ip_output.c revision 1.236 1 /* $NetBSD: ip_output.c,v 1.236 2015/04/03 07:55:18 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.236 2015/04/03 07:55:18 ozaki-r Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_mrouting.h"
99 #include "opt_net_mpsafe.h"
100
101 #include <sys/param.h>
102 #include <sys/kmem.h>
103 #include <sys/mbuf.h>
104 #include <sys/protosw.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/kauth.h>
108 #ifdef IPSEC
109 #include <sys/domain.h>
110 #endif
111 #include <sys/systm.h>
112
113 #include <net/if.h>
114 #include <net/route.h>
115 #include <net/pfil.h>
116
117 #include <netinet/in.h>
118 #include <netinet/in_systm.h>
119 #include <netinet/ip.h>
120 #include <netinet/in_pcb.h>
121 #include <netinet/in_var.h>
122 #include <netinet/ip_var.h>
123 #include <netinet/ip_private.h>
124 #include <netinet/in_offload.h>
125 #include <netinet/portalgo.h>
126 #include <netinet/udp.h>
127
128 #ifdef INET6
129 #include <netinet6/ip6_var.h>
130 #endif
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #ifdef IPSEC
137 #include <netipsec/ipsec.h>
138 #include <netipsec/key.h>
139 #endif
140
141 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
142 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
143 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
144 static void ip_mloopback(struct ifnet *, struct mbuf *,
145 const struct sockaddr_in *);
146
147 extern pfil_head_t *inet_pfil_hook; /* XXX */
148
149 int ip_do_loopback_cksum = 0;
150
151 /*
152 * IP output. The packet in mbuf chain m contains a skeletal IP
153 * header (with len, off, ttl, proto, tos, src, dst).
154 * The mbuf chain containing the packet will be freed.
155 * The mbuf opt, if present, will not be freed.
156 */
157 int
158 ip_output(struct mbuf *m0, ...)
159 {
160 struct rtentry *rt;
161 struct ip *ip;
162 struct ifnet *ifp;
163 struct mbuf *m = m0;
164 int hlen = sizeof (struct ip);
165 int len, error = 0;
166 struct route iproute;
167 const struct sockaddr_in *dst;
168 struct in_ifaddr *ia;
169 int isbroadcast;
170 struct mbuf *opt;
171 struct route *ro;
172 int flags, sw_csum;
173 u_long mtu;
174 struct ip_moptions *imo;
175 struct socket *so;
176 va_list ap;
177 #ifdef IPSEC
178 struct secpolicy *sp = NULL;
179 #endif
180 bool natt_frag = false;
181 bool rtmtu_nolock;
182 union {
183 struct sockaddr dst;
184 struct sockaddr_in dst4;
185 } u;
186 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
187 * to the nexthop
188 */
189
190 len = 0;
191 va_start(ap, m0);
192 opt = va_arg(ap, struct mbuf *);
193 ro = va_arg(ap, struct route *);
194 flags = va_arg(ap, int);
195 imo = va_arg(ap, struct ip_moptions *);
196 so = va_arg(ap, struct socket *);
197 va_end(ap);
198
199 MCLAIM(m, &ip_tx_mowner);
200
201 KASSERT((m->m_flags & M_PKTHDR) != 0);
202 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
203 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
204 (M_CSUM_TCPv4|M_CSUM_UDPv4));
205
206 if (opt) {
207 m = ip_insertoptions(m, opt, &len);
208 if (len >= sizeof(struct ip))
209 hlen = len;
210 }
211 ip = mtod(m, struct ip *);
212
213 /*
214 * Fill in IP header.
215 */
216 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
217 ip->ip_v = IPVERSION;
218 ip->ip_off = htons(0);
219 /* ip->ip_id filled in after we find out source ia */
220 ip->ip_hl = hlen >> 2;
221 IP_STATINC(IP_STAT_LOCALOUT);
222 } else {
223 hlen = ip->ip_hl << 2;
224 }
225
226 /*
227 * Route packet.
228 */
229 if (ro == NULL) {
230 memset(&iproute, 0, sizeof(iproute));
231 ro = &iproute;
232 }
233 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
234 dst = satocsin(rtcache_getdst(ro));
235
236 /*
237 * If there is a cached route, check that it is to the same
238 * destination and is still up. If not, free it and try again.
239 * The address family should also be checked in case of sharing
240 * the cache with IPv6.
241 */
242 if (dst && (dst->sin_family != AF_INET ||
243 !in_hosteq(dst->sin_addr, ip->ip_dst)))
244 rtcache_free(ro);
245
246 if ((rt = rtcache_validate(ro)) == NULL &&
247 (rt = rtcache_update(ro, 1)) == NULL) {
248 dst = &u.dst4;
249 rtcache_setdst(ro, &u.dst);
250 }
251
252 /*
253 * If routing to interface only, short circuit routing lookup.
254 */
255 if (flags & IP_ROUTETOIF) {
256 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
257 IP_STATINC(IP_STAT_NOROUTE);
258 error = ENETUNREACH;
259 goto bad;
260 }
261 ifp = ia->ia_ifp;
262 mtu = ifp->if_mtu;
263 ip->ip_ttl = 1;
264 isbroadcast = in_broadcast(dst->sin_addr, ifp);
265 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
266 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
267 imo != NULL && imo->imo_multicast_ifp != NULL) {
268 ifp = imo->imo_multicast_ifp;
269 mtu = ifp->if_mtu;
270 IFP_TO_IA(ifp, ia);
271 isbroadcast = 0;
272 } else {
273 if (rt == NULL)
274 rt = rtcache_init(ro);
275 if (rt == NULL) {
276 IP_STATINC(IP_STAT_NOROUTE);
277 error = EHOSTUNREACH;
278 goto bad;
279 }
280 ia = ifatoia(rt->rt_ifa);
281 ifp = rt->rt_ifp;
282 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
283 mtu = ifp->if_mtu;
284 rt->rt_use++;
285 if (rt->rt_flags & RTF_GATEWAY)
286 dst = satosin(rt->rt_gateway);
287 if (rt->rt_flags & RTF_HOST)
288 isbroadcast = rt->rt_flags & RTF_BROADCAST;
289 else
290 isbroadcast = in_broadcast(dst->sin_addr, ifp);
291 }
292 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
293
294 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
295 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
296 bool inmgroup;
297
298 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
299 M_BCAST : M_MCAST;
300 /*
301 * See if the caller provided any multicast options
302 */
303 if (imo != NULL)
304 ip->ip_ttl = imo->imo_multicast_ttl;
305 else
306 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
307
308 /*
309 * if we don't know the outgoing ifp yet, we can't generate
310 * output
311 */
312 if (!ifp) {
313 IP_STATINC(IP_STAT_NOROUTE);
314 error = ENETUNREACH;
315 goto bad;
316 }
317
318 /*
319 * If the packet is multicast or broadcast, confirm that
320 * the outgoing interface can transmit it.
321 */
322 if (((m->m_flags & M_MCAST) &&
323 (ifp->if_flags & IFF_MULTICAST) == 0) ||
324 ((m->m_flags & M_BCAST) &&
325 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
326 IP_STATINC(IP_STAT_NOROUTE);
327 error = ENETUNREACH;
328 goto bad;
329 }
330 /*
331 * If source address not specified yet, use an address
332 * of outgoing interface.
333 */
334 if (in_nullhost(ip->ip_src)) {
335 struct in_ifaddr *xia;
336 struct ifaddr *xifa;
337
338 IFP_TO_IA(ifp, xia);
339 if (!xia) {
340 error = EADDRNOTAVAIL;
341 goto bad;
342 }
343 xifa = &xia->ia_ifa;
344 if (xifa->ifa_getifa != NULL) {
345 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
346 }
347 ip->ip_src = xia->ia_addr.sin_addr;
348 }
349
350 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
351 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
352 /*
353 * If we belong to the destination multicast group
354 * on the outgoing interface, and the caller did not
355 * forbid loopback, loop back a copy.
356 */
357 ip_mloopback(ifp, m, &u.dst4);
358 }
359 #ifdef MROUTING
360 else {
361 /*
362 * If we are acting as a multicast router, perform
363 * multicast forwarding as if the packet had just
364 * arrived on the interface to which we are about
365 * to send. The multicast forwarding function
366 * recursively calls this function, using the
367 * IP_FORWARDING flag to prevent infinite recursion.
368 *
369 * Multicasts that are looped back by ip_mloopback(),
370 * above, will be forwarded by the ip_input() routine,
371 * if necessary.
372 */
373 extern struct socket *ip_mrouter;
374
375 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
376 if (ip_mforward(m, ifp) != 0) {
377 m_freem(m);
378 goto done;
379 }
380 }
381 }
382 #endif
383 /*
384 * Multicasts with a time-to-live of zero may be looped-
385 * back, above, but must not be transmitted on a network.
386 * Also, multicasts addressed to the loopback interface
387 * are not sent -- the above call to ip_mloopback() will
388 * loop back a copy if this host actually belongs to the
389 * destination group on the loopback interface.
390 */
391 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
392 m_freem(m);
393 goto done;
394 }
395 goto sendit;
396 }
397
398 /*
399 * If source address not specified yet, use address
400 * of outgoing interface.
401 */
402 if (in_nullhost(ip->ip_src)) {
403 struct ifaddr *xifa;
404
405 xifa = &ia->ia_ifa;
406 if (xifa->ifa_getifa != NULL)
407 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
408 ip->ip_src = ia->ia_addr.sin_addr;
409 }
410
411 /*
412 * packets with Class-D address as source are not valid per
413 * RFC 1112
414 */
415 if (IN_MULTICAST(ip->ip_src.s_addr)) {
416 IP_STATINC(IP_STAT_ODROPPED);
417 error = EADDRNOTAVAIL;
418 goto bad;
419 }
420
421 /*
422 * Look for broadcast address and and verify user is allowed to
423 * send such a packet.
424 */
425 if (isbroadcast) {
426 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430 if ((flags & IP_ALLOWBROADCAST) == 0) {
431 error = EACCES;
432 goto bad;
433 }
434 /* don't allow broadcast messages to be fragmented */
435 if (ntohs(ip->ip_len) > ifp->if_mtu) {
436 error = EMSGSIZE;
437 goto bad;
438 }
439 m->m_flags |= M_BCAST;
440 } else
441 m->m_flags &= ~M_BCAST;
442
443 sendit:
444 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
445 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
446 ip->ip_id = 0;
447 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
448 ip->ip_id = ip_newid(ia);
449 } else {
450
451 /*
452 * TSO capable interfaces (typically?) increment
453 * ip_id for each segment.
454 * "allocate" enough ids here to increase the chance
455 * for them to be unique.
456 *
457 * note that the following calculation is not
458 * needed to be precise. wasting some ip_id is fine.
459 */
460
461 unsigned int segsz = m->m_pkthdr.segsz;
462 unsigned int datasz = ntohs(ip->ip_len) - hlen;
463 unsigned int num = howmany(datasz, segsz);
464
465 ip->ip_id = ip_newid_range(ia, num);
466 }
467 }
468
469 /*
470 * If we're doing Path MTU Discovery, we need to set DF unless
471 * the route's MTU is locked.
472 */
473 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
474 ip->ip_off |= htons(IP_DF);
475 }
476
477 #ifdef IPSEC
478 if (ipsec_used) {
479 bool ipsec_done = false;
480
481 /* Perform IPsec processing, if any. */
482 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
483 &ipsec_done);
484 if (error || ipsec_done)
485 goto done;
486 }
487 #endif
488
489 /*
490 * Run through list of hooks for output packets.
491 */
492 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
493 if (error)
494 goto done;
495 if (m == NULL)
496 goto done;
497
498 ip = mtod(m, struct ip *);
499 hlen = ip->ip_hl << 2;
500
501 m->m_pkthdr.csum_data |= hlen << 16;
502
503 #if IFA_STATS
504 /*
505 * search for the source address structure to
506 * maintain output statistics.
507 */
508 INADDR_TO_IA(ip->ip_src, ia);
509 #endif
510
511 /* Maybe skip checksums on loopback interfaces. */
512 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
513 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
514 }
515 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
516 /*
517 * If small enough for mtu of path, or if using TCP segmentation
518 * offload, can just send directly.
519 */
520 if (ntohs(ip->ip_len) <= mtu ||
521 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
522 const struct sockaddr *sa;
523
524 #if IFA_STATS
525 if (ia)
526 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
527 #endif
528 /*
529 * Always initialize the sum to 0! Some HW assisted
530 * checksumming requires this.
531 */
532 ip->ip_sum = 0;
533
534 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
535 /*
536 * Perform any checksums that the hardware can't do
537 * for us.
538 *
539 * XXX Does any hardware require the {th,uh}_sum
540 * XXX fields to be 0?
541 */
542 if (sw_csum & M_CSUM_IPv4) {
543 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
544 ip->ip_sum = in_cksum(m, hlen);
545 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
546 }
547 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
548 if (IN_NEED_CHECKSUM(ifp,
549 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
550 in_delayed_cksum(m);
551 }
552 m->m_pkthdr.csum_flags &=
553 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
554 }
555 }
556
557 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
558 if (__predict_true(
559 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
560 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
561 #ifndef NET_MPSAFE
562 KERNEL_LOCK(1, NULL);
563 #endif
564 error = (*ifp->if_output)(ifp, m, sa, rt);
565 #ifndef NET_MPSAFE
566 KERNEL_UNLOCK_ONE(NULL);
567 #endif
568 } else {
569 error = ip_tso_output(ifp, m, sa, rt);
570 }
571 goto done;
572 }
573
574 /*
575 * We can't use HW checksumming if we're about to
576 * to fragment the packet.
577 *
578 * XXX Some hardware can do this.
579 */
580 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
581 if (IN_NEED_CHECKSUM(ifp,
582 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
583 in_delayed_cksum(m);
584 }
585 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
586 }
587
588 /*
589 * Too large for interface; fragment if possible.
590 * Must be able to put at least 8 bytes per fragment.
591 */
592 if (ntohs(ip->ip_off) & IP_DF) {
593 if (flags & IP_RETURNMTU) {
594 struct inpcb *inp;
595
596 KASSERT(so && solocked(so));
597 inp = sotoinpcb(so);
598 inp->inp_errormtu = mtu;
599 }
600 error = EMSGSIZE;
601 IP_STATINC(IP_STAT_CANTFRAG);
602 goto bad;
603 }
604
605 error = ip_fragment(m, ifp, mtu);
606 if (error) {
607 m = NULL;
608 goto bad;
609 }
610
611 for (; m; m = m0) {
612 m0 = m->m_nextpkt;
613 m->m_nextpkt = 0;
614 if (error) {
615 m_freem(m);
616 continue;
617 }
618 #if IFA_STATS
619 if (ia)
620 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
621 #endif
622 /*
623 * If we get there, the packet has not been handled by
624 * IPsec whereas it should have. Now that it has been
625 * fragmented, re-inject it in ip_output so that IPsec
626 * processing can occur.
627 */
628 if (natt_frag) {
629 error = ip_output(m, opt, ro,
630 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
631 imo, so);
632 } else {
633 KASSERT((m->m_pkthdr.csum_flags &
634 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
635 #ifndef NET_MPSAFE
636 KERNEL_LOCK(1, NULL);
637 #endif
638 error = (*ifp->if_output)(ifp, m,
639 (m->m_flags & M_MCAST) ?
640 sintocsa(rdst) : sintocsa(dst), rt);
641 #ifndef NET_MPSAFE
642 KERNEL_UNLOCK_ONE(NULL);
643 #endif
644 }
645 }
646 if (error == 0) {
647 IP_STATINC(IP_STAT_FRAGMENTED);
648 }
649 done:
650 if (ro == &iproute) {
651 rtcache_free(&iproute);
652 }
653 #ifdef IPSEC
654 if (sp) {
655 KEY_FREESP(&sp);
656 }
657 #endif
658 return error;
659 bad:
660 m_freem(m);
661 goto done;
662 }
663
664 int
665 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
666 {
667 struct ip *ip, *mhip;
668 struct mbuf *m0;
669 int len, hlen, off;
670 int mhlen, firstlen;
671 struct mbuf **mnext;
672 int sw_csum = m->m_pkthdr.csum_flags;
673 int fragments = 0;
674 int s;
675 int error = 0;
676
677 ip = mtod(m, struct ip *);
678 hlen = ip->ip_hl << 2;
679 if (ifp != NULL)
680 sw_csum &= ~ifp->if_csum_flags_tx;
681
682 len = (mtu - hlen) &~ 7;
683 if (len < 8) {
684 m_freem(m);
685 return (EMSGSIZE);
686 }
687
688 firstlen = len;
689 mnext = &m->m_nextpkt;
690
691 /*
692 * Loop through length of segment after first fragment,
693 * make new header and copy data of each part and link onto chain.
694 */
695 m0 = m;
696 mhlen = sizeof (struct ip);
697 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
698 MGETHDR(m, M_DONTWAIT, MT_HEADER);
699 if (m == 0) {
700 error = ENOBUFS;
701 IP_STATINC(IP_STAT_ODROPPED);
702 goto sendorfree;
703 }
704 MCLAIM(m, m0->m_owner);
705 *mnext = m;
706 mnext = &m->m_nextpkt;
707 m->m_data += max_linkhdr;
708 mhip = mtod(m, struct ip *);
709 *mhip = *ip;
710 /* we must inherit MCAST and BCAST flags */
711 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
712 if (hlen > sizeof (struct ip)) {
713 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
714 mhip->ip_hl = mhlen >> 2;
715 }
716 m->m_len = mhlen;
717 mhip->ip_off = ((off - hlen) >> 3) +
718 (ntohs(ip->ip_off) & ~IP_MF);
719 if (ip->ip_off & htons(IP_MF))
720 mhip->ip_off |= IP_MF;
721 if (off + len >= ntohs(ip->ip_len))
722 len = ntohs(ip->ip_len) - off;
723 else
724 mhip->ip_off |= IP_MF;
725 HTONS(mhip->ip_off);
726 mhip->ip_len = htons((u_int16_t)(len + mhlen));
727 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
728 if (m->m_next == 0) {
729 error = ENOBUFS; /* ??? */
730 IP_STATINC(IP_STAT_ODROPPED);
731 goto sendorfree;
732 }
733 m->m_pkthdr.len = mhlen + len;
734 m->m_pkthdr.rcvif = NULL;
735 mhip->ip_sum = 0;
736 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
737 if (sw_csum & M_CSUM_IPv4) {
738 mhip->ip_sum = in_cksum(m, mhlen);
739 } else {
740 /*
741 * checksum is hw-offloaded or not necessary.
742 */
743 m->m_pkthdr.csum_flags |=
744 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
745 m->m_pkthdr.csum_data |= mhlen << 16;
746 KASSERT(!(ifp != NULL &&
747 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
748 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
749 }
750 IP_STATINC(IP_STAT_OFRAGMENTS);
751 fragments++;
752 }
753 /*
754 * Update first fragment by trimming what's been copied out
755 * and updating header, then send each fragment (in order).
756 */
757 m = m0;
758 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
759 m->m_pkthdr.len = hlen + firstlen;
760 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
761 ip->ip_off |= htons(IP_MF);
762 ip->ip_sum = 0;
763 if (sw_csum & M_CSUM_IPv4) {
764 ip->ip_sum = in_cksum(m, hlen);
765 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
766 } else {
767 /*
768 * checksum is hw-offloaded or not necessary.
769 */
770 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
771 || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
772 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
773 sizeof(struct ip));
774 }
775 sendorfree:
776 /*
777 * If there is no room for all the fragments, don't queue
778 * any of them.
779 */
780 if (ifp != NULL) {
781 s = splnet();
782 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
783 error == 0) {
784 error = ENOBUFS;
785 IP_STATINC(IP_STAT_ODROPPED);
786 IFQ_INC_DROPS(&ifp->if_snd);
787 }
788 splx(s);
789 }
790 if (error) {
791 for (m = m0; m; m = m0) {
792 m0 = m->m_nextpkt;
793 m->m_nextpkt = NULL;
794 m_freem(m);
795 }
796 }
797 return (error);
798 }
799
800 /*
801 * Process a delayed payload checksum calculation.
802 */
803 void
804 in_delayed_cksum(struct mbuf *m)
805 {
806 struct ip *ip;
807 u_int16_t csum, offset;
808
809 ip = mtod(m, struct ip *);
810 offset = ip->ip_hl << 2;
811 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
812 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
813 csum = 0xffff;
814
815 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
816
817 if ((offset + sizeof(u_int16_t)) > m->m_len) {
818 /* This happen when ip options were inserted
819 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
820 m->m_len, offset, ip->ip_p);
821 */
822 m_copyback(m, offset, sizeof(csum), (void *) &csum);
823 } else
824 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
825 }
826
827 /*
828 * Determine the maximum length of the options to be inserted;
829 * we would far rather allocate too much space rather than too little.
830 */
831
832 u_int
833 ip_optlen(struct inpcb *inp)
834 {
835 struct mbuf *m = inp->inp_options;
836
837 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
838 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
839 }
840 return 0;
841 }
842
843 /*
844 * Insert IP options into preformed packet.
845 * Adjust IP destination as required for IP source routing,
846 * as indicated by a non-zero in_addr at the start of the options.
847 */
848 static struct mbuf *
849 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
850 {
851 struct ipoption *p = mtod(opt, struct ipoption *);
852 struct mbuf *n;
853 struct ip *ip = mtod(m, struct ip *);
854 unsigned optlen;
855
856 optlen = opt->m_len - sizeof(p->ipopt_dst);
857 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
858 return (m); /* XXX should fail */
859 if (!in_nullhost(p->ipopt_dst))
860 ip->ip_dst = p->ipopt_dst;
861 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
862 MGETHDR(n, M_DONTWAIT, MT_HEADER);
863 if (n == 0)
864 return (m);
865 MCLAIM(n, m->m_owner);
866 M_MOVE_PKTHDR(n, m);
867 m->m_len -= sizeof(struct ip);
868 m->m_data += sizeof(struct ip);
869 n->m_next = m;
870 m = n;
871 m->m_len = optlen + sizeof(struct ip);
872 m->m_data += max_linkhdr;
873 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
874 } else {
875 m->m_data -= optlen;
876 m->m_len += optlen;
877 memmove(mtod(m, void *), ip, sizeof(struct ip));
878 }
879 m->m_pkthdr.len += optlen;
880 ip = mtod(m, struct ip *);
881 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
882 *phlen = sizeof(struct ip) + optlen;
883 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
884 return (m);
885 }
886
887 /*
888 * Copy options from ip to jp,
889 * omitting those not copied during fragmentation.
890 */
891 int
892 ip_optcopy(struct ip *ip, struct ip *jp)
893 {
894 u_char *cp, *dp;
895 int opt, optlen, cnt;
896
897 cp = (u_char *)(ip + 1);
898 dp = (u_char *)(jp + 1);
899 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
900 for (; cnt > 0; cnt -= optlen, cp += optlen) {
901 opt = cp[0];
902 if (opt == IPOPT_EOL)
903 break;
904 if (opt == IPOPT_NOP) {
905 /* Preserve for IP mcast tunnel's LSRR alignment. */
906 *dp++ = IPOPT_NOP;
907 optlen = 1;
908 continue;
909 }
910
911 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
912 optlen = cp[IPOPT_OLEN];
913 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
914
915 /* Invalid lengths should have been caught by ip_dooptions. */
916 if (optlen > cnt)
917 optlen = cnt;
918 if (IPOPT_COPIED(opt)) {
919 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
920 dp += optlen;
921 }
922 }
923 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
924 *dp++ = IPOPT_EOL;
925 return (optlen);
926 }
927
928 /*
929 * IP socket option processing.
930 */
931 int
932 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
933 {
934 struct inpcb *inp = sotoinpcb(so);
935 struct ip *ip = &inp->inp_ip;
936 int inpflags = inp->inp_flags;
937 int optval = 0, error = 0;
938
939 if (sopt->sopt_level != IPPROTO_IP) {
940 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
941 return 0;
942 return ENOPROTOOPT;
943 }
944
945 switch (op) {
946 case PRCO_SETOPT:
947 switch (sopt->sopt_name) {
948 case IP_OPTIONS:
949 #ifdef notyet
950 case IP_RETOPTS:
951 #endif
952 error = ip_pcbopts(inp, sopt);
953 break;
954
955 case IP_TOS:
956 case IP_TTL:
957 case IP_MINTTL:
958 case IP_PKTINFO:
959 case IP_RECVOPTS:
960 case IP_RECVRETOPTS:
961 case IP_RECVDSTADDR:
962 case IP_RECVIF:
963 case IP_RECVPKTINFO:
964 case IP_RECVTTL:
965 error = sockopt_getint(sopt, &optval);
966 if (error)
967 break;
968
969 switch (sopt->sopt_name) {
970 case IP_TOS:
971 ip->ip_tos = optval;
972 break;
973
974 case IP_TTL:
975 ip->ip_ttl = optval;
976 break;
977
978 case IP_MINTTL:
979 if (optval > 0 && optval <= MAXTTL)
980 inp->inp_ip_minttl = optval;
981 else
982 error = EINVAL;
983 break;
984 #define OPTSET(bit) \
985 if (optval) \
986 inpflags |= bit; \
987 else \
988 inpflags &= ~bit;
989
990 case IP_PKTINFO:
991 OPTSET(INP_PKTINFO);
992 break;
993
994 case IP_RECVOPTS:
995 OPTSET(INP_RECVOPTS);
996 break;
997
998 case IP_RECVPKTINFO:
999 OPTSET(INP_RECVPKTINFO);
1000 break;
1001
1002 case IP_RECVRETOPTS:
1003 OPTSET(INP_RECVRETOPTS);
1004 break;
1005
1006 case IP_RECVDSTADDR:
1007 OPTSET(INP_RECVDSTADDR);
1008 break;
1009
1010 case IP_RECVIF:
1011 OPTSET(INP_RECVIF);
1012 break;
1013
1014 case IP_RECVTTL:
1015 OPTSET(INP_RECVTTL);
1016 break;
1017 }
1018 break;
1019 #undef OPTSET
1020
1021 case IP_MULTICAST_IF:
1022 case IP_MULTICAST_TTL:
1023 case IP_MULTICAST_LOOP:
1024 case IP_ADD_MEMBERSHIP:
1025 case IP_DROP_MEMBERSHIP:
1026 error = ip_setmoptions(&inp->inp_moptions, sopt);
1027 break;
1028
1029 case IP_PORTRANGE:
1030 error = sockopt_getint(sopt, &optval);
1031 if (error)
1032 break;
1033
1034 switch (optval) {
1035 case IP_PORTRANGE_DEFAULT:
1036 case IP_PORTRANGE_HIGH:
1037 inpflags &= ~(INP_LOWPORT);
1038 break;
1039
1040 case IP_PORTRANGE_LOW:
1041 inpflags |= INP_LOWPORT;
1042 break;
1043
1044 default:
1045 error = EINVAL;
1046 break;
1047 }
1048 break;
1049
1050 case IP_PORTALGO:
1051 error = sockopt_getint(sopt, &optval);
1052 if (error)
1053 break;
1054
1055 error = portalgo_algo_index_select(
1056 (struct inpcb_hdr *)inp, optval);
1057 break;
1058
1059 #if defined(IPSEC)
1060 case IP_IPSEC_POLICY:
1061 if (ipsec_enabled) {
1062 error = ipsec4_set_policy(inp, sopt->sopt_name,
1063 sopt->sopt_data, sopt->sopt_size,
1064 curlwp->l_cred);
1065 break;
1066 }
1067 /*FALLTHROUGH*/
1068 #endif /* IPSEC */
1069
1070 default:
1071 error = ENOPROTOOPT;
1072 break;
1073 }
1074 break;
1075
1076 case PRCO_GETOPT:
1077 switch (sopt->sopt_name) {
1078 case IP_OPTIONS:
1079 case IP_RETOPTS: {
1080 struct mbuf *mopts = inp->inp_options;
1081
1082 if (mopts) {
1083 struct mbuf *m;
1084
1085 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1086 if (m == NULL) {
1087 error = ENOBUFS;
1088 break;
1089 }
1090 error = sockopt_setmbuf(sopt, m);
1091 }
1092 break;
1093 }
1094 case IP_PKTINFO:
1095 case IP_TOS:
1096 case IP_TTL:
1097 case IP_MINTTL:
1098 case IP_RECVOPTS:
1099 case IP_RECVRETOPTS:
1100 case IP_RECVDSTADDR:
1101 case IP_RECVIF:
1102 case IP_RECVPKTINFO:
1103 case IP_RECVTTL:
1104 case IP_ERRORMTU:
1105 switch (sopt->sopt_name) {
1106 case IP_TOS:
1107 optval = ip->ip_tos;
1108 break;
1109
1110 case IP_TTL:
1111 optval = ip->ip_ttl;
1112 break;
1113
1114 case IP_MINTTL:
1115 optval = inp->inp_ip_minttl;
1116 break;
1117
1118 case IP_ERRORMTU:
1119 optval = inp->inp_errormtu;
1120 break;
1121
1122 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1123
1124 case IP_PKTINFO:
1125 optval = OPTBIT(INP_PKTINFO);
1126 break;
1127
1128 case IP_RECVOPTS:
1129 optval = OPTBIT(INP_RECVOPTS);
1130 break;
1131
1132 case IP_RECVPKTINFO:
1133 optval = OPTBIT(INP_RECVPKTINFO);
1134 break;
1135
1136 case IP_RECVRETOPTS:
1137 optval = OPTBIT(INP_RECVRETOPTS);
1138 break;
1139
1140 case IP_RECVDSTADDR:
1141 optval = OPTBIT(INP_RECVDSTADDR);
1142 break;
1143
1144 case IP_RECVIF:
1145 optval = OPTBIT(INP_RECVIF);
1146 break;
1147
1148 case IP_RECVTTL:
1149 optval = OPTBIT(INP_RECVTTL);
1150 break;
1151 }
1152 error = sockopt_setint(sopt, optval);
1153 break;
1154
1155 #if 0 /* defined(IPSEC) */
1156 case IP_IPSEC_POLICY:
1157 {
1158 struct mbuf *m = NULL;
1159
1160 /* XXX this will return EINVAL as sopt is empty */
1161 error = ipsec4_get_policy(inp, sopt->sopt_data,
1162 sopt->sopt_size, &m);
1163 if (error == 0)
1164 error = sockopt_setmbuf(sopt, m);
1165 break;
1166 }
1167 #endif /*IPSEC*/
1168
1169 case IP_MULTICAST_IF:
1170 case IP_MULTICAST_TTL:
1171 case IP_MULTICAST_LOOP:
1172 case IP_ADD_MEMBERSHIP:
1173 case IP_DROP_MEMBERSHIP:
1174 error = ip_getmoptions(inp->inp_moptions, sopt);
1175 break;
1176
1177 case IP_PORTRANGE:
1178 if (inpflags & INP_LOWPORT)
1179 optval = IP_PORTRANGE_LOW;
1180 else
1181 optval = IP_PORTRANGE_DEFAULT;
1182 error = sockopt_setint(sopt, optval);
1183 break;
1184
1185 case IP_PORTALGO:
1186 optval = inp->inp_portalgo;
1187 error = sockopt_setint(sopt, optval);
1188 break;
1189
1190 default:
1191 error = ENOPROTOOPT;
1192 break;
1193 }
1194 break;
1195 }
1196
1197 if (!error) {
1198 inp->inp_flags = inpflags;
1199 }
1200 return error;
1201 }
1202
1203 /*
1204 * Set up IP options in pcb for insertion in output packets.
1205 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1206 * with destination address if source routed.
1207 */
1208 static int
1209 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1210 {
1211 struct mbuf *m;
1212 const u_char *cp;
1213 u_char *dp;
1214 int cnt;
1215
1216 /* Turn off any old options. */
1217 if (inp->inp_options) {
1218 m_free(inp->inp_options);
1219 }
1220 inp->inp_options = NULL;
1221 if ((cnt = sopt->sopt_size) == 0) {
1222 /* Only turning off any previous options. */
1223 return 0;
1224 }
1225 cp = sopt->sopt_data;
1226
1227 #ifndef __vax__
1228 if (cnt % sizeof(int32_t))
1229 return (EINVAL);
1230 #endif
1231
1232 m = m_get(M_DONTWAIT, MT_SOOPTS);
1233 if (m == NULL)
1234 return (ENOBUFS);
1235
1236 dp = mtod(m, u_char *);
1237 memset(dp, 0, sizeof(struct in_addr));
1238 dp += sizeof(struct in_addr);
1239 m->m_len = sizeof(struct in_addr);
1240
1241 /*
1242 * IP option list according to RFC791. Each option is of the form
1243 *
1244 * [optval] [olen] [(olen - 2) data bytes]
1245 *
1246 * We validate the list and copy options to an mbuf for prepending
1247 * to data packets. The IP first-hop destination address will be
1248 * stored before actual options and is zero if unset.
1249 */
1250 while (cnt > 0) {
1251 uint8_t optval, olen, offset;
1252
1253 optval = cp[IPOPT_OPTVAL];
1254
1255 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1256 olen = 1;
1257 } else {
1258 if (cnt < IPOPT_OLEN + 1)
1259 goto bad;
1260
1261 olen = cp[IPOPT_OLEN];
1262 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1263 goto bad;
1264 }
1265
1266 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1267 /*
1268 * user process specifies route as:
1269 * ->A->B->C->D
1270 * D must be our final destination (but we can't
1271 * check that since we may not have connected yet).
1272 * A is first hop destination, which doesn't appear in
1273 * actual IP option, but is stored before the options.
1274 */
1275 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1276 goto bad;
1277
1278 offset = cp[IPOPT_OFFSET];
1279 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1280 sizeof(struct in_addr));
1281
1282 cp += sizeof(struct in_addr);
1283 cnt -= sizeof(struct in_addr);
1284 olen -= sizeof(struct in_addr);
1285
1286 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1287 goto bad;
1288
1289 memcpy(dp, cp, olen);
1290 dp[IPOPT_OPTVAL] = optval;
1291 dp[IPOPT_OLEN] = olen;
1292 dp[IPOPT_OFFSET] = offset;
1293 break;
1294 } else {
1295 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1296 goto bad;
1297
1298 memcpy(dp, cp, olen);
1299 break;
1300 }
1301
1302 dp += olen;
1303 m->m_len += olen;
1304
1305 if (optval == IPOPT_EOL)
1306 break;
1307
1308 cp += olen;
1309 cnt -= olen;
1310 }
1311
1312 inp->inp_options = m;
1313 return 0;
1314 bad:
1315 (void)m_free(m);
1316 return EINVAL;
1317 }
1318
1319 /*
1320 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1321 */
1322 static struct ifnet *
1323 ip_multicast_if(struct in_addr *a, int *ifindexp)
1324 {
1325 int ifindex;
1326 struct ifnet *ifp = NULL;
1327 struct in_ifaddr *ia;
1328
1329 if (ifindexp)
1330 *ifindexp = 0;
1331 if (ntohl(a->s_addr) >> 24 == 0) {
1332 ifindex = ntohl(a->s_addr) & 0xffffff;
1333 ifp = if_byindex(ifindex);
1334 if (!ifp)
1335 return NULL;
1336 if (ifindexp)
1337 *ifindexp = ifindex;
1338 } else {
1339 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1340 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1341 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1342 ifp = ia->ia_ifp;
1343 break;
1344 }
1345 }
1346 }
1347 return ifp;
1348 }
1349
1350 static int
1351 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1352 {
1353 u_int tval;
1354 u_char cval;
1355 int error;
1356
1357 if (sopt == NULL)
1358 return EINVAL;
1359
1360 switch (sopt->sopt_size) {
1361 case sizeof(u_char):
1362 error = sockopt_get(sopt, &cval, sizeof(u_char));
1363 tval = cval;
1364 break;
1365
1366 case sizeof(u_int):
1367 error = sockopt_get(sopt, &tval, sizeof(u_int));
1368 break;
1369
1370 default:
1371 error = EINVAL;
1372 }
1373
1374 if (error)
1375 return error;
1376
1377 if (tval > maxval)
1378 return EINVAL;
1379
1380 *val = tval;
1381 return 0;
1382 }
1383
1384 static int
1385 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1386 struct in_addr *ia, bool add)
1387 {
1388 int error;
1389 struct ip_mreq mreq;
1390
1391 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1392 if (error)
1393 return error;
1394
1395 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1396 return EINVAL;
1397
1398 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1399
1400 if (in_nullhost(mreq.imr_interface)) {
1401 union {
1402 struct sockaddr dst;
1403 struct sockaddr_in dst4;
1404 } u;
1405 struct route ro;
1406
1407 if (!add) {
1408 *ifp = NULL;
1409 return 0;
1410 }
1411 /*
1412 * If no interface address was provided, use the interface of
1413 * the route to the given multicast address.
1414 */
1415 struct rtentry *rt;
1416 memset(&ro, 0, sizeof(ro));
1417
1418 sockaddr_in_init(&u.dst4, ia, 0);
1419 rtcache_setdst(&ro, &u.dst);
1420 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1421 rtcache_free(&ro);
1422 } else {
1423 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1424 if (!add && *ifp == NULL)
1425 return EADDRNOTAVAIL;
1426 }
1427 return 0;
1428 }
1429
1430 /*
1431 * Add a multicast group membership.
1432 * Group must be a valid IP multicast address.
1433 */
1434 static int
1435 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1436 {
1437 struct ifnet *ifp;
1438 struct in_addr ia;
1439 int i, error;
1440
1441 if (sopt->sopt_size == sizeof(struct ip_mreq))
1442 error = ip_get_membership(sopt, &ifp, &ia, true);
1443 else
1444 #ifdef INET6
1445 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1446 #else
1447 return EINVAL;
1448 #endif
1449
1450 if (error)
1451 return error;
1452
1453 /*
1454 * See if we found an interface, and confirm that it
1455 * supports multicast.
1456 */
1457 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1458 return EADDRNOTAVAIL;
1459
1460 /*
1461 * See if the membership already exists or if all the
1462 * membership slots are full.
1463 */
1464 for (i = 0; i < imo->imo_num_memberships; ++i) {
1465 if (imo->imo_membership[i]->inm_ifp == ifp &&
1466 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1467 break;
1468 }
1469 if (i < imo->imo_num_memberships)
1470 return EADDRINUSE;
1471
1472 if (i == IP_MAX_MEMBERSHIPS)
1473 return ETOOMANYREFS;
1474
1475 /*
1476 * Everything looks good; add a new record to the multicast
1477 * address list for the given interface.
1478 */
1479 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1480 return ENOBUFS;
1481
1482 ++imo->imo_num_memberships;
1483 return 0;
1484 }
1485
1486 /*
1487 * Drop a multicast group membership.
1488 * Group must be a valid IP multicast address.
1489 */
1490 static int
1491 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1492 {
1493 struct in_addr ia;
1494 struct ifnet *ifp;
1495 int i, error;
1496
1497 if (sopt->sopt_size == sizeof(struct ip_mreq))
1498 error = ip_get_membership(sopt, &ifp, &ia, false);
1499 else
1500 #ifdef INET6
1501 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1502 #else
1503 return EINVAL;
1504 #endif
1505
1506 if (error)
1507 return error;
1508
1509 /*
1510 * Find the membership in the membership array.
1511 */
1512 for (i = 0; i < imo->imo_num_memberships; ++i) {
1513 if ((ifp == NULL ||
1514 imo->imo_membership[i]->inm_ifp == ifp) &&
1515 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1516 break;
1517 }
1518 if (i == imo->imo_num_memberships)
1519 return EADDRNOTAVAIL;
1520
1521 /*
1522 * Give up the multicast address record to which the
1523 * membership points.
1524 */
1525 in_delmulti(imo->imo_membership[i]);
1526
1527 /*
1528 * Remove the gap in the membership array.
1529 */
1530 for (++i; i < imo->imo_num_memberships; ++i)
1531 imo->imo_membership[i-1] = imo->imo_membership[i];
1532 --imo->imo_num_memberships;
1533 return 0;
1534 }
1535
1536 /*
1537 * Set the IP multicast options in response to user setsockopt().
1538 */
1539 int
1540 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1541 {
1542 struct ip_moptions *imo = *pimo;
1543 struct in_addr addr;
1544 struct ifnet *ifp;
1545 int ifindex, error = 0;
1546
1547 if (!imo) {
1548 /*
1549 * No multicast option buffer attached to the pcb;
1550 * allocate one and initialize to default values.
1551 */
1552 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1553 if (imo == NULL)
1554 return ENOBUFS;
1555
1556 imo->imo_multicast_ifp = NULL;
1557 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1558 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1559 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1560 imo->imo_num_memberships = 0;
1561 *pimo = imo;
1562 }
1563
1564 switch (sopt->sopt_name) {
1565 case IP_MULTICAST_IF:
1566 /*
1567 * Select the interface for outgoing multicast packets.
1568 */
1569 error = sockopt_get(sopt, &addr, sizeof(addr));
1570 if (error)
1571 break;
1572
1573 /*
1574 * INADDR_ANY is used to remove a previous selection.
1575 * When no interface is selected, a default one is
1576 * chosen every time a multicast packet is sent.
1577 */
1578 if (in_nullhost(addr)) {
1579 imo->imo_multicast_ifp = NULL;
1580 break;
1581 }
1582 /*
1583 * The selected interface is identified by its local
1584 * IP address. Find the interface and confirm that
1585 * it supports multicasting.
1586 */
1587 ifp = ip_multicast_if(&addr, &ifindex);
1588 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1589 error = EADDRNOTAVAIL;
1590 break;
1591 }
1592 imo->imo_multicast_ifp = ifp;
1593 if (ifindex)
1594 imo->imo_multicast_addr = addr;
1595 else
1596 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1597 break;
1598
1599 case IP_MULTICAST_TTL:
1600 /*
1601 * Set the IP time-to-live for outgoing multicast packets.
1602 */
1603 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1604 break;
1605
1606 case IP_MULTICAST_LOOP:
1607 /*
1608 * Set the loopback flag for outgoing multicast packets.
1609 * Must be zero or one.
1610 */
1611 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1612 break;
1613
1614 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1615 error = ip_add_membership(imo, sopt);
1616 break;
1617
1618 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1619 error = ip_drop_membership(imo, sopt);
1620 break;
1621
1622 default:
1623 error = EOPNOTSUPP;
1624 break;
1625 }
1626
1627 /*
1628 * If all options have default values, no need to keep the mbuf.
1629 */
1630 if (imo->imo_multicast_ifp == NULL &&
1631 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1632 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1633 imo->imo_num_memberships == 0) {
1634 kmem_free(imo, sizeof(*imo));
1635 *pimo = NULL;
1636 }
1637
1638 return error;
1639 }
1640
1641 /*
1642 * Return the IP multicast options in response to user getsockopt().
1643 */
1644 int
1645 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1646 {
1647 struct in_addr addr;
1648 struct in_ifaddr *ia;
1649 uint8_t optval;
1650 int error = 0;
1651
1652 switch (sopt->sopt_name) {
1653 case IP_MULTICAST_IF:
1654 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1655 addr = zeroin_addr;
1656 else if (imo->imo_multicast_addr.s_addr) {
1657 /* return the value user has set */
1658 addr = imo->imo_multicast_addr;
1659 } else {
1660 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1661 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1662 }
1663 error = sockopt_set(sopt, &addr, sizeof(addr));
1664 break;
1665
1666 case IP_MULTICAST_TTL:
1667 optval = imo ? imo->imo_multicast_ttl
1668 : IP_DEFAULT_MULTICAST_TTL;
1669
1670 error = sockopt_set(sopt, &optval, sizeof(optval));
1671 break;
1672
1673 case IP_MULTICAST_LOOP:
1674 optval = imo ? imo->imo_multicast_loop
1675 : IP_DEFAULT_MULTICAST_LOOP;
1676
1677 error = sockopt_set(sopt, &optval, sizeof(optval));
1678 break;
1679
1680 default:
1681 error = EOPNOTSUPP;
1682 }
1683
1684 return error;
1685 }
1686
1687 /*
1688 * Discard the IP multicast options.
1689 */
1690 void
1691 ip_freemoptions(struct ip_moptions *imo)
1692 {
1693 int i;
1694
1695 if (imo != NULL) {
1696 for (i = 0; i < imo->imo_num_memberships; ++i)
1697 in_delmulti(imo->imo_membership[i]);
1698 kmem_free(imo, sizeof(*imo));
1699 }
1700 }
1701
1702 /*
1703 * Routine called from ip_output() to loop back a copy of an IP multicast
1704 * packet to the input queue of a specified interface. Note that this
1705 * calls the output routine of the loopback "driver", but with an interface
1706 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1707 */
1708 static void
1709 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1710 {
1711 struct ip *ip;
1712 struct mbuf *copym;
1713
1714 copym = m_copypacket(m, M_DONTWAIT);
1715 if (copym != NULL
1716 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1717 copym = m_pullup(copym, sizeof(struct ip));
1718 if (copym == NULL)
1719 return;
1720 /*
1721 * We don't bother to fragment if the IP length is greater
1722 * than the interface's MTU. Can this possibly matter?
1723 */
1724 ip = mtod(copym, struct ip *);
1725
1726 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1727 in_delayed_cksum(copym);
1728 copym->m_pkthdr.csum_flags &=
1729 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1730 }
1731
1732 ip->ip_sum = 0;
1733 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1734 #ifndef NET_MPSAFE
1735 KERNEL_LOCK(1, NULL);
1736 #endif
1737 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1738 #ifndef NET_MPSAFE
1739 KERNEL_UNLOCK_ONE(NULL);
1740 #endif
1741 }
1742