Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.240
      1 /*	$NetBSD: ip_output.c,v 1.240 2015/06/08 08:02:43 roy Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.240 2015/06/08 08:02:43 roy Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_mrouting.h"
     99 #include "opt_net_mpsafe.h"
    100 #include "opt_mpls.h"
    101 
    102 #include <sys/param.h>
    103 #include <sys/kmem.h>
    104 #include <sys/mbuf.h>
    105 #include <sys/protosw.h>
    106 #include <sys/socket.h>
    107 #include <sys/socketvar.h>
    108 #include <sys/kauth.h>
    109 #ifdef IPSEC
    110 #include <sys/domain.h>
    111 #endif
    112 #include <sys/systm.h>
    113 
    114 #include <net/if.h>
    115 #include <net/if_types.h>
    116 #include <net/route.h>
    117 #include <net/pfil.h>
    118 
    119 #include <netinet/in.h>
    120 #include <netinet/in_systm.h>
    121 #include <netinet/ip.h>
    122 #include <netinet/in_pcb.h>
    123 #include <netinet/in_var.h>
    124 #include <netinet/ip_var.h>
    125 #include <netinet/ip_private.h>
    126 #include <netinet/in_offload.h>
    127 #include <netinet/portalgo.h>
    128 #include <netinet/udp.h>
    129 
    130 #ifdef INET6
    131 #include <netinet6/ip6_var.h>
    132 #endif
    133 
    134 #ifdef MROUTING
    135 #include <netinet/ip_mroute.h>
    136 #endif
    137 
    138 #ifdef IPSEC
    139 #include <netipsec/ipsec.h>
    140 #include <netipsec/key.h>
    141 #endif
    142 
    143 #ifdef MPLS
    144 #include <netmpls/mpls.h>
    145 #include <netmpls/mpls_var.h>
    146 #endif
    147 
    148 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    149 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    150 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    151 static void ip_mloopback(struct ifnet *, struct mbuf *,
    152     const struct sockaddr_in *);
    153 
    154 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    155 
    156 int	ip_do_loopback_cksum = 0;
    157 
    158 static bool
    159 ip_hresolv_needed(const struct ifnet * const ifp)
    160 {
    161 	switch (ifp->if_type) {
    162 	case IFT_ARCNET:
    163 	case IFT_ATM:
    164 	case IFT_ECONET:
    165 	case IFT_ETHER:
    166 	case IFT_FDDI:
    167 	case IFT_HIPPI:
    168 	case IFT_IEEE1394:
    169 		return true;
    170 	default:
    171 		return false;
    172 	}
    173 }
    174 
    175 static int
    176 klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
    177     const struct sockaddr * const dst, struct rtentry *rt)
    178 {
    179 	int error;
    180 
    181 #ifndef NET_MPSAFE
    182 	KERNEL_LOCK(1, NULL);
    183 #endif
    184 
    185 	error = (*ifp->if_output)(ifp, m, dst, rt);
    186 
    187 #ifndef NET_MPSAFE
    188 	KERNEL_UNLOCK_ONE(NULL);
    189 #endif
    190 
    191 	return error;
    192 }
    193 
    194 /*
    195  * Send an IP packet to a host.
    196  *
    197  * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
    198  * calling ifp's output routine.
    199  */
    200 int
    201 ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
    202     const struct sockaddr * const dst, struct rtentry *rt0)
    203 {
    204 	int error = 0;
    205 	struct ifnet *ifp = ifp0;
    206 	struct rtentry *rt;
    207 
    208 retry:
    209 	if (!ip_hresolv_needed(ifp)) {
    210 		rt = rt0;
    211 		goto out;
    212 	}
    213 
    214 	if (rt0 == NULL) {
    215 		rt = NULL;
    216 		goto out;
    217 	}
    218 
    219 	rt = rt0;
    220 
    221 	/*
    222 	 * The following block is highly questionable.  How did we get here
    223 	 * with a !RTF_UP route?  Does rtalloc1() always return an RTF_UP
    224 	 * route?
    225 	 */
    226 	if ((rt->rt_flags & RTF_UP) == 0) {
    227 		rt = rtalloc1(dst, 1);
    228 		if (rt == NULL) {
    229 			error = EHOSTUNREACH;
    230 			goto bad;
    231 		}
    232 		rt0 = rt;
    233 		rt->rt_refcnt--;
    234 		if (rt->rt_ifp != ifp) {
    235 			ifp = rt->rt_ifp;
    236 			rt0 = rt;
    237 			goto retry;
    238 		}
    239 	}
    240 
    241 	if ((rt->rt_flags & RTF_GATEWAY) == 0)
    242 		goto out;
    243 
    244 	rt = rt->rt_gwroute;
    245 	if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
    246 		if (rt != NULL) {
    247 			rtfree(rt);
    248 			rt = rt0;
    249 		}
    250 		if (rt == NULL) {
    251 			error = EHOSTUNREACH;
    252 			goto bad;
    253 		}
    254 		rt = rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
    255 		if (rt == NULL) {
    256 			error = EHOSTUNREACH;
    257 			goto bad;
    258 		}
    259 		/* the "G" test below also prevents rt == rt0 */
    260 		if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
    261 			rt->rt_refcnt--;
    262 			rt0->rt_gwroute = NULL;
    263 			error = EHOSTUNREACH;
    264 			goto bad;
    265 		}
    266 	}
    267 	if ((rt->rt_flags & RTF_REJECT) != 0) {
    268 		if (rt->rt_rmx.rmx_expire == 0 ||
    269 		    time_second < rt->rt_rmx.rmx_expire) {
    270 			error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
    271 			goto bad;
    272 		}
    273 	}
    274 
    275 out:
    276 #ifdef MPLS
    277 	if (rt0 != NULL && rt_gettag(rt0) != NULL &&
    278 	    rt_gettag(rt0)->sa_family == AF_MPLS &&
    279 	    (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
    280 	    ifp->if_type == IFT_ETHER) {
    281 		union mpls_shim msh;
    282 		msh.s_addr = MPLS_GETSADDR(rt0);
    283 		if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    284 			struct m_tag *mtag;
    285 			/*
    286 			 * XXX tentative solution to tell ether_output
    287 			 * it's MPLS. Need some more efficient solution.
    288 			 */
    289 			mtag = m_tag_get(PACKET_TAG_MPLS,
    290 			    sizeof(int) /* dummy */,
    291 			    M_NOWAIT);
    292 			if (mtag == NULL) {
    293 				error = ENOMEM;
    294 				goto bad;
    295 			}
    296 			m_tag_prepend(m, mtag);
    297 		}
    298 	}
    299 #endif
    300 
    301 	return klock_if_output(ifp, m, dst, rt);
    302 bad:
    303 	if (m != NULL)
    304 		m_freem(m);
    305 
    306 	return error;
    307 }
    308 
    309 /*
    310  * IP output.  The packet in mbuf chain m contains a skeletal IP
    311  * header (with len, off, ttl, proto, tos, src, dst).
    312  * The mbuf chain containing the packet will be freed.
    313  * The mbuf opt, if present, will not be freed.
    314  */
    315 int
    316 ip_output(struct mbuf *m0, ...)
    317 {
    318 	struct rtentry *rt;
    319 	struct ip *ip;
    320 	struct ifnet *ifp;
    321 	struct mbuf *m = m0;
    322 	int hlen = sizeof (struct ip);
    323 	int len, error = 0;
    324 	struct route iproute;
    325 	const struct sockaddr_in *dst;
    326 	struct in_ifaddr *ia;
    327 	int isbroadcast;
    328 	struct mbuf *opt;
    329 	struct route *ro;
    330 	int flags, sw_csum;
    331 	u_long mtu;
    332 	struct ip_moptions *imo;
    333 	struct socket *so;
    334 	va_list ap;
    335 #ifdef IPSEC
    336 	struct secpolicy *sp = NULL;
    337 #endif
    338 	bool natt_frag = false;
    339 	bool rtmtu_nolock;
    340 	union {
    341 		struct sockaddr		dst;
    342 		struct sockaddr_in	dst4;
    343 	} u;
    344 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    345 					 * to the nexthop
    346 					 */
    347 
    348 	len = 0;
    349 	va_start(ap, m0);
    350 	opt = va_arg(ap, struct mbuf *);
    351 	ro = va_arg(ap, struct route *);
    352 	flags = va_arg(ap, int);
    353 	imo = va_arg(ap, struct ip_moptions *);
    354 	so = va_arg(ap, struct socket *);
    355 	va_end(ap);
    356 
    357 	MCLAIM(m, &ip_tx_mowner);
    358 
    359 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    360 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    361 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    362 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    363 
    364 	if (opt) {
    365 		m = ip_insertoptions(m, opt, &len);
    366 		if (len >= sizeof(struct ip))
    367 			hlen = len;
    368 	}
    369 	ip = mtod(m, struct ip *);
    370 
    371 	/*
    372 	 * Fill in IP header.
    373 	 */
    374 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    375 		ip->ip_v = IPVERSION;
    376 		ip->ip_off = htons(0);
    377 		/* ip->ip_id filled in after we find out source ia */
    378 		ip->ip_hl = hlen >> 2;
    379 		IP_STATINC(IP_STAT_LOCALOUT);
    380 	} else {
    381 		hlen = ip->ip_hl << 2;
    382 	}
    383 
    384 	/*
    385 	 * Route packet.
    386 	 */
    387 	if (ro == NULL) {
    388 		memset(&iproute, 0, sizeof(iproute));
    389 		ro = &iproute;
    390 	}
    391 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    392 	dst = satocsin(rtcache_getdst(ro));
    393 
    394 	/*
    395 	 * If there is a cached route, check that it is to the same
    396 	 * destination and is still up.  If not, free it and try again.
    397 	 * The address family should also be checked in case of sharing
    398 	 * the cache with IPv6.
    399 	 */
    400 	if (dst && (dst->sin_family != AF_INET ||
    401 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    402 		rtcache_free(ro);
    403 
    404 	if ((rt = rtcache_validate(ro)) == NULL &&
    405 	    (rt = rtcache_update(ro, 1)) == NULL) {
    406 		dst = &u.dst4;
    407 		error = rtcache_setdst(ro, &u.dst);
    408 		if (error != 0)
    409 			goto bad;
    410 	}
    411 
    412 	/*
    413 	 * If routing to interface only, short circuit routing lookup.
    414 	 */
    415 	if (flags & IP_ROUTETOIF) {
    416 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    417 			IP_STATINC(IP_STAT_NOROUTE);
    418 			error = ENETUNREACH;
    419 			goto bad;
    420 		}
    421 		ifp = ia->ia_ifp;
    422 		mtu = ifp->if_mtu;
    423 		ip->ip_ttl = 1;
    424 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    425 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    426 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    427 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    428 		ifp = imo->imo_multicast_ifp;
    429 		mtu = ifp->if_mtu;
    430 		IFP_TO_IA(ifp, ia);
    431 		isbroadcast = 0;
    432 	} else {
    433 		if (rt == NULL)
    434 			rt = rtcache_init(ro);
    435 		if (rt == NULL) {
    436 			IP_STATINC(IP_STAT_NOROUTE);
    437 			error = EHOSTUNREACH;
    438 			goto bad;
    439 		}
    440 		ia = ifatoia(rt->rt_ifa);
    441 		ifp = rt->rt_ifp;
    442 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    443 			mtu = ifp->if_mtu;
    444 		rt->rt_use++;
    445 		if (rt->rt_flags & RTF_GATEWAY)
    446 			dst = satosin(rt->rt_gateway);
    447 		if (rt->rt_flags & RTF_HOST)
    448 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    449 		else
    450 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    451 	}
    452 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    453 
    454 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    455 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    456 		bool inmgroup;
    457 
    458 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    459 		    M_BCAST : M_MCAST;
    460 		/*
    461 		 * See if the caller provided any multicast options
    462 		 */
    463 		if (imo != NULL)
    464 			ip->ip_ttl = imo->imo_multicast_ttl;
    465 		else
    466 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    467 
    468 		/*
    469 		 * if we don't know the outgoing ifp yet, we can't generate
    470 		 * output
    471 		 */
    472 		if (!ifp) {
    473 			IP_STATINC(IP_STAT_NOROUTE);
    474 			error = ENETUNREACH;
    475 			goto bad;
    476 		}
    477 
    478 		/*
    479 		 * If the packet is multicast or broadcast, confirm that
    480 		 * the outgoing interface can transmit it.
    481 		 */
    482 		if (((m->m_flags & M_MCAST) &&
    483 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    484 		    ((m->m_flags & M_BCAST) &&
    485 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    486 			IP_STATINC(IP_STAT_NOROUTE);
    487 			error = ENETUNREACH;
    488 			goto bad;
    489 		}
    490 		/*
    491 		 * If source address not specified yet, use an address
    492 		 * of outgoing interface.
    493 		 */
    494 		if (in_nullhost(ip->ip_src)) {
    495 			struct in_ifaddr *xia;
    496 			struct ifaddr *xifa;
    497 
    498 			IFP_TO_IA(ifp, xia);
    499 			if (!xia) {
    500 				error = EADDRNOTAVAIL;
    501 				goto bad;
    502 			}
    503 			xifa = &xia->ia_ifa;
    504 			if (xifa->ifa_getifa != NULL) {
    505 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    506 				if (xia == NULL) {
    507 					errno = EADDRNOTAVAIL;
    508 					goto bad;
    509 				}
    510 			}
    511 			ip->ip_src = xia->ia_addr.sin_addr;
    512 		}
    513 
    514 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    515 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    516 			/*
    517 			 * If we belong to the destination multicast group
    518 			 * on the outgoing interface, and the caller did not
    519 			 * forbid loopback, loop back a copy.
    520 			 */
    521 			ip_mloopback(ifp, m, &u.dst4);
    522 		}
    523 #ifdef MROUTING
    524 		else {
    525 			/*
    526 			 * If we are acting as a multicast router, perform
    527 			 * multicast forwarding as if the packet had just
    528 			 * arrived on the interface to which we are about
    529 			 * to send.  The multicast forwarding function
    530 			 * recursively calls this function, using the
    531 			 * IP_FORWARDING flag to prevent infinite recursion.
    532 			 *
    533 			 * Multicasts that are looped back by ip_mloopback(),
    534 			 * above, will be forwarded by the ip_input() routine,
    535 			 * if necessary.
    536 			 */
    537 			extern struct socket *ip_mrouter;
    538 
    539 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    540 				if (ip_mforward(m, ifp) != 0) {
    541 					m_freem(m);
    542 					goto done;
    543 				}
    544 			}
    545 		}
    546 #endif
    547 		/*
    548 		 * Multicasts with a time-to-live of zero may be looped-
    549 		 * back, above, but must not be transmitted on a network.
    550 		 * Also, multicasts addressed to the loopback interface
    551 		 * are not sent -- the above call to ip_mloopback() will
    552 		 * loop back a copy if this host actually belongs to the
    553 		 * destination group on the loopback interface.
    554 		 */
    555 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    556 			m_freem(m);
    557 			goto done;
    558 		}
    559 		goto sendit;
    560 	}
    561 
    562 	/*
    563 	 * If source address not specified yet, use address
    564 	 * of outgoing interface.
    565 	 */
    566 	if (in_nullhost(ip->ip_src)) {
    567 		struct ifaddr *xifa;
    568 
    569 		xifa = &ia->ia_ifa;
    570 		if (xifa->ifa_getifa != NULL) {
    571 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    572 			if (ia == NULL) {
    573 				error = EADDRNOTAVAIL;
    574 				goto bad;
    575 			}
    576 		}
    577 		ip->ip_src = ia->ia_addr.sin_addr;
    578 	}
    579 
    580 	/*
    581 	 * packets with Class-D address as source are not valid per
    582 	 * RFC 1112
    583 	 */
    584 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    585 		IP_STATINC(IP_STAT_ODROPPED);
    586 		error = EADDRNOTAVAIL;
    587 		goto bad;
    588 	}
    589 
    590 	/*
    591 	 * Look for broadcast address and and verify user is allowed to
    592 	 * send such a packet.
    593 	 */
    594 	if (isbroadcast) {
    595 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    596 			error = EADDRNOTAVAIL;
    597 			goto bad;
    598 		}
    599 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    600 			error = EACCES;
    601 			goto bad;
    602 		}
    603 		/* don't allow broadcast messages to be fragmented */
    604 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    605 			error = EMSGSIZE;
    606 			goto bad;
    607 		}
    608 		m->m_flags |= M_BCAST;
    609 	} else
    610 		m->m_flags &= ~M_BCAST;
    611 
    612 sendit:
    613 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    614 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    615 			ip->ip_id = 0;
    616 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    617 			ip->ip_id = ip_newid(ia);
    618 		} else {
    619 
    620 			/*
    621 			 * TSO capable interfaces (typically?) increment
    622 			 * ip_id for each segment.
    623 			 * "allocate" enough ids here to increase the chance
    624 			 * for them to be unique.
    625 			 *
    626 			 * note that the following calculation is not
    627 			 * needed to be precise.  wasting some ip_id is fine.
    628 			 */
    629 
    630 			unsigned int segsz = m->m_pkthdr.segsz;
    631 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    632 			unsigned int num = howmany(datasz, segsz);
    633 
    634 			ip->ip_id = ip_newid_range(ia, num);
    635 		}
    636 	}
    637 
    638 	/*
    639 	 * If we're doing Path MTU Discovery, we need to set DF unless
    640 	 * the route's MTU is locked.
    641 	 */
    642 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    643 		ip->ip_off |= htons(IP_DF);
    644 	}
    645 
    646 #ifdef IPSEC
    647 	if (ipsec_used) {
    648 		bool ipsec_done = false;
    649 
    650 		/* Perform IPsec processing, if any. */
    651 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    652 		    &ipsec_done);
    653 		if (error || ipsec_done)
    654 			goto done;
    655 	}
    656 #endif
    657 
    658 	/*
    659 	 * Run through list of hooks for output packets.
    660 	 */
    661 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    662 	if (error)
    663 		goto done;
    664 	if (m == NULL)
    665 		goto done;
    666 
    667 	ip = mtod(m, struct ip *);
    668 	hlen = ip->ip_hl << 2;
    669 
    670 	m->m_pkthdr.csum_data |= hlen << 16;
    671 
    672 #if IFA_STATS
    673 	/*
    674 	 * search for the source address structure to
    675 	 * maintain output statistics.
    676 	 */
    677 	INADDR_TO_IA(ip->ip_src, ia);
    678 #endif
    679 
    680 	/* Maybe skip checksums on loopback interfaces. */
    681 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    682 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    683 	}
    684 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    685 	/*
    686 	 * If small enough for mtu of path, or if using TCP segmentation
    687 	 * offload, can just send directly.
    688 	 */
    689 	if (ntohs(ip->ip_len) <= mtu ||
    690 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    691 		const struct sockaddr *sa;
    692 
    693 #if IFA_STATS
    694 		if (ia)
    695 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    696 #endif
    697 		/*
    698 		 * Always initialize the sum to 0!  Some HW assisted
    699 		 * checksumming requires this.
    700 		 */
    701 		ip->ip_sum = 0;
    702 
    703 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    704 			/*
    705 			 * Perform any checksums that the hardware can't do
    706 			 * for us.
    707 			 *
    708 			 * XXX Does any hardware require the {th,uh}_sum
    709 			 * XXX fields to be 0?
    710 			 */
    711 			if (sw_csum & M_CSUM_IPv4) {
    712 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    713 				ip->ip_sum = in_cksum(m, hlen);
    714 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    715 			}
    716 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    717 				if (IN_NEED_CHECKSUM(ifp,
    718 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    719 					in_delayed_cksum(m);
    720 				}
    721 				m->m_pkthdr.csum_flags &=
    722 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    723 			}
    724 		}
    725 
    726 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    727 		if (__predict_true(
    728 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    729 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    730 			error = ip_hresolv_output(ifp, m, sa, rt);
    731 		} else {
    732 			error = ip_tso_output(ifp, m, sa, rt);
    733 		}
    734 		goto done;
    735 	}
    736 
    737 	/*
    738 	 * We can't use HW checksumming if we're about to
    739 	 * to fragment the packet.
    740 	 *
    741 	 * XXX Some hardware can do this.
    742 	 */
    743 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    744 		if (IN_NEED_CHECKSUM(ifp,
    745 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    746 			in_delayed_cksum(m);
    747 		}
    748 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    749 	}
    750 
    751 	/*
    752 	 * Too large for interface; fragment if possible.
    753 	 * Must be able to put at least 8 bytes per fragment.
    754 	 */
    755 	if (ntohs(ip->ip_off) & IP_DF) {
    756 		if (flags & IP_RETURNMTU) {
    757 			struct inpcb *inp;
    758 
    759 			KASSERT(so && solocked(so));
    760 			inp = sotoinpcb(so);
    761 			inp->inp_errormtu = mtu;
    762 		}
    763 		error = EMSGSIZE;
    764 		IP_STATINC(IP_STAT_CANTFRAG);
    765 		goto bad;
    766 	}
    767 
    768 	error = ip_fragment(m, ifp, mtu);
    769 	if (error) {
    770 		m = NULL;
    771 		goto bad;
    772 	}
    773 
    774 	for (; m; m = m0) {
    775 		m0 = m->m_nextpkt;
    776 		m->m_nextpkt = 0;
    777 		if (error) {
    778 			m_freem(m);
    779 			continue;
    780 		}
    781 #if IFA_STATS
    782 		if (ia)
    783 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    784 #endif
    785 		/*
    786 		 * If we get there, the packet has not been handled by
    787 		 * IPsec whereas it should have. Now that it has been
    788 		 * fragmented, re-inject it in ip_output so that IPsec
    789 		 * processing can occur.
    790 		 */
    791 		if (natt_frag) {
    792 			error = ip_output(m, opt, ro,
    793 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    794 			    imo, so);
    795 		} else {
    796 			KASSERT((m->m_pkthdr.csum_flags &
    797 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    798 			error = ip_hresolv_output(ifp, m,
    799 			    (m->m_flags & M_MCAST) ?
    800 			    sintocsa(rdst) : sintocsa(dst), rt);
    801 		}
    802 	}
    803 	if (error == 0) {
    804 		IP_STATINC(IP_STAT_FRAGMENTED);
    805 	}
    806 done:
    807 	if (ro == &iproute) {
    808 		rtcache_free(&iproute);
    809 	}
    810 #ifdef IPSEC
    811 	if (sp) {
    812 		KEY_FREESP(&sp);
    813 	}
    814 #endif
    815 	return error;
    816 bad:
    817 	m_freem(m);
    818 	goto done;
    819 }
    820 
    821 int
    822 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    823 {
    824 	struct ip *ip, *mhip;
    825 	struct mbuf *m0;
    826 	int len, hlen, off;
    827 	int mhlen, firstlen;
    828 	struct mbuf **mnext;
    829 	int sw_csum = m->m_pkthdr.csum_flags;
    830 	int fragments = 0;
    831 	int s;
    832 	int error = 0;
    833 
    834 	ip = mtod(m, struct ip *);
    835 	hlen = ip->ip_hl << 2;
    836 	if (ifp != NULL)
    837 		sw_csum &= ~ifp->if_csum_flags_tx;
    838 
    839 	len = (mtu - hlen) &~ 7;
    840 	if (len < 8) {
    841 		m_freem(m);
    842 		return (EMSGSIZE);
    843 	}
    844 
    845 	firstlen = len;
    846 	mnext = &m->m_nextpkt;
    847 
    848 	/*
    849 	 * Loop through length of segment after first fragment,
    850 	 * make new header and copy data of each part and link onto chain.
    851 	 */
    852 	m0 = m;
    853 	mhlen = sizeof (struct ip);
    854 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    855 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    856 		if (m == 0) {
    857 			error = ENOBUFS;
    858 			IP_STATINC(IP_STAT_ODROPPED);
    859 			goto sendorfree;
    860 		}
    861 		MCLAIM(m, m0->m_owner);
    862 		*mnext = m;
    863 		mnext = &m->m_nextpkt;
    864 		m->m_data += max_linkhdr;
    865 		mhip = mtod(m, struct ip *);
    866 		*mhip = *ip;
    867 		/* we must inherit MCAST and BCAST flags */
    868 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    869 		if (hlen > sizeof (struct ip)) {
    870 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    871 			mhip->ip_hl = mhlen >> 2;
    872 		}
    873 		m->m_len = mhlen;
    874 		mhip->ip_off = ((off - hlen) >> 3) +
    875 		    (ntohs(ip->ip_off) & ~IP_MF);
    876 		if (ip->ip_off & htons(IP_MF))
    877 			mhip->ip_off |= IP_MF;
    878 		if (off + len >= ntohs(ip->ip_len))
    879 			len = ntohs(ip->ip_len) - off;
    880 		else
    881 			mhip->ip_off |= IP_MF;
    882 		HTONS(mhip->ip_off);
    883 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    884 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    885 		if (m->m_next == 0) {
    886 			error = ENOBUFS;	/* ??? */
    887 			IP_STATINC(IP_STAT_ODROPPED);
    888 			goto sendorfree;
    889 		}
    890 		m->m_pkthdr.len = mhlen + len;
    891 		m->m_pkthdr.rcvif = NULL;
    892 		mhip->ip_sum = 0;
    893 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    894 		if (sw_csum & M_CSUM_IPv4) {
    895 			mhip->ip_sum = in_cksum(m, mhlen);
    896 		} else {
    897 			/*
    898 			 * checksum is hw-offloaded or not necessary.
    899 			 */
    900 			m->m_pkthdr.csum_flags |=
    901 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    902 			m->m_pkthdr.csum_data |= mhlen << 16;
    903 			KASSERT(!(ifp != NULL &&
    904 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    905 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    906 		}
    907 		IP_STATINC(IP_STAT_OFRAGMENTS);
    908 		fragments++;
    909 	}
    910 	/*
    911 	 * Update first fragment by trimming what's been copied out
    912 	 * and updating header, then send each fragment (in order).
    913 	 */
    914 	m = m0;
    915 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    916 	m->m_pkthdr.len = hlen + firstlen;
    917 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    918 	ip->ip_off |= htons(IP_MF);
    919 	ip->ip_sum = 0;
    920 	if (sw_csum & M_CSUM_IPv4) {
    921 		ip->ip_sum = in_cksum(m, hlen);
    922 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    923 	} else {
    924 		/*
    925 		 * checksum is hw-offloaded or not necessary.
    926 		 */
    927 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    928 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    929 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    930 		    sizeof(struct ip));
    931 	}
    932 sendorfree:
    933 	/*
    934 	 * If there is no room for all the fragments, don't queue
    935 	 * any of them.
    936 	 */
    937 	if (ifp != NULL) {
    938 		s = splnet();
    939 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    940 		    error == 0) {
    941 			error = ENOBUFS;
    942 			IP_STATINC(IP_STAT_ODROPPED);
    943 			IFQ_INC_DROPS(&ifp->if_snd);
    944 		}
    945 		splx(s);
    946 	}
    947 	if (error) {
    948 		for (m = m0; m; m = m0) {
    949 			m0 = m->m_nextpkt;
    950 			m->m_nextpkt = NULL;
    951 			m_freem(m);
    952 		}
    953 	}
    954 	return (error);
    955 }
    956 
    957 /*
    958  * Process a delayed payload checksum calculation.
    959  */
    960 void
    961 in_delayed_cksum(struct mbuf *m)
    962 {
    963 	struct ip *ip;
    964 	u_int16_t csum, offset;
    965 
    966 	ip = mtod(m, struct ip *);
    967 	offset = ip->ip_hl << 2;
    968 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    969 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    970 		csum = 0xffff;
    971 
    972 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    973 
    974 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    975 		/* This happen when ip options were inserted
    976 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    977 		    m->m_len, offset, ip->ip_p);
    978 		 */
    979 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    980 	} else
    981 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    982 }
    983 
    984 /*
    985  * Determine the maximum length of the options to be inserted;
    986  * we would far rather allocate too much space rather than too little.
    987  */
    988 
    989 u_int
    990 ip_optlen(struct inpcb *inp)
    991 {
    992 	struct mbuf *m = inp->inp_options;
    993 
    994 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    995 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    996 	}
    997 	return 0;
    998 }
    999 
   1000 /*
   1001  * Insert IP options into preformed packet.
   1002  * Adjust IP destination as required for IP source routing,
   1003  * as indicated by a non-zero in_addr at the start of the options.
   1004  */
   1005 static struct mbuf *
   1006 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1007 {
   1008 	struct ipoption *p = mtod(opt, struct ipoption *);
   1009 	struct mbuf *n;
   1010 	struct ip *ip = mtod(m, struct ip *);
   1011 	unsigned optlen;
   1012 
   1013 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1014 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1015 		return (m);		/* XXX should fail */
   1016 	if (!in_nullhost(p->ipopt_dst))
   1017 		ip->ip_dst = p->ipopt_dst;
   1018 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1019 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1020 		if (n == 0)
   1021 			return (m);
   1022 		MCLAIM(n, m->m_owner);
   1023 		M_MOVE_PKTHDR(n, m);
   1024 		m->m_len -= sizeof(struct ip);
   1025 		m->m_data += sizeof(struct ip);
   1026 		n->m_next = m;
   1027 		m = n;
   1028 		m->m_len = optlen + sizeof(struct ip);
   1029 		m->m_data += max_linkhdr;
   1030 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1031 	} else {
   1032 		m->m_data -= optlen;
   1033 		m->m_len += optlen;
   1034 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1035 	}
   1036 	m->m_pkthdr.len += optlen;
   1037 	ip = mtod(m, struct ip *);
   1038 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1039 	*phlen = sizeof(struct ip) + optlen;
   1040 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1041 	return (m);
   1042 }
   1043 
   1044 /*
   1045  * Copy options from ip to jp,
   1046  * omitting those not copied during fragmentation.
   1047  */
   1048 int
   1049 ip_optcopy(struct ip *ip, struct ip *jp)
   1050 {
   1051 	u_char *cp, *dp;
   1052 	int opt, optlen, cnt;
   1053 
   1054 	cp = (u_char *)(ip + 1);
   1055 	dp = (u_char *)(jp + 1);
   1056 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1057 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1058 		opt = cp[0];
   1059 		if (opt == IPOPT_EOL)
   1060 			break;
   1061 		if (opt == IPOPT_NOP) {
   1062 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1063 			*dp++ = IPOPT_NOP;
   1064 			optlen = 1;
   1065 			continue;
   1066 		}
   1067 
   1068 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
   1069 		optlen = cp[IPOPT_OLEN];
   1070 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
   1071 
   1072 		/* Invalid lengths should have been caught by ip_dooptions. */
   1073 		if (optlen > cnt)
   1074 			optlen = cnt;
   1075 		if (IPOPT_COPIED(opt)) {
   1076 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1077 			dp += optlen;
   1078 		}
   1079 	}
   1080 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1081 		*dp++ = IPOPT_EOL;
   1082 	return (optlen);
   1083 }
   1084 
   1085 /*
   1086  * IP socket option processing.
   1087  */
   1088 int
   1089 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1090 {
   1091 	struct inpcb *inp = sotoinpcb(so);
   1092 	struct ip *ip = &inp->inp_ip;
   1093 	int inpflags = inp->inp_flags;
   1094 	int optval = 0, error = 0;
   1095 
   1096 	if (sopt->sopt_level != IPPROTO_IP) {
   1097 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1098 			return 0;
   1099 		return ENOPROTOOPT;
   1100 	}
   1101 
   1102 	switch (op) {
   1103 	case PRCO_SETOPT:
   1104 		switch (sopt->sopt_name) {
   1105 		case IP_OPTIONS:
   1106 #ifdef notyet
   1107 		case IP_RETOPTS:
   1108 #endif
   1109 			error = ip_pcbopts(inp, sopt);
   1110 			break;
   1111 
   1112 		case IP_TOS:
   1113 		case IP_TTL:
   1114 		case IP_MINTTL:
   1115 		case IP_PKTINFO:
   1116 		case IP_RECVOPTS:
   1117 		case IP_RECVRETOPTS:
   1118 		case IP_RECVDSTADDR:
   1119 		case IP_RECVIF:
   1120 		case IP_RECVPKTINFO:
   1121 		case IP_RECVTTL:
   1122 			error = sockopt_getint(sopt, &optval);
   1123 			if (error)
   1124 				break;
   1125 
   1126 			switch (sopt->sopt_name) {
   1127 			case IP_TOS:
   1128 				ip->ip_tos = optval;
   1129 				break;
   1130 
   1131 			case IP_TTL:
   1132 				ip->ip_ttl = optval;
   1133 				break;
   1134 
   1135 			case IP_MINTTL:
   1136 				if (optval > 0 && optval <= MAXTTL)
   1137 					inp->inp_ip_minttl = optval;
   1138 				else
   1139 					error = EINVAL;
   1140 				break;
   1141 #define	OPTSET(bit) \
   1142 	if (optval) \
   1143 		inpflags |= bit; \
   1144 	else \
   1145 		inpflags &= ~bit;
   1146 
   1147 			case IP_PKTINFO:
   1148 				OPTSET(INP_PKTINFO);
   1149 				break;
   1150 
   1151 			case IP_RECVOPTS:
   1152 				OPTSET(INP_RECVOPTS);
   1153 				break;
   1154 
   1155 			case IP_RECVPKTINFO:
   1156 				OPTSET(INP_RECVPKTINFO);
   1157 				break;
   1158 
   1159 			case IP_RECVRETOPTS:
   1160 				OPTSET(INP_RECVRETOPTS);
   1161 				break;
   1162 
   1163 			case IP_RECVDSTADDR:
   1164 				OPTSET(INP_RECVDSTADDR);
   1165 				break;
   1166 
   1167 			case IP_RECVIF:
   1168 				OPTSET(INP_RECVIF);
   1169 				break;
   1170 
   1171 			case IP_RECVTTL:
   1172 				OPTSET(INP_RECVTTL);
   1173 				break;
   1174 			}
   1175 		break;
   1176 #undef OPTSET
   1177 
   1178 		case IP_MULTICAST_IF:
   1179 		case IP_MULTICAST_TTL:
   1180 		case IP_MULTICAST_LOOP:
   1181 		case IP_ADD_MEMBERSHIP:
   1182 		case IP_DROP_MEMBERSHIP:
   1183 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1184 			break;
   1185 
   1186 		case IP_PORTRANGE:
   1187 			error = sockopt_getint(sopt, &optval);
   1188 			if (error)
   1189 				break;
   1190 
   1191 			switch (optval) {
   1192 			case IP_PORTRANGE_DEFAULT:
   1193 			case IP_PORTRANGE_HIGH:
   1194 				inpflags &= ~(INP_LOWPORT);
   1195 				break;
   1196 
   1197 			case IP_PORTRANGE_LOW:
   1198 				inpflags |= INP_LOWPORT;
   1199 				break;
   1200 
   1201 			default:
   1202 				error = EINVAL;
   1203 				break;
   1204 			}
   1205 			break;
   1206 
   1207 		case IP_PORTALGO:
   1208 			error = sockopt_getint(sopt, &optval);
   1209 			if (error)
   1210 				break;
   1211 
   1212 			error = portalgo_algo_index_select(
   1213 			    (struct inpcb_hdr *)inp, optval);
   1214 			break;
   1215 
   1216 #if defined(IPSEC)
   1217 		case IP_IPSEC_POLICY:
   1218 			if (ipsec_enabled) {
   1219 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1220 				    sopt->sopt_data, sopt->sopt_size,
   1221 				    curlwp->l_cred);
   1222 				break;
   1223 			}
   1224 			/*FALLTHROUGH*/
   1225 #endif /* IPSEC */
   1226 
   1227 		default:
   1228 			error = ENOPROTOOPT;
   1229 			break;
   1230 		}
   1231 		break;
   1232 
   1233 	case PRCO_GETOPT:
   1234 		switch (sopt->sopt_name) {
   1235 		case IP_OPTIONS:
   1236 		case IP_RETOPTS: {
   1237 			struct mbuf *mopts = inp->inp_options;
   1238 
   1239 			if (mopts) {
   1240 				struct mbuf *m;
   1241 
   1242 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1243 				if (m == NULL) {
   1244 					error = ENOBUFS;
   1245 					break;
   1246 				}
   1247 				error = sockopt_setmbuf(sopt, m);
   1248 			}
   1249 			break;
   1250 		}
   1251 		case IP_PKTINFO:
   1252 		case IP_TOS:
   1253 		case IP_TTL:
   1254 		case IP_MINTTL:
   1255 		case IP_RECVOPTS:
   1256 		case IP_RECVRETOPTS:
   1257 		case IP_RECVDSTADDR:
   1258 		case IP_RECVIF:
   1259 		case IP_RECVPKTINFO:
   1260 		case IP_RECVTTL:
   1261 		case IP_ERRORMTU:
   1262 			switch (sopt->sopt_name) {
   1263 			case IP_TOS:
   1264 				optval = ip->ip_tos;
   1265 				break;
   1266 
   1267 			case IP_TTL:
   1268 				optval = ip->ip_ttl;
   1269 				break;
   1270 
   1271 			case IP_MINTTL:
   1272 				optval = inp->inp_ip_minttl;
   1273 				break;
   1274 
   1275 			case IP_ERRORMTU:
   1276 				optval = inp->inp_errormtu;
   1277 				break;
   1278 
   1279 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1280 
   1281 			case IP_PKTINFO:
   1282 				optval = OPTBIT(INP_PKTINFO);
   1283 				break;
   1284 
   1285 			case IP_RECVOPTS:
   1286 				optval = OPTBIT(INP_RECVOPTS);
   1287 				break;
   1288 
   1289 			case IP_RECVPKTINFO:
   1290 				optval = OPTBIT(INP_RECVPKTINFO);
   1291 				break;
   1292 
   1293 			case IP_RECVRETOPTS:
   1294 				optval = OPTBIT(INP_RECVRETOPTS);
   1295 				break;
   1296 
   1297 			case IP_RECVDSTADDR:
   1298 				optval = OPTBIT(INP_RECVDSTADDR);
   1299 				break;
   1300 
   1301 			case IP_RECVIF:
   1302 				optval = OPTBIT(INP_RECVIF);
   1303 				break;
   1304 
   1305 			case IP_RECVTTL:
   1306 				optval = OPTBIT(INP_RECVTTL);
   1307 				break;
   1308 			}
   1309 			error = sockopt_setint(sopt, optval);
   1310 			break;
   1311 
   1312 #if 0	/* defined(IPSEC) */
   1313 		case IP_IPSEC_POLICY:
   1314 		{
   1315 			struct mbuf *m = NULL;
   1316 
   1317 			/* XXX this will return EINVAL as sopt is empty */
   1318 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1319 			    sopt->sopt_size, &m);
   1320 			if (error == 0)
   1321 				error = sockopt_setmbuf(sopt, m);
   1322 			break;
   1323 		}
   1324 #endif /*IPSEC*/
   1325 
   1326 		case IP_MULTICAST_IF:
   1327 		case IP_MULTICAST_TTL:
   1328 		case IP_MULTICAST_LOOP:
   1329 		case IP_ADD_MEMBERSHIP:
   1330 		case IP_DROP_MEMBERSHIP:
   1331 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1332 			break;
   1333 
   1334 		case IP_PORTRANGE:
   1335 			if (inpflags & INP_LOWPORT)
   1336 				optval = IP_PORTRANGE_LOW;
   1337 			else
   1338 				optval = IP_PORTRANGE_DEFAULT;
   1339 			error = sockopt_setint(sopt, optval);
   1340 			break;
   1341 
   1342 		case IP_PORTALGO:
   1343 			optval = inp->inp_portalgo;
   1344 			error = sockopt_setint(sopt, optval);
   1345 			break;
   1346 
   1347 		default:
   1348 			error = ENOPROTOOPT;
   1349 			break;
   1350 		}
   1351 		break;
   1352 	}
   1353 
   1354 	if (!error) {
   1355 		inp->inp_flags = inpflags;
   1356 	}
   1357 	return error;
   1358 }
   1359 
   1360 /*
   1361  * Set up IP options in pcb for insertion in output packets.
   1362  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1363  * with destination address if source routed.
   1364  */
   1365 static int
   1366 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1367 {
   1368 	struct mbuf *m;
   1369 	const u_char *cp;
   1370 	u_char *dp;
   1371 	int cnt;
   1372 
   1373 	/* Turn off any old options. */
   1374 	if (inp->inp_options) {
   1375 		m_free(inp->inp_options);
   1376 	}
   1377 	inp->inp_options = NULL;
   1378 	if ((cnt = sopt->sopt_size) == 0) {
   1379 		/* Only turning off any previous options. */
   1380 		return 0;
   1381 	}
   1382 	cp = sopt->sopt_data;
   1383 
   1384 #ifndef	__vax__
   1385 	if (cnt % sizeof(int32_t))
   1386 		return (EINVAL);
   1387 #endif
   1388 
   1389 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1390 	if (m == NULL)
   1391 		return (ENOBUFS);
   1392 
   1393 	dp = mtod(m, u_char *);
   1394 	memset(dp, 0, sizeof(struct in_addr));
   1395 	dp += sizeof(struct in_addr);
   1396 	m->m_len = sizeof(struct in_addr);
   1397 
   1398 	/*
   1399 	 * IP option list according to RFC791. Each option is of the form
   1400 	 *
   1401 	 *	[optval] [olen] [(olen - 2) data bytes]
   1402 	 *
   1403 	 * We validate the list and copy options to an mbuf for prepending
   1404 	 * to data packets. The IP first-hop destination address will be
   1405 	 * stored before actual options and is zero if unset.
   1406 	 */
   1407 	while (cnt > 0) {
   1408 		uint8_t optval, olen, offset;
   1409 
   1410 		optval = cp[IPOPT_OPTVAL];
   1411 
   1412 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1413 			olen = 1;
   1414 		} else {
   1415 			if (cnt < IPOPT_OLEN + 1)
   1416 				goto bad;
   1417 
   1418 			olen = cp[IPOPT_OLEN];
   1419 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1420 				goto bad;
   1421 		}
   1422 
   1423 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1424 			/*
   1425 			 * user process specifies route as:
   1426 			 *	->A->B->C->D
   1427 			 * D must be our final destination (but we can't
   1428 			 * check that since we may not have connected yet).
   1429 			 * A is first hop destination, which doesn't appear in
   1430 			 * actual IP option, but is stored before the options.
   1431 			 */
   1432 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1433 				goto bad;
   1434 
   1435 			offset = cp[IPOPT_OFFSET];
   1436 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1437 			    sizeof(struct in_addr));
   1438 
   1439 			cp += sizeof(struct in_addr);
   1440 			cnt -= sizeof(struct in_addr);
   1441 			olen -= sizeof(struct in_addr);
   1442 
   1443 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1444 				goto bad;
   1445 
   1446 			memcpy(dp, cp, olen);
   1447 			dp[IPOPT_OPTVAL] = optval;
   1448 			dp[IPOPT_OLEN] = olen;
   1449 			dp[IPOPT_OFFSET] = offset;
   1450 			break;
   1451 		} else {
   1452 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1453 				goto bad;
   1454 
   1455 			memcpy(dp, cp, olen);
   1456 			break;
   1457 		}
   1458 
   1459 		dp += olen;
   1460 		m->m_len += olen;
   1461 
   1462 		if (optval == IPOPT_EOL)
   1463 			break;
   1464 
   1465 		cp += olen;
   1466 		cnt -= olen;
   1467 	}
   1468 
   1469 	inp->inp_options = m;
   1470 	return 0;
   1471 bad:
   1472 	(void)m_free(m);
   1473 	return EINVAL;
   1474 }
   1475 
   1476 /*
   1477  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1478  */
   1479 static struct ifnet *
   1480 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1481 {
   1482 	int ifindex;
   1483 	struct ifnet *ifp = NULL;
   1484 	struct in_ifaddr *ia;
   1485 
   1486 	if (ifindexp)
   1487 		*ifindexp = 0;
   1488 	if (ntohl(a->s_addr) >> 24 == 0) {
   1489 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1490 		ifp = if_byindex(ifindex);
   1491 		if (!ifp)
   1492 			return NULL;
   1493 		if (ifindexp)
   1494 			*ifindexp = ifindex;
   1495 	} else {
   1496 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1497 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1498 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1499 				ifp = ia->ia_ifp;
   1500 				break;
   1501 			}
   1502 		}
   1503 	}
   1504 	return ifp;
   1505 }
   1506 
   1507 static int
   1508 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1509 {
   1510 	u_int tval;
   1511 	u_char cval;
   1512 	int error;
   1513 
   1514 	if (sopt == NULL)
   1515 		return EINVAL;
   1516 
   1517 	switch (sopt->sopt_size) {
   1518 	case sizeof(u_char):
   1519 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1520 		tval = cval;
   1521 		break;
   1522 
   1523 	case sizeof(u_int):
   1524 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1525 		break;
   1526 
   1527 	default:
   1528 		error = EINVAL;
   1529 	}
   1530 
   1531 	if (error)
   1532 		return error;
   1533 
   1534 	if (tval > maxval)
   1535 		return EINVAL;
   1536 
   1537 	*val = tval;
   1538 	return 0;
   1539 }
   1540 
   1541 static int
   1542 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1543     struct in_addr *ia, bool add)
   1544 {
   1545 	int error;
   1546 	struct ip_mreq mreq;
   1547 
   1548 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1549 	if (error)
   1550 		return error;
   1551 
   1552 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1553 		return EINVAL;
   1554 
   1555 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1556 
   1557 	if (in_nullhost(mreq.imr_interface)) {
   1558 		union {
   1559 			struct sockaddr		dst;
   1560 			struct sockaddr_in	dst4;
   1561 		} u;
   1562 		struct route ro;
   1563 
   1564 		if (!add) {
   1565 			*ifp = NULL;
   1566 			return 0;
   1567 		}
   1568 		/*
   1569 		 * If no interface address was provided, use the interface of
   1570 		 * the route to the given multicast address.
   1571 		 */
   1572 		struct rtentry *rt;
   1573 		memset(&ro, 0, sizeof(ro));
   1574 
   1575 		sockaddr_in_init(&u.dst4, ia, 0);
   1576 		error = rtcache_setdst(&ro, &u.dst);
   1577 		if (error != 0)
   1578 			return error;
   1579 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1580 		rtcache_free(&ro);
   1581 	} else {
   1582 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1583 		if (!add && *ifp == NULL)
   1584 			return EADDRNOTAVAIL;
   1585 	}
   1586 	return 0;
   1587 }
   1588 
   1589 /*
   1590  * Add a multicast group membership.
   1591  * Group must be a valid IP multicast address.
   1592  */
   1593 static int
   1594 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1595 {
   1596 	struct ifnet *ifp;
   1597 	struct in_addr ia;
   1598 	int i, error;
   1599 
   1600 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1601 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1602 	else
   1603 #ifdef INET6
   1604 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1605 #else
   1606 		return EINVAL;
   1607 #endif
   1608 
   1609 	if (error)
   1610 		return error;
   1611 
   1612 	/*
   1613 	 * See if we found an interface, and confirm that it
   1614 	 * supports multicast.
   1615 	 */
   1616 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1617 		return EADDRNOTAVAIL;
   1618 
   1619 	/*
   1620 	 * See if the membership already exists or if all the
   1621 	 * membership slots are full.
   1622 	 */
   1623 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1624 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1625 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1626 			break;
   1627 	}
   1628 	if (i < imo->imo_num_memberships)
   1629 		return EADDRINUSE;
   1630 
   1631 	if (i == IP_MAX_MEMBERSHIPS)
   1632 		return ETOOMANYREFS;
   1633 
   1634 	/*
   1635 	 * Everything looks good; add a new record to the multicast
   1636 	 * address list for the given interface.
   1637 	 */
   1638 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1639 		return ENOBUFS;
   1640 
   1641 	++imo->imo_num_memberships;
   1642 	return 0;
   1643 }
   1644 
   1645 /*
   1646  * Drop a multicast group membership.
   1647  * Group must be a valid IP multicast address.
   1648  */
   1649 static int
   1650 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1651 {
   1652 	struct in_addr ia;
   1653 	struct ifnet *ifp;
   1654 	int i, error;
   1655 
   1656 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1657 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1658 	else
   1659 #ifdef INET6
   1660 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1661 #else
   1662 		return EINVAL;
   1663 #endif
   1664 
   1665 	if (error)
   1666 		return error;
   1667 
   1668 	/*
   1669 	 * Find the membership in the membership array.
   1670 	 */
   1671 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1672 		if ((ifp == NULL ||
   1673 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1674 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1675 			break;
   1676 	}
   1677 	if (i == imo->imo_num_memberships)
   1678 		return EADDRNOTAVAIL;
   1679 
   1680 	/*
   1681 	 * Give up the multicast address record to which the
   1682 	 * membership points.
   1683 	 */
   1684 	in_delmulti(imo->imo_membership[i]);
   1685 
   1686 	/*
   1687 	 * Remove the gap in the membership array.
   1688 	 */
   1689 	for (++i; i < imo->imo_num_memberships; ++i)
   1690 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1691 	--imo->imo_num_memberships;
   1692 	return 0;
   1693 }
   1694 
   1695 /*
   1696  * Set the IP multicast options in response to user setsockopt().
   1697  */
   1698 int
   1699 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1700 {
   1701 	struct ip_moptions *imo = *pimo;
   1702 	struct in_addr addr;
   1703 	struct ifnet *ifp;
   1704 	int ifindex, error = 0;
   1705 
   1706 	if (!imo) {
   1707 		/*
   1708 		 * No multicast option buffer attached to the pcb;
   1709 		 * allocate one and initialize to default values.
   1710 		 */
   1711 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1712 		if (imo == NULL)
   1713 			return ENOBUFS;
   1714 
   1715 		imo->imo_multicast_ifp = NULL;
   1716 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1717 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1718 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1719 		imo->imo_num_memberships = 0;
   1720 		*pimo = imo;
   1721 	}
   1722 
   1723 	switch (sopt->sopt_name) {
   1724 	case IP_MULTICAST_IF:
   1725 		/*
   1726 		 * Select the interface for outgoing multicast packets.
   1727 		 */
   1728 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1729 		if (error)
   1730 			break;
   1731 
   1732 		/*
   1733 		 * INADDR_ANY is used to remove a previous selection.
   1734 		 * When no interface is selected, a default one is
   1735 		 * chosen every time a multicast packet is sent.
   1736 		 */
   1737 		if (in_nullhost(addr)) {
   1738 			imo->imo_multicast_ifp = NULL;
   1739 			break;
   1740 		}
   1741 		/*
   1742 		 * The selected interface is identified by its local
   1743 		 * IP address.  Find the interface and confirm that
   1744 		 * it supports multicasting.
   1745 		 */
   1746 		ifp = ip_multicast_if(&addr, &ifindex);
   1747 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1748 			error = EADDRNOTAVAIL;
   1749 			break;
   1750 		}
   1751 		imo->imo_multicast_ifp = ifp;
   1752 		if (ifindex)
   1753 			imo->imo_multicast_addr = addr;
   1754 		else
   1755 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1756 		break;
   1757 
   1758 	case IP_MULTICAST_TTL:
   1759 		/*
   1760 		 * Set the IP time-to-live for outgoing multicast packets.
   1761 		 */
   1762 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1763 		break;
   1764 
   1765 	case IP_MULTICAST_LOOP:
   1766 		/*
   1767 		 * Set the loopback flag for outgoing multicast packets.
   1768 		 * Must be zero or one.
   1769 		 */
   1770 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1771 		break;
   1772 
   1773 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1774 		error = ip_add_membership(imo, sopt);
   1775 		break;
   1776 
   1777 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1778 		error = ip_drop_membership(imo, sopt);
   1779 		break;
   1780 
   1781 	default:
   1782 		error = EOPNOTSUPP;
   1783 		break;
   1784 	}
   1785 
   1786 	/*
   1787 	 * If all options have default values, no need to keep the mbuf.
   1788 	 */
   1789 	if (imo->imo_multicast_ifp == NULL &&
   1790 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1791 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1792 	    imo->imo_num_memberships == 0) {
   1793 		kmem_free(imo, sizeof(*imo));
   1794 		*pimo = NULL;
   1795 	}
   1796 
   1797 	return error;
   1798 }
   1799 
   1800 /*
   1801  * Return the IP multicast options in response to user getsockopt().
   1802  */
   1803 int
   1804 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1805 {
   1806 	struct in_addr addr;
   1807 	struct in_ifaddr *ia;
   1808 	uint8_t optval;
   1809 	int error = 0;
   1810 
   1811 	switch (sopt->sopt_name) {
   1812 	case IP_MULTICAST_IF:
   1813 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1814 			addr = zeroin_addr;
   1815 		else if (imo->imo_multicast_addr.s_addr) {
   1816 			/* return the value user has set */
   1817 			addr = imo->imo_multicast_addr;
   1818 		} else {
   1819 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1820 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1821 		}
   1822 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1823 		break;
   1824 
   1825 	case IP_MULTICAST_TTL:
   1826 		optval = imo ? imo->imo_multicast_ttl
   1827 		    : IP_DEFAULT_MULTICAST_TTL;
   1828 
   1829 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1830 		break;
   1831 
   1832 	case IP_MULTICAST_LOOP:
   1833 		optval = imo ? imo->imo_multicast_loop
   1834 		    : IP_DEFAULT_MULTICAST_LOOP;
   1835 
   1836 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1837 		break;
   1838 
   1839 	default:
   1840 		error = EOPNOTSUPP;
   1841 	}
   1842 
   1843 	return error;
   1844 }
   1845 
   1846 /*
   1847  * Discard the IP multicast options.
   1848  */
   1849 void
   1850 ip_freemoptions(struct ip_moptions *imo)
   1851 {
   1852 	int i;
   1853 
   1854 	if (imo != NULL) {
   1855 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1856 			in_delmulti(imo->imo_membership[i]);
   1857 		kmem_free(imo, sizeof(*imo));
   1858 	}
   1859 }
   1860 
   1861 /*
   1862  * Routine called from ip_output() to loop back a copy of an IP multicast
   1863  * packet to the input queue of a specified interface.  Note that this
   1864  * calls the output routine of the loopback "driver", but with an interface
   1865  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1866  */
   1867 static void
   1868 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1869 {
   1870 	struct ip *ip;
   1871 	struct mbuf *copym;
   1872 
   1873 	copym = m_copypacket(m, M_DONTWAIT);
   1874 	if (copym != NULL &&
   1875 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1876 		copym = m_pullup(copym, sizeof(struct ip));
   1877 	if (copym == NULL)
   1878 		return;
   1879 	/*
   1880 	 * We don't bother to fragment if the IP length is greater
   1881 	 * than the interface's MTU.  Can this possibly matter?
   1882 	 */
   1883 	ip = mtod(copym, struct ip *);
   1884 
   1885 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1886 		in_delayed_cksum(copym);
   1887 		copym->m_pkthdr.csum_flags &=
   1888 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1889 	}
   1890 
   1891 	ip->ip_sum = 0;
   1892 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1893 #ifndef NET_MPSAFE
   1894 	KERNEL_LOCK(1, NULL);
   1895 #endif
   1896 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1897 #ifndef NET_MPSAFE
   1898 	KERNEL_UNLOCK_ONE(NULL);
   1899 #endif
   1900 }
   1901