Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.233.2.3
      1 /*	$NetBSD: ip_output.c,v 1.233.2.3 2015/09/22 12:06:11 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.233.2.3 2015/09/22 12:06:11 skrll Exp $");
     95 
     96 #ifdef _KERNEL_OPT
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mpls.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/kmem.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/protosw.h>
    108 #include <sys/socket.h>
    109 #include <sys/socketvar.h>
    110 #include <sys/kauth.h>
    111 #ifdef IPSEC
    112 #include <sys/domain.h>
    113 #endif
    114 #include <sys/systm.h>
    115 
    116 #include <net/if.h>
    117 #include <net/if_types.h>
    118 #include <net/route.h>
    119 #include <net/pfil.h>
    120 
    121 #include <netinet/in.h>
    122 #include <netinet/in_systm.h>
    123 #include <netinet/ip.h>
    124 #include <netinet/in_pcb.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/ip_var.h>
    127 #include <netinet/ip_private.h>
    128 #include <netinet/in_offload.h>
    129 #include <netinet/portalgo.h>
    130 #include <netinet/udp.h>
    131 
    132 #ifdef INET6
    133 #include <netinet6/ip6_var.h>
    134 #endif
    135 
    136 #ifdef MROUTING
    137 #include <netinet/ip_mroute.h>
    138 #endif
    139 
    140 #ifdef IPSEC
    141 #include <netipsec/ipsec.h>
    142 #include <netipsec/key.h>
    143 #endif
    144 
    145 #ifdef MPLS
    146 #include <netmpls/mpls.h>
    147 #include <netmpls/mpls_var.h>
    148 #endif
    149 
    150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    153 static void ip_mloopback(struct ifnet *, struct mbuf *,
    154     const struct sockaddr_in *);
    155 
    156 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    157 
    158 int	ip_do_loopback_cksum = 0;
    159 
    160 static bool
    161 ip_hresolv_needed(const struct ifnet * const ifp)
    162 {
    163 	switch (ifp->if_type) {
    164 	case IFT_ARCNET:
    165 	case IFT_ATM:
    166 	case IFT_ECONET:
    167 	case IFT_ETHER:
    168 	case IFT_FDDI:
    169 	case IFT_HIPPI:
    170 	case IFT_IEEE1394:
    171 	case IFT_ISO88025:
    172 	case IFT_SLIP:
    173 		return true;
    174 	default:
    175 		return false;
    176 	}
    177 }
    178 
    179 static int
    180 klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
    181     const struct sockaddr * const dst, struct rtentry *rt)
    182 {
    183 	int error;
    184 
    185 #ifndef NET_MPSAFE
    186 	KERNEL_LOCK(1, NULL);
    187 #endif
    188 
    189 	error = (*ifp->if_output)(ifp, m, dst, rt);
    190 
    191 #ifndef NET_MPSAFE
    192 	KERNEL_UNLOCK_ONE(NULL);
    193 #endif
    194 
    195 	return error;
    196 }
    197 
    198 /*
    199  * Send an IP packet to a host.
    200  *
    201  * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
    202  * calling ifp's output routine.
    203  */
    204 int
    205 ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
    206     const struct sockaddr * const dst, struct rtentry *rt00)
    207 {
    208 	int error = 0;
    209 	struct ifnet *ifp = ifp0;
    210 	struct rtentry *rt, *rt0, *gwrt;
    211 
    212 #define RTFREE_IF_NEEDED(_rt) \
    213 	if ((_rt) != NULL && (_rt) != rt00) \
    214 		rtfree((_rt));
    215 
    216 	rt0 = rt00;
    217 retry:
    218 	if (!ip_hresolv_needed(ifp)) {
    219 		rt = rt0;
    220 		goto out;
    221 	}
    222 
    223 	if (rt0 == NULL) {
    224 		rt = NULL;
    225 		goto out;
    226 	}
    227 
    228 	rt = rt0;
    229 
    230 	/*
    231 	 * The following block is highly questionable.  How did we get here
    232 	 * with a !RTF_UP route?  Does rtalloc1() always return an RTF_UP
    233 	 * route?
    234 	 */
    235 	if ((rt->rt_flags & RTF_UP) == 0) {
    236 		rt = rtalloc1(dst, 1);
    237 		if (rt == NULL) {
    238 			error = EHOSTUNREACH;
    239 			goto bad;
    240 		}
    241 		rt0 = rt;
    242 		if (rt->rt_ifp != ifp) {
    243 			ifp = rt->rt_ifp;
    244 			goto retry;
    245 		}
    246 	}
    247 
    248 	if ((rt->rt_flags & RTF_GATEWAY) == 0)
    249 		goto out;
    250 
    251 	gwrt = rt_get_gwroute(rt);
    252 	RTFREE_IF_NEEDED(rt);
    253 	rt = gwrt;
    254 	if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
    255 		if (rt != NULL) {
    256 			RTFREE_IF_NEEDED(rt);
    257 			rt = rt0;
    258 		}
    259 		if (rt == NULL) {
    260 			error = EHOSTUNREACH;
    261 			goto bad;
    262 		}
    263 		gwrt = rtalloc1(rt->rt_gateway, 1);
    264 		rt_set_gwroute(rt, gwrt);
    265 		RTFREE_IF_NEEDED(rt);
    266 		rt = gwrt;
    267 		if (rt == NULL) {
    268 			error = EHOSTUNREACH;
    269 			goto bad;
    270 		}
    271 		/* the "G" test below also prevents rt == rt0 */
    272 		if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
    273 			if (rt0->rt_gwroute != NULL)
    274 				rtfree(rt0->rt_gwroute);
    275 			rt0->rt_gwroute = NULL;
    276 			error = EHOSTUNREACH;
    277 			goto bad;
    278 		}
    279 	}
    280 	if ((rt->rt_flags & RTF_REJECT) != 0) {
    281 		if (rt->rt_rmx.rmx_expire == 0 ||
    282 		    time_uptime < rt->rt_rmx.rmx_expire) {
    283 			error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
    284 			goto bad;
    285 		}
    286 	}
    287 
    288 out:
    289 #ifdef MPLS
    290 	if (rt0 != NULL && rt_gettag(rt0) != NULL &&
    291 	    rt_gettag(rt0)->sa_family == AF_MPLS &&
    292 	    (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
    293 	    ifp->if_type == IFT_ETHER) {
    294 		union mpls_shim msh;
    295 		msh.s_addr = MPLS_GETSADDR(rt0);
    296 		if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    297 			struct m_tag *mtag;
    298 			/*
    299 			 * XXX tentative solution to tell ether_output
    300 			 * it's MPLS. Need some more efficient solution.
    301 			 */
    302 			mtag = m_tag_get(PACKET_TAG_MPLS,
    303 			    sizeof(int) /* dummy */,
    304 			    M_NOWAIT);
    305 			if (mtag == NULL) {
    306 				error = ENOMEM;
    307 				goto bad;
    308 			}
    309 			m_tag_prepend(m, mtag);
    310 		}
    311 	}
    312 #endif
    313 
    314 	error = klock_if_output(ifp, m, dst, rt);
    315 	goto exit;
    316 
    317 bad:
    318 	if (m != NULL)
    319 		m_freem(m);
    320 exit:
    321 	RTFREE_IF_NEEDED(rt);
    322 
    323 	return error;
    324 
    325 #undef RTFREE_IF_NEEDED
    326 }
    327 
    328 /*
    329  * IP output.  The packet in mbuf chain m contains a skeletal IP
    330  * header (with len, off, ttl, proto, tos, src, dst).
    331  * The mbuf chain containing the packet will be freed.
    332  * The mbuf opt, if present, will not be freed.
    333  */
    334 int
    335 ip_output(struct mbuf *m0, ...)
    336 {
    337 	struct rtentry *rt;
    338 	struct ip *ip;
    339 	struct ifnet *ifp;
    340 	struct mbuf *m = m0;
    341 	int hlen = sizeof (struct ip);
    342 	int len, error = 0;
    343 	struct route iproute;
    344 	const struct sockaddr_in *dst;
    345 	struct in_ifaddr *ia;
    346 	int isbroadcast;
    347 	struct mbuf *opt;
    348 	struct route *ro;
    349 	int flags, sw_csum;
    350 	u_long mtu;
    351 	struct ip_moptions *imo;
    352 	struct socket *so;
    353 	va_list ap;
    354 #ifdef IPSEC
    355 	struct secpolicy *sp = NULL;
    356 #endif
    357 	bool natt_frag = false;
    358 	bool rtmtu_nolock;
    359 	union {
    360 		struct sockaddr		dst;
    361 		struct sockaddr_in	dst4;
    362 	} u;
    363 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    364 					 * to the nexthop
    365 					 */
    366 
    367 	len = 0;
    368 	va_start(ap, m0);
    369 	opt = va_arg(ap, struct mbuf *);
    370 	ro = va_arg(ap, struct route *);
    371 	flags = va_arg(ap, int);
    372 	imo = va_arg(ap, struct ip_moptions *);
    373 	so = va_arg(ap, struct socket *);
    374 	va_end(ap);
    375 
    376 	MCLAIM(m, &ip_tx_mowner);
    377 
    378 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    379 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    380 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    381 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    382 
    383 	if (opt) {
    384 		m = ip_insertoptions(m, opt, &len);
    385 		if (len >= sizeof(struct ip))
    386 			hlen = len;
    387 	}
    388 	ip = mtod(m, struct ip *);
    389 
    390 	/*
    391 	 * Fill in IP header.
    392 	 */
    393 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    394 		ip->ip_v = IPVERSION;
    395 		ip->ip_off = htons(0);
    396 		/* ip->ip_id filled in after we find out source ia */
    397 		ip->ip_hl = hlen >> 2;
    398 		IP_STATINC(IP_STAT_LOCALOUT);
    399 	} else {
    400 		hlen = ip->ip_hl << 2;
    401 	}
    402 
    403 	/*
    404 	 * Route packet.
    405 	 */
    406 	if (ro == NULL) {
    407 		memset(&iproute, 0, sizeof(iproute));
    408 		ro = &iproute;
    409 	}
    410 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    411 	dst = satocsin(rtcache_getdst(ro));
    412 
    413 	/*
    414 	 * If there is a cached route, check that it is to the same
    415 	 * destination and is still up.  If not, free it and try again.
    416 	 * The address family should also be checked in case of sharing
    417 	 * the cache with IPv6.
    418 	 */
    419 	if (dst && (dst->sin_family != AF_INET ||
    420 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    421 		rtcache_free(ro);
    422 
    423 	if ((rt = rtcache_validate(ro)) == NULL &&
    424 	    (rt = rtcache_update(ro, 1)) == NULL) {
    425 		dst = &u.dst4;
    426 		error = rtcache_setdst(ro, &u.dst);
    427 		if (error != 0)
    428 			goto bad;
    429 	}
    430 
    431 	/*
    432 	 * If routing to interface only, short circuit routing lookup.
    433 	 */
    434 	if (flags & IP_ROUTETOIF) {
    435 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    436 			IP_STATINC(IP_STAT_NOROUTE);
    437 			error = ENETUNREACH;
    438 			goto bad;
    439 		}
    440 		ifp = ia->ia_ifp;
    441 		mtu = ifp->if_mtu;
    442 		ip->ip_ttl = 1;
    443 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    444 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    445 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    446 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    447 		ifp = imo->imo_multicast_ifp;
    448 		mtu = ifp->if_mtu;
    449 		IFP_TO_IA(ifp, ia);
    450 		isbroadcast = 0;
    451 	} else {
    452 		if (rt == NULL)
    453 			rt = rtcache_init(ro);
    454 		if (rt == NULL) {
    455 			IP_STATINC(IP_STAT_NOROUTE);
    456 			error = EHOSTUNREACH;
    457 			goto bad;
    458 		}
    459 		ia = ifatoia(rt->rt_ifa);
    460 		ifp = rt->rt_ifp;
    461 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    462 			mtu = ifp->if_mtu;
    463 		rt->rt_use++;
    464 		if (rt->rt_flags & RTF_GATEWAY)
    465 			dst = satosin(rt->rt_gateway);
    466 		if (rt->rt_flags & RTF_HOST)
    467 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    468 		else
    469 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    470 	}
    471 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    472 
    473 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    474 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    475 		bool inmgroup;
    476 
    477 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    478 		    M_BCAST : M_MCAST;
    479 		/*
    480 		 * See if the caller provided any multicast options
    481 		 */
    482 		if (imo != NULL)
    483 			ip->ip_ttl = imo->imo_multicast_ttl;
    484 		else
    485 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    486 
    487 		/*
    488 		 * if we don't know the outgoing ifp yet, we can't generate
    489 		 * output
    490 		 */
    491 		if (!ifp) {
    492 			IP_STATINC(IP_STAT_NOROUTE);
    493 			error = ENETUNREACH;
    494 			goto bad;
    495 		}
    496 
    497 		/*
    498 		 * If the packet is multicast or broadcast, confirm that
    499 		 * the outgoing interface can transmit it.
    500 		 */
    501 		if (((m->m_flags & M_MCAST) &&
    502 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    503 		    ((m->m_flags & M_BCAST) &&
    504 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    505 			IP_STATINC(IP_STAT_NOROUTE);
    506 			error = ENETUNREACH;
    507 			goto bad;
    508 		}
    509 		/*
    510 		 * If source address not specified yet, use an address
    511 		 * of outgoing interface.
    512 		 */
    513 		if (in_nullhost(ip->ip_src)) {
    514 			struct in_ifaddr *xia;
    515 			struct ifaddr *xifa;
    516 
    517 			IFP_TO_IA(ifp, xia);
    518 			if (!xia) {
    519 				error = EADDRNOTAVAIL;
    520 				goto bad;
    521 			}
    522 			xifa = &xia->ia_ifa;
    523 			if (xifa->ifa_getifa != NULL) {
    524 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    525 				if (xia == NULL) {
    526 					error = EADDRNOTAVAIL;
    527 					goto bad;
    528 				}
    529 			}
    530 			ip->ip_src = xia->ia_addr.sin_addr;
    531 		}
    532 
    533 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    534 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    535 			/*
    536 			 * If we belong to the destination multicast group
    537 			 * on the outgoing interface, and the caller did not
    538 			 * forbid loopback, loop back a copy.
    539 			 */
    540 			ip_mloopback(ifp, m, &u.dst4);
    541 		}
    542 #ifdef MROUTING
    543 		else {
    544 			/*
    545 			 * If we are acting as a multicast router, perform
    546 			 * multicast forwarding as if the packet had just
    547 			 * arrived on the interface to which we are about
    548 			 * to send.  The multicast forwarding function
    549 			 * recursively calls this function, using the
    550 			 * IP_FORWARDING flag to prevent infinite recursion.
    551 			 *
    552 			 * Multicasts that are looped back by ip_mloopback(),
    553 			 * above, will be forwarded by the ip_input() routine,
    554 			 * if necessary.
    555 			 */
    556 			extern struct socket *ip_mrouter;
    557 
    558 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    559 				if (ip_mforward(m, ifp) != 0) {
    560 					m_freem(m);
    561 					goto done;
    562 				}
    563 			}
    564 		}
    565 #endif
    566 		/*
    567 		 * Multicasts with a time-to-live of zero may be looped-
    568 		 * back, above, but must not be transmitted on a network.
    569 		 * Also, multicasts addressed to the loopback interface
    570 		 * are not sent -- the above call to ip_mloopback() will
    571 		 * loop back a copy if this host actually belongs to the
    572 		 * destination group on the loopback interface.
    573 		 */
    574 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    575 			m_freem(m);
    576 			goto done;
    577 		}
    578 		goto sendit;
    579 	}
    580 
    581 	/*
    582 	 * If source address not specified yet, use address
    583 	 * of outgoing interface.
    584 	 */
    585 	if (in_nullhost(ip->ip_src)) {
    586 		struct ifaddr *xifa;
    587 
    588 		xifa = &ia->ia_ifa;
    589 		if (xifa->ifa_getifa != NULL) {
    590 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    591 			if (ia == NULL) {
    592 				error = EADDRNOTAVAIL;
    593 				goto bad;
    594 			}
    595 		}
    596 		ip->ip_src = ia->ia_addr.sin_addr;
    597 	}
    598 
    599 	/*
    600 	 * packets with Class-D address as source are not valid per
    601 	 * RFC 1112
    602 	 */
    603 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    604 		IP_STATINC(IP_STAT_ODROPPED);
    605 		error = EADDRNOTAVAIL;
    606 		goto bad;
    607 	}
    608 
    609 	/*
    610 	 * Look for broadcast address and and verify user is allowed to
    611 	 * send such a packet.
    612 	 */
    613 	if (isbroadcast) {
    614 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    615 			error = EADDRNOTAVAIL;
    616 			goto bad;
    617 		}
    618 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    619 			error = EACCES;
    620 			goto bad;
    621 		}
    622 		/* don't allow broadcast messages to be fragmented */
    623 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    624 			error = EMSGSIZE;
    625 			goto bad;
    626 		}
    627 		m->m_flags |= M_BCAST;
    628 	} else
    629 		m->m_flags &= ~M_BCAST;
    630 
    631 sendit:
    632 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    633 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    634 			ip->ip_id = 0;
    635 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    636 			ip->ip_id = ip_newid(ia);
    637 		} else {
    638 
    639 			/*
    640 			 * TSO capable interfaces (typically?) increment
    641 			 * ip_id for each segment.
    642 			 * "allocate" enough ids here to increase the chance
    643 			 * for them to be unique.
    644 			 *
    645 			 * note that the following calculation is not
    646 			 * needed to be precise.  wasting some ip_id is fine.
    647 			 */
    648 
    649 			unsigned int segsz = m->m_pkthdr.segsz;
    650 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    651 			unsigned int num = howmany(datasz, segsz);
    652 
    653 			ip->ip_id = ip_newid_range(ia, num);
    654 		}
    655 	}
    656 
    657 	/*
    658 	 * If we're doing Path MTU Discovery, we need to set DF unless
    659 	 * the route's MTU is locked.
    660 	 */
    661 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    662 		ip->ip_off |= htons(IP_DF);
    663 	}
    664 
    665 #ifdef IPSEC
    666 	if (ipsec_used) {
    667 		bool ipsec_done = false;
    668 
    669 		/* Perform IPsec processing, if any. */
    670 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    671 		    &ipsec_done);
    672 		if (error || ipsec_done)
    673 			goto done;
    674 	}
    675 #endif
    676 
    677 	/*
    678 	 * Run through list of hooks for output packets.
    679 	 */
    680 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    681 	if (error)
    682 		goto done;
    683 	if (m == NULL)
    684 		goto done;
    685 
    686 	ip = mtod(m, struct ip *);
    687 	hlen = ip->ip_hl << 2;
    688 
    689 	m->m_pkthdr.csum_data |= hlen << 16;
    690 
    691 #if IFA_STATS
    692 	/*
    693 	 * search for the source address structure to
    694 	 * maintain output statistics.
    695 	 */
    696 	INADDR_TO_IA(ip->ip_src, ia);
    697 #endif
    698 
    699 	/* Maybe skip checksums on loopback interfaces. */
    700 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    701 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    702 	}
    703 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    704 	/*
    705 	 * If small enough for mtu of path, or if using TCP segmentation
    706 	 * offload, can just send directly.
    707 	 */
    708 	if (ntohs(ip->ip_len) <= mtu ||
    709 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    710 		const struct sockaddr *sa;
    711 
    712 #if IFA_STATS
    713 		if (ia)
    714 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    715 #endif
    716 		/*
    717 		 * Always initialize the sum to 0!  Some HW assisted
    718 		 * checksumming requires this.
    719 		 */
    720 		ip->ip_sum = 0;
    721 
    722 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    723 			/*
    724 			 * Perform any checksums that the hardware can't do
    725 			 * for us.
    726 			 *
    727 			 * XXX Does any hardware require the {th,uh}_sum
    728 			 * XXX fields to be 0?
    729 			 */
    730 			if (sw_csum & M_CSUM_IPv4) {
    731 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    732 				ip->ip_sum = in_cksum(m, hlen);
    733 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    734 			}
    735 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    736 				if (IN_NEED_CHECKSUM(ifp,
    737 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    738 					in_delayed_cksum(m);
    739 				}
    740 				m->m_pkthdr.csum_flags &=
    741 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    742 			}
    743 		}
    744 
    745 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    746 		if (__predict_true(
    747 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    748 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    749 			error = ip_hresolv_output(ifp, m, sa, rt);
    750 		} else {
    751 			error = ip_tso_output(ifp, m, sa, rt);
    752 		}
    753 		goto done;
    754 	}
    755 
    756 	/*
    757 	 * We can't use HW checksumming if we're about to
    758 	 * to fragment the packet.
    759 	 *
    760 	 * XXX Some hardware can do this.
    761 	 */
    762 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    763 		if (IN_NEED_CHECKSUM(ifp,
    764 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    765 			in_delayed_cksum(m);
    766 		}
    767 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    768 	}
    769 
    770 	/*
    771 	 * Too large for interface; fragment if possible.
    772 	 * Must be able to put at least 8 bytes per fragment.
    773 	 */
    774 	if (ntohs(ip->ip_off) & IP_DF) {
    775 		if (flags & IP_RETURNMTU) {
    776 			struct inpcb *inp;
    777 
    778 			KASSERT(so && solocked(so));
    779 			inp = sotoinpcb(so);
    780 			inp->inp_errormtu = mtu;
    781 		}
    782 		error = EMSGSIZE;
    783 		IP_STATINC(IP_STAT_CANTFRAG);
    784 		goto bad;
    785 	}
    786 
    787 	error = ip_fragment(m, ifp, mtu);
    788 	if (error) {
    789 		m = NULL;
    790 		goto bad;
    791 	}
    792 
    793 	for (; m; m = m0) {
    794 		m0 = m->m_nextpkt;
    795 		m->m_nextpkt = 0;
    796 		if (error) {
    797 			m_freem(m);
    798 			continue;
    799 		}
    800 #if IFA_STATS
    801 		if (ia)
    802 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    803 #endif
    804 		/*
    805 		 * If we get there, the packet has not been handled by
    806 		 * IPsec whereas it should have. Now that it has been
    807 		 * fragmented, re-inject it in ip_output so that IPsec
    808 		 * processing can occur.
    809 		 */
    810 		if (natt_frag) {
    811 			error = ip_output(m, opt, ro,
    812 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    813 			    imo, so);
    814 		} else {
    815 			KASSERT((m->m_pkthdr.csum_flags &
    816 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    817 			error = ip_hresolv_output(ifp, m,
    818 			    (m->m_flags & M_MCAST) ?
    819 			    sintocsa(rdst) : sintocsa(dst), rt);
    820 		}
    821 	}
    822 	if (error == 0) {
    823 		IP_STATINC(IP_STAT_FRAGMENTED);
    824 	}
    825 done:
    826 	if (ro == &iproute) {
    827 		rtcache_free(&iproute);
    828 	}
    829 #ifdef IPSEC
    830 	if (sp) {
    831 		KEY_FREESP(&sp);
    832 	}
    833 #endif
    834 	return error;
    835 bad:
    836 	m_freem(m);
    837 	goto done;
    838 }
    839 
    840 int
    841 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    842 {
    843 	struct ip *ip, *mhip;
    844 	struct mbuf *m0;
    845 	int len, hlen, off;
    846 	int mhlen, firstlen;
    847 	struct mbuf **mnext;
    848 	int sw_csum = m->m_pkthdr.csum_flags;
    849 	int fragments = 0;
    850 	int s;
    851 	int error = 0;
    852 
    853 	ip = mtod(m, struct ip *);
    854 	hlen = ip->ip_hl << 2;
    855 	if (ifp != NULL)
    856 		sw_csum &= ~ifp->if_csum_flags_tx;
    857 
    858 	len = (mtu - hlen) &~ 7;
    859 	if (len < 8) {
    860 		m_freem(m);
    861 		return (EMSGSIZE);
    862 	}
    863 
    864 	firstlen = len;
    865 	mnext = &m->m_nextpkt;
    866 
    867 	/*
    868 	 * Loop through length of segment after first fragment,
    869 	 * make new header and copy data of each part and link onto chain.
    870 	 */
    871 	m0 = m;
    872 	mhlen = sizeof (struct ip);
    873 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    874 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    875 		if (m == 0) {
    876 			error = ENOBUFS;
    877 			IP_STATINC(IP_STAT_ODROPPED);
    878 			goto sendorfree;
    879 		}
    880 		MCLAIM(m, m0->m_owner);
    881 		*mnext = m;
    882 		mnext = &m->m_nextpkt;
    883 		m->m_data += max_linkhdr;
    884 		mhip = mtod(m, struct ip *);
    885 		*mhip = *ip;
    886 		/* we must inherit MCAST and BCAST flags */
    887 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    888 		if (hlen > sizeof (struct ip)) {
    889 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    890 			mhip->ip_hl = mhlen >> 2;
    891 		}
    892 		m->m_len = mhlen;
    893 		mhip->ip_off = ((off - hlen) >> 3) +
    894 		    (ntohs(ip->ip_off) & ~IP_MF);
    895 		if (ip->ip_off & htons(IP_MF))
    896 			mhip->ip_off |= IP_MF;
    897 		if (off + len >= ntohs(ip->ip_len))
    898 			len = ntohs(ip->ip_len) - off;
    899 		else
    900 			mhip->ip_off |= IP_MF;
    901 		HTONS(mhip->ip_off);
    902 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    903 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    904 		if (m->m_next == 0) {
    905 			error = ENOBUFS;	/* ??? */
    906 			IP_STATINC(IP_STAT_ODROPPED);
    907 			goto sendorfree;
    908 		}
    909 		m->m_pkthdr.len = mhlen + len;
    910 		m->m_pkthdr.rcvif = NULL;
    911 		mhip->ip_sum = 0;
    912 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    913 		if (sw_csum & M_CSUM_IPv4) {
    914 			mhip->ip_sum = in_cksum(m, mhlen);
    915 		} else {
    916 			/*
    917 			 * checksum is hw-offloaded or not necessary.
    918 			 */
    919 			m->m_pkthdr.csum_flags |=
    920 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    921 			m->m_pkthdr.csum_data |= mhlen << 16;
    922 			KASSERT(!(ifp != NULL &&
    923 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    924 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    925 		}
    926 		IP_STATINC(IP_STAT_OFRAGMENTS);
    927 		fragments++;
    928 	}
    929 	/*
    930 	 * Update first fragment by trimming what's been copied out
    931 	 * and updating header, then send each fragment (in order).
    932 	 */
    933 	m = m0;
    934 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    935 	m->m_pkthdr.len = hlen + firstlen;
    936 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    937 	ip->ip_off |= htons(IP_MF);
    938 	ip->ip_sum = 0;
    939 	if (sw_csum & M_CSUM_IPv4) {
    940 		ip->ip_sum = in_cksum(m, hlen);
    941 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    942 	} else {
    943 		/*
    944 		 * checksum is hw-offloaded or not necessary.
    945 		 */
    946 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    947 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    948 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    949 		    sizeof(struct ip));
    950 	}
    951 sendorfree:
    952 	/*
    953 	 * If there is no room for all the fragments, don't queue
    954 	 * any of them.
    955 	 */
    956 	if (ifp != NULL) {
    957 		s = splnet();
    958 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    959 		    error == 0) {
    960 			error = ENOBUFS;
    961 			IP_STATINC(IP_STAT_ODROPPED);
    962 			IFQ_INC_DROPS(&ifp->if_snd);
    963 		}
    964 		splx(s);
    965 	}
    966 	if (error) {
    967 		for (m = m0; m; m = m0) {
    968 			m0 = m->m_nextpkt;
    969 			m->m_nextpkt = NULL;
    970 			m_freem(m);
    971 		}
    972 	}
    973 	return (error);
    974 }
    975 
    976 /*
    977  * Process a delayed payload checksum calculation.
    978  */
    979 void
    980 in_delayed_cksum(struct mbuf *m)
    981 {
    982 	struct ip *ip;
    983 	u_int16_t csum, offset;
    984 
    985 	ip = mtod(m, struct ip *);
    986 	offset = ip->ip_hl << 2;
    987 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    988 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    989 		csum = 0xffff;
    990 
    991 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    992 
    993 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    994 		/* This happen when ip options were inserted
    995 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    996 		    m->m_len, offset, ip->ip_p);
    997 		 */
    998 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    999 	} else
   1000 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
   1001 }
   1002 
   1003 /*
   1004  * Determine the maximum length of the options to be inserted;
   1005  * we would far rather allocate too much space rather than too little.
   1006  */
   1007 
   1008 u_int
   1009 ip_optlen(struct inpcb *inp)
   1010 {
   1011 	struct mbuf *m = inp->inp_options;
   1012 
   1013 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
   1014 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1015 	}
   1016 	return 0;
   1017 }
   1018 
   1019 /*
   1020  * Insert IP options into preformed packet.
   1021  * Adjust IP destination as required for IP source routing,
   1022  * as indicated by a non-zero in_addr at the start of the options.
   1023  */
   1024 static struct mbuf *
   1025 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1026 {
   1027 	struct ipoption *p = mtod(opt, struct ipoption *);
   1028 	struct mbuf *n;
   1029 	struct ip *ip = mtod(m, struct ip *);
   1030 	unsigned optlen;
   1031 
   1032 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1033 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1034 		return (m);		/* XXX should fail */
   1035 	if (!in_nullhost(p->ipopt_dst))
   1036 		ip->ip_dst = p->ipopt_dst;
   1037 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1038 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1039 		if (n == 0)
   1040 			return (m);
   1041 		MCLAIM(n, m->m_owner);
   1042 		M_MOVE_PKTHDR(n, m);
   1043 		m->m_len -= sizeof(struct ip);
   1044 		m->m_data += sizeof(struct ip);
   1045 		n->m_next = m;
   1046 		m = n;
   1047 		m->m_len = optlen + sizeof(struct ip);
   1048 		m->m_data += max_linkhdr;
   1049 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1050 	} else {
   1051 		m->m_data -= optlen;
   1052 		m->m_len += optlen;
   1053 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1054 	}
   1055 	m->m_pkthdr.len += optlen;
   1056 	ip = mtod(m, struct ip *);
   1057 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1058 	*phlen = sizeof(struct ip) + optlen;
   1059 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1060 	return (m);
   1061 }
   1062 
   1063 /*
   1064  * Copy options from ip to jp,
   1065  * omitting those not copied during fragmentation.
   1066  */
   1067 int
   1068 ip_optcopy(struct ip *ip, struct ip *jp)
   1069 {
   1070 	u_char *cp, *dp;
   1071 	int opt, optlen, cnt;
   1072 
   1073 	cp = (u_char *)(ip + 1);
   1074 	dp = (u_char *)(jp + 1);
   1075 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1076 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1077 		opt = cp[0];
   1078 		if (opt == IPOPT_EOL)
   1079 			break;
   1080 		if (opt == IPOPT_NOP) {
   1081 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1082 			*dp++ = IPOPT_NOP;
   1083 			optlen = 1;
   1084 			continue;
   1085 		}
   1086 
   1087 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
   1088 		optlen = cp[IPOPT_OLEN];
   1089 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
   1090 
   1091 		/* Invalid lengths should have been caught by ip_dooptions. */
   1092 		if (optlen > cnt)
   1093 			optlen = cnt;
   1094 		if (IPOPT_COPIED(opt)) {
   1095 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1096 			dp += optlen;
   1097 		}
   1098 	}
   1099 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1100 		*dp++ = IPOPT_EOL;
   1101 	return (optlen);
   1102 }
   1103 
   1104 /*
   1105  * IP socket option processing.
   1106  */
   1107 int
   1108 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1109 {
   1110 	struct inpcb *inp = sotoinpcb(so);
   1111 	struct ip *ip = &inp->inp_ip;
   1112 	int inpflags = inp->inp_flags;
   1113 	int optval = 0, error = 0;
   1114 
   1115 	if (sopt->sopt_level != IPPROTO_IP) {
   1116 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1117 			return 0;
   1118 		return ENOPROTOOPT;
   1119 	}
   1120 
   1121 	switch (op) {
   1122 	case PRCO_SETOPT:
   1123 		switch (sopt->sopt_name) {
   1124 		case IP_OPTIONS:
   1125 #ifdef notyet
   1126 		case IP_RETOPTS:
   1127 #endif
   1128 			error = ip_pcbopts(inp, sopt);
   1129 			break;
   1130 
   1131 		case IP_TOS:
   1132 		case IP_TTL:
   1133 		case IP_MINTTL:
   1134 		case IP_PKTINFO:
   1135 		case IP_RECVOPTS:
   1136 		case IP_RECVRETOPTS:
   1137 		case IP_RECVDSTADDR:
   1138 		case IP_RECVIF:
   1139 		case IP_RECVPKTINFO:
   1140 		case IP_RECVTTL:
   1141 			error = sockopt_getint(sopt, &optval);
   1142 			if (error)
   1143 				break;
   1144 
   1145 			switch (sopt->sopt_name) {
   1146 			case IP_TOS:
   1147 				ip->ip_tos = optval;
   1148 				break;
   1149 
   1150 			case IP_TTL:
   1151 				ip->ip_ttl = optval;
   1152 				break;
   1153 
   1154 			case IP_MINTTL:
   1155 				if (optval > 0 && optval <= MAXTTL)
   1156 					inp->inp_ip_minttl = optval;
   1157 				else
   1158 					error = EINVAL;
   1159 				break;
   1160 #define	OPTSET(bit) \
   1161 	if (optval) \
   1162 		inpflags |= bit; \
   1163 	else \
   1164 		inpflags &= ~bit;
   1165 
   1166 			case IP_PKTINFO:
   1167 				OPTSET(INP_PKTINFO);
   1168 				break;
   1169 
   1170 			case IP_RECVOPTS:
   1171 				OPTSET(INP_RECVOPTS);
   1172 				break;
   1173 
   1174 			case IP_RECVPKTINFO:
   1175 				OPTSET(INP_RECVPKTINFO);
   1176 				break;
   1177 
   1178 			case IP_RECVRETOPTS:
   1179 				OPTSET(INP_RECVRETOPTS);
   1180 				break;
   1181 
   1182 			case IP_RECVDSTADDR:
   1183 				OPTSET(INP_RECVDSTADDR);
   1184 				break;
   1185 
   1186 			case IP_RECVIF:
   1187 				OPTSET(INP_RECVIF);
   1188 				break;
   1189 
   1190 			case IP_RECVTTL:
   1191 				OPTSET(INP_RECVTTL);
   1192 				break;
   1193 			}
   1194 		break;
   1195 #undef OPTSET
   1196 
   1197 		case IP_MULTICAST_IF:
   1198 		case IP_MULTICAST_TTL:
   1199 		case IP_MULTICAST_LOOP:
   1200 		case IP_ADD_MEMBERSHIP:
   1201 		case IP_DROP_MEMBERSHIP:
   1202 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1203 			break;
   1204 
   1205 		case IP_PORTRANGE:
   1206 			error = sockopt_getint(sopt, &optval);
   1207 			if (error)
   1208 				break;
   1209 
   1210 			switch (optval) {
   1211 			case IP_PORTRANGE_DEFAULT:
   1212 			case IP_PORTRANGE_HIGH:
   1213 				inpflags &= ~(INP_LOWPORT);
   1214 				break;
   1215 
   1216 			case IP_PORTRANGE_LOW:
   1217 				inpflags |= INP_LOWPORT;
   1218 				break;
   1219 
   1220 			default:
   1221 				error = EINVAL;
   1222 				break;
   1223 			}
   1224 			break;
   1225 
   1226 		case IP_PORTALGO:
   1227 			error = sockopt_getint(sopt, &optval);
   1228 			if (error)
   1229 				break;
   1230 
   1231 			error = portalgo_algo_index_select(
   1232 			    (struct inpcb_hdr *)inp, optval);
   1233 			break;
   1234 
   1235 #if defined(IPSEC)
   1236 		case IP_IPSEC_POLICY:
   1237 			if (ipsec_enabled) {
   1238 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1239 				    sopt->sopt_data, sopt->sopt_size,
   1240 				    curlwp->l_cred);
   1241 				break;
   1242 			}
   1243 			/*FALLTHROUGH*/
   1244 #endif /* IPSEC */
   1245 
   1246 		default:
   1247 			error = ENOPROTOOPT;
   1248 			break;
   1249 		}
   1250 		break;
   1251 
   1252 	case PRCO_GETOPT:
   1253 		switch (sopt->sopt_name) {
   1254 		case IP_OPTIONS:
   1255 		case IP_RETOPTS: {
   1256 			struct mbuf *mopts = inp->inp_options;
   1257 
   1258 			if (mopts) {
   1259 				struct mbuf *m;
   1260 
   1261 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1262 				if (m == NULL) {
   1263 					error = ENOBUFS;
   1264 					break;
   1265 				}
   1266 				error = sockopt_setmbuf(sopt, m);
   1267 			}
   1268 			break;
   1269 		}
   1270 		case IP_PKTINFO:
   1271 		case IP_TOS:
   1272 		case IP_TTL:
   1273 		case IP_MINTTL:
   1274 		case IP_RECVOPTS:
   1275 		case IP_RECVRETOPTS:
   1276 		case IP_RECVDSTADDR:
   1277 		case IP_RECVIF:
   1278 		case IP_RECVPKTINFO:
   1279 		case IP_RECVTTL:
   1280 		case IP_ERRORMTU:
   1281 			switch (sopt->sopt_name) {
   1282 			case IP_TOS:
   1283 				optval = ip->ip_tos;
   1284 				break;
   1285 
   1286 			case IP_TTL:
   1287 				optval = ip->ip_ttl;
   1288 				break;
   1289 
   1290 			case IP_MINTTL:
   1291 				optval = inp->inp_ip_minttl;
   1292 				break;
   1293 
   1294 			case IP_ERRORMTU:
   1295 				optval = inp->inp_errormtu;
   1296 				break;
   1297 
   1298 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1299 
   1300 			case IP_PKTINFO:
   1301 				optval = OPTBIT(INP_PKTINFO);
   1302 				break;
   1303 
   1304 			case IP_RECVOPTS:
   1305 				optval = OPTBIT(INP_RECVOPTS);
   1306 				break;
   1307 
   1308 			case IP_RECVPKTINFO:
   1309 				optval = OPTBIT(INP_RECVPKTINFO);
   1310 				break;
   1311 
   1312 			case IP_RECVRETOPTS:
   1313 				optval = OPTBIT(INP_RECVRETOPTS);
   1314 				break;
   1315 
   1316 			case IP_RECVDSTADDR:
   1317 				optval = OPTBIT(INP_RECVDSTADDR);
   1318 				break;
   1319 
   1320 			case IP_RECVIF:
   1321 				optval = OPTBIT(INP_RECVIF);
   1322 				break;
   1323 
   1324 			case IP_RECVTTL:
   1325 				optval = OPTBIT(INP_RECVTTL);
   1326 				break;
   1327 			}
   1328 			error = sockopt_setint(sopt, optval);
   1329 			break;
   1330 
   1331 #if 0	/* defined(IPSEC) */
   1332 		case IP_IPSEC_POLICY:
   1333 		{
   1334 			struct mbuf *m = NULL;
   1335 
   1336 			/* XXX this will return EINVAL as sopt is empty */
   1337 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1338 			    sopt->sopt_size, &m);
   1339 			if (error == 0)
   1340 				error = sockopt_setmbuf(sopt, m);
   1341 			break;
   1342 		}
   1343 #endif /*IPSEC*/
   1344 
   1345 		case IP_MULTICAST_IF:
   1346 		case IP_MULTICAST_TTL:
   1347 		case IP_MULTICAST_LOOP:
   1348 		case IP_ADD_MEMBERSHIP:
   1349 		case IP_DROP_MEMBERSHIP:
   1350 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1351 			break;
   1352 
   1353 		case IP_PORTRANGE:
   1354 			if (inpflags & INP_LOWPORT)
   1355 				optval = IP_PORTRANGE_LOW;
   1356 			else
   1357 				optval = IP_PORTRANGE_DEFAULT;
   1358 			error = sockopt_setint(sopt, optval);
   1359 			break;
   1360 
   1361 		case IP_PORTALGO:
   1362 			optval = inp->inp_portalgo;
   1363 			error = sockopt_setint(sopt, optval);
   1364 			break;
   1365 
   1366 		default:
   1367 			error = ENOPROTOOPT;
   1368 			break;
   1369 		}
   1370 		break;
   1371 	}
   1372 
   1373 	if (!error) {
   1374 		inp->inp_flags = inpflags;
   1375 	}
   1376 	return error;
   1377 }
   1378 
   1379 /*
   1380  * Set up IP options in pcb for insertion in output packets.
   1381  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1382  * with destination address if source routed.
   1383  */
   1384 static int
   1385 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1386 {
   1387 	struct mbuf *m;
   1388 	const u_char *cp;
   1389 	u_char *dp;
   1390 	int cnt;
   1391 
   1392 	/* Turn off any old options. */
   1393 	if (inp->inp_options) {
   1394 		m_free(inp->inp_options);
   1395 	}
   1396 	inp->inp_options = NULL;
   1397 	if ((cnt = sopt->sopt_size) == 0) {
   1398 		/* Only turning off any previous options. */
   1399 		return 0;
   1400 	}
   1401 	cp = sopt->sopt_data;
   1402 
   1403 #ifndef	__vax__
   1404 	if (cnt % sizeof(int32_t))
   1405 		return (EINVAL);
   1406 #endif
   1407 
   1408 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1409 	if (m == NULL)
   1410 		return (ENOBUFS);
   1411 
   1412 	dp = mtod(m, u_char *);
   1413 	memset(dp, 0, sizeof(struct in_addr));
   1414 	dp += sizeof(struct in_addr);
   1415 	m->m_len = sizeof(struct in_addr);
   1416 
   1417 	/*
   1418 	 * IP option list according to RFC791. Each option is of the form
   1419 	 *
   1420 	 *	[optval] [olen] [(olen - 2) data bytes]
   1421 	 *
   1422 	 * We validate the list and copy options to an mbuf for prepending
   1423 	 * to data packets. The IP first-hop destination address will be
   1424 	 * stored before actual options and is zero if unset.
   1425 	 */
   1426 	while (cnt > 0) {
   1427 		uint8_t optval, olen, offset;
   1428 
   1429 		optval = cp[IPOPT_OPTVAL];
   1430 
   1431 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1432 			olen = 1;
   1433 		} else {
   1434 			if (cnt < IPOPT_OLEN + 1)
   1435 				goto bad;
   1436 
   1437 			olen = cp[IPOPT_OLEN];
   1438 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1439 				goto bad;
   1440 		}
   1441 
   1442 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1443 			/*
   1444 			 * user process specifies route as:
   1445 			 *	->A->B->C->D
   1446 			 * D must be our final destination (but we can't
   1447 			 * check that since we may not have connected yet).
   1448 			 * A is first hop destination, which doesn't appear in
   1449 			 * actual IP option, but is stored before the options.
   1450 			 */
   1451 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1452 				goto bad;
   1453 
   1454 			offset = cp[IPOPT_OFFSET];
   1455 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1456 			    sizeof(struct in_addr));
   1457 
   1458 			cp += sizeof(struct in_addr);
   1459 			cnt -= sizeof(struct in_addr);
   1460 			olen -= sizeof(struct in_addr);
   1461 
   1462 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1463 				goto bad;
   1464 
   1465 			memcpy(dp, cp, olen);
   1466 			dp[IPOPT_OPTVAL] = optval;
   1467 			dp[IPOPT_OLEN] = olen;
   1468 			dp[IPOPT_OFFSET] = offset;
   1469 			break;
   1470 		} else {
   1471 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1472 				goto bad;
   1473 
   1474 			memcpy(dp, cp, olen);
   1475 			break;
   1476 		}
   1477 
   1478 		dp += olen;
   1479 		m->m_len += olen;
   1480 
   1481 		if (optval == IPOPT_EOL)
   1482 			break;
   1483 
   1484 		cp += olen;
   1485 		cnt -= olen;
   1486 	}
   1487 
   1488 	inp->inp_options = m;
   1489 	return 0;
   1490 bad:
   1491 	(void)m_free(m);
   1492 	return EINVAL;
   1493 }
   1494 
   1495 /*
   1496  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1497  */
   1498 static struct ifnet *
   1499 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1500 {
   1501 	int ifindex;
   1502 	struct ifnet *ifp = NULL;
   1503 	struct in_ifaddr *ia;
   1504 
   1505 	if (ifindexp)
   1506 		*ifindexp = 0;
   1507 	if (ntohl(a->s_addr) >> 24 == 0) {
   1508 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1509 		ifp = if_byindex(ifindex);
   1510 		if (!ifp)
   1511 			return NULL;
   1512 		if (ifindexp)
   1513 			*ifindexp = ifindex;
   1514 	} else {
   1515 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1516 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1517 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1518 				ifp = ia->ia_ifp;
   1519 				break;
   1520 			}
   1521 		}
   1522 	}
   1523 	return ifp;
   1524 }
   1525 
   1526 static int
   1527 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1528 {
   1529 	u_int tval;
   1530 	u_char cval;
   1531 	int error;
   1532 
   1533 	if (sopt == NULL)
   1534 		return EINVAL;
   1535 
   1536 	switch (sopt->sopt_size) {
   1537 	case sizeof(u_char):
   1538 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1539 		tval = cval;
   1540 		break;
   1541 
   1542 	case sizeof(u_int):
   1543 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1544 		break;
   1545 
   1546 	default:
   1547 		error = EINVAL;
   1548 	}
   1549 
   1550 	if (error)
   1551 		return error;
   1552 
   1553 	if (tval > maxval)
   1554 		return EINVAL;
   1555 
   1556 	*val = tval;
   1557 	return 0;
   1558 }
   1559 
   1560 static int
   1561 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1562     struct in_addr *ia, bool add)
   1563 {
   1564 	int error;
   1565 	struct ip_mreq mreq;
   1566 
   1567 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1568 	if (error)
   1569 		return error;
   1570 
   1571 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1572 		return EINVAL;
   1573 
   1574 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1575 
   1576 	if (in_nullhost(mreq.imr_interface)) {
   1577 		union {
   1578 			struct sockaddr		dst;
   1579 			struct sockaddr_in	dst4;
   1580 		} u;
   1581 		struct route ro;
   1582 
   1583 		if (!add) {
   1584 			*ifp = NULL;
   1585 			return 0;
   1586 		}
   1587 		/*
   1588 		 * If no interface address was provided, use the interface of
   1589 		 * the route to the given multicast address.
   1590 		 */
   1591 		struct rtentry *rt;
   1592 		memset(&ro, 0, sizeof(ro));
   1593 
   1594 		sockaddr_in_init(&u.dst4, ia, 0);
   1595 		error = rtcache_setdst(&ro, &u.dst);
   1596 		if (error != 0)
   1597 			return error;
   1598 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1599 		rtcache_free(&ro);
   1600 	} else {
   1601 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1602 		if (!add && *ifp == NULL)
   1603 			return EADDRNOTAVAIL;
   1604 	}
   1605 	return 0;
   1606 }
   1607 
   1608 /*
   1609  * Add a multicast group membership.
   1610  * Group must be a valid IP multicast address.
   1611  */
   1612 static int
   1613 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1614 {
   1615 	struct ifnet *ifp;
   1616 	struct in_addr ia;
   1617 	int i, error;
   1618 
   1619 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1620 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1621 	else
   1622 #ifdef INET6
   1623 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1624 #else
   1625 		return EINVAL;
   1626 #endif
   1627 
   1628 	if (error)
   1629 		return error;
   1630 
   1631 	/*
   1632 	 * See if we found an interface, and confirm that it
   1633 	 * supports multicast.
   1634 	 */
   1635 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1636 		return EADDRNOTAVAIL;
   1637 
   1638 	/*
   1639 	 * See if the membership already exists or if all the
   1640 	 * membership slots are full.
   1641 	 */
   1642 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1643 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1644 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1645 			break;
   1646 	}
   1647 	if (i < imo->imo_num_memberships)
   1648 		return EADDRINUSE;
   1649 
   1650 	if (i == IP_MAX_MEMBERSHIPS)
   1651 		return ETOOMANYREFS;
   1652 
   1653 	/*
   1654 	 * Everything looks good; add a new record to the multicast
   1655 	 * address list for the given interface.
   1656 	 */
   1657 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1658 		return ENOBUFS;
   1659 
   1660 	++imo->imo_num_memberships;
   1661 	return 0;
   1662 }
   1663 
   1664 /*
   1665  * Drop a multicast group membership.
   1666  * Group must be a valid IP multicast address.
   1667  */
   1668 static int
   1669 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1670 {
   1671 	struct in_addr ia;
   1672 	struct ifnet *ifp;
   1673 	int i, error;
   1674 
   1675 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1676 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1677 	else
   1678 #ifdef INET6
   1679 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1680 #else
   1681 		return EINVAL;
   1682 #endif
   1683 
   1684 	if (error)
   1685 		return error;
   1686 
   1687 	/*
   1688 	 * Find the membership in the membership array.
   1689 	 */
   1690 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1691 		if ((ifp == NULL ||
   1692 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1693 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1694 			break;
   1695 	}
   1696 	if (i == imo->imo_num_memberships)
   1697 		return EADDRNOTAVAIL;
   1698 
   1699 	/*
   1700 	 * Give up the multicast address record to which the
   1701 	 * membership points.
   1702 	 */
   1703 	in_delmulti(imo->imo_membership[i]);
   1704 
   1705 	/*
   1706 	 * Remove the gap in the membership array.
   1707 	 */
   1708 	for (++i; i < imo->imo_num_memberships; ++i)
   1709 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1710 	--imo->imo_num_memberships;
   1711 	return 0;
   1712 }
   1713 
   1714 /*
   1715  * Set the IP multicast options in response to user setsockopt().
   1716  */
   1717 int
   1718 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1719 {
   1720 	struct ip_moptions *imo = *pimo;
   1721 	struct in_addr addr;
   1722 	struct ifnet *ifp;
   1723 	int ifindex, error = 0;
   1724 
   1725 	if (!imo) {
   1726 		/*
   1727 		 * No multicast option buffer attached to the pcb;
   1728 		 * allocate one and initialize to default values.
   1729 		 */
   1730 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1731 		if (imo == NULL)
   1732 			return ENOBUFS;
   1733 
   1734 		imo->imo_multicast_ifp = NULL;
   1735 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1736 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1737 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1738 		imo->imo_num_memberships = 0;
   1739 		*pimo = imo;
   1740 	}
   1741 
   1742 	switch (sopt->sopt_name) {
   1743 	case IP_MULTICAST_IF:
   1744 		/*
   1745 		 * Select the interface for outgoing multicast packets.
   1746 		 */
   1747 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1748 		if (error)
   1749 			break;
   1750 
   1751 		/*
   1752 		 * INADDR_ANY is used to remove a previous selection.
   1753 		 * When no interface is selected, a default one is
   1754 		 * chosen every time a multicast packet is sent.
   1755 		 */
   1756 		if (in_nullhost(addr)) {
   1757 			imo->imo_multicast_ifp = NULL;
   1758 			break;
   1759 		}
   1760 		/*
   1761 		 * The selected interface is identified by its local
   1762 		 * IP address.  Find the interface and confirm that
   1763 		 * it supports multicasting.
   1764 		 */
   1765 		ifp = ip_multicast_if(&addr, &ifindex);
   1766 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1767 			error = EADDRNOTAVAIL;
   1768 			break;
   1769 		}
   1770 		imo->imo_multicast_ifp = ifp;
   1771 		if (ifindex)
   1772 			imo->imo_multicast_addr = addr;
   1773 		else
   1774 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1775 		break;
   1776 
   1777 	case IP_MULTICAST_TTL:
   1778 		/*
   1779 		 * Set the IP time-to-live for outgoing multicast packets.
   1780 		 */
   1781 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1782 		break;
   1783 
   1784 	case IP_MULTICAST_LOOP:
   1785 		/*
   1786 		 * Set the loopback flag for outgoing multicast packets.
   1787 		 * Must be zero or one.
   1788 		 */
   1789 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1790 		break;
   1791 
   1792 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1793 		error = ip_add_membership(imo, sopt);
   1794 		break;
   1795 
   1796 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1797 		error = ip_drop_membership(imo, sopt);
   1798 		break;
   1799 
   1800 	default:
   1801 		error = EOPNOTSUPP;
   1802 		break;
   1803 	}
   1804 
   1805 	/*
   1806 	 * If all options have default values, no need to keep the mbuf.
   1807 	 */
   1808 	if (imo->imo_multicast_ifp == NULL &&
   1809 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1810 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1811 	    imo->imo_num_memberships == 0) {
   1812 		kmem_free(imo, sizeof(*imo));
   1813 		*pimo = NULL;
   1814 	}
   1815 
   1816 	return error;
   1817 }
   1818 
   1819 /*
   1820  * Return the IP multicast options in response to user getsockopt().
   1821  */
   1822 int
   1823 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1824 {
   1825 	struct in_addr addr;
   1826 	struct in_ifaddr *ia;
   1827 	uint8_t optval;
   1828 	int error = 0;
   1829 
   1830 	switch (sopt->sopt_name) {
   1831 	case IP_MULTICAST_IF:
   1832 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1833 			addr = zeroin_addr;
   1834 		else if (imo->imo_multicast_addr.s_addr) {
   1835 			/* return the value user has set */
   1836 			addr = imo->imo_multicast_addr;
   1837 		} else {
   1838 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1839 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1840 		}
   1841 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1842 		break;
   1843 
   1844 	case IP_MULTICAST_TTL:
   1845 		optval = imo ? imo->imo_multicast_ttl
   1846 		    : IP_DEFAULT_MULTICAST_TTL;
   1847 
   1848 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1849 		break;
   1850 
   1851 	case IP_MULTICAST_LOOP:
   1852 		optval = imo ? imo->imo_multicast_loop
   1853 		    : IP_DEFAULT_MULTICAST_LOOP;
   1854 
   1855 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1856 		break;
   1857 
   1858 	default:
   1859 		error = EOPNOTSUPP;
   1860 	}
   1861 
   1862 	return error;
   1863 }
   1864 
   1865 /*
   1866  * Discard the IP multicast options.
   1867  */
   1868 void
   1869 ip_freemoptions(struct ip_moptions *imo)
   1870 {
   1871 	int i;
   1872 
   1873 	if (imo != NULL) {
   1874 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1875 			in_delmulti(imo->imo_membership[i]);
   1876 		kmem_free(imo, sizeof(*imo));
   1877 	}
   1878 }
   1879 
   1880 /*
   1881  * Routine called from ip_output() to loop back a copy of an IP multicast
   1882  * packet to the input queue of a specified interface.  Note that this
   1883  * calls the output routine of the loopback "driver", but with an interface
   1884  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1885  */
   1886 static void
   1887 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1888 {
   1889 	struct ip *ip;
   1890 	struct mbuf *copym;
   1891 
   1892 	copym = m_copypacket(m, M_DONTWAIT);
   1893 	if (copym != NULL &&
   1894 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1895 		copym = m_pullup(copym, sizeof(struct ip));
   1896 	if (copym == NULL)
   1897 		return;
   1898 	/*
   1899 	 * We don't bother to fragment if the IP length is greater
   1900 	 * than the interface's MTU.  Can this possibly matter?
   1901 	 */
   1902 	ip = mtod(copym, struct ip *);
   1903 
   1904 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1905 		in_delayed_cksum(copym);
   1906 		copym->m_pkthdr.csum_flags &=
   1907 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1908 	}
   1909 
   1910 	ip->ip_sum = 0;
   1911 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1912 #ifndef NET_MPSAFE
   1913 	KERNEL_LOCK(1, NULL);
   1914 #endif
   1915 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1916 #ifndef NET_MPSAFE
   1917 	KERNEL_UNLOCK_ONE(NULL);
   1918 #endif
   1919 }
   1920