Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.235
      1 /*	$NetBSD: ip_output.c,v 1.235 2015/03/31 08:44:43 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.235 2015/03/31 08:44:43 ozaki-r Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 
    100 #include <sys/param.h>
    101 #include <sys/kmem.h>
    102 #include <sys/mbuf.h>
    103 #include <sys/protosw.h>
    104 #include <sys/socket.h>
    105 #include <sys/socketvar.h>
    106 #include <sys/kauth.h>
    107 #ifdef IPSEC
    108 #include <sys/domain.h>
    109 #endif
    110 #include <sys/systm.h>
    111 
    112 #include <net/if.h>
    113 #include <net/route.h>
    114 #include <net/pfil.h>
    115 
    116 #include <netinet/in.h>
    117 #include <netinet/in_systm.h>
    118 #include <netinet/ip.h>
    119 #include <netinet/in_pcb.h>
    120 #include <netinet/in_var.h>
    121 #include <netinet/ip_var.h>
    122 #include <netinet/ip_private.h>
    123 #include <netinet/in_offload.h>
    124 #include <netinet/portalgo.h>
    125 #include <netinet/udp.h>
    126 
    127 #ifdef INET6
    128 #include <netinet6/ip6_var.h>
    129 #endif
    130 
    131 #ifdef MROUTING
    132 #include <netinet/ip_mroute.h>
    133 #endif
    134 
    135 #ifdef IPSEC
    136 #include <netipsec/ipsec.h>
    137 #include <netipsec/key.h>
    138 #endif
    139 
    140 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    141 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    142 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    143 static void ip_mloopback(struct ifnet *, struct mbuf *,
    144     const struct sockaddr_in *);
    145 
    146 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    147 
    148 int	ip_do_loopback_cksum = 0;
    149 
    150 /*
    151  * IP output.  The packet in mbuf chain m contains a skeletal IP
    152  * header (with len, off, ttl, proto, tos, src, dst).
    153  * The mbuf chain containing the packet will be freed.
    154  * The mbuf opt, if present, will not be freed.
    155  */
    156 int
    157 ip_output(struct mbuf *m0, ...)
    158 {
    159 	struct rtentry *rt;
    160 	struct ip *ip;
    161 	struct ifnet *ifp;
    162 	struct mbuf *m = m0;
    163 	int hlen = sizeof (struct ip);
    164 	int len, error = 0;
    165 	struct route iproute;
    166 	const struct sockaddr_in *dst;
    167 	struct in_ifaddr *ia;
    168 	int isbroadcast;
    169 	struct mbuf *opt;
    170 	struct route *ro;
    171 	int flags, sw_csum;
    172 	u_long mtu;
    173 	struct ip_moptions *imo;
    174 	struct socket *so;
    175 	va_list ap;
    176 #ifdef IPSEC
    177 	struct secpolicy *sp = NULL;
    178 #endif
    179 	bool natt_frag = false;
    180 	bool rtmtu_nolock;
    181 	union {
    182 		struct sockaddr		dst;
    183 		struct sockaddr_in	dst4;
    184 	} u;
    185 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    186 					 * to the nexthop
    187 					 */
    188 
    189 	len = 0;
    190 	va_start(ap, m0);
    191 	opt = va_arg(ap, struct mbuf *);
    192 	ro = va_arg(ap, struct route *);
    193 	flags = va_arg(ap, int);
    194 	imo = va_arg(ap, struct ip_moptions *);
    195 	so = va_arg(ap, struct socket *);
    196 	va_end(ap);
    197 
    198 	MCLAIM(m, &ip_tx_mowner);
    199 
    200 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    201 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    202 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    203 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    204 
    205 	if (opt) {
    206 		m = ip_insertoptions(m, opt, &len);
    207 		if (len >= sizeof(struct ip))
    208 			hlen = len;
    209 	}
    210 	ip = mtod(m, struct ip *);
    211 
    212 	/*
    213 	 * Fill in IP header.
    214 	 */
    215 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    216 		ip->ip_v = IPVERSION;
    217 		ip->ip_off = htons(0);
    218 		/* ip->ip_id filled in after we find out source ia */
    219 		ip->ip_hl = hlen >> 2;
    220 		IP_STATINC(IP_STAT_LOCALOUT);
    221 	} else {
    222 		hlen = ip->ip_hl << 2;
    223 	}
    224 
    225 	/*
    226 	 * Route packet.
    227 	 */
    228 	if (ro == NULL) {
    229 		memset(&iproute, 0, sizeof(iproute));
    230 		ro = &iproute;
    231 	}
    232 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    233 	dst = satocsin(rtcache_getdst(ro));
    234 
    235 	/*
    236 	 * If there is a cached route, check that it is to the same
    237 	 * destination and is still up.  If not, free it and try again.
    238 	 * The address family should also be checked in case of sharing
    239 	 * the cache with IPv6.
    240 	 */
    241 	if (dst && (dst->sin_family != AF_INET ||
    242 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    243 		rtcache_free(ro);
    244 
    245 	if ((rt = rtcache_validate(ro)) == NULL &&
    246 	    (rt = rtcache_update(ro, 1)) == NULL) {
    247 		dst = &u.dst4;
    248 		rtcache_setdst(ro, &u.dst);
    249 	}
    250 
    251 	/*
    252 	 * If routing to interface only, short circuit routing lookup.
    253 	 */
    254 	if (flags & IP_ROUTETOIF) {
    255 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    256 			IP_STATINC(IP_STAT_NOROUTE);
    257 			error = ENETUNREACH;
    258 			goto bad;
    259 		}
    260 		ifp = ia->ia_ifp;
    261 		mtu = ifp->if_mtu;
    262 		ip->ip_ttl = 1;
    263 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    264 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    265 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    266 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    267 		ifp = imo->imo_multicast_ifp;
    268 		mtu = ifp->if_mtu;
    269 		IFP_TO_IA(ifp, ia);
    270 		isbroadcast = 0;
    271 	} else {
    272 		if (rt == NULL)
    273 			rt = rtcache_init(ro);
    274 		if (rt == NULL) {
    275 			IP_STATINC(IP_STAT_NOROUTE);
    276 			error = EHOSTUNREACH;
    277 			goto bad;
    278 		}
    279 		ia = ifatoia(rt->rt_ifa);
    280 		ifp = rt->rt_ifp;
    281 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    282 			mtu = ifp->if_mtu;
    283 		rt->rt_use++;
    284 		if (rt->rt_flags & RTF_GATEWAY)
    285 			dst = satosin(rt->rt_gateway);
    286 		if (rt->rt_flags & RTF_HOST)
    287 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    288 		else
    289 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    290 	}
    291 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    292 
    293 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    294 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    295 		bool inmgroup;
    296 
    297 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    298 			M_BCAST : M_MCAST;
    299 		/*
    300 		 * See if the caller provided any multicast options
    301 		 */
    302 		if (imo != NULL)
    303 			ip->ip_ttl = imo->imo_multicast_ttl;
    304 		else
    305 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    306 
    307 		/*
    308 		 * if we don't know the outgoing ifp yet, we can't generate
    309 		 * output
    310 		 */
    311 		if (!ifp) {
    312 			IP_STATINC(IP_STAT_NOROUTE);
    313 			error = ENETUNREACH;
    314 			goto bad;
    315 		}
    316 
    317 		/*
    318 		 * If the packet is multicast or broadcast, confirm that
    319 		 * the outgoing interface can transmit it.
    320 		 */
    321 		if (((m->m_flags & M_MCAST) &&
    322 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    323 		    ((m->m_flags & M_BCAST) &&
    324 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    325 			IP_STATINC(IP_STAT_NOROUTE);
    326 			error = ENETUNREACH;
    327 			goto bad;
    328 		}
    329 		/*
    330 		 * If source address not specified yet, use an address
    331 		 * of outgoing interface.
    332 		 */
    333 		if (in_nullhost(ip->ip_src)) {
    334 			struct in_ifaddr *xia;
    335 			struct ifaddr *xifa;
    336 
    337 			IFP_TO_IA(ifp, xia);
    338 			if (!xia) {
    339 				error = EADDRNOTAVAIL;
    340 				goto bad;
    341 			}
    342 			xifa = &xia->ia_ifa;
    343 			if (xifa->ifa_getifa != NULL) {
    344 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    345 			}
    346 			ip->ip_src = xia->ia_addr.sin_addr;
    347 		}
    348 
    349 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    350 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    351 			/*
    352 			 * If we belong to the destination multicast group
    353 			 * on the outgoing interface, and the caller did not
    354 			 * forbid loopback, loop back a copy.
    355 			 */
    356 			ip_mloopback(ifp, m, &u.dst4);
    357 		}
    358 #ifdef MROUTING
    359 		else {
    360 			/*
    361 			 * If we are acting as a multicast router, perform
    362 			 * multicast forwarding as if the packet had just
    363 			 * arrived on the interface to which we are about
    364 			 * to send.  The multicast forwarding function
    365 			 * recursively calls this function, using the
    366 			 * IP_FORWARDING flag to prevent infinite recursion.
    367 			 *
    368 			 * Multicasts that are looped back by ip_mloopback(),
    369 			 * above, will be forwarded by the ip_input() routine,
    370 			 * if necessary.
    371 			 */
    372 			extern struct socket *ip_mrouter;
    373 
    374 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    375 				if (ip_mforward(m, ifp) != 0) {
    376 					m_freem(m);
    377 					goto done;
    378 				}
    379 			}
    380 		}
    381 #endif
    382 		/*
    383 		 * Multicasts with a time-to-live of zero may be looped-
    384 		 * back, above, but must not be transmitted on a network.
    385 		 * Also, multicasts addressed to the loopback interface
    386 		 * are not sent -- the above call to ip_mloopback() will
    387 		 * loop back a copy if this host actually belongs to the
    388 		 * destination group on the loopback interface.
    389 		 */
    390 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    391 			m_freem(m);
    392 			goto done;
    393 		}
    394 		goto sendit;
    395 	}
    396 
    397 	/*
    398 	 * If source address not specified yet, use address
    399 	 * of outgoing interface.
    400 	 */
    401 	if (in_nullhost(ip->ip_src)) {
    402 		struct ifaddr *xifa;
    403 
    404 		xifa = &ia->ia_ifa;
    405 		if (xifa->ifa_getifa != NULL)
    406 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    407 		ip->ip_src = ia->ia_addr.sin_addr;
    408 	}
    409 
    410 	/*
    411 	 * packets with Class-D address as source are not valid per
    412 	 * RFC 1112
    413 	 */
    414 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    415 		IP_STATINC(IP_STAT_ODROPPED);
    416 		error = EADDRNOTAVAIL;
    417 		goto bad;
    418 	}
    419 
    420 	/*
    421 	 * Look for broadcast address and and verify user is allowed to
    422 	 * send such a packet.
    423 	 */
    424 	if (isbroadcast) {
    425 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    426 			error = EADDRNOTAVAIL;
    427 			goto bad;
    428 		}
    429 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    430 			error = EACCES;
    431 			goto bad;
    432 		}
    433 		/* don't allow broadcast messages to be fragmented */
    434 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    435 			error = EMSGSIZE;
    436 			goto bad;
    437 		}
    438 		m->m_flags |= M_BCAST;
    439 	} else
    440 		m->m_flags &= ~M_BCAST;
    441 
    442 sendit:
    443 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    444 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    445 			ip->ip_id = 0;
    446 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    447 			ip->ip_id = ip_newid(ia);
    448 		} else {
    449 
    450 			/*
    451 			 * TSO capable interfaces (typically?) increment
    452 			 * ip_id for each segment.
    453 			 * "allocate" enough ids here to increase the chance
    454 			 * for them to be unique.
    455 			 *
    456 			 * note that the following calculation is not
    457 			 * needed to be precise.  wasting some ip_id is fine.
    458 			 */
    459 
    460 			unsigned int segsz = m->m_pkthdr.segsz;
    461 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    462 			unsigned int num = howmany(datasz, segsz);
    463 
    464 			ip->ip_id = ip_newid_range(ia, num);
    465 		}
    466 	}
    467 
    468 	/*
    469 	 * If we're doing Path MTU Discovery, we need to set DF unless
    470 	 * the route's MTU is locked.
    471 	 */
    472 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    473 		ip->ip_off |= htons(IP_DF);
    474 	}
    475 
    476 #ifdef IPSEC
    477 	if (ipsec_used) {
    478 		bool ipsec_done = false;
    479 
    480 		/* Perform IPsec processing, if any. */
    481 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    482 		    &ipsec_done);
    483 		if (error || ipsec_done)
    484 			goto done;
    485 	}
    486 #endif
    487 
    488 	/*
    489 	 * Run through list of hooks for output packets.
    490 	 */
    491 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    492 	if (error)
    493 		goto done;
    494 	if (m == NULL)
    495 		goto done;
    496 
    497 	ip = mtod(m, struct ip *);
    498 	hlen = ip->ip_hl << 2;
    499 
    500 	m->m_pkthdr.csum_data |= hlen << 16;
    501 
    502 #if IFA_STATS
    503 	/*
    504 	 * search for the source address structure to
    505 	 * maintain output statistics.
    506 	 */
    507 	INADDR_TO_IA(ip->ip_src, ia);
    508 #endif
    509 
    510 	/* Maybe skip checksums on loopback interfaces. */
    511 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    512 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    513 	}
    514 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    515 	/*
    516 	 * If small enough for mtu of path, or if using TCP segmentation
    517 	 * offload, can just send directly.
    518 	 */
    519 	if (ntohs(ip->ip_len) <= mtu ||
    520 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    521 		const struct sockaddr *sa;
    522 
    523 #if IFA_STATS
    524 		if (ia)
    525 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    526 #endif
    527 		/*
    528 		 * Always initialize the sum to 0!  Some HW assisted
    529 		 * checksumming requires this.
    530 		 */
    531 		ip->ip_sum = 0;
    532 
    533 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    534 			/*
    535 			 * Perform any checksums that the hardware can't do
    536 			 * for us.
    537 			 *
    538 			 * XXX Does any hardware require the {th,uh}_sum
    539 			 * XXX fields to be 0?
    540 			 */
    541 			if (sw_csum & M_CSUM_IPv4) {
    542 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    543 				ip->ip_sum = in_cksum(m, hlen);
    544 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    545 			}
    546 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    547 				if (IN_NEED_CHECKSUM(ifp,
    548 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    549 					in_delayed_cksum(m);
    550 				}
    551 				m->m_pkthdr.csum_flags &=
    552 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    553 			}
    554 		}
    555 
    556 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    557 		if (__predict_true(
    558 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    559 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    560 			KERNEL_LOCK(1, NULL);
    561 			error = (*ifp->if_output)(ifp, m, sa, rt);
    562 			KERNEL_UNLOCK_ONE(NULL);
    563 		} else {
    564 			error = ip_tso_output(ifp, m, sa, rt);
    565 		}
    566 		goto done;
    567 	}
    568 
    569 	/*
    570 	 * We can't use HW checksumming if we're about to
    571 	 * to fragment the packet.
    572 	 *
    573 	 * XXX Some hardware can do this.
    574 	 */
    575 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    576 		if (IN_NEED_CHECKSUM(ifp,
    577 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    578 			in_delayed_cksum(m);
    579 		}
    580 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    581 	}
    582 
    583 	/*
    584 	 * Too large for interface; fragment if possible.
    585 	 * Must be able to put at least 8 bytes per fragment.
    586 	 */
    587 	if (ntohs(ip->ip_off) & IP_DF) {
    588 		if (flags & IP_RETURNMTU) {
    589 			struct inpcb *inp;
    590 
    591 			KASSERT(so && solocked(so));
    592 			inp = sotoinpcb(so);
    593 			inp->inp_errormtu = mtu;
    594 		}
    595 		error = EMSGSIZE;
    596 		IP_STATINC(IP_STAT_CANTFRAG);
    597 		goto bad;
    598 	}
    599 
    600 	error = ip_fragment(m, ifp, mtu);
    601 	if (error) {
    602 		m = NULL;
    603 		goto bad;
    604 	}
    605 
    606 	for (; m; m = m0) {
    607 		m0 = m->m_nextpkt;
    608 		m->m_nextpkt = 0;
    609 		if (error) {
    610 			m_freem(m);
    611 			continue;
    612 		}
    613 #if IFA_STATS
    614 		if (ia)
    615 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    616 #endif
    617 		/*
    618 		 * If we get there, the packet has not been handled by
    619 		 * IPsec whereas it should have. Now that it has been
    620 		 * fragmented, re-inject it in ip_output so that IPsec
    621 		 * processing can occur.
    622 		 */
    623 		if (natt_frag) {
    624 			error = ip_output(m, opt, ro,
    625 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    626 			    imo, so);
    627 		} else {
    628 			KASSERT((m->m_pkthdr.csum_flags &
    629 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    630 			KERNEL_LOCK(1, NULL);
    631 			error = (*ifp->if_output)(ifp, m,
    632 			    (m->m_flags & M_MCAST) ?
    633 			    sintocsa(rdst) : sintocsa(dst), rt);
    634 			KERNEL_UNLOCK_ONE(NULL);
    635 		}
    636 	}
    637 	if (error == 0) {
    638 		IP_STATINC(IP_STAT_FRAGMENTED);
    639 	}
    640 done:
    641 	if (ro == &iproute) {
    642 		rtcache_free(&iproute);
    643 	}
    644 #ifdef IPSEC
    645 	if (sp) {
    646 		KEY_FREESP(&sp);
    647 	}
    648 #endif
    649 	return error;
    650 bad:
    651 	m_freem(m);
    652 	goto done;
    653 }
    654 
    655 int
    656 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    657 {
    658 	struct ip *ip, *mhip;
    659 	struct mbuf *m0;
    660 	int len, hlen, off;
    661 	int mhlen, firstlen;
    662 	struct mbuf **mnext;
    663 	int sw_csum = m->m_pkthdr.csum_flags;
    664 	int fragments = 0;
    665 	int s;
    666 	int error = 0;
    667 
    668 	ip = mtod(m, struct ip *);
    669 	hlen = ip->ip_hl << 2;
    670 	if (ifp != NULL)
    671 		sw_csum &= ~ifp->if_csum_flags_tx;
    672 
    673 	len = (mtu - hlen) &~ 7;
    674 	if (len < 8) {
    675 		m_freem(m);
    676 		return (EMSGSIZE);
    677 	}
    678 
    679 	firstlen = len;
    680 	mnext = &m->m_nextpkt;
    681 
    682 	/*
    683 	 * Loop through length of segment after first fragment,
    684 	 * make new header and copy data of each part and link onto chain.
    685 	 */
    686 	m0 = m;
    687 	mhlen = sizeof (struct ip);
    688 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    689 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    690 		if (m == 0) {
    691 			error = ENOBUFS;
    692 			IP_STATINC(IP_STAT_ODROPPED);
    693 			goto sendorfree;
    694 		}
    695 		MCLAIM(m, m0->m_owner);
    696 		*mnext = m;
    697 		mnext = &m->m_nextpkt;
    698 		m->m_data += max_linkhdr;
    699 		mhip = mtod(m, struct ip *);
    700 		*mhip = *ip;
    701 		/* we must inherit MCAST and BCAST flags */
    702 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    703 		if (hlen > sizeof (struct ip)) {
    704 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    705 			mhip->ip_hl = mhlen >> 2;
    706 		}
    707 		m->m_len = mhlen;
    708 		mhip->ip_off = ((off - hlen) >> 3) +
    709 		    (ntohs(ip->ip_off) & ~IP_MF);
    710 		if (ip->ip_off & htons(IP_MF))
    711 			mhip->ip_off |= IP_MF;
    712 		if (off + len >= ntohs(ip->ip_len))
    713 			len = ntohs(ip->ip_len) - off;
    714 		else
    715 			mhip->ip_off |= IP_MF;
    716 		HTONS(mhip->ip_off);
    717 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    718 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    719 		if (m->m_next == 0) {
    720 			error = ENOBUFS;	/* ??? */
    721 			IP_STATINC(IP_STAT_ODROPPED);
    722 			goto sendorfree;
    723 		}
    724 		m->m_pkthdr.len = mhlen + len;
    725 		m->m_pkthdr.rcvif = NULL;
    726 		mhip->ip_sum = 0;
    727 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    728 		if (sw_csum & M_CSUM_IPv4) {
    729 			mhip->ip_sum = in_cksum(m, mhlen);
    730 		} else {
    731 			/*
    732 			 * checksum is hw-offloaded or not necessary.
    733 			 */
    734 			m->m_pkthdr.csum_flags |=
    735 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    736 			m->m_pkthdr.csum_data |= mhlen << 16;
    737 			KASSERT(!(ifp != NULL &&
    738 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    739 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    740 		}
    741 		IP_STATINC(IP_STAT_OFRAGMENTS);
    742 		fragments++;
    743 	}
    744 	/*
    745 	 * Update first fragment by trimming what's been copied out
    746 	 * and updating header, then send each fragment (in order).
    747 	 */
    748 	m = m0;
    749 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    750 	m->m_pkthdr.len = hlen + firstlen;
    751 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    752 	ip->ip_off |= htons(IP_MF);
    753 	ip->ip_sum = 0;
    754 	if (sw_csum & M_CSUM_IPv4) {
    755 		ip->ip_sum = in_cksum(m, hlen);
    756 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    757 	} else {
    758 		/*
    759 		 * checksum is hw-offloaded or not necessary.
    760 		 */
    761 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
    762 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    763 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    764 			sizeof(struct ip));
    765 	}
    766 sendorfree:
    767 	/*
    768 	 * If there is no room for all the fragments, don't queue
    769 	 * any of them.
    770 	 */
    771 	if (ifp != NULL) {
    772 		s = splnet();
    773 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    774 		    error == 0) {
    775 			error = ENOBUFS;
    776 			IP_STATINC(IP_STAT_ODROPPED);
    777 			IFQ_INC_DROPS(&ifp->if_snd);
    778 		}
    779 		splx(s);
    780 	}
    781 	if (error) {
    782 		for (m = m0; m; m = m0) {
    783 			m0 = m->m_nextpkt;
    784 			m->m_nextpkt = NULL;
    785 			m_freem(m);
    786 		}
    787 	}
    788 	return (error);
    789 }
    790 
    791 /*
    792  * Process a delayed payload checksum calculation.
    793  */
    794 void
    795 in_delayed_cksum(struct mbuf *m)
    796 {
    797 	struct ip *ip;
    798 	u_int16_t csum, offset;
    799 
    800 	ip = mtod(m, struct ip *);
    801 	offset = ip->ip_hl << 2;
    802 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    803 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    804 		csum = 0xffff;
    805 
    806 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    807 
    808 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    809 		/* This happen when ip options were inserted
    810 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    811 		    m->m_len, offset, ip->ip_p);
    812 		 */
    813 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    814 	} else
    815 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    816 }
    817 
    818 /*
    819  * Determine the maximum length of the options to be inserted;
    820  * we would far rather allocate too much space rather than too little.
    821  */
    822 
    823 u_int
    824 ip_optlen(struct inpcb *inp)
    825 {
    826 	struct mbuf *m = inp->inp_options;
    827 
    828 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    829 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    830 	}
    831 	return 0;
    832 }
    833 
    834 /*
    835  * Insert IP options into preformed packet.
    836  * Adjust IP destination as required for IP source routing,
    837  * as indicated by a non-zero in_addr at the start of the options.
    838  */
    839 static struct mbuf *
    840 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    841 {
    842 	struct ipoption *p = mtod(opt, struct ipoption *);
    843 	struct mbuf *n;
    844 	struct ip *ip = mtod(m, struct ip *);
    845 	unsigned optlen;
    846 
    847 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    848 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    849 		return (m);		/* XXX should fail */
    850 	if (!in_nullhost(p->ipopt_dst))
    851 		ip->ip_dst = p->ipopt_dst;
    852 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    853 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    854 		if (n == 0)
    855 			return (m);
    856 		MCLAIM(n, m->m_owner);
    857 		M_MOVE_PKTHDR(n, m);
    858 		m->m_len -= sizeof(struct ip);
    859 		m->m_data += sizeof(struct ip);
    860 		n->m_next = m;
    861 		m = n;
    862 		m->m_len = optlen + sizeof(struct ip);
    863 		m->m_data += max_linkhdr;
    864 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    865 	} else {
    866 		m->m_data -= optlen;
    867 		m->m_len += optlen;
    868 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    869 	}
    870 	m->m_pkthdr.len += optlen;
    871 	ip = mtod(m, struct ip *);
    872 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    873 	*phlen = sizeof(struct ip) + optlen;
    874 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    875 	return (m);
    876 }
    877 
    878 /*
    879  * Copy options from ip to jp,
    880  * omitting those not copied during fragmentation.
    881  */
    882 int
    883 ip_optcopy(struct ip *ip, struct ip *jp)
    884 {
    885 	u_char *cp, *dp;
    886 	int opt, optlen, cnt;
    887 
    888 	cp = (u_char *)(ip + 1);
    889 	dp = (u_char *)(jp + 1);
    890 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    891 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    892 		opt = cp[0];
    893 		if (opt == IPOPT_EOL)
    894 			break;
    895 		if (opt == IPOPT_NOP) {
    896 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    897 			*dp++ = IPOPT_NOP;
    898 			optlen = 1;
    899 			continue;
    900 		}
    901 
    902 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
    903 		optlen = cp[IPOPT_OLEN];
    904 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
    905 
    906 		/* Invalid lengths should have been caught by ip_dooptions. */
    907 		if (optlen > cnt)
    908 			optlen = cnt;
    909 		if (IPOPT_COPIED(opt)) {
    910 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
    911 			dp += optlen;
    912 		}
    913 	}
    914 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
    915 		*dp++ = IPOPT_EOL;
    916 	return (optlen);
    917 }
    918 
    919 /*
    920  * IP socket option processing.
    921  */
    922 int
    923 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    924 {
    925 	struct inpcb *inp = sotoinpcb(so);
    926 	struct ip *ip = &inp->inp_ip;
    927 	int inpflags = inp->inp_flags;
    928 	int optval = 0, error = 0;
    929 
    930 	if (sopt->sopt_level != IPPROTO_IP) {
    931 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
    932 			return 0;
    933 		return ENOPROTOOPT;
    934 	}
    935 
    936 	switch (op) {
    937 	case PRCO_SETOPT:
    938 		switch (sopt->sopt_name) {
    939 		case IP_OPTIONS:
    940 #ifdef notyet
    941 		case IP_RETOPTS:
    942 #endif
    943 			error = ip_pcbopts(inp, sopt);
    944 			break;
    945 
    946 		case IP_TOS:
    947 		case IP_TTL:
    948 		case IP_MINTTL:
    949 		case IP_PKTINFO:
    950 		case IP_RECVOPTS:
    951 		case IP_RECVRETOPTS:
    952 		case IP_RECVDSTADDR:
    953 		case IP_RECVIF:
    954 		case IP_RECVPKTINFO:
    955 		case IP_RECVTTL:
    956 			error = sockopt_getint(sopt, &optval);
    957 			if (error)
    958 				break;
    959 
    960 			switch (sopt->sopt_name) {
    961 			case IP_TOS:
    962 				ip->ip_tos = optval;
    963 				break;
    964 
    965 			case IP_TTL:
    966 				ip->ip_ttl = optval;
    967 				break;
    968 
    969 			case IP_MINTTL:
    970 				if (optval > 0 && optval <= MAXTTL)
    971 					inp->inp_ip_minttl = optval;
    972 				else
    973 					error = EINVAL;
    974 				break;
    975 #define	OPTSET(bit) \
    976 	if (optval) \
    977 		inpflags |= bit; \
    978 	else \
    979 		inpflags &= ~bit;
    980 
    981 			case IP_PKTINFO:
    982 				OPTSET(INP_PKTINFO);
    983 				break;
    984 
    985 			case IP_RECVOPTS:
    986 				OPTSET(INP_RECVOPTS);
    987 				break;
    988 
    989 			case IP_RECVPKTINFO:
    990 				OPTSET(INP_RECVPKTINFO);
    991 				break;
    992 
    993 			case IP_RECVRETOPTS:
    994 				OPTSET(INP_RECVRETOPTS);
    995 				break;
    996 
    997 			case IP_RECVDSTADDR:
    998 				OPTSET(INP_RECVDSTADDR);
    999 				break;
   1000 
   1001 			case IP_RECVIF:
   1002 				OPTSET(INP_RECVIF);
   1003 				break;
   1004 
   1005 			case IP_RECVTTL:
   1006 				OPTSET(INP_RECVTTL);
   1007 				break;
   1008 			}
   1009 		break;
   1010 #undef OPTSET
   1011 
   1012 		case IP_MULTICAST_IF:
   1013 		case IP_MULTICAST_TTL:
   1014 		case IP_MULTICAST_LOOP:
   1015 		case IP_ADD_MEMBERSHIP:
   1016 		case IP_DROP_MEMBERSHIP:
   1017 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1018 			break;
   1019 
   1020 		case IP_PORTRANGE:
   1021 			error = sockopt_getint(sopt, &optval);
   1022 			if (error)
   1023 				break;
   1024 
   1025 			switch (optval) {
   1026 			case IP_PORTRANGE_DEFAULT:
   1027 			case IP_PORTRANGE_HIGH:
   1028 				inpflags &= ~(INP_LOWPORT);
   1029 				break;
   1030 
   1031 			case IP_PORTRANGE_LOW:
   1032 				inpflags |= INP_LOWPORT;
   1033 				break;
   1034 
   1035 			default:
   1036 				error = EINVAL;
   1037 				break;
   1038 			}
   1039 			break;
   1040 
   1041 		case IP_PORTALGO:
   1042 			error = sockopt_getint(sopt, &optval);
   1043 			if (error)
   1044 				break;
   1045 
   1046 			error = portalgo_algo_index_select(
   1047 			    (struct inpcb_hdr *)inp, optval);
   1048 			break;
   1049 
   1050 #if defined(IPSEC)
   1051 		case IP_IPSEC_POLICY:
   1052 			if (ipsec_enabled) {
   1053 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1054 				    sopt->sopt_data, sopt->sopt_size,
   1055 				    curlwp->l_cred);
   1056 				break;
   1057 			}
   1058 			/*FALLTHROUGH*/
   1059 #endif /* IPSEC */
   1060 
   1061 		default:
   1062 			error = ENOPROTOOPT;
   1063 			break;
   1064 		}
   1065 		break;
   1066 
   1067 	case PRCO_GETOPT:
   1068 		switch (sopt->sopt_name) {
   1069 		case IP_OPTIONS:
   1070 		case IP_RETOPTS: {
   1071 			struct mbuf *mopts = inp->inp_options;
   1072 
   1073 			if (mopts) {
   1074 				struct mbuf *m;
   1075 
   1076 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1077 				if (m == NULL) {
   1078 					error = ENOBUFS;
   1079 					break;
   1080 				}
   1081 				error = sockopt_setmbuf(sopt, m);
   1082 			}
   1083 			break;
   1084 		}
   1085 		case IP_PKTINFO:
   1086 		case IP_TOS:
   1087 		case IP_TTL:
   1088 		case IP_MINTTL:
   1089 		case IP_RECVOPTS:
   1090 		case IP_RECVRETOPTS:
   1091 		case IP_RECVDSTADDR:
   1092 		case IP_RECVIF:
   1093 		case IP_RECVPKTINFO:
   1094 		case IP_RECVTTL:
   1095 		case IP_ERRORMTU:
   1096 			switch (sopt->sopt_name) {
   1097 			case IP_TOS:
   1098 				optval = ip->ip_tos;
   1099 				break;
   1100 
   1101 			case IP_TTL:
   1102 				optval = ip->ip_ttl;
   1103 				break;
   1104 
   1105 			case IP_MINTTL:
   1106 				optval = inp->inp_ip_minttl;
   1107 				break;
   1108 
   1109 			case IP_ERRORMTU:
   1110 				optval = inp->inp_errormtu;
   1111 				break;
   1112 
   1113 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1114 
   1115 			case IP_PKTINFO:
   1116 				optval = OPTBIT(INP_PKTINFO);
   1117 				break;
   1118 
   1119 			case IP_RECVOPTS:
   1120 				optval = OPTBIT(INP_RECVOPTS);
   1121 				break;
   1122 
   1123 			case IP_RECVPKTINFO:
   1124 				optval = OPTBIT(INP_RECVPKTINFO);
   1125 				break;
   1126 
   1127 			case IP_RECVRETOPTS:
   1128 				optval = OPTBIT(INP_RECVRETOPTS);
   1129 				break;
   1130 
   1131 			case IP_RECVDSTADDR:
   1132 				optval = OPTBIT(INP_RECVDSTADDR);
   1133 				break;
   1134 
   1135 			case IP_RECVIF:
   1136 				optval = OPTBIT(INP_RECVIF);
   1137 				break;
   1138 
   1139 			case IP_RECVTTL:
   1140 				optval = OPTBIT(INP_RECVTTL);
   1141 				break;
   1142 			}
   1143 			error = sockopt_setint(sopt, optval);
   1144 			break;
   1145 
   1146 #if 0	/* defined(IPSEC) */
   1147 		case IP_IPSEC_POLICY:
   1148 		{
   1149 			struct mbuf *m = NULL;
   1150 
   1151 			/* XXX this will return EINVAL as sopt is empty */
   1152 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1153 			    sopt->sopt_size, &m);
   1154 			if (error == 0)
   1155 				error = sockopt_setmbuf(sopt, m);
   1156 			break;
   1157 		}
   1158 #endif /*IPSEC*/
   1159 
   1160 		case IP_MULTICAST_IF:
   1161 		case IP_MULTICAST_TTL:
   1162 		case IP_MULTICAST_LOOP:
   1163 		case IP_ADD_MEMBERSHIP:
   1164 		case IP_DROP_MEMBERSHIP:
   1165 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1166 			break;
   1167 
   1168 		case IP_PORTRANGE:
   1169 			if (inpflags & INP_LOWPORT)
   1170 				optval = IP_PORTRANGE_LOW;
   1171 			else
   1172 				optval = IP_PORTRANGE_DEFAULT;
   1173 			error = sockopt_setint(sopt, optval);
   1174 			break;
   1175 
   1176 		case IP_PORTALGO:
   1177 			optval = inp->inp_portalgo;
   1178 			error = sockopt_setint(sopt, optval);
   1179 			break;
   1180 
   1181 		default:
   1182 			error = ENOPROTOOPT;
   1183 			break;
   1184 		}
   1185 		break;
   1186 	}
   1187 
   1188 	if (!error) {
   1189 		inp->inp_flags = inpflags;
   1190 	}
   1191 	return error;
   1192 }
   1193 
   1194 /*
   1195  * Set up IP options in pcb for insertion in output packets.
   1196  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1197  * with destination address if source routed.
   1198  */
   1199 static int
   1200 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1201 {
   1202 	struct mbuf *m;
   1203 	const u_char *cp;
   1204 	u_char *dp;
   1205 	int cnt;
   1206 
   1207 	/* Turn off any old options. */
   1208 	if (inp->inp_options) {
   1209 		m_free(inp->inp_options);
   1210 	}
   1211 	inp->inp_options = NULL;
   1212 	if ((cnt = sopt->sopt_size) == 0) {
   1213 		/* Only turning off any previous options. */
   1214 		return 0;
   1215 	}
   1216 	cp = sopt->sopt_data;
   1217 
   1218 #ifndef	__vax__
   1219 	if (cnt % sizeof(int32_t))
   1220 		return (EINVAL);
   1221 #endif
   1222 
   1223 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1224 	if (m == NULL)
   1225 		return (ENOBUFS);
   1226 
   1227 	dp = mtod(m, u_char *);
   1228 	memset(dp, 0, sizeof(struct in_addr));
   1229 	dp += sizeof(struct in_addr);
   1230 	m->m_len = sizeof(struct in_addr);
   1231 
   1232 	/*
   1233 	 * IP option list according to RFC791. Each option is of the form
   1234 	 *
   1235 	 *	[optval] [olen] [(olen - 2) data bytes]
   1236 	 *
   1237 	 * We validate the list and copy options to an mbuf for prepending
   1238 	 * to data packets. The IP first-hop destination address will be
   1239 	 * stored before actual options and is zero if unset.
   1240 	 */
   1241 	while (cnt > 0) {
   1242 		uint8_t optval, olen, offset;
   1243 
   1244 		optval = cp[IPOPT_OPTVAL];
   1245 
   1246 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1247 			olen = 1;
   1248 		} else {
   1249 			if (cnt < IPOPT_OLEN + 1)
   1250 				goto bad;
   1251 
   1252 			olen = cp[IPOPT_OLEN];
   1253 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1254 				goto bad;
   1255 		}
   1256 
   1257 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1258 			/*
   1259 			 * user process specifies route as:
   1260 			 *	->A->B->C->D
   1261 			 * D must be our final destination (but we can't
   1262 			 * check that since we may not have connected yet).
   1263 			 * A is first hop destination, which doesn't appear in
   1264 			 * actual IP option, but is stored before the options.
   1265 			 */
   1266 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1267 				goto bad;
   1268 
   1269 			offset = cp[IPOPT_OFFSET];
   1270 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1271 			    sizeof(struct in_addr));
   1272 
   1273 			cp += sizeof(struct in_addr);
   1274 			cnt -= sizeof(struct in_addr);
   1275 			olen -= sizeof(struct in_addr);
   1276 
   1277 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1278 				goto bad;
   1279 
   1280 			memcpy(dp, cp, olen);
   1281 			dp[IPOPT_OPTVAL] = optval;
   1282 			dp[IPOPT_OLEN] = olen;
   1283 			dp[IPOPT_OFFSET] = offset;
   1284 			break;
   1285 		} else {
   1286 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1287 				goto bad;
   1288 
   1289 			memcpy(dp, cp, olen);
   1290 			break;
   1291 		}
   1292 
   1293 		dp += olen;
   1294 		m->m_len += olen;
   1295 
   1296 		if (optval == IPOPT_EOL)
   1297 			break;
   1298 
   1299 		cp += olen;
   1300 		cnt -= olen;
   1301 	}
   1302 
   1303 	inp->inp_options = m;
   1304 	return 0;
   1305 bad:
   1306 	(void)m_free(m);
   1307 	return EINVAL;
   1308 }
   1309 
   1310 /*
   1311  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1312  */
   1313 static struct ifnet *
   1314 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1315 {
   1316 	int ifindex;
   1317 	struct ifnet *ifp = NULL;
   1318 	struct in_ifaddr *ia;
   1319 
   1320 	if (ifindexp)
   1321 		*ifindexp = 0;
   1322 	if (ntohl(a->s_addr) >> 24 == 0) {
   1323 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1324 		ifp = if_byindex(ifindex);
   1325 		if (!ifp)
   1326 			return NULL;
   1327 		if (ifindexp)
   1328 			*ifindexp = ifindex;
   1329 	} else {
   1330 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1331 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1332 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1333 				ifp = ia->ia_ifp;
   1334 				break;
   1335 			}
   1336 		}
   1337 	}
   1338 	return ifp;
   1339 }
   1340 
   1341 static int
   1342 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1343 {
   1344 	u_int tval;
   1345 	u_char cval;
   1346 	int error;
   1347 
   1348 	if (sopt == NULL)
   1349 		return EINVAL;
   1350 
   1351 	switch (sopt->sopt_size) {
   1352 	case sizeof(u_char):
   1353 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1354 		tval = cval;
   1355 		break;
   1356 
   1357 	case sizeof(u_int):
   1358 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1359 		break;
   1360 
   1361 	default:
   1362 		error = EINVAL;
   1363 	}
   1364 
   1365 	if (error)
   1366 		return error;
   1367 
   1368 	if (tval > maxval)
   1369 		return EINVAL;
   1370 
   1371 	*val = tval;
   1372 	return 0;
   1373 }
   1374 
   1375 static int
   1376 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1377     struct in_addr *ia, bool add)
   1378 {
   1379 	int error;
   1380 	struct ip_mreq mreq;
   1381 
   1382 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1383 	if (error)
   1384 		return error;
   1385 
   1386 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1387 		return EINVAL;
   1388 
   1389 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1390 
   1391 	if (in_nullhost(mreq.imr_interface)) {
   1392 		union {
   1393 			struct sockaddr		dst;
   1394 			struct sockaddr_in	dst4;
   1395 		} u;
   1396 		struct route ro;
   1397 
   1398 		if (!add) {
   1399 			*ifp = NULL;
   1400 			return 0;
   1401 		}
   1402 		/*
   1403 		 * If no interface address was provided, use the interface of
   1404 		 * the route to the given multicast address.
   1405 		 */
   1406 		struct rtentry *rt;
   1407 		memset(&ro, 0, sizeof(ro));
   1408 
   1409 		sockaddr_in_init(&u.dst4, ia, 0);
   1410 		rtcache_setdst(&ro, &u.dst);
   1411 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1412 		rtcache_free(&ro);
   1413 	} else {
   1414 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1415 		if (!add && *ifp == NULL)
   1416 			return EADDRNOTAVAIL;
   1417 	}
   1418 	return 0;
   1419 }
   1420 
   1421 /*
   1422  * Add a multicast group membership.
   1423  * Group must be a valid IP multicast address.
   1424  */
   1425 static int
   1426 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1427 {
   1428 	struct ifnet *ifp;
   1429 	struct in_addr ia;
   1430 	int i, error;
   1431 
   1432 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1433 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1434 	else
   1435 #ifdef INET6
   1436 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1437 #else
   1438 		return EINVAL;
   1439 #endif
   1440 
   1441 	if (error)
   1442 		return error;
   1443 
   1444 	/*
   1445 	 * See if we found an interface, and confirm that it
   1446 	 * supports multicast.
   1447 	 */
   1448 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1449 		return EADDRNOTAVAIL;
   1450 
   1451 	/*
   1452 	 * See if the membership already exists or if all the
   1453 	 * membership slots are full.
   1454 	 */
   1455 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1456 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1457 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1458 			break;
   1459 	}
   1460 	if (i < imo->imo_num_memberships)
   1461 		return EADDRINUSE;
   1462 
   1463 	if (i == IP_MAX_MEMBERSHIPS)
   1464 		return ETOOMANYREFS;
   1465 
   1466 	/*
   1467 	 * Everything looks good; add a new record to the multicast
   1468 	 * address list for the given interface.
   1469 	 */
   1470 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1471 		return ENOBUFS;
   1472 
   1473 	++imo->imo_num_memberships;
   1474 	return 0;
   1475 }
   1476 
   1477 /*
   1478  * Drop a multicast group membership.
   1479  * Group must be a valid IP multicast address.
   1480  */
   1481 static int
   1482 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1483 {
   1484 	struct in_addr ia;
   1485 	struct ifnet *ifp;
   1486 	int i, error;
   1487 
   1488 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1489 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1490 	else
   1491 #ifdef INET6
   1492 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1493 #else
   1494 		return EINVAL;
   1495 #endif
   1496 
   1497 	if (error)
   1498 		return error;
   1499 
   1500 	/*
   1501 	 * Find the membership in the membership array.
   1502 	 */
   1503 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1504 		if ((ifp == NULL ||
   1505 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1506 		     in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1507 			break;
   1508 	}
   1509 	if (i == imo->imo_num_memberships)
   1510 		return EADDRNOTAVAIL;
   1511 
   1512 	/*
   1513 	 * Give up the multicast address record to which the
   1514 	 * membership points.
   1515 	 */
   1516 	in_delmulti(imo->imo_membership[i]);
   1517 
   1518 	/*
   1519 	 * Remove the gap in the membership array.
   1520 	 */
   1521 	for (++i; i < imo->imo_num_memberships; ++i)
   1522 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1523 	--imo->imo_num_memberships;
   1524 	return 0;
   1525 }
   1526 
   1527 /*
   1528  * Set the IP multicast options in response to user setsockopt().
   1529  */
   1530 int
   1531 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1532 {
   1533 	struct ip_moptions *imo = *pimo;
   1534 	struct in_addr addr;
   1535 	struct ifnet *ifp;
   1536 	int ifindex, error = 0;
   1537 
   1538 	if (!imo) {
   1539 		/*
   1540 		 * No multicast option buffer attached to the pcb;
   1541 		 * allocate one and initialize to default values.
   1542 		 */
   1543 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1544 		if (imo == NULL)
   1545 			return ENOBUFS;
   1546 
   1547 		imo->imo_multicast_ifp = NULL;
   1548 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1549 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1550 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1551 		imo->imo_num_memberships = 0;
   1552 		*pimo = imo;
   1553 	}
   1554 
   1555 	switch (sopt->sopt_name) {
   1556 	case IP_MULTICAST_IF:
   1557 		/*
   1558 		 * Select the interface for outgoing multicast packets.
   1559 		 */
   1560 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1561 		if (error)
   1562 			break;
   1563 
   1564 		/*
   1565 		 * INADDR_ANY is used to remove a previous selection.
   1566 		 * When no interface is selected, a default one is
   1567 		 * chosen every time a multicast packet is sent.
   1568 		 */
   1569 		if (in_nullhost(addr)) {
   1570 			imo->imo_multicast_ifp = NULL;
   1571 			break;
   1572 		}
   1573 		/*
   1574 		 * The selected interface is identified by its local
   1575 		 * IP address.  Find the interface and confirm that
   1576 		 * it supports multicasting.
   1577 		 */
   1578 		ifp = ip_multicast_if(&addr, &ifindex);
   1579 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1580 			error = EADDRNOTAVAIL;
   1581 			break;
   1582 		}
   1583 		imo->imo_multicast_ifp = ifp;
   1584 		if (ifindex)
   1585 			imo->imo_multicast_addr = addr;
   1586 		else
   1587 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1588 		break;
   1589 
   1590 	case IP_MULTICAST_TTL:
   1591 		/*
   1592 		 * Set the IP time-to-live for outgoing multicast packets.
   1593 		 */
   1594 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1595 		break;
   1596 
   1597 	case IP_MULTICAST_LOOP:
   1598 		/*
   1599 		 * Set the loopback flag for outgoing multicast packets.
   1600 		 * Must be zero or one.
   1601 		 */
   1602 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1603 		break;
   1604 
   1605 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1606 		error = ip_add_membership(imo, sopt);
   1607 		break;
   1608 
   1609 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1610 		error = ip_drop_membership(imo, sopt);
   1611 		break;
   1612 
   1613 	default:
   1614 		error = EOPNOTSUPP;
   1615 		break;
   1616 	}
   1617 
   1618 	/*
   1619 	 * If all options have default values, no need to keep the mbuf.
   1620 	 */
   1621 	if (imo->imo_multicast_ifp == NULL &&
   1622 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1623 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1624 	    imo->imo_num_memberships == 0) {
   1625 		kmem_free(imo, sizeof(*imo));
   1626 		*pimo = NULL;
   1627 	}
   1628 
   1629 	return error;
   1630 }
   1631 
   1632 /*
   1633  * Return the IP multicast options in response to user getsockopt().
   1634  */
   1635 int
   1636 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1637 {
   1638 	struct in_addr addr;
   1639 	struct in_ifaddr *ia;
   1640 	uint8_t optval;
   1641 	int error = 0;
   1642 
   1643 	switch (sopt->sopt_name) {
   1644 	case IP_MULTICAST_IF:
   1645 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1646 			addr = zeroin_addr;
   1647 		else if (imo->imo_multicast_addr.s_addr) {
   1648 			/* return the value user has set */
   1649 			addr = imo->imo_multicast_addr;
   1650 		} else {
   1651 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1652 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1653 		}
   1654 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1655 		break;
   1656 
   1657 	case IP_MULTICAST_TTL:
   1658 		optval = imo ? imo->imo_multicast_ttl
   1659 			     : IP_DEFAULT_MULTICAST_TTL;
   1660 
   1661 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1662 		break;
   1663 
   1664 	case IP_MULTICAST_LOOP:
   1665 		optval = imo ? imo->imo_multicast_loop
   1666 			     : IP_DEFAULT_MULTICAST_LOOP;
   1667 
   1668 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1669 		break;
   1670 
   1671 	default:
   1672 		error = EOPNOTSUPP;
   1673 	}
   1674 
   1675 	return error;
   1676 }
   1677 
   1678 /*
   1679  * Discard the IP multicast options.
   1680  */
   1681 void
   1682 ip_freemoptions(struct ip_moptions *imo)
   1683 {
   1684 	int i;
   1685 
   1686 	if (imo != NULL) {
   1687 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1688 			in_delmulti(imo->imo_membership[i]);
   1689 		kmem_free(imo, sizeof(*imo));
   1690 	}
   1691 }
   1692 
   1693 /*
   1694  * Routine called from ip_output() to loop back a copy of an IP multicast
   1695  * packet to the input queue of a specified interface.  Note that this
   1696  * calls the output routine of the loopback "driver", but with an interface
   1697  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1698  */
   1699 static void
   1700 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1701 {
   1702 	struct ip *ip;
   1703 	struct mbuf *copym;
   1704 
   1705 	copym = m_copypacket(m, M_DONTWAIT);
   1706 	if (copym != NULL
   1707 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1708 		copym = m_pullup(copym, sizeof(struct ip));
   1709 	if (copym == NULL)
   1710 		return;
   1711 	/*
   1712 	 * We don't bother to fragment if the IP length is greater
   1713 	 * than the interface's MTU.  Can this possibly matter?
   1714 	 */
   1715 	ip = mtod(copym, struct ip *);
   1716 
   1717 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1718 		in_delayed_cksum(copym);
   1719 		copym->m_pkthdr.csum_flags &=
   1720 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1721 	}
   1722 
   1723 	ip->ip_sum = 0;
   1724 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1725 	KERNEL_LOCK(1, NULL);
   1726 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1727 	KERNEL_UNLOCK_ONE(NULL);
   1728 }
   1729