optval);
   1131 			break;
   1132 
   1133 #if 0	/* defined(IPSEC) */
   1134 		case IP_IPSEC_POLICY:
   1135 		{
   1136 			struct mbuf *m = NULL;
   1137 
   1138 			/* XXX this will return EINVAL as sopt is empty */
   1139 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1140 			    sopt->sopt_size, &m);
   1141 			if (error == 0)
   1142 				error = sockopt_setmbuf(sopt, m);
   1143 			break;
   1144 		}
   1145 #endif /*IPSEC*/
   1146 
   1147 		case IP_MULTICAST_IF:
   1148 		case IP_MULTICAST_TTL:
   1149 		case IP_MULTICAST_LOOP:
   1150 		case IP_ADD_MEMBERSHIP:
   1151 		case IP_DROP_MEMBERSHIP:
   1152 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1153 			break;
   1154 
   1155 		case IP_PORTRANGE:
   1156 			if (inpflags & INP_LOWPORT)
   1157 				optval = IP_PORTRANGE_LOW;
   1158 			else
   1159 				optval = IP_PORTRANGE_DEFAULT;
   1160 			error = sockopt_setint(sopt, optval);
   1161 			break;
   1162 
   1163 		case IP_PORTALGO:
   1164 			optval = inp->inp_portalgo;
   1165 			error = sockopt_setint(sopt, optval);
   1166 			break;
   1167 
   1168 		default:
   1169 			error = ENOPROTOOPT;
   1170 			break;
   1171 		}
   1172 		break;
   1173 	}
   1174 
   1175 	if (!error) {
   1176 		inp->inp_flags = inpflags;
   1177 	}
   1178 	return error;
   1179 }
   1180 
   1181 /*
   1182  * Set up IP options in pcb for insertion in output packets.
   1183  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1184  * with destination address if source routed.
   1185  */
   1186 static int
   1187 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1188 {
   1189 	struct mbuf *m;
   1190 	const u_char *cp;
   1191 	u_char *dp;
   1192 	int cnt;
   1193 
   1194 	/* Turn off any old options. */
   1195 	if (inp->inp_options) {
   1196 		m_free(inp->inp_options);
   1197 	}
   1198 	inp->inp_options = NULL;
   1199 	if ((cnt = sopt->sopt_size) == 0) {
   1200 		/* Only turning off any previous options. */
   1201 		return 0;
   1202 	}
   1203 	cp = sopt->sopt_data;
   1204 
   1205 #ifndef	__vax__
   1206 	if (cnt % sizeof(int32_t))
   1207 		return (EINVAL);
   1208 #endif
   1209 
   1210 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1211 	if (m == NULL)
   1212 		return (ENOBUFS);
   1213 
   1214 	dp = mtod(m, u_char *);
   1215 	memset(dp, 0, sizeof(struct in_addr));
   1216 	dp += sizeof(struct in_addr);
   1217 	m->m_len = sizeof(struct in_addr);
   1218 
   1219 	/*
   1220 	 * IP option list according to RFC791. Each option is of the form
   1221 	 *
   1222 	 *	[optval] [olen] [(olen - 2) data bytes]
   1223 	 *
   1224 	 * We validate the list and copy options to an mbuf for prepending
   1225 	 * to data packets. The IP first-hop destination address will be
   1226 	 * stored before actual options and is zero if unset.
   1227 	 */
   1228 	while (cnt > 0) {
   1229 		uint8_t optval, olen, offset;
   1230 
   1231 		optval = cp[IPOPT_OPTVAL];
   1232 
   1233 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1234 			olen = 1;
   1235 		} else {
   1236 			if (cnt < IPOPT_OLEN + 1)
   1237 				goto bad;
   1238 
   1239 			olen = cp[IPOPT_OLEN];
   1240 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1241 				goto bad;
   1242 		}
   1243 
   1244 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1245 			/*
   1246 			 * user process specifies route as:
   1247 			 *	->A->B->C->D
   1248 			 * D must be our final destination (but we can't
   1249 			 * check that since we may not have connected yet).
   1250 			 * A is first hop destination, which doesn't appear in
   1251 			 * actual IP option, but is stored before the options.
   1252 			 */
   1253 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1254 				goto bad;
   1255 
   1256 			offset = cp[IPOPT_OFFSET];
   1257 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1258 			    sizeof(struct in_addr));
   1259 
   1260 			cp += sizeof(struct in_addr);
   1261 			cnt -= sizeof(struct in_addr);
   1262 			olen -= sizeof(struct in_addr);
   1263 
   1264 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1265 				goto bad;
   1266 
   1267 			memcpy(dp, cp, olen);
   1268 			dp[IPOPT_OPTVAL] = optval;
   1269 			dp[IPOPT_OLEN] = olen;
   1270 			dp[IPOPT_OFFSET] = offset;
   1271 			break;
   1272 		} else {
   1273 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1274 				goto bad;
   1275 
   1276 			memcpy(dp, cp, olen);
   1277 			break;
   1278 		}
   1279 
   1280 		dp += olen;
   1281 		m->m_len += olen;
   1282 
   1283 		if (optval == IPOPT_EOL)
   1284 			break;
   1285 
   1286 		cp += olen;
   1287 		cnt -= olen;
   1288 	}
   1289 
   1290 	inp->inp_options = m;
   1291 	return 0;
   1292 bad:
   1293 	(void)m_free(m);
   1294 	return EINVAL;
   1295 }
   1296 
   1297 /*
   1298  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1299  */
   1300 static struct ifnet *
   1301 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1302 {
   1303 	int ifindex;
   1304 	struct ifnet *ifp = NULL;
   1305 	struct in_ifaddr *ia;
   1306 
   1307 	if (ifindexp)
   1308 		*ifindexp = 0;
   1309 	if (ntohl(a->s_addr) >> 24 == 0) {
   1310 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1311 		ifp = if_byindex(ifindex);
   1312 		if (!ifp)
   1313 			return NULL;
   1314 		if (ifindexp)
   1315 			*ifindexp = ifindex;
   1316 	} else {
   1317 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1318 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1319 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1320 				ifp = ia->ia_ifp;
   1321 				break;
   1322 			}
   1323 		}
   1324 	}
   1325 	return ifp;
   1326 }
   1327 
   1328 static int
   1329 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1330 {
   1331 	u_int tval;
   1332 	u_char cval;
   1333 	int error;
   1334 
   1335 	if (sopt == NULL)
   1336 		return EINVAL;
   1337 
   1338 	switch (sopt->sopt_size) {
   1339 	case sizeof(u_char):
   1340 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1341 		tval = cval;
   1342 		break;
   1343 
   1344 	case sizeof(u_int):
   1345 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1346 		break;
   1347 
   1348 	default:
   1349 		error = EINVAL;
   1350 	}
   1351 
   1352 	if (error)
   1353 		return error;
   1354 
   1355 	if (tval > maxval)
   1356 		return EINVAL;
   1357 
   1358 	*val = tval;
   1359 	return 0;
   1360 }
   1361 
   1362 /*
   1363  * Set the IP multicast options in response to user setsockopt().
   1364  */
   1365 int
   1366 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1367 {
   1368 	struct ip_moptions *imo = *pimo;
   1369 	struct in_addr addr;
   1370 	struct ip_mreq lmreq, *mreq;
   1371 	struct ifnet *ifp;
   1372 	int i, ifindex, error = 0;
   1373 
   1374 	if (!imo) {
   1375 		/*
   1376 		 * No multicast option buffer attached to the pcb;
   1377 		 * allocate one and initialize to default values.
   1378 		 */
   1379 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1380 		if (imo == NULL)
   1381 			return ENOBUFS;
   1382 
   1383 		imo->imo_multicast_ifp = NULL;
   1384 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1385 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1386 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1387 		imo->imo_num_memberships = 0;
   1388 		*pimo = imo;
   1389 	}
   1390 
   1391 	switch (sopt->sopt_name) {
   1392 	case IP_MULTICAST_IF:
   1393 		/*
   1394 		 * Select the interface for outgoing multicast packets.
   1395 		 */
   1396 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1397 		if (error)
   1398 			break;
   1399 
   1400 		/*
   1401 		 * INADDR_ANY is used to remove a previous selection.
   1402 		 * When no interface is selected, a default one is
   1403 		 * chosen every time a multicast packet is sent.
   1404 		 */
   1405 		if (in_nullhost(addr)) {
   1406 			imo->imo_multicast_ifp = NULL;
   1407 			break;
   1408 		}
   1409 		/*
   1410 		 * The selected interface is identified by its local
   1411 		 * IP address.  Find the interface and confirm that
   1412 		 * it supports multicasting.
   1413 		 */
   1414 		ifp = ip_multicast_if(&addr, &ifindex);
   1415 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1416 			error = EADDRNOTAVAIL;
   1417 			break;
   1418 		}
   1419 		imo->imo_multicast_ifp = ifp;
   1420 		if (ifindex)
   1421 			imo->imo_multicast_addr = addr;
   1422 		else
   1423 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1424 		break;
   1425 
   1426 	case IP_MULTICAST_TTL:
   1427 		/*
   1428 		 * Set the IP time-to-live for outgoing multicast packets.
   1429 		 */
   1430 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1431 		break;
   1432 
   1433 	case IP_MULTICAST_LOOP:
   1434 		/*
   1435 		 * Set the loopback flag for outgoing multicast packets.
   1436 		 * Must be zero or one.
   1437 		 */
   1438 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1439 		break;
   1440 
   1441 	case IP_ADD_MEMBERSHIP:
   1442 		/*
   1443 		 * Add a multicast group membership.
   1444 		 * Group must be a valid IP multicast address.
   1445 		 */
   1446 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1447 		if (error)
   1448 			break;
   1449 
   1450 		mreq = &lmreq;
   1451 
   1452 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1453 			error = EINVAL;
   1454 			break;
   1455 		}
   1456 		/*
   1457 		 * If no interface address was provided, use the interface of
   1458 		 * the route to the given multicast address.
   1459 		 */
   1460 		if (in_nullhost(mreq->imr_interface)) {
   1461 			struct rtentry *rt;
   1462 			union {
   1463 				struct sockaddr		dst;
   1464 				struct sockaddr_in	dst4;
   1465 			} u;
   1466 			struct route ro;
   1467 
   1468 			memset(&ro, 0, sizeof(ro));
   1469 
   1470 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
   1471 			rtcache_setdst(&ro, &u.dst);
   1472 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
   1473 			                                        : NULL;
   1474 			rtcache_free(&ro);
   1475 		} else {
   1476 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1477 		}
   1478 		/*
   1479 		 * See if we found an interface, and confirm that it
   1480 		 * supports multicast.
   1481 		 */
   1482 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1483 			error = EADDRNOTAVAIL;
   1484 			break;
   1485 		}
   1486 		/*
   1487 		 * See if the membership already exists or if all the
   1488 		 * membership slots are full.
   1489 		 */
   1490 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1491 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1492 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1493 				      mreq->imr_multiaddr))
   1494 				break;
   1495 		}
   1496 		if (i < imo->imo_num_memberships) {
   1497 			error = EADDRINUSE;
   1498 			break;
   1499 		}
   1500 		if (i == IP_MAX_MEMBERSHIPS) {
   1501 			error = ETOOMANYREFS;
   1502 			break;
   1503 		}
   1504 		/*
   1505 		 * Everything looks good; add a new record to the multicast
   1506 		 * address list for the given interface.
   1507 		 */
   1508 		if ((imo->imo_membership[i] =
   1509 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1510 			error = ENOBUFS;
   1511 			break;
   1512 		}
   1513 		++imo->imo_num_memberships;
   1514 		break;
   1515 
   1516 	case IP_DROP_MEMBERSHIP:
   1517 		/*
   1518 		 * Drop a multicast group membership.
   1519 		 * Group must be a valid IP multicast address.
   1520 		 */
   1521 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
   1522 		if (error)
   1523 			break;
   1524 
   1525 		mreq = &lmreq;
   1526 
   1527 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1528 			error = EINVAL;
   1529 			break;
   1530 		}
   1531 		/*
   1532 		 * If an interface address was specified, get a pointer
   1533 		 * to its ifnet structure.
   1534 		 */
   1535 		if (in_nullhost(mreq->imr_interface))
   1536 			ifp = NULL;
   1537 		else {
   1538 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1539 			if (ifp == NULL) {
   1540 				error = EADDRNOTAVAIL;
   1541 				break;
   1542 			}
   1543 		}
   1544 		/*
   1545 		 * Find the membership in the membership array.
   1546 		 */
   1547 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1548 			if ((ifp == NULL ||
   1549 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1550 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1551 				       mreq->imr_multiaddr))
   1552 				break;
   1553 		}
   1554 		if (i == imo->imo_num_memberships) {
   1555 			error = EADDRNOTAVAIL;
   1556 			break;
   1557 		}
   1558 		/*
   1559 		 * Give up the multicast address record to which the
   1560 		 * membership points.
   1561 		 */
   1562 		in_delmulti(imo->imo_membership[i]);
   1563 		/*
   1564 		 * Remove the gap in the membership array.
   1565 		 */
   1566 		for (++i; i < imo->imo_num_memberships; ++i)
   1567 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1568 		--imo->imo_num_memberships;
   1569 		break;
   1570 
   1571 	default:
   1572 		error = EOPNOTSUPP;
   1573 		break;
   1574 	}
   1575 
   1576 	/*
   1577 	 * If all options have default values, no need to keep the mbuf.
   1578 	 */
   1579 	if (imo->imo_multicast_ifp == NULL &&
   1580 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1581 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1582 	    imo->imo_num_memberships == 0) {
   1583 		kmem_free(imo, sizeof(*imo));
   1584 		*pimo = NULL;
   1585 	}
   1586 
   1587 	return error;
   1588 }
   1589 
   1590 /*
   1591  * Return the IP multicast options in response to user getsockopt().
   1592  */
   1593 int
   1594 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1595 {
   1596 	struct in_addr addr;
   1597 	struct in_ifaddr *ia;
   1598 	uint8_t optval;
   1599 	int error = 0;
   1600 
   1601 	switch (sopt->sopt_name) {
   1602 	case IP_MULTICAST_IF:
   1603 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1604 			addr = zeroin_addr;
   1605 		else if (imo->imo_multicast_addr.s_addr) {
   1606 			/* return the value user has set */
   1607 			addr = imo->imo_multicast_addr;
   1608 		} else {
   1609 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1610 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1611 		}
   1612 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1613 		break;
   1614 
   1615 	case IP_MULTICAST_TTL:
   1616 		optval = imo ? imo->imo_multicast_ttl
   1617 			     : IP_DEFAULT_MULTICAST_TTL;
   1618 
   1619 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1620 		break;
   1621 
   1622 	case IP_MULTICAST_LOOP:
   1623 		optval = imo ? imo->imo_multicast_loop
   1624 			     : IP_DEFAULT_MULTICAST_LOOP;
   1625 
   1626 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1627 		break;
   1628 
   1629 	default:
   1630 		error = EOPNOTSUPP;
   1631 	}
   1632 
   1633 	return error;
   1634 }
   1635 
   1636 /*
   1637  * Discard the IP multicast options.
   1638  */
   1639 void
   1640 ip_freemoptions(struct ip_moptions *imo)
   1641 {
   1642 	int i;
   1643 
   1644 	if (imo != NULL) {
   1645 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1646 			in_delmulti(imo->imo_membership[i]);
   1647 		kmem_free(imo, sizeof(*imo));
   1648 	}
   1649 }
   1650 
   1651 /*
   1652  * Routine called from ip_output() to loop back a copy of an IP multicast
   1653  * packet to the input queue of a specified interface.  Note that this
   1654  * calls the output routine of the loopback "driver", but with an interface
   1655  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1656  */
   1657 static void
   1658 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1659 {
   1660 	struct ip *ip;
   1661 	struct mbuf *copym;
   1662 
   1663 	copym = m_copypacket(m, M_DONTWAIT);
   1664 	if (copym != NULL
   1665 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1666 		copym = m_pullup(copym, sizeof(struct ip));
   1667 	if (copym == NULL)
   1668 		return;
   1669 	/*
   1670 	 * We don't bother to fragment if the IP length is greater
   1671 	 * than the interface's MTU.  Can this possibly matter?
   1672 	 */
   1673 	ip = mtod(copym, struct ip *);
   1674 
   1675 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1676 		in_delayed_cksum(copym);
   1677 		copym->m_pkthdr.csum_flags &=
   1678 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1679 	}
   1680 
   1681 	ip->ip_sum = 0;
   1682 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1683 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1684 }
   1685