Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.238
      1 /*	$NetBSD: ip_output.c,v 1.238 2015/04/27 10:14:44 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.238 2015/04/27 10:14:44 ozaki-r Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 #include "opt_net_mpsafe.h"
    100 
    101 #include <sys/param.h>
    102 #include <sys/kmem.h>
    103 #include <sys/mbuf.h>
    104 #include <sys/protosw.h>
    105 #include <sys/socket.h>
    106 #include <sys/socketvar.h>
    107 #include <sys/kauth.h>
    108 #ifdef IPSEC
    109 #include <sys/domain.h>
    110 #endif
    111 #include <sys/systm.h>
    112 
    113 #include <net/if.h>
    114 #include <net/route.h>
    115 #include <net/pfil.h>
    116 
    117 #include <netinet/in.h>
    118 #include <netinet/in_systm.h>
    119 #include <netinet/ip.h>
    120 #include <netinet/in_pcb.h>
    121 #include <netinet/in_var.h>
    122 #include <netinet/ip_var.h>
    123 #include <netinet/ip_private.h>
    124 #include <netinet/in_offload.h>
    125 #include <netinet/portalgo.h>
    126 #include <netinet/udp.h>
    127 
    128 #ifdef INET6
    129 #include <netinet6/ip6_var.h>
    130 #endif
    131 
    132 #ifdef MROUTING
    133 #include <netinet/ip_mroute.h>
    134 #endif
    135 
    136 #ifdef IPSEC
    137 #include <netipsec/ipsec.h>
    138 #include <netipsec/key.h>
    139 #endif
    140 
    141 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    142 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    143 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    144 static void ip_mloopback(struct ifnet *, struct mbuf *,
    145     const struct sockaddr_in *);
    146 
    147 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    148 
    149 int	ip_do_loopback_cksum = 0;
    150 
    151 /*
    152  * IP output.  The packet in mbuf chain m contains a skeletal IP
    153  * header (with len, off, ttl, proto, tos, src, dst).
    154  * The mbuf chain containing the packet will be freed.
    155  * The mbuf opt, if present, will not be freed.
    156  */
    157 int
    158 ip_output(struct mbuf *m0, ...)
    159 {
    160 	struct rtentry *rt;
    161 	struct ip *ip;
    162 	struct ifnet *ifp;
    163 	struct mbuf *m = m0;
    164 	int hlen = sizeof (struct ip);
    165 	int len, error = 0;
    166 	struct route iproute;
    167 	const struct sockaddr_in *dst;
    168 	struct in_ifaddr *ia;
    169 	int isbroadcast;
    170 	struct mbuf *opt;
    171 	struct route *ro;
    172 	int flags, sw_csum;
    173 	u_long mtu;
    174 	struct ip_moptions *imo;
    175 	struct socket *so;
    176 	va_list ap;
    177 #ifdef IPSEC
    178 	struct secpolicy *sp = NULL;
    179 #endif
    180 	bool natt_frag = false;
    181 	bool rtmtu_nolock;
    182 	union {
    183 		struct sockaddr		dst;
    184 		struct sockaddr_in	dst4;
    185 	} u;
    186 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    187 					 * to the nexthop
    188 					 */
    189 
    190 	len = 0;
    191 	va_start(ap, m0);
    192 	opt = va_arg(ap, struct mbuf *);
    193 	ro = va_arg(ap, struct route *);
    194 	flags = va_arg(ap, int);
    195 	imo = va_arg(ap, struct ip_moptions *);
    196 	so = va_arg(ap, struct socket *);
    197 	va_end(ap);
    198 
    199 	MCLAIM(m, &ip_tx_mowner);
    200 
    201 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    202 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    203 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    204 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    205 
    206 	if (opt) {
    207 		m = ip_insertoptions(m, opt, &len);
    208 		if (len >= sizeof(struct ip))
    209 			hlen = len;
    210 	}
    211 	ip = mtod(m, struct ip *);
    212 
    213 	/*
    214 	 * Fill in IP header.
    215 	 */
    216 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    217 		ip->ip_v = IPVERSION;
    218 		ip->ip_off = htons(0);
    219 		/* ip->ip_id filled in after we find out source ia */
    220 		ip->ip_hl = hlen >> 2;
    221 		IP_STATINC(IP_STAT_LOCALOUT);
    222 	} else {
    223 		hlen = ip->ip_hl << 2;
    224 	}
    225 
    226 	/*
    227 	 * Route packet.
    228 	 */
    229 	if (ro == NULL) {
    230 		memset(&iproute, 0, sizeof(iproute));
    231 		ro = &iproute;
    232 	}
    233 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    234 	dst = satocsin(rtcache_getdst(ro));
    235 
    236 	/*
    237 	 * If there is a cached route, check that it is to the same
    238 	 * destination and is still up.  If not, free it and try again.
    239 	 * The address family should also be checked in case of sharing
    240 	 * the cache with IPv6.
    241 	 */
    242 	if (dst && (dst->sin_family != AF_INET ||
    243 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    244 		rtcache_free(ro);
    245 
    246 	if ((rt = rtcache_validate(ro)) == NULL &&
    247 	    (rt = rtcache_update(ro, 1)) == NULL) {
    248 		dst = &u.dst4;
    249 		error = rtcache_setdst(ro, &u.dst);
    250 		if (error != 0)
    251 			goto bad;
    252 	}
    253 
    254 	/*
    255 	 * If routing to interface only, short circuit routing lookup.
    256 	 */
    257 	if (flags & IP_ROUTETOIF) {
    258 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    259 			IP_STATINC(IP_STAT_NOROUTE);
    260 			error = ENETUNREACH;
    261 			goto bad;
    262 		}
    263 		ifp = ia->ia_ifp;
    264 		mtu = ifp->if_mtu;
    265 		ip->ip_ttl = 1;
    266 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    267 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    268 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    269 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    270 		ifp = imo->imo_multicast_ifp;
    271 		mtu = ifp->if_mtu;
    272 		IFP_TO_IA(ifp, ia);
    273 		isbroadcast = 0;
    274 	} else {
    275 		if (rt == NULL)
    276 			rt = rtcache_init(ro);
    277 		if (rt == NULL) {
    278 			IP_STATINC(IP_STAT_NOROUTE);
    279 			error = EHOSTUNREACH;
    280 			goto bad;
    281 		}
    282 		ia = ifatoia(rt->rt_ifa);
    283 		ifp = rt->rt_ifp;
    284 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    285 			mtu = ifp->if_mtu;
    286 		rt->rt_use++;
    287 		if (rt->rt_flags & RTF_GATEWAY)
    288 			dst = satosin(rt->rt_gateway);
    289 		if (rt->rt_flags & RTF_HOST)
    290 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    291 		else
    292 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    293 	}
    294 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    295 
    296 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    297 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    298 		bool inmgroup;
    299 
    300 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    301 		    M_BCAST : M_MCAST;
    302 		/*
    303 		 * See if the caller provided any multicast options
    304 		 */
    305 		if (imo != NULL)
    306 			ip->ip_ttl = imo->imo_multicast_ttl;
    307 		else
    308 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    309 
    310 		/*
    311 		 * if we don't know the outgoing ifp yet, we can't generate
    312 		 * output
    313 		 */
    314 		if (!ifp) {
    315 			IP_STATINC(IP_STAT_NOROUTE);
    316 			error = ENETUNREACH;
    317 			goto bad;
    318 		}
    319 
    320 		/*
    321 		 * If the packet is multicast or broadcast, confirm that
    322 		 * the outgoing interface can transmit it.
    323 		 */
    324 		if (((m->m_flags & M_MCAST) &&
    325 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    326 		    ((m->m_flags & M_BCAST) &&
    327 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    328 			IP_STATINC(IP_STAT_NOROUTE);
    329 			error = ENETUNREACH;
    330 			goto bad;
    331 		}
    332 		/*
    333 		 * If source address not specified yet, use an address
    334 		 * of outgoing interface.
    335 		 */
    336 		if (in_nullhost(ip->ip_src)) {
    337 			struct in_ifaddr *xia;
    338 			struct ifaddr *xifa;
    339 
    340 			IFP_TO_IA(ifp, xia);
    341 			if (!xia) {
    342 				error = EADDRNOTAVAIL;
    343 				goto bad;
    344 			}
    345 			xifa = &xia->ia_ifa;
    346 			if (xifa->ifa_getifa != NULL) {
    347 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    348 			}
    349 			ip->ip_src = xia->ia_addr.sin_addr;
    350 		}
    351 
    352 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    353 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    354 			/*
    355 			 * If we belong to the destination multicast group
    356 			 * on the outgoing interface, and the caller did not
    357 			 * forbid loopback, loop back a copy.
    358 			 */
    359 			ip_mloopback(ifp, m, &u.dst4);
    360 		}
    361 #ifdef MROUTING
    362 		else {
    363 			/*
    364 			 * If we are acting as a multicast router, perform
    365 			 * multicast forwarding as if the packet had just
    366 			 * arrived on the interface to which we are about
    367 			 * to send.  The multicast forwarding function
    368 			 * recursively calls this function, using the
    369 			 * IP_FORWARDING flag to prevent infinite recursion.
    370 			 *
    371 			 * Multicasts that are looped back by ip_mloopback(),
    372 			 * above, will be forwarded by the ip_input() routine,
    373 			 * if necessary.
    374 			 */
    375 			extern struct socket *ip_mrouter;
    376 
    377 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    378 				if (ip_mforward(m, ifp) != 0) {
    379 					m_freem(m);
    380 					goto done;
    381 				}
    382 			}
    383 		}
    384 #endif
    385 		/*
    386 		 * Multicasts with a time-to-live of zero may be looped-
    387 		 * back, above, but must not be transmitted on a network.
    388 		 * Also, multicasts addressed to the loopback interface
    389 		 * are not sent -- the above call to ip_mloopback() will
    390 		 * loop back a copy if this host actually belongs to the
    391 		 * destination group on the loopback interface.
    392 		 */
    393 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    394 			m_freem(m);
    395 			goto done;
    396 		}
    397 		goto sendit;
    398 	}
    399 
    400 	/*
    401 	 * If source address not specified yet, use address
    402 	 * of outgoing interface.
    403 	 */
    404 	if (in_nullhost(ip->ip_src)) {
    405 		struct ifaddr *xifa;
    406 
    407 		xifa = &ia->ia_ifa;
    408 		if (xifa->ifa_getifa != NULL)
    409 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    410 		ip->ip_src = ia->ia_addr.sin_addr;
    411 	}
    412 
    413 	/*
    414 	 * packets with Class-D address as source are not valid per
    415 	 * RFC 1112
    416 	 */
    417 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    418 		IP_STATINC(IP_STAT_ODROPPED);
    419 		error = EADDRNOTAVAIL;
    420 		goto bad;
    421 	}
    422 
    423 	/*
    424 	 * Look for broadcast address and and verify user is allowed to
    425 	 * send such a packet.
    426 	 */
    427 	if (isbroadcast) {
    428 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    429 			error = EADDRNOTAVAIL;
    430 			goto bad;
    431 		}
    432 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    433 			error = EACCES;
    434 			goto bad;
    435 		}
    436 		/* don't allow broadcast messages to be fragmented */
    437 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    438 			error = EMSGSIZE;
    439 			goto bad;
    440 		}
    441 		m->m_flags |= M_BCAST;
    442 	} else
    443 		m->m_flags &= ~M_BCAST;
    444 
    445 sendit:
    446 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    447 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    448 			ip->ip_id = 0;
    449 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    450 			ip->ip_id = ip_newid(ia);
    451 		} else {
    452 
    453 			/*
    454 			 * TSO capable interfaces (typically?) increment
    455 			 * ip_id for each segment.
    456 			 * "allocate" enough ids here to increase the chance
    457 			 * for them to be unique.
    458 			 *
    459 			 * note that the following calculation is not
    460 			 * needed to be precise.  wasting some ip_id is fine.
    461 			 */
    462 
    463 			unsigned int segsz = m->m_pkthdr.segsz;
    464 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    465 			unsigned int num = howmany(datasz, segsz);
    466 
    467 			ip->ip_id = ip_newid_range(ia, num);
    468 		}
    469 	}
    470 
    471 	/*
    472 	 * If we're doing Path MTU Discovery, we need to set DF unless
    473 	 * the route's MTU is locked.
    474 	 */
    475 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    476 		ip->ip_off |= htons(IP_DF);
    477 	}
    478 
    479 #ifdef IPSEC
    480 	if (ipsec_used) {
    481 		bool ipsec_done = false;
    482 
    483 		/* Perform IPsec processing, if any. */
    484 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    485 		    &ipsec_done);
    486 		if (error || ipsec_done)
    487 			goto done;
    488 	}
    489 #endif
    490 
    491 	/*
    492 	 * Run through list of hooks for output packets.
    493 	 */
    494 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    495 	if (error)
    496 		goto done;
    497 	if (m == NULL)
    498 		goto done;
    499 
    500 	ip = mtod(m, struct ip *);
    501 	hlen = ip->ip_hl << 2;
    502 
    503 	m->m_pkthdr.csum_data |= hlen << 16;
    504 
    505 #if IFA_STATS
    506 	/*
    507 	 * search for the source address structure to
    508 	 * maintain output statistics.
    509 	 */
    510 	INADDR_TO_IA(ip->ip_src, ia);
    511 #endif
    512 
    513 	/* Maybe skip checksums on loopback interfaces. */
    514 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    515 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    516 	}
    517 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    518 	/*
    519 	 * If small enough for mtu of path, or if using TCP segmentation
    520 	 * offload, can just send directly.
    521 	 */
    522 	if (ntohs(ip->ip_len) <= mtu ||
    523 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    524 		const struct sockaddr *sa;
    525 
    526 #if IFA_STATS
    527 		if (ia)
    528 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    529 #endif
    530 		/*
    531 		 * Always initialize the sum to 0!  Some HW assisted
    532 		 * checksumming requires this.
    533 		 */
    534 		ip->ip_sum = 0;
    535 
    536 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    537 			/*
    538 			 * Perform any checksums that the hardware can't do
    539 			 * for us.
    540 			 *
    541 			 * XXX Does any hardware require the {th,uh}_sum
    542 			 * XXX fields to be 0?
    543 			 */
    544 			if (sw_csum & M_CSUM_IPv4) {
    545 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    546 				ip->ip_sum = in_cksum(m, hlen);
    547 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    548 			}
    549 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    550 				if (IN_NEED_CHECKSUM(ifp,
    551 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    552 					in_delayed_cksum(m);
    553 				}
    554 				m->m_pkthdr.csum_flags &=
    555 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    556 			}
    557 		}
    558 
    559 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    560 		if (__predict_true(
    561 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    562 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    563 #ifndef NET_MPSAFE
    564 			KERNEL_LOCK(1, NULL);
    565 #endif
    566 			error = (*ifp->if_output)(ifp, m, sa, rt);
    567 #ifndef NET_MPSAFE
    568 			KERNEL_UNLOCK_ONE(NULL);
    569 #endif
    570 		} else {
    571 			error = ip_tso_output(ifp, m, sa, rt);
    572 		}
    573 		goto done;
    574 	}
    575 
    576 	/*
    577 	 * We can't use HW checksumming if we're about to
    578 	 * to fragment the packet.
    579 	 *
    580 	 * XXX Some hardware can do this.
    581 	 */
    582 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    583 		if (IN_NEED_CHECKSUM(ifp,
    584 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    585 			in_delayed_cksum(m);
    586 		}
    587 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    588 	}
    589 
    590 	/*
    591 	 * Too large for interface; fragment if possible.
    592 	 * Must be able to put at least 8 bytes per fragment.
    593 	 */
    594 	if (ntohs(ip->ip_off) & IP_DF) {
    595 		if (flags & IP_RETURNMTU) {
    596 			struct inpcb *inp;
    597 
    598 			KASSERT(so && solocked(so));
    599 			inp = sotoinpcb(so);
    600 			inp->inp_errormtu = mtu;
    601 		}
    602 		error = EMSGSIZE;
    603 		IP_STATINC(IP_STAT_CANTFRAG);
    604 		goto bad;
    605 	}
    606 
    607 	error = ip_fragment(m, ifp, mtu);
    608 	if (error) {
    609 		m = NULL;
    610 		goto bad;
    611 	}
    612 
    613 	for (; m; m = m0) {
    614 		m0 = m->m_nextpkt;
    615 		m->m_nextpkt = 0;
    616 		if (error) {
    617 			m_freem(m);
    618 			continue;
    619 		}
    620 #if IFA_STATS
    621 		if (ia)
    622 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    623 #endif
    624 		/*
    625 		 * If we get there, the packet has not been handled by
    626 		 * IPsec whereas it should have. Now that it has been
    627 		 * fragmented, re-inject it in ip_output so that IPsec
    628 		 * processing can occur.
    629 		 */
    630 		if (natt_frag) {
    631 			error = ip_output(m, opt, ro,
    632 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    633 			    imo, so);
    634 		} else {
    635 			KASSERT((m->m_pkthdr.csum_flags &
    636 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    637 #ifndef NET_MPSAFE
    638 			KERNEL_LOCK(1, NULL);
    639 #endif
    640 			error = (*ifp->if_output)(ifp, m,
    641 			    (m->m_flags & M_MCAST) ?
    642 			    sintocsa(rdst) : sintocsa(dst), rt);
    643 #ifndef NET_MPSAFE
    644 			KERNEL_UNLOCK_ONE(NULL);
    645 #endif
    646 		}
    647 	}
    648 	if (error == 0) {
    649 		IP_STATINC(IP_STAT_FRAGMENTED);
    650 	}
    651 done:
    652 	if (ro == &iproute) {
    653 		rtcache_free(&iproute);
    654 	}
    655 #ifdef IPSEC
    656 	if (sp) {
    657 		KEY_FREESP(&sp);
    658 	}
    659 #endif
    660 	return error;
    661 bad:
    662 	m_freem(m);
    663 	goto done;
    664 }
    665 
    666 int
    667 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    668 {
    669 	struct ip *ip, *mhip;
    670 	struct mbuf *m0;
    671 	int len, hlen, off;
    672 	int mhlen, firstlen;
    673 	struct mbuf **mnext;
    674 	int sw_csum = m->m_pkthdr.csum_flags;
    675 	int fragments = 0;
    676 	int s;
    677 	int error = 0;
    678 
    679 	ip = mtod(m, struct ip *);
    680 	hlen = ip->ip_hl << 2;
    681 	if (ifp != NULL)
    682 		sw_csum &= ~ifp->if_csum_flags_tx;
    683 
    684 	len = (mtu - hlen) &~ 7;
    685 	if (len < 8) {
    686 		m_freem(m);
    687 		return (EMSGSIZE);
    688 	}
    689 
    690 	firstlen = len;
    691 	mnext = &m->m_nextpkt;
    692 
    693 	/*
    694 	 * Loop through length of segment after first fragment,
    695 	 * make new header and copy data of each part and link onto chain.
    696 	 */
    697 	m0 = m;
    698 	mhlen = sizeof (struct ip);
    699 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    700 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    701 		if (m == 0) {
    702 			error = ENOBUFS;
    703 			IP_STATINC(IP_STAT_ODROPPED);
    704 			goto sendorfree;
    705 		}
    706 		MCLAIM(m, m0->m_owner);
    707 		*mnext = m;
    708 		mnext = &m->m_nextpkt;
    709 		m->m_data += max_linkhdr;
    710 		mhip = mtod(m, struct ip *);
    711 		*mhip = *ip;
    712 		/* we must inherit MCAST and BCAST flags */
    713 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    714 		if (hlen > sizeof (struct ip)) {
    715 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    716 			mhip->ip_hl = mhlen >> 2;
    717 		}
    718 		m->m_len = mhlen;
    719 		mhip->ip_off = ((off - hlen) >> 3) +
    720 		    (ntohs(ip->ip_off) & ~IP_MF);
    721 		if (ip->ip_off & htons(IP_MF))
    722 			mhip->ip_off |= IP_MF;
    723 		if (off + len >= ntohs(ip->ip_len))
    724 			len = ntohs(ip->ip_len) - off;
    725 		else
    726 			mhip->ip_off |= IP_MF;
    727 		HTONS(mhip->ip_off);
    728 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    729 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    730 		if (m->m_next == 0) {
    731 			error = ENOBUFS;	/* ??? */
    732 			IP_STATINC(IP_STAT_ODROPPED);
    733 			goto sendorfree;
    734 		}
    735 		m->m_pkthdr.len = mhlen + len;
    736 		m->m_pkthdr.rcvif = NULL;
    737 		mhip->ip_sum = 0;
    738 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    739 		if (sw_csum & M_CSUM_IPv4) {
    740 			mhip->ip_sum = in_cksum(m, mhlen);
    741 		} else {
    742 			/*
    743 			 * checksum is hw-offloaded or not necessary.
    744 			 */
    745 			m->m_pkthdr.csum_flags |=
    746 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    747 			m->m_pkthdr.csum_data |= mhlen << 16;
    748 			KASSERT(!(ifp != NULL &&
    749 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    750 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    751 		}
    752 		IP_STATINC(IP_STAT_OFRAGMENTS);
    753 		fragments++;
    754 	}
    755 	/*
    756 	 * Update first fragment by trimming what's been copied out
    757 	 * and updating header, then send each fragment (in order).
    758 	 */
    759 	m = m0;
    760 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    761 	m->m_pkthdr.len = hlen + firstlen;
    762 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    763 	ip->ip_off |= htons(IP_MF);
    764 	ip->ip_sum = 0;
    765 	if (sw_csum & M_CSUM_IPv4) {
    766 		ip->ip_sum = in_cksum(m, hlen);
    767 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    768 	} else {
    769 		/*
    770 		 * checksum is hw-offloaded or not necessary.
    771 		 */
    772 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    773 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    774 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    775 		    sizeof(struct ip));
    776 	}
    777 sendorfree:
    778 	/*
    779 	 * If there is no room for all the fragments, don't queue
    780 	 * any of them.
    781 	 */
    782 	if (ifp != NULL) {
    783 		s = splnet();
    784 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    785 		    error == 0) {
    786 			error = ENOBUFS;
    787 			IP_STATINC(IP_STAT_ODROPPED);
    788 			IFQ_INC_DROPS(&ifp->if_snd);
    789 		}
    790 		splx(s);
    791 	}
    792 	if (error) {
    793 		for (m = m0; m; m = m0) {
    794 			m0 = m->m_nextpkt;
    795 			m->m_nextpkt = NULL;
    796 			m_freem(m);
    797 		}
    798 	}
    799 	return (error);
    800 }
    801 
    802 /*
    803  * Process a delayed payload checksum calculation.
    804  */
    805 void
    806 in_delayed_cksum(struct mbuf *m)
    807 {
    808 	struct ip *ip;
    809 	u_int16_t csum, offset;
    810 
    811 	ip = mtod(m, struct ip *);
    812 	offset = ip->ip_hl << 2;
    813 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    814 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    815 		csum = 0xffff;
    816 
    817 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    818 
    819 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    820 		/* This happen when ip options were inserted
    821 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    822 		    m->m_len, offset, ip->ip_p);
    823 		 */
    824 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    825 	} else
    826 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    827 }
    828 
    829 /*
    830  * Determine the maximum length of the options to be inserted;
    831  * we would far rather allocate too much space rather than too little.
    832  */
    833 
    834 u_int
    835 ip_optlen(struct inpcb *inp)
    836 {
    837 	struct mbuf *m = inp->inp_options;
    838 
    839 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    840 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    841 	}
    842 	return 0;
    843 }
    844 
    845 /*
    846  * Insert IP options into preformed packet.
    847  * Adjust IP destination as required for IP source routing,
    848  * as indicated by a non-zero in_addr at the start of the options.
    849  */
    850 static struct mbuf *
    851 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    852 {
    853 	struct ipoption *p = mtod(opt, struct ipoption *);
    854 	struct mbuf *n;
    855 	struct ip *ip = mtod(m, struct ip *);
    856 	unsigned optlen;
    857 
    858 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    859 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    860 		return (m);		/* XXX should fail */
    861 	if (!in_nullhost(p->ipopt_dst))
    862 		ip->ip_dst = p->ipopt_dst;
    863 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    864 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    865 		if (n == 0)
    866 			return (m);
    867 		MCLAIM(n, m->m_owner);
    868 		M_MOVE_PKTHDR(n, m);
    869 		m->m_len -= sizeof(struct ip);
    870 		m->m_data += sizeof(struct ip);
    871 		n->m_next = m;
    872 		m = n;
    873 		m->m_len = optlen + sizeof(struct ip);
    874 		m->m_data += max_linkhdr;
    875 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    876 	} else {
    877 		m->m_data -= optlen;
    878 		m->m_len += optlen;
    879 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    880 	}
    881 	m->m_pkthdr.len += optlen;
    882 	ip = mtod(m, struct ip *);
    883 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    884 	*phlen = sizeof(struct ip) + optlen;
    885 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    886 	return (m);
    887 }
    888 
    889 /*
    890  * Copy options from ip to jp,
    891  * omitting those not copied during fragmentation.
    892  */
    893 int
    894 ip_optcopy(struct ip *ip, struct ip *jp)
    895 {
    896 	u_char *cp, *dp;
    897 	int opt, optlen, cnt;
    898 
    899 	cp = (u_char *)(ip + 1);
    900 	dp = (u_char *)(jp + 1);
    901 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    902 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    903 		opt = cp[0];
    904 		if (opt == IPOPT_EOL)
    905 			break;
    906 		if (opt == IPOPT_NOP) {
    907 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    908 			*dp++ = IPOPT_NOP;
    909 			optlen = 1;
    910 			continue;
    911 		}
    912 
    913 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
    914 		optlen = cp[IPOPT_OLEN];
    915 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
    916 
    917 		/* Invalid lengths should have been caught by ip_dooptions. */
    918 		if (optlen > cnt)
    919 			optlen = cnt;
    920 		if (IPOPT_COPIED(opt)) {
    921 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
    922 			dp += optlen;
    923 		}
    924 	}
    925 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
    926 		*dp++ = IPOPT_EOL;
    927 	return (optlen);
    928 }
    929 
    930 /*
    931  * IP socket option processing.
    932  */
    933 int
    934 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    935 {
    936 	struct inpcb *inp = sotoinpcb(so);
    937 	struct ip *ip = &inp->inp_ip;
    938 	int inpflags = inp->inp_flags;
    939 	int optval = 0, error = 0;
    940 
    941 	if (sopt->sopt_level != IPPROTO_IP) {
    942 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
    943 			return 0;
    944 		return ENOPROTOOPT;
    945 	}
    946 
    947 	switch (op) {
    948 	case PRCO_SETOPT:
    949 		switch (sopt->sopt_name) {
    950 		case IP_OPTIONS:
    951 #ifdef notyet
    952 		case IP_RETOPTS:
    953 #endif
    954 			error = ip_pcbopts(inp, sopt);
    955 			break;
    956 
    957 		case IP_TOS:
    958 		case IP_TTL:
    959 		case IP_MINTTL:
    960 		case IP_PKTINFO:
    961 		case IP_RECVOPTS:
    962 		case IP_RECVRETOPTS:
    963 		case IP_RECVDSTADDR:
    964 		case IP_RECVIF:
    965 		case IP_RECVPKTINFO:
    966 		case IP_RECVTTL:
    967 			error = sockopt_getint(sopt, &optval);
    968 			if (error)
    969 				break;
    970 
    971 			switch (sopt->sopt_name) {
    972 			case IP_TOS:
    973 				ip->ip_tos = optval;
    974 				break;
    975 
    976 			case IP_TTL:
    977 				ip->ip_ttl = optval;
    978 				break;
    979 
    980 			case IP_MINTTL:
    981 				if (optval > 0 && optval <= MAXTTL)
    982 					inp->inp_ip_minttl = optval;
    983 				else
    984 					error = EINVAL;
    985 				break;
    986 #define	OPTSET(bit) \
    987 	if (optval) \
    988 		inpflags |= bit; \
    989 	else \
    990 		inpflags &= ~bit;
    991 
    992 			case IP_PKTINFO:
    993 				OPTSET(INP_PKTINFO);
    994 				break;
    995 
    996 			case IP_RECVOPTS:
    997 				OPTSET(INP_RECVOPTS);
    998 				break;
    999 
   1000 			case IP_RECVPKTINFO:
   1001 				OPTSET(INP_RECVPKTINFO);
   1002 				break;
   1003 
   1004 			case IP_RECVRETOPTS:
   1005 				OPTSET(INP_RECVRETOPTS);
   1006 				break;
   1007 
   1008 			case IP_RECVDSTADDR:
   1009 				OPTSET(INP_RECVDSTADDR);
   1010 				break;
   1011 
   1012 			case IP_RECVIF:
   1013 				OPTSET(INP_RECVIF);
   1014 				break;
   1015 
   1016 			case IP_RECVTTL:
   1017 				OPTSET(INP_RECVTTL);
   1018 				break;
   1019 			}
   1020 		break;
   1021 #undef OPTSET
   1022 
   1023 		case IP_MULTICAST_IF:
   1024 		case IP_MULTICAST_TTL:
   1025 		case IP_MULTICAST_LOOP:
   1026 		case IP_ADD_MEMBERSHIP:
   1027 		case IP_DROP_MEMBERSHIP:
   1028 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1029 			break;
   1030 
   1031 		case IP_PORTRANGE:
   1032 			error = sockopt_getint(sopt, &optval);
   1033 			if (error)
   1034 				break;
   1035 
   1036 			switch (optval) {
   1037 			case IP_PORTRANGE_DEFAULT:
   1038 			case IP_PORTRANGE_HIGH:
   1039 				inpflags &= ~(INP_LOWPORT);
   1040 				break;
   1041 
   1042 			case IP_PORTRANGE_LOW:
   1043 				inpflags |= INP_LOWPORT;
   1044 				break;
   1045 
   1046 			default:
   1047 				error = EINVAL;
   1048 				break;
   1049 			}
   1050 			break;
   1051 
   1052 		case IP_PORTALGO:
   1053 			error = sockopt_getint(sopt, &optval);
   1054 			if (error)
   1055 				break;
   1056 
   1057 			error = portalgo_algo_index_select(
   1058 			    (struct inpcb_hdr *)inp, optval);
   1059 			break;
   1060 
   1061 #if defined(IPSEC)
   1062 		case IP_IPSEC_POLICY:
   1063 			if (ipsec_enabled) {
   1064 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1065 				    sopt->sopt_data, sopt->sopt_size,
   1066 				    curlwp->l_cred);
   1067 				break;
   1068 			}
   1069 			/*FALLTHROUGH*/
   1070 #endif /* IPSEC */
   1071 
   1072 		default:
   1073 			error = ENOPROTOOPT;
   1074 			break;
   1075 		}
   1076 		break;
   1077 
   1078 	case PRCO_GETOPT:
   1079 		switch (sopt->sopt_name) {
   1080 		case IP_OPTIONS:
   1081 		case IP_RETOPTS: {
   1082 			struct mbuf *mopts = inp->inp_options;
   1083 
   1084 			if (mopts) {
   1085 				struct mbuf *m;
   1086 
   1087 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1088 				if (m == NULL) {
   1089 					error = ENOBUFS;
   1090 					break;
   1091 				}
   1092 				error = sockopt_setmbuf(sopt, m);
   1093 			}
   1094 			break;
   1095 		}
   1096 		case IP_PKTINFO:
   1097 		case IP_TOS:
   1098 		case IP_TTL:
   1099 		case IP_MINTTL:
   1100 		case IP_RECVOPTS:
   1101 		case IP_RECVRETOPTS:
   1102 		case IP_RECVDSTADDR:
   1103 		case IP_RECVIF:
   1104 		case IP_RECVPKTINFO:
   1105 		case IP_RECVTTL:
   1106 		case IP_ERRORMTU:
   1107 			switch (sopt->sopt_name) {
   1108 			case IP_TOS:
   1109 				optval = ip->ip_tos;
   1110 				break;
   1111 
   1112 			case IP_TTL:
   1113 				optval = ip->ip_ttl;
   1114 				break;
   1115 
   1116 			case IP_MINTTL:
   1117 				optval = inp->inp_ip_minttl;
   1118 				break;
   1119 
   1120 			case IP_ERRORMTU:
   1121 				optval = inp->inp_errormtu;
   1122 				break;
   1123 
   1124 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1125 
   1126 			case IP_PKTINFO:
   1127 				optval = OPTBIT(INP_PKTINFO);
   1128 				break;
   1129 
   1130 			case IP_RECVOPTS:
   1131 				optval = OPTBIT(INP_RECVOPTS);
   1132 				break;
   1133 
   1134 			case IP_RECVPKTINFO:
   1135 				optval = OPTBIT(INP_RECVPKTINFO);
   1136 				break;
   1137 
   1138 			case IP_RECVRETOPTS:
   1139 				optval = OPTBIT(INP_RECVRETOPTS);
   1140 				break;
   1141 
   1142 			case IP_RECVDSTADDR:
   1143 				optval = OPTBIT(INP_RECVDSTADDR);
   1144 				break;
   1145 
   1146 			case IP_RECVIF:
   1147 				optval = OPTBIT(INP_RECVIF);
   1148 				break;
   1149 
   1150 			case IP_RECVTTL:
   1151 				optval = OPTBIT(INP_RECVTTL);
   1152 				break;
   1153 			}
   1154 			error = sockopt_setint(sopt, optval);
   1155 			break;
   1156 
   1157 #if 0	/* defined(IPSEC) */
   1158 		case IP_IPSEC_POLICY:
   1159 		{
   1160 			struct mbuf *m = NULL;
   1161 
   1162 			/* XXX this will return EINVAL as sopt is empty */
   1163 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1164 			    sopt->sopt_size, &m);
   1165 			if (error == 0)
   1166 				error = sockopt_setmbuf(sopt, m);
   1167 			break;
   1168 		}
   1169 #endif /*IPSEC*/
   1170 
   1171 		case IP_MULTICAST_IF:
   1172 		case IP_MULTICAST_TTL:
   1173 		case IP_MULTICAST_LOOP:
   1174 		case IP_ADD_MEMBERSHIP:
   1175 		case IP_DROP_MEMBERSHIP:
   1176 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1177 			break;
   1178 
   1179 		case IP_PORTRANGE:
   1180 			if (inpflags & INP_LOWPORT)
   1181 				optval = IP_PORTRANGE_LOW;
   1182 			else
   1183 				optval = IP_PORTRANGE_DEFAULT;
   1184 			error = sockopt_setint(sopt, optval);
   1185 			break;
   1186 
   1187 		case IP_PORTALGO:
   1188 			optval = inp->inp_portalgo;
   1189 			error = sockopt_setint(sopt, optval);
   1190 			break;
   1191 
   1192 		default:
   1193 			error = ENOPROTOOPT;
   1194 			break;
   1195 		}
   1196 		break;
   1197 	}
   1198 
   1199 	if (!error) {
   1200 		inp->inp_flags = inpflags;
   1201 	}
   1202 	return error;
   1203 }
   1204 
   1205 /*
   1206  * Set up IP options in pcb for insertion in output packets.
   1207  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1208  * with destination address if source routed.
   1209  */
   1210 static int
   1211 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1212 {
   1213 	struct mbuf *m;
   1214 	const u_char *cp;
   1215 	u_char *dp;
   1216 	int cnt;
   1217 
   1218 	/* Turn off any old options. */
   1219 	if (inp->inp_options) {
   1220 		m_free(inp->inp_options);
   1221 	}
   1222 	inp->inp_options = NULL;
   1223 	if ((cnt = sopt->sopt_size) == 0) {
   1224 		/* Only turning off any previous options. */
   1225 		return 0;
   1226 	}
   1227 	cp = sopt->sopt_data;
   1228 
   1229 #ifndef	__vax__
   1230 	if (cnt % sizeof(int32_t))
   1231 		return (EINVAL);
   1232 #endif
   1233 
   1234 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1235 	if (m == NULL)
   1236 		return (ENOBUFS);
   1237 
   1238 	dp = mtod(m, u_char *);
   1239 	memset(dp, 0, sizeof(struct in_addr));
   1240 	dp += sizeof(struct in_addr);
   1241 	m->m_len = sizeof(struct in_addr);
   1242 
   1243 	/*
   1244 	 * IP option list according to RFC791. Each option is of the form
   1245 	 *
   1246 	 *	[optval] [olen] [(olen - 2) data bytes]
   1247 	 *
   1248 	 * We validate the list and copy options to an mbuf for prepending
   1249 	 * to data packets. The IP first-hop destination address will be
   1250 	 * stored before actual options and is zero if unset.
   1251 	 */
   1252 	while (cnt > 0) {
   1253 		uint8_t optval, olen, offset;
   1254 
   1255 		optval = cp[IPOPT_OPTVAL];
   1256 
   1257 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1258 			olen = 1;
   1259 		} else {
   1260 			if (cnt < IPOPT_OLEN + 1)
   1261 				goto bad;
   1262 
   1263 			olen = cp[IPOPT_OLEN];
   1264 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1265 				goto bad;
   1266 		}
   1267 
   1268 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1269 			/*
   1270 			 * user process specifies route as:
   1271 			 *	->A->B->C->D
   1272 			 * D must be our final destination (but we can't
   1273 			 * check that since we may not have connected yet).
   1274 			 * A is first hop destination, which doesn't appear in
   1275 			 * actual IP option, but is stored before the options.
   1276 			 */
   1277 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1278 				goto bad;
   1279 
   1280 			offset = cp[IPOPT_OFFSET];
   1281 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1282 			    sizeof(struct in_addr));
   1283 
   1284 			cp += sizeof(struct in_addr);
   1285 			cnt -= sizeof(struct in_addr);
   1286 			olen -= sizeof(struct in_addr);
   1287 
   1288 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1289 				goto bad;
   1290 
   1291 			memcpy(dp, cp, olen);
   1292 			dp[IPOPT_OPTVAL] = optval;
   1293 			dp[IPOPT_OLEN] = olen;
   1294 			dp[IPOPT_OFFSET] = offset;
   1295 			break;
   1296 		} else {
   1297 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1298 				goto bad;
   1299 
   1300 			memcpy(dp, cp, olen);
   1301 			break;
   1302 		}
   1303 
   1304 		dp += olen;
   1305 		m->m_len += olen;
   1306 
   1307 		if (optval == IPOPT_EOL)
   1308 			break;
   1309 
   1310 		cp += olen;
   1311 		cnt -= olen;
   1312 	}
   1313 
   1314 	inp->inp_options = m;
   1315 	return 0;
   1316 bad:
   1317 	(void)m_free(m);
   1318 	return EINVAL;
   1319 }
   1320 
   1321 /*
   1322  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1323  */
   1324 static struct ifnet *
   1325 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1326 {
   1327 	int ifindex;
   1328 	struct ifnet *ifp = NULL;
   1329 	struct in_ifaddr *ia;
   1330 
   1331 	if (ifindexp)
   1332 		*ifindexp = 0;
   1333 	if (ntohl(a->s_addr) >> 24 == 0) {
   1334 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1335 		ifp = if_byindex(ifindex);
   1336 		if (!ifp)
   1337 			return NULL;
   1338 		if (ifindexp)
   1339 			*ifindexp = ifindex;
   1340 	} else {
   1341 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1342 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1343 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1344 				ifp = ia->ia_ifp;
   1345 				break;
   1346 			}
   1347 		}
   1348 	}
   1349 	return ifp;
   1350 }
   1351 
   1352 static int
   1353 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1354 {
   1355 	u_int tval;
   1356 	u_char cval;
   1357 	int error;
   1358 
   1359 	if (sopt == NULL)
   1360 		return EINVAL;
   1361 
   1362 	switch (sopt->sopt_size) {
   1363 	case sizeof(u_char):
   1364 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1365 		tval = cval;
   1366 		break;
   1367 
   1368 	case sizeof(u_int):
   1369 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1370 		break;
   1371 
   1372 	default:
   1373 		error = EINVAL;
   1374 	}
   1375 
   1376 	if (error)
   1377 		return error;
   1378 
   1379 	if (tval > maxval)
   1380 		return EINVAL;
   1381 
   1382 	*val = tval;
   1383 	return 0;
   1384 }
   1385 
   1386 static int
   1387 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1388     struct in_addr *ia, bool add)
   1389 {
   1390 	int error;
   1391 	struct ip_mreq mreq;
   1392 
   1393 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1394 	if (error)
   1395 		return error;
   1396 
   1397 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1398 		return EINVAL;
   1399 
   1400 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1401 
   1402 	if (in_nullhost(mreq.imr_interface)) {
   1403 		union {
   1404 			struct sockaddr		dst;
   1405 			struct sockaddr_in	dst4;
   1406 		} u;
   1407 		struct route ro;
   1408 
   1409 		if (!add) {
   1410 			*ifp = NULL;
   1411 			return 0;
   1412 		}
   1413 		/*
   1414 		 * If no interface address was provided, use the interface of
   1415 		 * the route to the given multicast address.
   1416 		 */
   1417 		struct rtentry *rt;
   1418 		memset(&ro, 0, sizeof(ro));
   1419 
   1420 		sockaddr_in_init(&u.dst4, ia, 0);
   1421 		error = rtcache_setdst(&ro, &u.dst);
   1422 		if (error != 0)
   1423 			return error;
   1424 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1425 		rtcache_free(&ro);
   1426 	} else {
   1427 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1428 		if (!add && *ifp == NULL)
   1429 			return EADDRNOTAVAIL;
   1430 	}
   1431 	return 0;
   1432 }
   1433 
   1434 /*
   1435  * Add a multicast group membership.
   1436  * Group must be a valid IP multicast address.
   1437  */
   1438 static int
   1439 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1440 {
   1441 	struct ifnet *ifp;
   1442 	struct in_addr ia;
   1443 	int i, error;
   1444 
   1445 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1446 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1447 	else
   1448 #ifdef INET6
   1449 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1450 #else
   1451 		return EINVAL;
   1452 #endif
   1453 
   1454 	if (error)
   1455 		return error;
   1456 
   1457 	/*
   1458 	 * See if we found an interface, and confirm that it
   1459 	 * supports multicast.
   1460 	 */
   1461 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1462 		return EADDRNOTAVAIL;
   1463 
   1464 	/*
   1465 	 * See if the membership already exists or if all the
   1466 	 * membership slots are full.
   1467 	 */
   1468 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1469 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1470 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1471 			break;
   1472 	}
   1473 	if (i < imo->imo_num_memberships)
   1474 		return EADDRINUSE;
   1475 
   1476 	if (i == IP_MAX_MEMBERSHIPS)
   1477 		return ETOOMANYREFS;
   1478 
   1479 	/*
   1480 	 * Everything looks good; add a new record to the multicast
   1481 	 * address list for the given interface.
   1482 	 */
   1483 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1484 		return ENOBUFS;
   1485 
   1486 	++imo->imo_num_memberships;
   1487 	return 0;
   1488 }
   1489 
   1490 /*
   1491  * Drop a multicast group membership.
   1492  * Group must be a valid IP multicast address.
   1493  */
   1494 static int
   1495 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1496 {
   1497 	struct in_addr ia;
   1498 	struct ifnet *ifp;
   1499 	int i, error;
   1500 
   1501 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1502 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1503 	else
   1504 #ifdef INET6
   1505 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1506 #else
   1507 		return EINVAL;
   1508 #endif
   1509 
   1510 	if (error)
   1511 		return error;
   1512 
   1513 	/*
   1514 	 * Find the membership in the membership array.
   1515 	 */
   1516 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1517 		if ((ifp == NULL ||
   1518 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1519 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1520 			break;
   1521 	}
   1522 	if (i == imo->imo_num_memberships)
   1523 		return EADDRNOTAVAIL;
   1524 
   1525 	/*
   1526 	 * Give up the multicast address record to which the
   1527 	 * membership points.
   1528 	 */
   1529 	in_delmulti(imo->imo_membership[i]);
   1530 
   1531 	/*
   1532 	 * Remove the gap in the membership array.
   1533 	 */
   1534 	for (++i; i < imo->imo_num_memberships; ++i)
   1535 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1536 	--imo->imo_num_memberships;
   1537 	return 0;
   1538 }
   1539 
   1540 /*
   1541  * Set the IP multicast options in response to user setsockopt().
   1542  */
   1543 int
   1544 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1545 {
   1546 	struct ip_moptions *imo = *pimo;
   1547 	struct in_addr addr;
   1548 	struct ifnet *ifp;
   1549 	int ifindex, error = 0;
   1550 
   1551 	if (!imo) {
   1552 		/*
   1553 		 * No multicast option buffer attached to the pcb;
   1554 		 * allocate one and initialize to default values.
   1555 		 */
   1556 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1557 		if (imo == NULL)
   1558 			return ENOBUFS;
   1559 
   1560 		imo->imo_multicast_ifp = NULL;
   1561 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1562 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1563 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1564 		imo->imo_num_memberships = 0;
   1565 		*pimo = imo;
   1566 	}
   1567 
   1568 	switch (sopt->sopt_name) {
   1569 	case IP_MULTICAST_IF:
   1570 		/*
   1571 		 * Select the interface for outgoing multicast packets.
   1572 		 */
   1573 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1574 		if (error)
   1575 			break;
   1576 
   1577 		/*
   1578 		 * INADDR_ANY is used to remove a previous selection.
   1579 		 * When no interface is selected, a default one is
   1580 		 * chosen every time a multicast packet is sent.
   1581 		 */
   1582 		if (in_nullhost(addr)) {
   1583 			imo->imo_multicast_ifp = NULL;
   1584 			break;
   1585 		}
   1586 		/*
   1587 		 * The selected interface is identified by its local
   1588 		 * IP address.  Find the interface and confirm that
   1589 		 * it supports multicasting.
   1590 		 */
   1591 		ifp = ip_multicast_if(&addr, &ifindex);
   1592 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1593 			error = EADDRNOTAVAIL;
   1594 			break;
   1595 		}
   1596 		imo->imo_multicast_ifp = ifp;
   1597 		if (ifindex)
   1598 			imo->imo_multicast_addr = addr;
   1599 		else
   1600 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1601 		break;
   1602 
   1603 	case IP_MULTICAST_TTL:
   1604 		/*
   1605 		 * Set the IP time-to-live for outgoing multicast packets.
   1606 		 */
   1607 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1608 		break;
   1609 
   1610 	case IP_MULTICAST_LOOP:
   1611 		/*
   1612 		 * Set the loopback flag for outgoing multicast packets.
   1613 		 * Must be zero or one.
   1614 		 */
   1615 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1616 		break;
   1617 
   1618 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1619 		error = ip_add_membership(imo, sopt);
   1620 		break;
   1621 
   1622 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1623 		error = ip_drop_membership(imo, sopt);
   1624 		break;
   1625 
   1626 	default:
   1627 		error = EOPNOTSUPP;
   1628 		break;
   1629 	}
   1630 
   1631 	/*
   1632 	 * If all options have default values, no need to keep the mbuf.
   1633 	 */
   1634 	if (imo->imo_multicast_ifp == NULL &&
   1635 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1636 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1637 	    imo->imo_num_memberships == 0) {
   1638 		kmem_free(imo, sizeof(*imo));
   1639 		*pimo = NULL;
   1640 	}
   1641 
   1642 	return error;
   1643 }
   1644 
   1645 /*
   1646  * Return the IP multicast options in response to user getsockopt().
   1647  */
   1648 int
   1649 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1650 {
   1651 	struct in_addr addr;
   1652 	struct in_ifaddr *ia;
   1653 	uint8_t optval;
   1654 	int error = 0;
   1655 
   1656 	switch (sopt->sopt_name) {
   1657 	case IP_MULTICAST_IF:
   1658 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1659 			addr = zeroin_addr;
   1660 		else if (imo->imo_multicast_addr.s_addr) {
   1661 			/* return the value user has set */
   1662 			addr = imo->imo_multicast_addr;
   1663 		} else {
   1664 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1665 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1666 		}
   1667 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1668 		break;
   1669 
   1670 	case IP_MULTICAST_TTL:
   1671 		optval = imo ? imo->imo_multicast_ttl
   1672 		    : IP_DEFAULT_MULTICAST_TTL;
   1673 
   1674 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1675 		break;
   1676 
   1677 	case IP_MULTICAST_LOOP:
   1678 		optval = imo ? imo->imo_multicast_loop
   1679 		    : IP_DEFAULT_MULTICAST_LOOP;
   1680 
   1681 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1682 		break;
   1683 
   1684 	default:
   1685 		error = EOPNOTSUPP;
   1686 	}
   1687 
   1688 	return error;
   1689 }
   1690 
   1691 /*
   1692  * Discard the IP multicast options.
   1693  */
   1694 void
   1695 ip_freemoptions(struct ip_moptions *imo)
   1696 {
   1697 	int i;
   1698 
   1699 	if (imo != NULL) {
   1700 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1701 			in_delmulti(imo->imo_membership[i]);
   1702 		kmem_free(imo, sizeof(*imo));
   1703 	}
   1704 }
   1705 
   1706 /*
   1707  * Routine called from ip_output() to loop back a copy of an IP multicast
   1708  * packet to the input queue of a specified interface.  Note that this
   1709  * calls the output routine of the loopback "driver", but with an interface
   1710  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1711  */
   1712 static void
   1713 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1714 {
   1715 	struct ip *ip;
   1716 	struct mbuf *copym;
   1717 
   1718 	copym = m_copypacket(m, M_DONTWAIT);
   1719 	if (copym != NULL &&
   1720 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1721 		copym = m_pullup(copym, sizeof(struct ip));
   1722 	if (copym == NULL)
   1723 		return;
   1724 	/*
   1725 	 * We don't bother to fragment if the IP length is greater
   1726 	 * than the interface's MTU.  Can this possibly matter?
   1727 	 */
   1728 	ip = mtod(copym, struct ip *);
   1729 
   1730 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1731 		in_delayed_cksum(copym);
   1732 		copym->m_pkthdr.csum_flags &=
   1733 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1734 	}
   1735 
   1736 	ip->ip_sum = 0;
   1737 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1738 #ifndef NET_MPSAFE
   1739 	KERNEL_LOCK(1, NULL);
   1740 #endif
   1741 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1742 #ifndef NET_MPSAFE
   1743 	KERNEL_UNLOCK_ONE(NULL);
   1744 #endif
   1745 }
   1746