Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.233.2.2
      1 /*	$NetBSD: ip_output.c,v 1.233.2.2 2015/06/06 14:40:25 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.233.2.2 2015/06/06 14:40:25 skrll Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 #include "opt_net_mpsafe.h"
    100 #include "opt_mpls.h"
    101 
    102 #include <sys/param.h>
    103 #include <sys/kmem.h>
    104 #include <sys/mbuf.h>
    105 #include <sys/protosw.h>
    106 #include <sys/socket.h>
    107 #include <sys/socketvar.h>
    108 #include <sys/kauth.h>
    109 #ifdef IPSEC
    110 #include <sys/domain.h>
    111 #endif
    112 #include <sys/systm.h>
    113 
    114 #include <net/if.h>
    115 #include <net/if_types.h>
    116 #include <net/route.h>
    117 #include <net/pfil.h>
    118 
    119 #include <netinet/in.h>
    120 #include <netinet/in_systm.h>
    121 #include <netinet/ip.h>
    122 #include <netinet/in_pcb.h>
    123 #include <netinet/in_var.h>
    124 #include <netinet/ip_var.h>
    125 #include <netinet/ip_private.h>
    126 #include <netinet/in_offload.h>
    127 #include <netinet/portalgo.h>
    128 #include <netinet/udp.h>
    129 
    130 #ifdef INET6
    131 #include <netinet6/ip6_var.h>
    132 #endif
    133 
    134 #ifdef MROUTING
    135 #include <netinet/ip_mroute.h>
    136 #endif
    137 
    138 #ifdef IPSEC
    139 #include <netipsec/ipsec.h>
    140 #include <netipsec/key.h>
    141 #endif
    142 
    143 #ifdef MPLS
    144 #include <netmpls/mpls.h>
    145 #include <netmpls/mpls_var.h>
    146 #endif
    147 
    148 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    149 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    150 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    151 static void ip_mloopback(struct ifnet *, struct mbuf *,
    152     const struct sockaddr_in *);
    153 
    154 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    155 
    156 int	ip_do_loopback_cksum = 0;
    157 
    158 static bool
    159 ip_hresolv_needed(const struct ifnet * const ifp)
    160 {
    161 	switch (ifp->if_type) {
    162 	case IFT_ARCNET:
    163 	case IFT_ATM:
    164 	case IFT_ECONET:
    165 	case IFT_ETHER:
    166 	case IFT_FDDI:
    167 	case IFT_HIPPI:
    168 	case IFT_IEEE1394:
    169 		return true;
    170 	default:
    171 		return false;
    172 	}
    173 }
    174 
    175 static int
    176 klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
    177     const struct sockaddr * const dst, struct rtentry *rt)
    178 {
    179 	int error;
    180 
    181 #ifndef NET_MPSAFE
    182 	KERNEL_LOCK(1, NULL);
    183 #endif
    184 
    185 	error = (*ifp->if_output)(ifp, m, dst, rt);
    186 
    187 #ifndef NET_MPSAFE
    188 	KERNEL_UNLOCK_ONE(NULL);
    189 #endif
    190 
    191 	return error;
    192 }
    193 
    194 /*
    195  * Send an IP packet to a host.
    196  *
    197  * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
    198  * calling ifp's output routine.
    199  */
    200 int
    201 ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
    202     const struct sockaddr * const dst, struct rtentry *rt0)
    203 {
    204 	int error = 0;
    205 	struct ifnet *ifp = ifp0;
    206 	struct rtentry *rt;
    207 
    208 retry:
    209 	if (!ip_hresolv_needed(ifp)) {
    210 		rt = rt0;
    211 		goto out;
    212 	}
    213 
    214 	if (rt0 == NULL) {
    215 		rt = NULL;
    216 		goto out;
    217 	}
    218 
    219 	rt = rt0;
    220 
    221 	/*
    222 	 * The following block is highly questionable.  How did we get here
    223 	 * with a !RTF_UP route?  Does rtalloc1() always return an RTF_UP
    224 	 * route?
    225 	 */
    226 	if ((rt->rt_flags & RTF_UP) == 0) {
    227 		rt = rtalloc1(dst, 1);
    228 		if (rt == NULL) {
    229 			error = EHOSTUNREACH;
    230 			goto bad;
    231 		}
    232 		rt0 = rt;
    233 		rt->rt_refcnt--;
    234 		if (rt->rt_ifp != ifp) {
    235 			ifp = rt->rt_ifp;
    236 			rt0 = rt;
    237 			goto retry;
    238 		}
    239 	}
    240 
    241 	if ((rt->rt_flags & RTF_GATEWAY) == 0)
    242 		goto out;
    243 
    244 	rt = rt->rt_gwroute;
    245 	if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
    246 		if (rt != NULL) {
    247 			rtfree(rt);
    248 			rt = rt0;
    249 		}
    250 		if (rt == NULL) {
    251 			error = EHOSTUNREACH;
    252 			goto bad;
    253 		}
    254 		rt = rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
    255 		if (rt == NULL) {
    256 			error = EHOSTUNREACH;
    257 			goto bad;
    258 		}
    259 		/* the "G" test below also prevents rt == rt0 */
    260 		if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
    261 			rt->rt_refcnt--;
    262 			rt0->rt_gwroute = NULL;
    263 			error = EHOSTUNREACH;
    264 			goto bad;
    265 		}
    266 	}
    267 	if ((rt->rt_flags & RTF_REJECT) != 0) {
    268 		if (rt->rt_rmx.rmx_expire == 0 ||
    269 		    time_second < rt->rt_rmx.rmx_expire) {
    270 			error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
    271 			goto bad;
    272 		}
    273 	}
    274 
    275 out:
    276 #ifdef MPLS
    277 	if (rt0 != NULL && rt_gettag(rt0) != NULL &&
    278 	    rt_gettag(rt0)->sa_family == AF_MPLS &&
    279 	    (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
    280 	    ifp->if_type == IFT_ETHER) {
    281 		union mpls_shim msh;
    282 		msh.s_addr = MPLS_GETSADDR(rt0);
    283 		if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    284 			struct m_tag *mtag;
    285 			/*
    286 			 * XXX tentative solution to tell ether_output
    287 			 * it's MPLS. Need some more efficient solution.
    288 			 */
    289 			mtag = m_tag_get(PACKET_TAG_MPLS,
    290 			    sizeof(int) /* dummy */,
    291 			    M_NOWAIT);
    292 			if (mtag == NULL) {
    293 				error = ENOMEM;
    294 				goto bad;
    295 			}
    296 			m_tag_prepend(m, mtag);
    297 		}
    298 	}
    299 #endif
    300 
    301 	return klock_if_output(ifp, m, dst, rt);
    302 bad:
    303 	if (m != NULL)
    304 		m_freem(m);
    305 
    306 	return error;
    307 }
    308 
    309 /*
    310  * IP output.  The packet in mbuf chain m contains a skeletal IP
    311  * header (with len, off, ttl, proto, tos, src, dst).
    312  * The mbuf chain containing the packet will be freed.
    313  * The mbuf opt, if present, will not be freed.
    314  */
    315 int
    316 ip_output(struct mbuf *m0, ...)
    317 {
    318 	struct rtentry *rt;
    319 	struct ip *ip;
    320 	struct ifnet *ifp;
    321 	struct mbuf *m = m0;
    322 	int hlen = sizeof (struct ip);
    323 	int len, error = 0;
    324 	struct route iproute;
    325 	const struct sockaddr_in *dst;
    326 	struct in_ifaddr *ia;
    327 	int isbroadcast;
    328 	struct mbuf *opt;
    329 	struct route *ro;
    330 	int flags, sw_csum;
    331 	u_long mtu;
    332 	struct ip_moptions *imo;
    333 	struct socket *so;
    334 	va_list ap;
    335 #ifdef IPSEC
    336 	struct secpolicy *sp = NULL;
    337 #endif
    338 	bool natt_frag = false;
    339 	bool rtmtu_nolock;
    340 	union {
    341 		struct sockaddr		dst;
    342 		struct sockaddr_in	dst4;
    343 	} u;
    344 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    345 					 * to the nexthop
    346 					 */
    347 
    348 	len = 0;
    349 	va_start(ap, m0);
    350 	opt = va_arg(ap, struct mbuf *);
    351 	ro = va_arg(ap, struct route *);
    352 	flags = va_arg(ap, int);
    353 	imo = va_arg(ap, struct ip_moptions *);
    354 	so = va_arg(ap, struct socket *);
    355 	va_end(ap);
    356 
    357 	MCLAIM(m, &ip_tx_mowner);
    358 
    359 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    360 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    361 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    362 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    363 
    364 	if (opt) {
    365 		m = ip_insertoptions(m, opt, &len);
    366 		if (len >= sizeof(struct ip))
    367 			hlen = len;
    368 	}
    369 	ip = mtod(m, struct ip *);
    370 
    371 	/*
    372 	 * Fill in IP header.
    373 	 */
    374 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    375 		ip->ip_v = IPVERSION;
    376 		ip->ip_off = htons(0);
    377 		/* ip->ip_id filled in after we find out source ia */
    378 		ip->ip_hl = hlen >> 2;
    379 		IP_STATINC(IP_STAT_LOCALOUT);
    380 	} else {
    381 		hlen = ip->ip_hl << 2;
    382 	}
    383 
    384 	/*
    385 	 * Route packet.
    386 	 */
    387 	if (ro == NULL) {
    388 		memset(&iproute, 0, sizeof(iproute));
    389 		ro = &iproute;
    390 	}
    391 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    392 	dst = satocsin(rtcache_getdst(ro));
    393 
    394 	/*
    395 	 * If there is a cached route, check that it is to the same
    396 	 * destination and is still up.  If not, free it and try again.
    397 	 * The address family should also be checked in case of sharing
    398 	 * the cache with IPv6.
    399 	 */
    400 	if (dst && (dst->sin_family != AF_INET ||
    401 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    402 		rtcache_free(ro);
    403 
    404 	if ((rt = rtcache_validate(ro)) == NULL &&
    405 	    (rt = rtcache_update(ro, 1)) == NULL) {
    406 		dst = &u.dst4;
    407 		error = rtcache_setdst(ro, &u.dst);
    408 		if (error != 0)
    409 			goto bad;
    410 	}
    411 
    412 	/*
    413 	 * If routing to interface only, short circuit routing lookup.
    414 	 */
    415 	if (flags & IP_ROUTETOIF) {
    416 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    417 			IP_STATINC(IP_STAT_NOROUTE);
    418 			error = ENETUNREACH;
    419 			goto bad;
    420 		}
    421 		ifp = ia->ia_ifp;
    422 		mtu = ifp->if_mtu;
    423 		ip->ip_ttl = 1;
    424 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    425 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    426 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    427 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    428 		ifp = imo->imo_multicast_ifp;
    429 		mtu = ifp->if_mtu;
    430 		IFP_TO_IA(ifp, ia);
    431 		isbroadcast = 0;
    432 	} else {
    433 		if (rt == NULL)
    434 			rt = rtcache_init(ro);
    435 		if (rt == NULL) {
    436 			IP_STATINC(IP_STAT_NOROUTE);
    437 			error = EHOSTUNREACH;
    438 			goto bad;
    439 		}
    440 		ia = ifatoia(rt->rt_ifa);
    441 		ifp = rt->rt_ifp;
    442 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    443 			mtu = ifp->if_mtu;
    444 		rt->rt_use++;
    445 		if (rt->rt_flags & RTF_GATEWAY)
    446 			dst = satosin(rt->rt_gateway);
    447 		if (rt->rt_flags & RTF_HOST)
    448 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    449 		else
    450 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    451 	}
    452 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    453 
    454 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    455 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    456 		bool inmgroup;
    457 
    458 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    459 		    M_BCAST : M_MCAST;
    460 		/*
    461 		 * See if the caller provided any multicast options
    462 		 */
    463 		if (imo != NULL)
    464 			ip->ip_ttl = imo->imo_multicast_ttl;
    465 		else
    466 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    467 
    468 		/*
    469 		 * if we don't know the outgoing ifp yet, we can't generate
    470 		 * output
    471 		 */
    472 		if (!ifp) {
    473 			IP_STATINC(IP_STAT_NOROUTE);
    474 			error = ENETUNREACH;
    475 			goto bad;
    476 		}
    477 
    478 		/*
    479 		 * If the packet is multicast or broadcast, confirm that
    480 		 * the outgoing interface can transmit it.
    481 		 */
    482 		if (((m->m_flags & M_MCAST) &&
    483 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    484 		    ((m->m_flags & M_BCAST) &&
    485 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    486 			IP_STATINC(IP_STAT_NOROUTE);
    487 			error = ENETUNREACH;
    488 			goto bad;
    489 		}
    490 		/*
    491 		 * If source address not specified yet, use an address
    492 		 * of outgoing interface.
    493 		 */
    494 		if (in_nullhost(ip->ip_src)) {
    495 			struct in_ifaddr *xia;
    496 			struct ifaddr *xifa;
    497 
    498 			IFP_TO_IA(ifp, xia);
    499 			if (!xia) {
    500 				error = EADDRNOTAVAIL;
    501 				goto bad;
    502 			}
    503 			xifa = &xia->ia_ifa;
    504 			if (xifa->ifa_getifa != NULL) {
    505 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    506 			}
    507 			ip->ip_src = xia->ia_addr.sin_addr;
    508 		}
    509 
    510 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    511 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    512 			/*
    513 			 * If we belong to the destination multicast group
    514 			 * on the outgoing interface, and the caller did not
    515 			 * forbid loopback, loop back a copy.
    516 			 */
    517 			ip_mloopback(ifp, m, &u.dst4);
    518 		}
    519 #ifdef MROUTING
    520 		else {
    521 			/*
    522 			 * If we are acting as a multicast router, perform
    523 			 * multicast forwarding as if the packet had just
    524 			 * arrived on the interface to which we are about
    525 			 * to send.  The multicast forwarding function
    526 			 * recursively calls this function, using the
    527 			 * IP_FORWARDING flag to prevent infinite recursion.
    528 			 *
    529 			 * Multicasts that are looped back by ip_mloopback(),
    530 			 * above, will be forwarded by the ip_input() routine,
    531 			 * if necessary.
    532 			 */
    533 			extern struct socket *ip_mrouter;
    534 
    535 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    536 				if (ip_mforward(m, ifp) != 0) {
    537 					m_freem(m);
    538 					goto done;
    539 				}
    540 			}
    541 		}
    542 #endif
    543 		/*
    544 		 * Multicasts with a time-to-live of zero may be looped-
    545 		 * back, above, but must not be transmitted on a network.
    546 		 * Also, multicasts addressed to the loopback interface
    547 		 * are not sent -- the above call to ip_mloopback() will
    548 		 * loop back a copy if this host actually belongs to the
    549 		 * destination group on the loopback interface.
    550 		 */
    551 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    552 			m_freem(m);
    553 			goto done;
    554 		}
    555 		goto sendit;
    556 	}
    557 
    558 	/*
    559 	 * If source address not specified yet, use address
    560 	 * of outgoing interface.
    561 	 */
    562 	if (in_nullhost(ip->ip_src)) {
    563 		struct ifaddr *xifa;
    564 
    565 		xifa = &ia->ia_ifa;
    566 		if (xifa->ifa_getifa != NULL)
    567 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    568 		ip->ip_src = ia->ia_addr.sin_addr;
    569 	}
    570 
    571 	/*
    572 	 * packets with Class-D address as source are not valid per
    573 	 * RFC 1112
    574 	 */
    575 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    576 		IP_STATINC(IP_STAT_ODROPPED);
    577 		error = EADDRNOTAVAIL;
    578 		goto bad;
    579 	}
    580 
    581 	/*
    582 	 * Look for broadcast address and and verify user is allowed to
    583 	 * send such a packet.
    584 	 */
    585 	if (isbroadcast) {
    586 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    587 			error = EADDRNOTAVAIL;
    588 			goto bad;
    589 		}
    590 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    591 			error = EACCES;
    592 			goto bad;
    593 		}
    594 		/* don't allow broadcast messages to be fragmented */
    595 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    596 			error = EMSGSIZE;
    597 			goto bad;
    598 		}
    599 		m->m_flags |= M_BCAST;
    600 	} else
    601 		m->m_flags &= ~M_BCAST;
    602 
    603 sendit:
    604 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    605 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    606 			ip->ip_id = 0;
    607 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    608 			ip->ip_id = ip_newid(ia);
    609 		} else {
    610 
    611 			/*
    612 			 * TSO capable interfaces (typically?) increment
    613 			 * ip_id for each segment.
    614 			 * "allocate" enough ids here to increase the chance
    615 			 * for them to be unique.
    616 			 *
    617 			 * note that the following calculation is not
    618 			 * needed to be precise.  wasting some ip_id is fine.
    619 			 */
    620 
    621 			unsigned int segsz = m->m_pkthdr.segsz;
    622 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    623 			unsigned int num = howmany(datasz, segsz);
    624 
    625 			ip->ip_id = ip_newid_range(ia, num);
    626 		}
    627 	}
    628 
    629 	/*
    630 	 * If we're doing Path MTU Discovery, we need to set DF unless
    631 	 * the route's MTU is locked.
    632 	 */
    633 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    634 		ip->ip_off |= htons(IP_DF);
    635 	}
    636 
    637 #ifdef IPSEC
    638 	if (ipsec_used) {
    639 		bool ipsec_done = false;
    640 
    641 		/* Perform IPsec processing, if any. */
    642 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    643 		    &ipsec_done);
    644 		if (error || ipsec_done)
    645 			goto done;
    646 	}
    647 #endif
    648 
    649 	/*
    650 	 * Run through list of hooks for output packets.
    651 	 */
    652 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    653 	if (error)
    654 		goto done;
    655 	if (m == NULL)
    656 		goto done;
    657 
    658 	ip = mtod(m, struct ip *);
    659 	hlen = ip->ip_hl << 2;
    660 
    661 	m->m_pkthdr.csum_data |= hlen << 16;
    662 
    663 #if IFA_STATS
    664 	/*
    665 	 * search for the source address structure to
    666 	 * maintain output statistics.
    667 	 */
    668 	INADDR_TO_IA(ip->ip_src, ia);
    669 #endif
    670 
    671 	/* Maybe skip checksums on loopback interfaces. */
    672 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    673 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    674 	}
    675 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    676 	/*
    677 	 * If small enough for mtu of path, or if using TCP segmentation
    678 	 * offload, can just send directly.
    679 	 */
    680 	if (ntohs(ip->ip_len) <= mtu ||
    681 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    682 		const struct sockaddr *sa;
    683 
    684 #if IFA_STATS
    685 		if (ia)
    686 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    687 #endif
    688 		/*
    689 		 * Always initialize the sum to 0!  Some HW assisted
    690 		 * checksumming requires this.
    691 		 */
    692 		ip->ip_sum = 0;
    693 
    694 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    695 			/*
    696 			 * Perform any checksums that the hardware can't do
    697 			 * for us.
    698 			 *
    699 			 * XXX Does any hardware require the {th,uh}_sum
    700 			 * XXX fields to be 0?
    701 			 */
    702 			if (sw_csum & M_CSUM_IPv4) {
    703 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    704 				ip->ip_sum = in_cksum(m, hlen);
    705 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    706 			}
    707 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    708 				if (IN_NEED_CHECKSUM(ifp,
    709 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    710 					in_delayed_cksum(m);
    711 				}
    712 				m->m_pkthdr.csum_flags &=
    713 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    714 			}
    715 		}
    716 
    717 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    718 		if (__predict_true(
    719 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    720 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    721 			error = ip_hresolv_output(ifp, m, sa, rt);
    722 		} else {
    723 			error = ip_tso_output(ifp, m, sa, rt);
    724 		}
    725 		goto done;
    726 	}
    727 
    728 	/*
    729 	 * We can't use HW checksumming if we're about to
    730 	 * to fragment the packet.
    731 	 *
    732 	 * XXX Some hardware can do this.
    733 	 */
    734 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    735 		if (IN_NEED_CHECKSUM(ifp,
    736 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    737 			in_delayed_cksum(m);
    738 		}
    739 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    740 	}
    741 
    742 	/*
    743 	 * Too large for interface; fragment if possible.
    744 	 * Must be able to put at least 8 bytes per fragment.
    745 	 */
    746 	if (ntohs(ip->ip_off) & IP_DF) {
    747 		if (flags & IP_RETURNMTU) {
    748 			struct inpcb *inp;
    749 
    750 			KASSERT(so && solocked(so));
    751 			inp = sotoinpcb(so);
    752 			inp->inp_errormtu = mtu;
    753 		}
    754 		error = EMSGSIZE;
    755 		IP_STATINC(IP_STAT_CANTFRAG);
    756 		goto bad;
    757 	}
    758 
    759 	error = ip_fragment(m, ifp, mtu);
    760 	if (error) {
    761 		m = NULL;
    762 		goto bad;
    763 	}
    764 
    765 	for (; m; m = m0) {
    766 		m0 = m->m_nextpkt;
    767 		m->m_nextpkt = 0;
    768 		if (error) {
    769 			m_freem(m);
    770 			continue;
    771 		}
    772 #if IFA_STATS
    773 		if (ia)
    774 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    775 #endif
    776 		/*
    777 		 * If we get there, the packet has not been handled by
    778 		 * IPsec whereas it should have. Now that it has been
    779 		 * fragmented, re-inject it in ip_output so that IPsec
    780 		 * processing can occur.
    781 		 */
    782 		if (natt_frag) {
    783 			error = ip_output(m, opt, ro,
    784 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    785 			    imo, so);
    786 		} else {
    787 			KASSERT((m->m_pkthdr.csum_flags &
    788 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    789 			error = ip_hresolv_output(ifp, m,
    790 			    (m->m_flags & M_MCAST) ?
    791 			    sintocsa(rdst) : sintocsa(dst), rt);
    792 		}
    793 	}
    794 	if (error == 0) {
    795 		IP_STATINC(IP_STAT_FRAGMENTED);
    796 	}
    797 done:
    798 	if (ro == &iproute) {
    799 		rtcache_free(&iproute);
    800 	}
    801 #ifdef IPSEC
    802 	if (sp) {
    803 		KEY_FREESP(&sp);
    804 	}
    805 #endif
    806 	return error;
    807 bad:
    808 	m_freem(m);
    809 	goto done;
    810 }
    811 
    812 int
    813 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    814 {
    815 	struct ip *ip, *mhip;
    816 	struct mbuf *m0;
    817 	int len, hlen, off;
    818 	int mhlen, firstlen;
    819 	struct mbuf **mnext;
    820 	int sw_csum = m->m_pkthdr.csum_flags;
    821 	int fragments = 0;
    822 	int s;
    823 	int error = 0;
    824 
    825 	ip = mtod(m, struct ip *);
    826 	hlen = ip->ip_hl << 2;
    827 	if (ifp != NULL)
    828 		sw_csum &= ~ifp->if_csum_flags_tx;
    829 
    830 	len = (mtu - hlen) &~ 7;
    831 	if (len < 8) {
    832 		m_freem(m);
    833 		return (EMSGSIZE);
    834 	}
    835 
    836 	firstlen = len;
    837 	mnext = &m->m_nextpkt;
    838 
    839 	/*
    840 	 * Loop through length of segment after first fragment,
    841 	 * make new header and copy data of each part and link onto chain.
    842 	 */
    843 	m0 = m;
    844 	mhlen = sizeof (struct ip);
    845 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    846 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    847 		if (m == 0) {
    848 			error = ENOBUFS;
    849 			IP_STATINC(IP_STAT_ODROPPED);
    850 			goto sendorfree;
    851 		}
    852 		MCLAIM(m, m0->m_owner);
    853 		*mnext = m;
    854 		mnext = &m->m_nextpkt;
    855 		m->m_data += max_linkhdr;
    856 		mhip = mtod(m, struct ip *);
    857 		*mhip = *ip;
    858 		/* we must inherit MCAST and BCAST flags */
    859 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    860 		if (hlen > sizeof (struct ip)) {
    861 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    862 			mhip->ip_hl = mhlen >> 2;
    863 		}
    864 		m->m_len = mhlen;
    865 		mhip->ip_off = ((off - hlen) >> 3) +
    866 		    (ntohs(ip->ip_off) & ~IP_MF);
    867 		if (ip->ip_off & htons(IP_MF))
    868 			mhip->ip_off |= IP_MF;
    869 		if (off + len >= ntohs(ip->ip_len))
    870 			len = ntohs(ip->ip_len) - off;
    871 		else
    872 			mhip->ip_off |= IP_MF;
    873 		HTONS(mhip->ip_off);
    874 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    875 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    876 		if (m->m_next == 0) {
    877 			error = ENOBUFS;	/* ??? */
    878 			IP_STATINC(IP_STAT_ODROPPED);
    879 			goto sendorfree;
    880 		}
    881 		m->m_pkthdr.len = mhlen + len;
    882 		m->m_pkthdr.rcvif = NULL;
    883 		mhip->ip_sum = 0;
    884 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    885 		if (sw_csum & M_CSUM_IPv4) {
    886 			mhip->ip_sum = in_cksum(m, mhlen);
    887 		} else {
    888 			/*
    889 			 * checksum is hw-offloaded or not necessary.
    890 			 */
    891 			m->m_pkthdr.csum_flags |=
    892 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    893 			m->m_pkthdr.csum_data |= mhlen << 16;
    894 			KASSERT(!(ifp != NULL &&
    895 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    896 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    897 		}
    898 		IP_STATINC(IP_STAT_OFRAGMENTS);
    899 		fragments++;
    900 	}
    901 	/*
    902 	 * Update first fragment by trimming what's been copied out
    903 	 * and updating header, then send each fragment (in order).
    904 	 */
    905 	m = m0;
    906 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    907 	m->m_pkthdr.len = hlen + firstlen;
    908 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    909 	ip->ip_off |= htons(IP_MF);
    910 	ip->ip_sum = 0;
    911 	if (sw_csum & M_CSUM_IPv4) {
    912 		ip->ip_sum = in_cksum(m, hlen);
    913 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    914 	} else {
    915 		/*
    916 		 * checksum is hw-offloaded or not necessary.
    917 		 */
    918 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    919 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    920 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    921 		    sizeof(struct ip));
    922 	}
    923 sendorfree:
    924 	/*
    925 	 * If there is no room for all the fragments, don't queue
    926 	 * any of them.
    927 	 */
    928 	if (ifp != NULL) {
    929 		s = splnet();
    930 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    931 		    error == 0) {
    932 			error = ENOBUFS;
    933 			IP_STATINC(IP_STAT_ODROPPED);
    934 			IFQ_INC_DROPS(&ifp->if_snd);
    935 		}
    936 		splx(s);
    937 	}
    938 	if (error) {
    939 		for (m = m0; m; m = m0) {
    940 			m0 = m->m_nextpkt;
    941 			m->m_nextpkt = NULL;
    942 			m_freem(m);
    943 		}
    944 	}
    945 	return (error);
    946 }
    947 
    948 /*
    949  * Process a delayed payload checksum calculation.
    950  */
    951 void
    952 in_delayed_cksum(struct mbuf *m)
    953 {
    954 	struct ip *ip;
    955 	u_int16_t csum, offset;
    956 
    957 	ip = mtod(m, struct ip *);
    958 	offset = ip->ip_hl << 2;
    959 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    960 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    961 		csum = 0xffff;
    962 
    963 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    964 
    965 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    966 		/* This happen when ip options were inserted
    967 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    968 		    m->m_len, offset, ip->ip_p);
    969 		 */
    970 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    971 	} else
    972 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    973 }
    974 
    975 /*
    976  * Determine the maximum length of the options to be inserted;
    977  * we would far rather allocate too much space rather than too little.
    978  */
    979 
    980 u_int
    981 ip_optlen(struct inpcb *inp)
    982 {
    983 	struct mbuf *m = inp->inp_options;
    984 
    985 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    986 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    987 	}
    988 	return 0;
    989 }
    990 
    991 /*
    992  * Insert IP options into preformed packet.
    993  * Adjust IP destination as required for IP source routing,
    994  * as indicated by a non-zero in_addr at the start of the options.
    995  */
    996 static struct mbuf *
    997 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    998 {
    999 	struct ipoption *p = mtod(opt, struct ipoption *);
   1000 	struct mbuf *n;
   1001 	struct ip *ip = mtod(m, struct ip *);
   1002 	unsigned optlen;
   1003 
   1004 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1005 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1006 		return (m);		/* XXX should fail */
   1007 	if (!in_nullhost(p->ipopt_dst))
   1008 		ip->ip_dst = p->ipopt_dst;
   1009 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1010 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1011 		if (n == 0)
   1012 			return (m);
   1013 		MCLAIM(n, m->m_owner);
   1014 		M_MOVE_PKTHDR(n, m);
   1015 		m->m_len -= sizeof(struct ip);
   1016 		m->m_data += sizeof(struct ip);
   1017 		n->m_next = m;
   1018 		m = n;
   1019 		m->m_len = optlen + sizeof(struct ip);
   1020 		m->m_data += max_linkhdr;
   1021 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1022 	} else {
   1023 		m->m_data -= optlen;
   1024 		m->m_len += optlen;
   1025 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1026 	}
   1027 	m->m_pkthdr.len += optlen;
   1028 	ip = mtod(m, struct ip *);
   1029 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1030 	*phlen = sizeof(struct ip) + optlen;
   1031 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1032 	return (m);
   1033 }
   1034 
   1035 /*
   1036  * Copy options from ip to jp,
   1037  * omitting those not copied during fragmentation.
   1038  */
   1039 int
   1040 ip_optcopy(struct ip *ip, struct ip *jp)
   1041 {
   1042 	u_char *cp, *dp;
   1043 	int opt, optlen, cnt;
   1044 
   1045 	cp = (u_char *)(ip + 1);
   1046 	dp = (u_char *)(jp + 1);
   1047 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1048 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1049 		opt = cp[0];
   1050 		if (opt == IPOPT_EOL)
   1051 			break;
   1052 		if (opt == IPOPT_NOP) {
   1053 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1054 			*dp++ = IPOPT_NOP;
   1055 			optlen = 1;
   1056 			continue;
   1057 		}
   1058 
   1059 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
   1060 		optlen = cp[IPOPT_OLEN];
   1061 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
   1062 
   1063 		/* Invalid lengths should have been caught by ip_dooptions. */
   1064 		if (optlen > cnt)
   1065 			optlen = cnt;
   1066 		if (IPOPT_COPIED(opt)) {
   1067 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1068 			dp += optlen;
   1069 		}
   1070 	}
   1071 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1072 		*dp++ = IPOPT_EOL;
   1073 	return (optlen);
   1074 }
   1075 
   1076 /*
   1077  * IP socket option processing.
   1078  */
   1079 int
   1080 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1081 {
   1082 	struct inpcb *inp = sotoinpcb(so);
   1083 	struct ip *ip = &inp->inp_ip;
   1084 	int inpflags = inp->inp_flags;
   1085 	int optval = 0, error = 0;
   1086 
   1087 	if (sopt->sopt_level != IPPROTO_IP) {
   1088 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1089 			return 0;
   1090 		return ENOPROTOOPT;
   1091 	}
   1092 
   1093 	switch (op) {
   1094 	case PRCO_SETOPT:
   1095 		switch (sopt->sopt_name) {
   1096 		case IP_OPTIONS:
   1097 #ifdef notyet
   1098 		case IP_RETOPTS:
   1099 #endif
   1100 			error = ip_pcbopts(inp, sopt);
   1101 			break;
   1102 
   1103 		case IP_TOS:
   1104 		case IP_TTL:
   1105 		case IP_MINTTL:
   1106 		case IP_PKTINFO:
   1107 		case IP_RECVOPTS:
   1108 		case IP_RECVRETOPTS:
   1109 		case IP_RECVDSTADDR:
   1110 		case IP_RECVIF:
   1111 		case IP_RECVPKTINFO:
   1112 		case IP_RECVTTL:
   1113 			error = sockopt_getint(sopt, &optval);
   1114 			if (error)
   1115 				break;
   1116 
   1117 			switch (sopt->sopt_name) {
   1118 			case IP_TOS:
   1119 				ip->ip_tos = optval;
   1120 				break;
   1121 
   1122 			case IP_TTL:
   1123 				ip->ip_ttl = optval;
   1124 				break;
   1125 
   1126 			case IP_MINTTL:
   1127 				if (optval > 0 && optval <= MAXTTL)
   1128 					inp->inp_ip_minttl = optval;
   1129 				else
   1130 					error = EINVAL;
   1131 				break;
   1132 #define	OPTSET(bit) \
   1133 	if (optval) \
   1134 		inpflags |= bit; \
   1135 	else \
   1136 		inpflags &= ~bit;
   1137 
   1138 			case IP_PKTINFO:
   1139 				OPTSET(INP_PKTINFO);
   1140 				break;
   1141 
   1142 			case IP_RECVOPTS:
   1143 				OPTSET(INP_RECVOPTS);
   1144 				break;
   1145 
   1146 			case IP_RECVPKTINFO:
   1147 				OPTSET(INP_RECVPKTINFO);
   1148 				break;
   1149 
   1150 			case IP_RECVRETOPTS:
   1151 				OPTSET(INP_RECVRETOPTS);
   1152 				break;
   1153 
   1154 			case IP_RECVDSTADDR:
   1155 				OPTSET(INP_RECVDSTADDR);
   1156 				break;
   1157 
   1158 			case IP_RECVIF:
   1159 				OPTSET(INP_RECVIF);
   1160 				break;
   1161 
   1162 			case IP_RECVTTL:
   1163 				OPTSET(INP_RECVTTL);
   1164 				break;
   1165 			}
   1166 		break;
   1167 #undef OPTSET
   1168 
   1169 		case IP_MULTICAST_IF:
   1170 		case IP_MULTICAST_TTL:
   1171 		case IP_MULTICAST_LOOP:
   1172 		case IP_ADD_MEMBERSHIP:
   1173 		case IP_DROP_MEMBERSHIP:
   1174 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1175 			break;
   1176 
   1177 		case IP_PORTRANGE:
   1178 			error = sockopt_getint(sopt, &optval);
   1179 			if (error)
   1180 				break;
   1181 
   1182 			switch (optval) {
   1183 			case IP_PORTRANGE_DEFAULT:
   1184 			case IP_PORTRANGE_HIGH:
   1185 				inpflags &= ~(INP_LOWPORT);
   1186 				break;
   1187 
   1188 			case IP_PORTRANGE_LOW:
   1189 				inpflags |= INP_LOWPORT;
   1190 				break;
   1191 
   1192 			default:
   1193 				error = EINVAL;
   1194 				break;
   1195 			}
   1196 			break;
   1197 
   1198 		case IP_PORTALGO:
   1199 			error = sockopt_getint(sopt, &optval);
   1200 			if (error)
   1201 				break;
   1202 
   1203 			error = portalgo_algo_index_select(
   1204 			    (struct inpcb_hdr *)inp, optval);
   1205 			break;
   1206 
   1207 #if defined(IPSEC)
   1208 		case IP_IPSEC_POLICY:
   1209 			if (ipsec_enabled) {
   1210 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1211 				    sopt->sopt_data, sopt->sopt_size,
   1212 				    curlwp->l_cred);
   1213 				break;
   1214 			}
   1215 			/*FALLTHROUGH*/
   1216 #endif /* IPSEC */
   1217 
   1218 		default:
   1219 			error = ENOPROTOOPT;
   1220 			break;
   1221 		}
   1222 		break;
   1223 
   1224 	case PRCO_GETOPT:
   1225 		switch (sopt->sopt_name) {
   1226 		case IP_OPTIONS:
   1227 		case IP_RETOPTS: {
   1228 			struct mbuf *mopts = inp->inp_options;
   1229 
   1230 			if (mopts) {
   1231 				struct mbuf *m;
   1232 
   1233 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1234 				if (m == NULL) {
   1235 					error = ENOBUFS;
   1236 					break;
   1237 				}
   1238 				error = sockopt_setmbuf(sopt, m);
   1239 			}
   1240 			break;
   1241 		}
   1242 		case IP_PKTINFO:
   1243 		case IP_TOS:
   1244 		case IP_TTL:
   1245 		case IP_MINTTL:
   1246 		case IP_RECVOPTS:
   1247 		case IP_RECVRETOPTS:
   1248 		case IP_RECVDSTADDR:
   1249 		case IP_RECVIF:
   1250 		case IP_RECVPKTINFO:
   1251 		case IP_RECVTTL:
   1252 		case IP_ERRORMTU:
   1253 			switch (sopt->sopt_name) {
   1254 			case IP_TOS:
   1255 				optval = ip->ip_tos;
   1256 				break;
   1257 
   1258 			case IP_TTL:
   1259 				optval = ip->ip_ttl;
   1260 				break;
   1261 
   1262 			case IP_MINTTL:
   1263 				optval = inp->inp_ip_minttl;
   1264 				break;
   1265 
   1266 			case IP_ERRORMTU:
   1267 				optval = inp->inp_errormtu;
   1268 				break;
   1269 
   1270 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1271 
   1272 			case IP_PKTINFO:
   1273 				optval = OPTBIT(INP_PKTINFO);
   1274 				break;
   1275 
   1276 			case IP_RECVOPTS:
   1277 				optval = OPTBIT(INP_RECVOPTS);
   1278 				break;
   1279 
   1280 			case IP_RECVPKTINFO:
   1281 				optval = OPTBIT(INP_RECVPKTINFO);
   1282 				break;
   1283 
   1284 			case IP_RECVRETOPTS:
   1285 				optval = OPTBIT(INP_RECVRETOPTS);
   1286 				break;
   1287 
   1288 			case IP_RECVDSTADDR:
   1289 				optval = OPTBIT(INP_RECVDSTADDR);
   1290 				break;
   1291 
   1292 			case IP_RECVIF:
   1293 				optval = OPTBIT(INP_RECVIF);
   1294 				break;
   1295 
   1296 			case IP_RECVTTL:
   1297 				optval = OPTBIT(INP_RECVTTL);
   1298 				break;
   1299 			}
   1300 			error = sockopt_setint(sopt, optval);
   1301 			break;
   1302 
   1303 #if 0	/* defined(IPSEC) */
   1304 		case IP_IPSEC_POLICY:
   1305 		{
   1306 			struct mbuf *m = NULL;
   1307 
   1308 			/* XXX this will return EINVAL as sopt is empty */
   1309 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1310 			    sopt->sopt_size, &m);
   1311 			if (error == 0)
   1312 				error = sockopt_setmbuf(sopt, m);
   1313 			break;
   1314 		}
   1315 #endif /*IPSEC*/
   1316 
   1317 		case IP_MULTICAST_IF:
   1318 		case IP_MULTICAST_TTL:
   1319 		case IP_MULTICAST_LOOP:
   1320 		case IP_ADD_MEMBERSHIP:
   1321 		case IP_DROP_MEMBERSHIP:
   1322 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1323 			break;
   1324 
   1325 		case IP_PORTRANGE:
   1326 			if (inpflags & INP_LOWPORT)
   1327 				optval = IP_PORTRANGE_LOW;
   1328 			else
   1329 				optval = IP_PORTRANGE_DEFAULT;
   1330 			error = sockopt_setint(sopt, optval);
   1331 			break;
   1332 
   1333 		case IP_PORTALGO:
   1334 			optval = inp->inp_portalgo;
   1335 			error = sockopt_setint(sopt, optval);
   1336 			break;
   1337 
   1338 		default:
   1339 			error = ENOPROTOOPT;
   1340 			break;
   1341 		}
   1342 		break;
   1343 	}
   1344 
   1345 	if (!error) {
   1346 		inp->inp_flags = inpflags;
   1347 	}
   1348 	return error;
   1349 }
   1350 
   1351 /*
   1352  * Set up IP options in pcb for insertion in output packets.
   1353  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1354  * with destination address if source routed.
   1355  */
   1356 static int
   1357 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1358 {
   1359 	struct mbuf *m;
   1360 	const u_char *cp;
   1361 	u_char *dp;
   1362 	int cnt;
   1363 
   1364 	/* Turn off any old options. */
   1365 	if (inp->inp_options) {
   1366 		m_free(inp->inp_options);
   1367 	}
   1368 	inp->inp_options = NULL;
   1369 	if ((cnt = sopt->sopt_size) == 0) {
   1370 		/* Only turning off any previous options. */
   1371 		return 0;
   1372 	}
   1373 	cp = sopt->sopt_data;
   1374 
   1375 #ifndef	__vax__
   1376 	if (cnt % sizeof(int32_t))
   1377 		return (EINVAL);
   1378 #endif
   1379 
   1380 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1381 	if (m == NULL)
   1382 		return (ENOBUFS);
   1383 
   1384 	dp = mtod(m, u_char *);
   1385 	memset(dp, 0, sizeof(struct in_addr));
   1386 	dp += sizeof(struct in_addr);
   1387 	m->m_len = sizeof(struct in_addr);
   1388 
   1389 	/*
   1390 	 * IP option list according to RFC791. Each option is of the form
   1391 	 *
   1392 	 *	[optval] [olen] [(olen - 2) data bytes]
   1393 	 *
   1394 	 * We validate the list and copy options to an mbuf for prepending
   1395 	 * to data packets. The IP first-hop destination address will be
   1396 	 * stored before actual options and is zero if unset.
   1397 	 */
   1398 	while (cnt > 0) {
   1399 		uint8_t optval, olen, offset;
   1400 
   1401 		optval = cp[IPOPT_OPTVAL];
   1402 
   1403 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1404 			olen = 1;
   1405 		} else {
   1406 			if (cnt < IPOPT_OLEN + 1)
   1407 				goto bad;
   1408 
   1409 			olen = cp[IPOPT_OLEN];
   1410 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1411 				goto bad;
   1412 		}
   1413 
   1414 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1415 			/*
   1416 			 * user process specifies route as:
   1417 			 *	->A->B->C->D
   1418 			 * D must be our final destination (but we can't
   1419 			 * check that since we may not have connected yet).
   1420 			 * A is first hop destination, which doesn't appear in
   1421 			 * actual IP option, but is stored before the options.
   1422 			 */
   1423 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1424 				goto bad;
   1425 
   1426 			offset = cp[IPOPT_OFFSET];
   1427 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1428 			    sizeof(struct in_addr));
   1429 
   1430 			cp += sizeof(struct in_addr);
   1431 			cnt -= sizeof(struct in_addr);
   1432 			olen -= sizeof(struct in_addr);
   1433 
   1434 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1435 				goto bad;
   1436 
   1437 			memcpy(dp, cp, olen);
   1438 			dp[IPOPT_OPTVAL] = optval;
   1439 			dp[IPOPT_OLEN] = olen;
   1440 			dp[IPOPT_OFFSET] = offset;
   1441 			break;
   1442 		} else {
   1443 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1444 				goto bad;
   1445 
   1446 			memcpy(dp, cp, olen);
   1447 			break;
   1448 		}
   1449 
   1450 		dp += olen;
   1451 		m->m_len += olen;
   1452 
   1453 		if (optval == IPOPT_EOL)
   1454 			break;
   1455 
   1456 		cp += olen;
   1457 		cnt -= olen;
   1458 	}
   1459 
   1460 	inp->inp_options = m;
   1461 	return 0;
   1462 bad:
   1463 	(void)m_free(m);
   1464 	return EINVAL;
   1465 }
   1466 
   1467 /*
   1468  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1469  */
   1470 static struct ifnet *
   1471 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1472 {
   1473 	int ifindex;
   1474 	struct ifnet *ifp = NULL;
   1475 	struct in_ifaddr *ia;
   1476 
   1477 	if (ifindexp)
   1478 		*ifindexp = 0;
   1479 	if (ntohl(a->s_addr) >> 24 == 0) {
   1480 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1481 		ifp = if_byindex(ifindex);
   1482 		if (!ifp)
   1483 			return NULL;
   1484 		if (ifindexp)
   1485 			*ifindexp = ifindex;
   1486 	} else {
   1487 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1488 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1489 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1490 				ifp = ia->ia_ifp;
   1491 				break;
   1492 			}
   1493 		}
   1494 	}
   1495 	return ifp;
   1496 }
   1497 
   1498 static int
   1499 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1500 {
   1501 	u_int tval;
   1502 	u_char cval;
   1503 	int error;
   1504 
   1505 	if (sopt == NULL)
   1506 		return EINVAL;
   1507 
   1508 	switch (sopt->sopt_size) {
   1509 	case sizeof(u_char):
   1510 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1511 		tval = cval;
   1512 		break;
   1513 
   1514 	case sizeof(u_int):
   1515 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1516 		break;
   1517 
   1518 	default:
   1519 		error = EINVAL;
   1520 	}
   1521 
   1522 	if (error)
   1523 		return error;
   1524 
   1525 	if (tval > maxval)
   1526 		return EINVAL;
   1527 
   1528 	*val = tval;
   1529 	return 0;
   1530 }
   1531 
   1532 static int
   1533 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1534     struct in_addr *ia, bool add)
   1535 {
   1536 	int error;
   1537 	struct ip_mreq mreq;
   1538 
   1539 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1540 	if (error)
   1541 		return error;
   1542 
   1543 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1544 		return EINVAL;
   1545 
   1546 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1547 
   1548 	if (in_nullhost(mreq.imr_interface)) {
   1549 		union {
   1550 			struct sockaddr		dst;
   1551 			struct sockaddr_in	dst4;
   1552 		} u;
   1553 		struct route ro;
   1554 
   1555 		if (!add) {
   1556 			*ifp = NULL;
   1557 			return 0;
   1558 		}
   1559 		/*
   1560 		 * If no interface address was provided, use the interface of
   1561 		 * the route to the given multicast address.
   1562 		 */
   1563 		struct rtentry *rt;
   1564 		memset(&ro, 0, sizeof(ro));
   1565 
   1566 		sockaddr_in_init(&u.dst4, ia, 0);
   1567 		error = rtcache_setdst(&ro, &u.dst);
   1568 		if (error != 0)
   1569 			return error;
   1570 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1571 		rtcache_free(&ro);
   1572 	} else {
   1573 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1574 		if (!add && *ifp == NULL)
   1575 			return EADDRNOTAVAIL;
   1576 	}
   1577 	return 0;
   1578 }
   1579 
   1580 /*
   1581  * Add a multicast group membership.
   1582  * Group must be a valid IP multicast address.
   1583  */
   1584 static int
   1585 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1586 {
   1587 	struct ifnet *ifp;
   1588 	struct in_addr ia;
   1589 	int i, error;
   1590 
   1591 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1592 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1593 	else
   1594 #ifdef INET6
   1595 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1596 #else
   1597 		return EINVAL;
   1598 #endif
   1599 
   1600 	if (error)
   1601 		return error;
   1602 
   1603 	/*
   1604 	 * See if we found an interface, and confirm that it
   1605 	 * supports multicast.
   1606 	 */
   1607 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1608 		return EADDRNOTAVAIL;
   1609 
   1610 	/*
   1611 	 * See if the membership already exists or if all the
   1612 	 * membership slots are full.
   1613 	 */
   1614 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1615 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1616 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1617 			break;
   1618 	}
   1619 	if (i < imo->imo_num_memberships)
   1620 		return EADDRINUSE;
   1621 
   1622 	if (i == IP_MAX_MEMBERSHIPS)
   1623 		return ETOOMANYREFS;
   1624 
   1625 	/*
   1626 	 * Everything looks good; add a new record to the multicast
   1627 	 * address list for the given interface.
   1628 	 */
   1629 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1630 		return ENOBUFS;
   1631 
   1632 	++imo->imo_num_memberships;
   1633 	return 0;
   1634 }
   1635 
   1636 /*
   1637  * Drop a multicast group membership.
   1638  * Group must be a valid IP multicast address.
   1639  */
   1640 static int
   1641 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1642 {
   1643 	struct in_addr ia;
   1644 	struct ifnet *ifp;
   1645 	int i, error;
   1646 
   1647 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1648 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1649 	else
   1650 #ifdef INET6
   1651 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1652 #else
   1653 		return EINVAL;
   1654 #endif
   1655 
   1656 	if (error)
   1657 		return error;
   1658 
   1659 	/*
   1660 	 * Find the membership in the membership array.
   1661 	 */
   1662 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1663 		if ((ifp == NULL ||
   1664 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1665 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1666 			break;
   1667 	}
   1668 	if (i == imo->imo_num_memberships)
   1669 		return EADDRNOTAVAIL;
   1670 
   1671 	/*
   1672 	 * Give up the multicast address record to which the
   1673 	 * membership points.
   1674 	 */
   1675 	in_delmulti(imo->imo_membership[i]);
   1676 
   1677 	/*
   1678 	 * Remove the gap in the membership array.
   1679 	 */
   1680 	for (++i; i < imo->imo_num_memberships; ++i)
   1681 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1682 	--imo->imo_num_memberships;
   1683 	return 0;
   1684 }
   1685 
   1686 /*
   1687  * Set the IP multicast options in response to user setsockopt().
   1688  */
   1689 int
   1690 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1691 {
   1692 	struct ip_moptions *imo = *pimo;
   1693 	struct in_addr addr;
   1694 	struct ifnet *ifp;
   1695 	int ifindex, error = 0;
   1696 
   1697 	if (!imo) {
   1698 		/*
   1699 		 * No multicast option buffer attached to the pcb;
   1700 		 * allocate one and initialize to default values.
   1701 		 */
   1702 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1703 		if (imo == NULL)
   1704 			return ENOBUFS;
   1705 
   1706 		imo->imo_multicast_ifp = NULL;
   1707 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1708 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1709 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1710 		imo->imo_num_memberships = 0;
   1711 		*pimo = imo;
   1712 	}
   1713 
   1714 	switch (sopt->sopt_name) {
   1715 	case IP_MULTICAST_IF:
   1716 		/*
   1717 		 * Select the interface for outgoing multicast packets.
   1718 		 */
   1719 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1720 		if (error)
   1721 			break;
   1722 
   1723 		/*
   1724 		 * INADDR_ANY is used to remove a previous selection.
   1725 		 * When no interface is selected, a default one is
   1726 		 * chosen every time a multicast packet is sent.
   1727 		 */
   1728 		if (in_nullhost(addr)) {
   1729 			imo->imo_multicast_ifp = NULL;
   1730 			break;
   1731 		}
   1732 		/*
   1733 		 * The selected interface is identified by its local
   1734 		 * IP address.  Find the interface and confirm that
   1735 		 * it supports multicasting.
   1736 		 */
   1737 		ifp = ip_multicast_if(&addr, &ifindex);
   1738 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1739 			error = EADDRNOTAVAIL;
   1740 			break;
   1741 		}
   1742 		imo->imo_multicast_ifp = ifp;
   1743 		if (ifindex)
   1744 			imo->imo_multicast_addr = addr;
   1745 		else
   1746 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1747 		break;
   1748 
   1749 	case IP_MULTICAST_TTL:
   1750 		/*
   1751 		 * Set the IP time-to-live for outgoing multicast packets.
   1752 		 */
   1753 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1754 		break;
   1755 
   1756 	case IP_MULTICAST_LOOP:
   1757 		/*
   1758 		 * Set the loopback flag for outgoing multicast packets.
   1759 		 * Must be zero or one.
   1760 		 */
   1761 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1762 		break;
   1763 
   1764 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1765 		error = ip_add_membership(imo, sopt);
   1766 		break;
   1767 
   1768 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1769 		error = ip_drop_membership(imo, sopt);
   1770 		break;
   1771 
   1772 	default:
   1773 		error = EOPNOTSUPP;
   1774 		break;
   1775 	}
   1776 
   1777 	/*
   1778 	 * If all options have default values, no need to keep the mbuf.
   1779 	 */
   1780 	if (imo->imo_multicast_ifp == NULL &&
   1781 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1782 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1783 	    imo->imo_num_memberships == 0) {
   1784 		kmem_free(imo, sizeof(*imo));
   1785 		*pimo = NULL;
   1786 	}
   1787 
   1788 	return error;
   1789 }
   1790 
   1791 /*
   1792  * Return the IP multicast options in response to user getsockopt().
   1793  */
   1794 int
   1795 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1796 {
   1797 	struct in_addr addr;
   1798 	struct in_ifaddr *ia;
   1799 	uint8_t optval;
   1800 	int error = 0;
   1801 
   1802 	switch (sopt->sopt_name) {
   1803 	case IP_MULTICAST_IF:
   1804 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1805 			addr = zeroin_addr;
   1806 		else if (imo->imo_multicast_addr.s_addr) {
   1807 			/* return the value user has set */
   1808 			addr = imo->imo_multicast_addr;
   1809 		} else {
   1810 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1811 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1812 		}
   1813 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1814 		break;
   1815 
   1816 	case IP_MULTICAST_TTL:
   1817 		optval = imo ? imo->imo_multicast_ttl
   1818 		    : IP_DEFAULT_MULTICAST_TTL;
   1819 
   1820 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1821 		break;
   1822 
   1823 	case IP_MULTICAST_LOOP:
   1824 		optval = imo ? imo->imo_multicast_loop
   1825 		    : IP_DEFAULT_MULTICAST_LOOP;
   1826 
   1827 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1828 		break;
   1829 
   1830 	default:
   1831 		error = EOPNOTSUPP;
   1832 	}
   1833 
   1834 	return error;
   1835 }
   1836 
   1837 /*
   1838  * Discard the IP multicast options.
   1839  */
   1840 void
   1841 ip_freemoptions(struct ip_moptions *imo)
   1842 {
   1843 	int i;
   1844 
   1845 	if (imo != NULL) {
   1846 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1847 			in_delmulti(imo->imo_membership[i]);
   1848 		kmem_free(imo, sizeof(*imo));
   1849 	}
   1850 }
   1851 
   1852 /*
   1853  * Routine called from ip_output() to loop back a copy of an IP multicast
   1854  * packet to the input queue of a specified interface.  Note that this
   1855  * calls the output routine of the loopback "driver", but with an interface
   1856  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1857  */
   1858 static void
   1859 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1860 {
   1861 	struct ip *ip;
   1862 	struct mbuf *copym;
   1863 
   1864 	copym = m_copypacket(m, M_DONTWAIT);
   1865 	if (copym != NULL &&
   1866 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1867 		copym = m_pullup(copym, sizeof(struct ip));
   1868 	if (copym == NULL)
   1869 		return;
   1870 	/*
   1871 	 * We don't bother to fragment if the IP length is greater
   1872 	 * than the interface's MTU.  Can this possibly matter?
   1873 	 */
   1874 	ip = mtod(copym, struct ip *);
   1875 
   1876 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1877 		in_delayed_cksum(copym);
   1878 		copym->m_pkthdr.csum_flags &=
   1879 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1880 	}
   1881 
   1882 	ip->ip_sum = 0;
   1883 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1884 #ifndef NET_MPSAFE
   1885 	KERNEL_LOCK(1, NULL);
   1886 #endif
   1887 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1888 #ifndef NET_MPSAFE
   1889 	KERNEL_UNLOCK_ONE(NULL);
   1890 #endif
   1891 }
   1892