ip_output.c revision 1.243 1 /* $NetBSD: ip_output.c,v 1.243 2015/07/14 08:44:59 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.243 2015/07/14 08:44:59 ozaki-r Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_mrouting.h"
99 #include "opt_net_mpsafe.h"
100 #include "opt_mpls.h"
101
102 #include <sys/param.h>
103 #include <sys/kmem.h>
104 #include <sys/mbuf.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113
114 #include <net/if.h>
115 #include <net/if_types.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127 #include <netinet/portalgo.h>
128 #include <netinet/udp.h>
129
130 #ifdef INET6
131 #include <netinet6/ip6_var.h>
132 #endif
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #ifdef IPSEC
139 #include <netipsec/ipsec.h>
140 #include <netipsec/key.h>
141 #endif
142
143 #ifdef MPLS
144 #include <netmpls/mpls.h>
145 #include <netmpls/mpls_var.h>
146 #endif
147
148 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
149 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
150 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
151 static void ip_mloopback(struct ifnet *, struct mbuf *,
152 const struct sockaddr_in *);
153
154 extern pfil_head_t *inet_pfil_hook; /* XXX */
155
156 int ip_do_loopback_cksum = 0;
157
158 static bool
159 ip_hresolv_needed(const struct ifnet * const ifp)
160 {
161 switch (ifp->if_type) {
162 case IFT_ARCNET:
163 case IFT_ATM:
164 case IFT_ECONET:
165 case IFT_ETHER:
166 case IFT_FDDI:
167 case IFT_HIPPI:
168 case IFT_IEEE1394:
169 case IFT_ISO88025:
170 case IFT_SLIP:
171 return true;
172 default:
173 return false;
174 }
175 }
176
177 static int
178 klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
179 const struct sockaddr * const dst, struct rtentry *rt)
180 {
181 int error;
182
183 #ifndef NET_MPSAFE
184 KERNEL_LOCK(1, NULL);
185 #endif
186
187 error = (*ifp->if_output)(ifp, m, dst, rt);
188
189 #ifndef NET_MPSAFE
190 KERNEL_UNLOCK_ONE(NULL);
191 #endif
192
193 return error;
194 }
195
196 /*
197 * Send an IP packet to a host.
198 *
199 * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
200 * calling ifp's output routine.
201 */
202 int
203 ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
204 const struct sockaddr * const dst, struct rtentry *rt0)
205 {
206 int error = 0;
207 struct ifnet *ifp = ifp0;
208 struct rtentry *rt;
209
210 retry:
211 if (!ip_hresolv_needed(ifp)) {
212 rt = rt0;
213 goto out;
214 }
215
216 if (rt0 == NULL) {
217 rt = NULL;
218 goto out;
219 }
220
221 rt = rt0;
222
223 /*
224 * The following block is highly questionable. How did we get here
225 * with a !RTF_UP route? Does rtalloc1() always return an RTF_UP
226 * route?
227 */
228 if ((rt->rt_flags & RTF_UP) == 0) {
229 rt = rtalloc1(dst, 1);
230 if (rt == NULL) {
231 error = EHOSTUNREACH;
232 goto bad;
233 }
234 rt0 = rt;
235 rt->rt_refcnt--;
236 if (rt->rt_ifp != ifp) {
237 ifp = rt->rt_ifp;
238 rt0 = rt;
239 goto retry;
240 }
241 }
242
243 if ((rt->rt_flags & RTF_GATEWAY) == 0)
244 goto out;
245
246 rt = rt->rt_gwroute;
247 if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
248 if (rt != NULL) {
249 rtfree(rt);
250 rt = rt0;
251 }
252 if (rt == NULL) {
253 error = EHOSTUNREACH;
254 goto bad;
255 }
256 rt = rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
257 if (rt == NULL) {
258 error = EHOSTUNREACH;
259 goto bad;
260 }
261 /* the "G" test below also prevents rt == rt0 */
262 if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
263 rt->rt_refcnt--;
264 rt0->rt_gwroute = NULL;
265 error = EHOSTUNREACH;
266 goto bad;
267 }
268 }
269 if ((rt->rt_flags & RTF_REJECT) != 0) {
270 if (rt->rt_rmx.rmx_expire == 0 ||
271 time_second < rt->rt_rmx.rmx_expire) {
272 error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
273 goto bad;
274 }
275 }
276
277 out:
278 #ifdef MPLS
279 if (rt0 != NULL && rt_gettag(rt0) != NULL &&
280 rt_gettag(rt0)->sa_family == AF_MPLS &&
281 (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
282 ifp->if_type == IFT_ETHER) {
283 union mpls_shim msh;
284 msh.s_addr = MPLS_GETSADDR(rt0);
285 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
286 struct m_tag *mtag;
287 /*
288 * XXX tentative solution to tell ether_output
289 * it's MPLS. Need some more efficient solution.
290 */
291 mtag = m_tag_get(PACKET_TAG_MPLS,
292 sizeof(int) /* dummy */,
293 M_NOWAIT);
294 if (mtag == NULL) {
295 error = ENOMEM;
296 goto bad;
297 }
298 m_tag_prepend(m, mtag);
299 }
300 }
301 #endif
302
303 return klock_if_output(ifp, m, dst, rt);
304 bad:
305 if (m != NULL)
306 m_freem(m);
307
308 return error;
309 }
310
311 /*
312 * IP output. The packet in mbuf chain m contains a skeletal IP
313 * header (with len, off, ttl, proto, tos, src, dst).
314 * The mbuf chain containing the packet will be freed.
315 * The mbuf opt, if present, will not be freed.
316 */
317 int
318 ip_output(struct mbuf *m0, ...)
319 {
320 struct rtentry *rt;
321 struct ip *ip;
322 struct ifnet *ifp;
323 struct mbuf *m = m0;
324 int hlen = sizeof (struct ip);
325 int len, error = 0;
326 struct route iproute;
327 const struct sockaddr_in *dst;
328 struct in_ifaddr *ia;
329 int isbroadcast;
330 struct mbuf *opt;
331 struct route *ro;
332 int flags, sw_csum;
333 u_long mtu;
334 struct ip_moptions *imo;
335 struct socket *so;
336 va_list ap;
337 #ifdef IPSEC
338 struct secpolicy *sp = NULL;
339 #endif
340 bool natt_frag = false;
341 bool rtmtu_nolock;
342 union {
343 struct sockaddr dst;
344 struct sockaddr_in dst4;
345 } u;
346 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
347 * to the nexthop
348 */
349
350 len = 0;
351 va_start(ap, m0);
352 opt = va_arg(ap, struct mbuf *);
353 ro = va_arg(ap, struct route *);
354 flags = va_arg(ap, int);
355 imo = va_arg(ap, struct ip_moptions *);
356 so = va_arg(ap, struct socket *);
357 va_end(ap);
358
359 MCLAIM(m, &ip_tx_mowner);
360
361 KASSERT((m->m_flags & M_PKTHDR) != 0);
362 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
363 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
364 (M_CSUM_TCPv4|M_CSUM_UDPv4));
365
366 if (opt) {
367 m = ip_insertoptions(m, opt, &len);
368 if (len >= sizeof(struct ip))
369 hlen = len;
370 }
371 ip = mtod(m, struct ip *);
372
373 /*
374 * Fill in IP header.
375 */
376 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
377 ip->ip_v = IPVERSION;
378 ip->ip_off = htons(0);
379 /* ip->ip_id filled in after we find out source ia */
380 ip->ip_hl = hlen >> 2;
381 IP_STATINC(IP_STAT_LOCALOUT);
382 } else {
383 hlen = ip->ip_hl << 2;
384 }
385
386 /*
387 * Route packet.
388 */
389 if (ro == NULL) {
390 memset(&iproute, 0, sizeof(iproute));
391 ro = &iproute;
392 }
393 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
394 dst = satocsin(rtcache_getdst(ro));
395
396 /*
397 * If there is a cached route, check that it is to the same
398 * destination and is still up. If not, free it and try again.
399 * The address family should also be checked in case of sharing
400 * the cache with IPv6.
401 */
402 if (dst && (dst->sin_family != AF_INET ||
403 !in_hosteq(dst->sin_addr, ip->ip_dst)))
404 rtcache_free(ro);
405
406 if ((rt = rtcache_validate(ro)) == NULL &&
407 (rt = rtcache_update(ro, 1)) == NULL) {
408 dst = &u.dst4;
409 error = rtcache_setdst(ro, &u.dst);
410 if (error != 0)
411 goto bad;
412 }
413
414 /*
415 * If routing to interface only, short circuit routing lookup.
416 */
417 if (flags & IP_ROUTETOIF) {
418 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
419 IP_STATINC(IP_STAT_NOROUTE);
420 error = ENETUNREACH;
421 goto bad;
422 }
423 ifp = ia->ia_ifp;
424 mtu = ifp->if_mtu;
425 ip->ip_ttl = 1;
426 isbroadcast = in_broadcast(dst->sin_addr, ifp);
427 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
428 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
429 imo != NULL && imo->imo_multicast_ifp != NULL) {
430 ifp = imo->imo_multicast_ifp;
431 mtu = ifp->if_mtu;
432 IFP_TO_IA(ifp, ia);
433 isbroadcast = 0;
434 } else {
435 if (rt == NULL)
436 rt = rtcache_init(ro);
437 if (rt == NULL) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = EHOSTUNREACH;
440 goto bad;
441 }
442 ia = ifatoia(rt->rt_ifa);
443 ifp = rt->rt_ifp;
444 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
445 mtu = ifp->if_mtu;
446 rt->rt_use++;
447 if (rt->rt_flags & RTF_GATEWAY)
448 dst = satosin(rt->rt_gateway);
449 if (rt->rt_flags & RTF_HOST)
450 isbroadcast = rt->rt_flags & RTF_BROADCAST;
451 else
452 isbroadcast = in_broadcast(dst->sin_addr, ifp);
453 }
454 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
455
456 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
457 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
458 bool inmgroup;
459
460 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
461 M_BCAST : M_MCAST;
462 /*
463 * See if the caller provided any multicast options
464 */
465 if (imo != NULL)
466 ip->ip_ttl = imo->imo_multicast_ttl;
467 else
468 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
469
470 /*
471 * if we don't know the outgoing ifp yet, we can't generate
472 * output
473 */
474 if (!ifp) {
475 IP_STATINC(IP_STAT_NOROUTE);
476 error = ENETUNREACH;
477 goto bad;
478 }
479
480 /*
481 * If the packet is multicast or broadcast, confirm that
482 * the outgoing interface can transmit it.
483 */
484 if (((m->m_flags & M_MCAST) &&
485 (ifp->if_flags & IFF_MULTICAST) == 0) ||
486 ((m->m_flags & M_BCAST) &&
487 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
488 IP_STATINC(IP_STAT_NOROUTE);
489 error = ENETUNREACH;
490 goto bad;
491 }
492 /*
493 * If source address not specified yet, use an address
494 * of outgoing interface.
495 */
496 if (in_nullhost(ip->ip_src)) {
497 struct in_ifaddr *xia;
498 struct ifaddr *xifa;
499
500 IFP_TO_IA(ifp, xia);
501 if (!xia) {
502 error = EADDRNOTAVAIL;
503 goto bad;
504 }
505 xifa = &xia->ia_ifa;
506 if (xifa->ifa_getifa != NULL) {
507 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
508 if (xia == NULL) {
509 error = EADDRNOTAVAIL;
510 goto bad;
511 }
512 }
513 ip->ip_src = xia->ia_addr.sin_addr;
514 }
515
516 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
517 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
518 /*
519 * If we belong to the destination multicast group
520 * on the outgoing interface, and the caller did not
521 * forbid loopback, loop back a copy.
522 */
523 ip_mloopback(ifp, m, &u.dst4);
524 }
525 #ifdef MROUTING
526 else {
527 /*
528 * If we are acting as a multicast router, perform
529 * multicast forwarding as if the packet had just
530 * arrived on the interface to which we are about
531 * to send. The multicast forwarding function
532 * recursively calls this function, using the
533 * IP_FORWARDING flag to prevent infinite recursion.
534 *
535 * Multicasts that are looped back by ip_mloopback(),
536 * above, will be forwarded by the ip_input() routine,
537 * if necessary.
538 */
539 extern struct socket *ip_mrouter;
540
541 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
542 if (ip_mforward(m, ifp) != 0) {
543 m_freem(m);
544 goto done;
545 }
546 }
547 }
548 #endif
549 /*
550 * Multicasts with a time-to-live of zero may be looped-
551 * back, above, but must not be transmitted on a network.
552 * Also, multicasts addressed to the loopback interface
553 * are not sent -- the above call to ip_mloopback() will
554 * loop back a copy if this host actually belongs to the
555 * destination group on the loopback interface.
556 */
557 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
558 m_freem(m);
559 goto done;
560 }
561 goto sendit;
562 }
563
564 /*
565 * If source address not specified yet, use address
566 * of outgoing interface.
567 */
568 if (in_nullhost(ip->ip_src)) {
569 struct ifaddr *xifa;
570
571 xifa = &ia->ia_ifa;
572 if (xifa->ifa_getifa != NULL) {
573 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
574 if (ia == NULL) {
575 error = EADDRNOTAVAIL;
576 goto bad;
577 }
578 }
579 ip->ip_src = ia->ia_addr.sin_addr;
580 }
581
582 /*
583 * packets with Class-D address as source are not valid per
584 * RFC 1112
585 */
586 if (IN_MULTICAST(ip->ip_src.s_addr)) {
587 IP_STATINC(IP_STAT_ODROPPED);
588 error = EADDRNOTAVAIL;
589 goto bad;
590 }
591
592 /*
593 * Look for broadcast address and and verify user is allowed to
594 * send such a packet.
595 */
596 if (isbroadcast) {
597 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
598 error = EADDRNOTAVAIL;
599 goto bad;
600 }
601 if ((flags & IP_ALLOWBROADCAST) == 0) {
602 error = EACCES;
603 goto bad;
604 }
605 /* don't allow broadcast messages to be fragmented */
606 if (ntohs(ip->ip_len) > ifp->if_mtu) {
607 error = EMSGSIZE;
608 goto bad;
609 }
610 m->m_flags |= M_BCAST;
611 } else
612 m->m_flags &= ~M_BCAST;
613
614 sendit:
615 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
616 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
617 ip->ip_id = 0;
618 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
619 ip->ip_id = ip_newid(ia);
620 } else {
621
622 /*
623 * TSO capable interfaces (typically?) increment
624 * ip_id for each segment.
625 * "allocate" enough ids here to increase the chance
626 * for them to be unique.
627 *
628 * note that the following calculation is not
629 * needed to be precise. wasting some ip_id is fine.
630 */
631
632 unsigned int segsz = m->m_pkthdr.segsz;
633 unsigned int datasz = ntohs(ip->ip_len) - hlen;
634 unsigned int num = howmany(datasz, segsz);
635
636 ip->ip_id = ip_newid_range(ia, num);
637 }
638 }
639
640 /*
641 * If we're doing Path MTU Discovery, we need to set DF unless
642 * the route's MTU is locked.
643 */
644 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
645 ip->ip_off |= htons(IP_DF);
646 }
647
648 #ifdef IPSEC
649 if (ipsec_used) {
650 bool ipsec_done = false;
651
652 /* Perform IPsec processing, if any. */
653 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
654 &ipsec_done);
655 if (error || ipsec_done)
656 goto done;
657 }
658 #endif
659
660 /*
661 * Run through list of hooks for output packets.
662 */
663 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
664 if (error)
665 goto done;
666 if (m == NULL)
667 goto done;
668
669 ip = mtod(m, struct ip *);
670 hlen = ip->ip_hl << 2;
671
672 m->m_pkthdr.csum_data |= hlen << 16;
673
674 #if IFA_STATS
675 /*
676 * search for the source address structure to
677 * maintain output statistics.
678 */
679 INADDR_TO_IA(ip->ip_src, ia);
680 #endif
681
682 /* Maybe skip checksums on loopback interfaces. */
683 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
684 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
685 }
686 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
687 /*
688 * If small enough for mtu of path, or if using TCP segmentation
689 * offload, can just send directly.
690 */
691 if (ntohs(ip->ip_len) <= mtu ||
692 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
693 const struct sockaddr *sa;
694
695 #if IFA_STATS
696 if (ia)
697 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
698 #endif
699 /*
700 * Always initialize the sum to 0! Some HW assisted
701 * checksumming requires this.
702 */
703 ip->ip_sum = 0;
704
705 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
706 /*
707 * Perform any checksums that the hardware can't do
708 * for us.
709 *
710 * XXX Does any hardware require the {th,uh}_sum
711 * XXX fields to be 0?
712 */
713 if (sw_csum & M_CSUM_IPv4) {
714 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
715 ip->ip_sum = in_cksum(m, hlen);
716 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
717 }
718 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
719 if (IN_NEED_CHECKSUM(ifp,
720 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
721 in_delayed_cksum(m);
722 }
723 m->m_pkthdr.csum_flags &=
724 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
725 }
726 }
727
728 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
729 if (__predict_true(
730 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
731 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
732 error = ip_hresolv_output(ifp, m, sa, rt);
733 } else {
734 error = ip_tso_output(ifp, m, sa, rt);
735 }
736 goto done;
737 }
738
739 /*
740 * We can't use HW checksumming if we're about to
741 * to fragment the packet.
742 *
743 * XXX Some hardware can do this.
744 */
745 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
746 if (IN_NEED_CHECKSUM(ifp,
747 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
748 in_delayed_cksum(m);
749 }
750 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
751 }
752
753 /*
754 * Too large for interface; fragment if possible.
755 * Must be able to put at least 8 bytes per fragment.
756 */
757 if (ntohs(ip->ip_off) & IP_DF) {
758 if (flags & IP_RETURNMTU) {
759 struct inpcb *inp;
760
761 KASSERT(so && solocked(so));
762 inp = sotoinpcb(so);
763 inp->inp_errormtu = mtu;
764 }
765 error = EMSGSIZE;
766 IP_STATINC(IP_STAT_CANTFRAG);
767 goto bad;
768 }
769
770 error = ip_fragment(m, ifp, mtu);
771 if (error) {
772 m = NULL;
773 goto bad;
774 }
775
776 for (; m; m = m0) {
777 m0 = m->m_nextpkt;
778 m->m_nextpkt = 0;
779 if (error) {
780 m_freem(m);
781 continue;
782 }
783 #if IFA_STATS
784 if (ia)
785 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
786 #endif
787 /*
788 * If we get there, the packet has not been handled by
789 * IPsec whereas it should have. Now that it has been
790 * fragmented, re-inject it in ip_output so that IPsec
791 * processing can occur.
792 */
793 if (natt_frag) {
794 error = ip_output(m, opt, ro,
795 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
796 imo, so);
797 } else {
798 KASSERT((m->m_pkthdr.csum_flags &
799 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
800 error = ip_hresolv_output(ifp, m,
801 (m->m_flags & M_MCAST) ?
802 sintocsa(rdst) : sintocsa(dst), rt);
803 }
804 }
805 if (error == 0) {
806 IP_STATINC(IP_STAT_FRAGMENTED);
807 }
808 done:
809 if (ro == &iproute) {
810 rtcache_free(&iproute);
811 }
812 #ifdef IPSEC
813 if (sp) {
814 KEY_FREESP(&sp);
815 }
816 #endif
817 return error;
818 bad:
819 m_freem(m);
820 goto done;
821 }
822
823 int
824 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
825 {
826 struct ip *ip, *mhip;
827 struct mbuf *m0;
828 int len, hlen, off;
829 int mhlen, firstlen;
830 struct mbuf **mnext;
831 int sw_csum = m->m_pkthdr.csum_flags;
832 int fragments = 0;
833 int s;
834 int error = 0;
835
836 ip = mtod(m, struct ip *);
837 hlen = ip->ip_hl << 2;
838 if (ifp != NULL)
839 sw_csum &= ~ifp->if_csum_flags_tx;
840
841 len = (mtu - hlen) &~ 7;
842 if (len < 8) {
843 m_freem(m);
844 return (EMSGSIZE);
845 }
846
847 firstlen = len;
848 mnext = &m->m_nextpkt;
849
850 /*
851 * Loop through length of segment after first fragment,
852 * make new header and copy data of each part and link onto chain.
853 */
854 m0 = m;
855 mhlen = sizeof (struct ip);
856 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
857 MGETHDR(m, M_DONTWAIT, MT_HEADER);
858 if (m == 0) {
859 error = ENOBUFS;
860 IP_STATINC(IP_STAT_ODROPPED);
861 goto sendorfree;
862 }
863 MCLAIM(m, m0->m_owner);
864 *mnext = m;
865 mnext = &m->m_nextpkt;
866 m->m_data += max_linkhdr;
867 mhip = mtod(m, struct ip *);
868 *mhip = *ip;
869 /* we must inherit MCAST and BCAST flags */
870 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
871 if (hlen > sizeof (struct ip)) {
872 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
873 mhip->ip_hl = mhlen >> 2;
874 }
875 m->m_len = mhlen;
876 mhip->ip_off = ((off - hlen) >> 3) +
877 (ntohs(ip->ip_off) & ~IP_MF);
878 if (ip->ip_off & htons(IP_MF))
879 mhip->ip_off |= IP_MF;
880 if (off + len >= ntohs(ip->ip_len))
881 len = ntohs(ip->ip_len) - off;
882 else
883 mhip->ip_off |= IP_MF;
884 HTONS(mhip->ip_off);
885 mhip->ip_len = htons((u_int16_t)(len + mhlen));
886 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
887 if (m->m_next == 0) {
888 error = ENOBUFS; /* ??? */
889 IP_STATINC(IP_STAT_ODROPPED);
890 goto sendorfree;
891 }
892 m->m_pkthdr.len = mhlen + len;
893 m->m_pkthdr.rcvif = NULL;
894 mhip->ip_sum = 0;
895 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
896 if (sw_csum & M_CSUM_IPv4) {
897 mhip->ip_sum = in_cksum(m, mhlen);
898 } else {
899 /*
900 * checksum is hw-offloaded or not necessary.
901 */
902 m->m_pkthdr.csum_flags |=
903 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
904 m->m_pkthdr.csum_data |= mhlen << 16;
905 KASSERT(!(ifp != NULL &&
906 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
907 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
908 }
909 IP_STATINC(IP_STAT_OFRAGMENTS);
910 fragments++;
911 }
912 /*
913 * Update first fragment by trimming what's been copied out
914 * and updating header, then send each fragment (in order).
915 */
916 m = m0;
917 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
918 m->m_pkthdr.len = hlen + firstlen;
919 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
920 ip->ip_off |= htons(IP_MF);
921 ip->ip_sum = 0;
922 if (sw_csum & M_CSUM_IPv4) {
923 ip->ip_sum = in_cksum(m, hlen);
924 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
925 } else {
926 /*
927 * checksum is hw-offloaded or not necessary.
928 */
929 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
930 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
931 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
932 sizeof(struct ip));
933 }
934 sendorfree:
935 /*
936 * If there is no room for all the fragments, don't queue
937 * any of them.
938 */
939 if (ifp != NULL) {
940 s = splnet();
941 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
942 error == 0) {
943 error = ENOBUFS;
944 IP_STATINC(IP_STAT_ODROPPED);
945 IFQ_INC_DROPS(&ifp->if_snd);
946 }
947 splx(s);
948 }
949 if (error) {
950 for (m = m0; m; m = m0) {
951 m0 = m->m_nextpkt;
952 m->m_nextpkt = NULL;
953 m_freem(m);
954 }
955 }
956 return (error);
957 }
958
959 /*
960 * Process a delayed payload checksum calculation.
961 */
962 void
963 in_delayed_cksum(struct mbuf *m)
964 {
965 struct ip *ip;
966 u_int16_t csum, offset;
967
968 ip = mtod(m, struct ip *);
969 offset = ip->ip_hl << 2;
970 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
971 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
972 csum = 0xffff;
973
974 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
975
976 if ((offset + sizeof(u_int16_t)) > m->m_len) {
977 /* This happen when ip options were inserted
978 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
979 m->m_len, offset, ip->ip_p);
980 */
981 m_copyback(m, offset, sizeof(csum), (void *) &csum);
982 } else
983 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
984 }
985
986 /*
987 * Determine the maximum length of the options to be inserted;
988 * we would far rather allocate too much space rather than too little.
989 */
990
991 u_int
992 ip_optlen(struct inpcb *inp)
993 {
994 struct mbuf *m = inp->inp_options;
995
996 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
997 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
998 }
999 return 0;
1000 }
1001
1002 /*
1003 * Insert IP options into preformed packet.
1004 * Adjust IP destination as required for IP source routing,
1005 * as indicated by a non-zero in_addr at the start of the options.
1006 */
1007 static struct mbuf *
1008 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1009 {
1010 struct ipoption *p = mtod(opt, struct ipoption *);
1011 struct mbuf *n;
1012 struct ip *ip = mtod(m, struct ip *);
1013 unsigned optlen;
1014
1015 optlen = opt->m_len - sizeof(p->ipopt_dst);
1016 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1017 return (m); /* XXX should fail */
1018 if (!in_nullhost(p->ipopt_dst))
1019 ip->ip_dst = p->ipopt_dst;
1020 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1021 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1022 if (n == 0)
1023 return (m);
1024 MCLAIM(n, m->m_owner);
1025 M_MOVE_PKTHDR(n, m);
1026 m->m_len -= sizeof(struct ip);
1027 m->m_data += sizeof(struct ip);
1028 n->m_next = m;
1029 m = n;
1030 m->m_len = optlen + sizeof(struct ip);
1031 m->m_data += max_linkhdr;
1032 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1033 } else {
1034 m->m_data -= optlen;
1035 m->m_len += optlen;
1036 memmove(mtod(m, void *), ip, sizeof(struct ip));
1037 }
1038 m->m_pkthdr.len += optlen;
1039 ip = mtod(m, struct ip *);
1040 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1041 *phlen = sizeof(struct ip) + optlen;
1042 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1043 return (m);
1044 }
1045
1046 /*
1047 * Copy options from ip to jp,
1048 * omitting those not copied during fragmentation.
1049 */
1050 int
1051 ip_optcopy(struct ip *ip, struct ip *jp)
1052 {
1053 u_char *cp, *dp;
1054 int opt, optlen, cnt;
1055
1056 cp = (u_char *)(ip + 1);
1057 dp = (u_char *)(jp + 1);
1058 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1059 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1060 opt = cp[0];
1061 if (opt == IPOPT_EOL)
1062 break;
1063 if (opt == IPOPT_NOP) {
1064 /* Preserve for IP mcast tunnel's LSRR alignment. */
1065 *dp++ = IPOPT_NOP;
1066 optlen = 1;
1067 continue;
1068 }
1069
1070 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1071 optlen = cp[IPOPT_OLEN];
1072 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1073
1074 /* Invalid lengths should have been caught by ip_dooptions. */
1075 if (optlen > cnt)
1076 optlen = cnt;
1077 if (IPOPT_COPIED(opt)) {
1078 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1079 dp += optlen;
1080 }
1081 }
1082 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1083 *dp++ = IPOPT_EOL;
1084 return (optlen);
1085 }
1086
1087 /*
1088 * IP socket option processing.
1089 */
1090 int
1091 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1092 {
1093 struct inpcb *inp = sotoinpcb(so);
1094 struct ip *ip = &inp->inp_ip;
1095 int inpflags = inp->inp_flags;
1096 int optval = 0, error = 0;
1097
1098 if (sopt->sopt_level != IPPROTO_IP) {
1099 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1100 return 0;
1101 return ENOPROTOOPT;
1102 }
1103
1104 switch (op) {
1105 case PRCO_SETOPT:
1106 switch (sopt->sopt_name) {
1107 case IP_OPTIONS:
1108 #ifdef notyet
1109 case IP_RETOPTS:
1110 #endif
1111 error = ip_pcbopts(inp, sopt);
1112 break;
1113
1114 case IP_TOS:
1115 case IP_TTL:
1116 case IP_MINTTL:
1117 case IP_PKTINFO:
1118 case IP_RECVOPTS:
1119 case IP_RECVRETOPTS:
1120 case IP_RECVDSTADDR:
1121 case IP_RECVIF:
1122 case IP_RECVPKTINFO:
1123 case IP_RECVTTL:
1124 error = sockopt_getint(sopt, &optval);
1125 if (error)
1126 break;
1127
1128 switch (sopt->sopt_name) {
1129 case IP_TOS:
1130 ip->ip_tos = optval;
1131 break;
1132
1133 case IP_TTL:
1134 ip->ip_ttl = optval;
1135 break;
1136
1137 case IP_MINTTL:
1138 if (optval > 0 && optval <= MAXTTL)
1139 inp->inp_ip_minttl = optval;
1140 else
1141 error = EINVAL;
1142 break;
1143 #define OPTSET(bit) \
1144 if (optval) \
1145 inpflags |= bit; \
1146 else \
1147 inpflags &= ~bit;
1148
1149 case IP_PKTINFO:
1150 OPTSET(INP_PKTINFO);
1151 break;
1152
1153 case IP_RECVOPTS:
1154 OPTSET(INP_RECVOPTS);
1155 break;
1156
1157 case IP_RECVPKTINFO:
1158 OPTSET(INP_RECVPKTINFO);
1159 break;
1160
1161 case IP_RECVRETOPTS:
1162 OPTSET(INP_RECVRETOPTS);
1163 break;
1164
1165 case IP_RECVDSTADDR:
1166 OPTSET(INP_RECVDSTADDR);
1167 break;
1168
1169 case IP_RECVIF:
1170 OPTSET(INP_RECVIF);
1171 break;
1172
1173 case IP_RECVTTL:
1174 OPTSET(INP_RECVTTL);
1175 break;
1176 }
1177 break;
1178 #undef OPTSET
1179
1180 case IP_MULTICAST_IF:
1181 case IP_MULTICAST_TTL:
1182 case IP_MULTICAST_LOOP:
1183 case IP_ADD_MEMBERSHIP:
1184 case IP_DROP_MEMBERSHIP:
1185 error = ip_setmoptions(&inp->inp_moptions, sopt);
1186 break;
1187
1188 case IP_PORTRANGE:
1189 error = sockopt_getint(sopt, &optval);
1190 if (error)
1191 break;
1192
1193 switch (optval) {
1194 case IP_PORTRANGE_DEFAULT:
1195 case IP_PORTRANGE_HIGH:
1196 inpflags &= ~(INP_LOWPORT);
1197 break;
1198
1199 case IP_PORTRANGE_LOW:
1200 inpflags |= INP_LOWPORT;
1201 break;
1202
1203 default:
1204 error = EINVAL;
1205 break;
1206 }
1207 break;
1208
1209 case IP_PORTALGO:
1210 error = sockopt_getint(sopt, &optval);
1211 if (error)
1212 break;
1213
1214 error = portalgo_algo_index_select(
1215 (struct inpcb_hdr *)inp, optval);
1216 break;
1217
1218 #if defined(IPSEC)
1219 case IP_IPSEC_POLICY:
1220 if (ipsec_enabled) {
1221 error = ipsec4_set_policy(inp, sopt->sopt_name,
1222 sopt->sopt_data, sopt->sopt_size,
1223 curlwp->l_cred);
1224 break;
1225 }
1226 /*FALLTHROUGH*/
1227 #endif /* IPSEC */
1228
1229 default:
1230 error = ENOPROTOOPT;
1231 break;
1232 }
1233 break;
1234
1235 case PRCO_GETOPT:
1236 switch (sopt->sopt_name) {
1237 case IP_OPTIONS:
1238 case IP_RETOPTS: {
1239 struct mbuf *mopts = inp->inp_options;
1240
1241 if (mopts) {
1242 struct mbuf *m;
1243
1244 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1245 if (m == NULL) {
1246 error = ENOBUFS;
1247 break;
1248 }
1249 error = sockopt_setmbuf(sopt, m);
1250 }
1251 break;
1252 }
1253 case IP_PKTINFO:
1254 case IP_TOS:
1255 case IP_TTL:
1256 case IP_MINTTL:
1257 case IP_RECVOPTS:
1258 case IP_RECVRETOPTS:
1259 case IP_RECVDSTADDR:
1260 case IP_RECVIF:
1261 case IP_RECVPKTINFO:
1262 case IP_RECVTTL:
1263 case IP_ERRORMTU:
1264 switch (sopt->sopt_name) {
1265 case IP_TOS:
1266 optval = ip->ip_tos;
1267 break;
1268
1269 case IP_TTL:
1270 optval = ip->ip_ttl;
1271 break;
1272
1273 case IP_MINTTL:
1274 optval = inp->inp_ip_minttl;
1275 break;
1276
1277 case IP_ERRORMTU:
1278 optval = inp->inp_errormtu;
1279 break;
1280
1281 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1282
1283 case IP_PKTINFO:
1284 optval = OPTBIT(INP_PKTINFO);
1285 break;
1286
1287 case IP_RECVOPTS:
1288 optval = OPTBIT(INP_RECVOPTS);
1289 break;
1290
1291 case IP_RECVPKTINFO:
1292 optval = OPTBIT(INP_RECVPKTINFO);
1293 break;
1294
1295 case IP_RECVRETOPTS:
1296 optval = OPTBIT(INP_RECVRETOPTS);
1297 break;
1298
1299 case IP_RECVDSTADDR:
1300 optval = OPTBIT(INP_RECVDSTADDR);
1301 break;
1302
1303 case IP_RECVIF:
1304 optval = OPTBIT(INP_RECVIF);
1305 break;
1306
1307 case IP_RECVTTL:
1308 optval = OPTBIT(INP_RECVTTL);
1309 break;
1310 }
1311 error = sockopt_setint(sopt, optval);
1312 break;
1313
1314 #if 0 /* defined(IPSEC) */
1315 case IP_IPSEC_POLICY:
1316 {
1317 struct mbuf *m = NULL;
1318
1319 /* XXX this will return EINVAL as sopt is empty */
1320 error = ipsec4_get_policy(inp, sopt->sopt_data,
1321 sopt->sopt_size, &m);
1322 if (error == 0)
1323 error = sockopt_setmbuf(sopt, m);
1324 break;
1325 }
1326 #endif /*IPSEC*/
1327
1328 case IP_MULTICAST_IF:
1329 case IP_MULTICAST_TTL:
1330 case IP_MULTICAST_LOOP:
1331 case IP_ADD_MEMBERSHIP:
1332 case IP_DROP_MEMBERSHIP:
1333 error = ip_getmoptions(inp->inp_moptions, sopt);
1334 break;
1335
1336 case IP_PORTRANGE:
1337 if (inpflags & INP_LOWPORT)
1338 optval = IP_PORTRANGE_LOW;
1339 else
1340 optval = IP_PORTRANGE_DEFAULT;
1341 error = sockopt_setint(sopt, optval);
1342 break;
1343
1344 case IP_PORTALGO:
1345 optval = inp->inp_portalgo;
1346 error = sockopt_setint(sopt, optval);
1347 break;
1348
1349 default:
1350 error = ENOPROTOOPT;
1351 break;
1352 }
1353 break;
1354 }
1355
1356 if (!error) {
1357 inp->inp_flags = inpflags;
1358 }
1359 return error;
1360 }
1361
1362 /*
1363 * Set up IP options in pcb for insertion in output packets.
1364 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1365 * with destination address if source routed.
1366 */
1367 static int
1368 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1369 {
1370 struct mbuf *m;
1371 const u_char *cp;
1372 u_char *dp;
1373 int cnt;
1374
1375 /* Turn off any old options. */
1376 if (inp->inp_options) {
1377 m_free(inp->inp_options);
1378 }
1379 inp->inp_options = NULL;
1380 if ((cnt = sopt->sopt_size) == 0) {
1381 /* Only turning off any previous options. */
1382 return 0;
1383 }
1384 cp = sopt->sopt_data;
1385
1386 #ifndef __vax__
1387 if (cnt % sizeof(int32_t))
1388 return (EINVAL);
1389 #endif
1390
1391 m = m_get(M_DONTWAIT, MT_SOOPTS);
1392 if (m == NULL)
1393 return (ENOBUFS);
1394
1395 dp = mtod(m, u_char *);
1396 memset(dp, 0, sizeof(struct in_addr));
1397 dp += sizeof(struct in_addr);
1398 m->m_len = sizeof(struct in_addr);
1399
1400 /*
1401 * IP option list according to RFC791. Each option is of the form
1402 *
1403 * [optval] [olen] [(olen - 2) data bytes]
1404 *
1405 * We validate the list and copy options to an mbuf for prepending
1406 * to data packets. The IP first-hop destination address will be
1407 * stored before actual options and is zero if unset.
1408 */
1409 while (cnt > 0) {
1410 uint8_t optval, olen, offset;
1411
1412 optval = cp[IPOPT_OPTVAL];
1413
1414 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1415 olen = 1;
1416 } else {
1417 if (cnt < IPOPT_OLEN + 1)
1418 goto bad;
1419
1420 olen = cp[IPOPT_OLEN];
1421 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1422 goto bad;
1423 }
1424
1425 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1426 /*
1427 * user process specifies route as:
1428 * ->A->B->C->D
1429 * D must be our final destination (but we can't
1430 * check that since we may not have connected yet).
1431 * A is first hop destination, which doesn't appear in
1432 * actual IP option, but is stored before the options.
1433 */
1434 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1435 goto bad;
1436
1437 offset = cp[IPOPT_OFFSET];
1438 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1439 sizeof(struct in_addr));
1440
1441 cp += sizeof(struct in_addr);
1442 cnt -= sizeof(struct in_addr);
1443 olen -= sizeof(struct in_addr);
1444
1445 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1446 goto bad;
1447
1448 memcpy(dp, cp, olen);
1449 dp[IPOPT_OPTVAL] = optval;
1450 dp[IPOPT_OLEN] = olen;
1451 dp[IPOPT_OFFSET] = offset;
1452 break;
1453 } else {
1454 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1455 goto bad;
1456
1457 memcpy(dp, cp, olen);
1458 break;
1459 }
1460
1461 dp += olen;
1462 m->m_len += olen;
1463
1464 if (optval == IPOPT_EOL)
1465 break;
1466
1467 cp += olen;
1468 cnt -= olen;
1469 }
1470
1471 inp->inp_options = m;
1472 return 0;
1473 bad:
1474 (void)m_free(m);
1475 return EINVAL;
1476 }
1477
1478 /*
1479 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1480 */
1481 static struct ifnet *
1482 ip_multicast_if(struct in_addr *a, int *ifindexp)
1483 {
1484 int ifindex;
1485 struct ifnet *ifp = NULL;
1486 struct in_ifaddr *ia;
1487
1488 if (ifindexp)
1489 *ifindexp = 0;
1490 if (ntohl(a->s_addr) >> 24 == 0) {
1491 ifindex = ntohl(a->s_addr) & 0xffffff;
1492 ifp = if_byindex(ifindex);
1493 if (!ifp)
1494 return NULL;
1495 if (ifindexp)
1496 *ifindexp = ifindex;
1497 } else {
1498 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1499 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1500 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1501 ifp = ia->ia_ifp;
1502 break;
1503 }
1504 }
1505 }
1506 return ifp;
1507 }
1508
1509 static int
1510 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1511 {
1512 u_int tval;
1513 u_char cval;
1514 int error;
1515
1516 if (sopt == NULL)
1517 return EINVAL;
1518
1519 switch (sopt->sopt_size) {
1520 case sizeof(u_char):
1521 error = sockopt_get(sopt, &cval, sizeof(u_char));
1522 tval = cval;
1523 break;
1524
1525 case sizeof(u_int):
1526 error = sockopt_get(sopt, &tval, sizeof(u_int));
1527 break;
1528
1529 default:
1530 error = EINVAL;
1531 }
1532
1533 if (error)
1534 return error;
1535
1536 if (tval > maxval)
1537 return EINVAL;
1538
1539 *val = tval;
1540 return 0;
1541 }
1542
1543 static int
1544 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1545 struct in_addr *ia, bool add)
1546 {
1547 int error;
1548 struct ip_mreq mreq;
1549
1550 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1551 if (error)
1552 return error;
1553
1554 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1555 return EINVAL;
1556
1557 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1558
1559 if (in_nullhost(mreq.imr_interface)) {
1560 union {
1561 struct sockaddr dst;
1562 struct sockaddr_in dst4;
1563 } u;
1564 struct route ro;
1565
1566 if (!add) {
1567 *ifp = NULL;
1568 return 0;
1569 }
1570 /*
1571 * If no interface address was provided, use the interface of
1572 * the route to the given multicast address.
1573 */
1574 struct rtentry *rt;
1575 memset(&ro, 0, sizeof(ro));
1576
1577 sockaddr_in_init(&u.dst4, ia, 0);
1578 error = rtcache_setdst(&ro, &u.dst);
1579 if (error != 0)
1580 return error;
1581 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1582 rtcache_free(&ro);
1583 } else {
1584 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1585 if (!add && *ifp == NULL)
1586 return EADDRNOTAVAIL;
1587 }
1588 return 0;
1589 }
1590
1591 /*
1592 * Add a multicast group membership.
1593 * Group must be a valid IP multicast address.
1594 */
1595 static int
1596 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1597 {
1598 struct ifnet *ifp;
1599 struct in_addr ia;
1600 int i, error;
1601
1602 if (sopt->sopt_size == sizeof(struct ip_mreq))
1603 error = ip_get_membership(sopt, &ifp, &ia, true);
1604 else
1605 #ifdef INET6
1606 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1607 #else
1608 return EINVAL;
1609 #endif
1610
1611 if (error)
1612 return error;
1613
1614 /*
1615 * See if we found an interface, and confirm that it
1616 * supports multicast.
1617 */
1618 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1619 return EADDRNOTAVAIL;
1620
1621 /*
1622 * See if the membership already exists or if all the
1623 * membership slots are full.
1624 */
1625 for (i = 0; i < imo->imo_num_memberships; ++i) {
1626 if (imo->imo_membership[i]->inm_ifp == ifp &&
1627 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1628 break;
1629 }
1630 if (i < imo->imo_num_memberships)
1631 return EADDRINUSE;
1632
1633 if (i == IP_MAX_MEMBERSHIPS)
1634 return ETOOMANYREFS;
1635
1636 /*
1637 * Everything looks good; add a new record to the multicast
1638 * address list for the given interface.
1639 */
1640 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1641 return ENOBUFS;
1642
1643 ++imo->imo_num_memberships;
1644 return 0;
1645 }
1646
1647 /*
1648 * Drop a multicast group membership.
1649 * Group must be a valid IP multicast address.
1650 */
1651 static int
1652 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1653 {
1654 struct in_addr ia;
1655 struct ifnet *ifp;
1656 int i, error;
1657
1658 if (sopt->sopt_size == sizeof(struct ip_mreq))
1659 error = ip_get_membership(sopt, &ifp, &ia, false);
1660 else
1661 #ifdef INET6
1662 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1663 #else
1664 return EINVAL;
1665 #endif
1666
1667 if (error)
1668 return error;
1669
1670 /*
1671 * Find the membership in the membership array.
1672 */
1673 for (i = 0; i < imo->imo_num_memberships; ++i) {
1674 if ((ifp == NULL ||
1675 imo->imo_membership[i]->inm_ifp == ifp) &&
1676 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1677 break;
1678 }
1679 if (i == imo->imo_num_memberships)
1680 return EADDRNOTAVAIL;
1681
1682 /*
1683 * Give up the multicast address record to which the
1684 * membership points.
1685 */
1686 in_delmulti(imo->imo_membership[i]);
1687
1688 /*
1689 * Remove the gap in the membership array.
1690 */
1691 for (++i; i < imo->imo_num_memberships; ++i)
1692 imo->imo_membership[i-1] = imo->imo_membership[i];
1693 --imo->imo_num_memberships;
1694 return 0;
1695 }
1696
1697 /*
1698 * Set the IP multicast options in response to user setsockopt().
1699 */
1700 int
1701 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1702 {
1703 struct ip_moptions *imo = *pimo;
1704 struct in_addr addr;
1705 struct ifnet *ifp;
1706 int ifindex, error = 0;
1707
1708 if (!imo) {
1709 /*
1710 * No multicast option buffer attached to the pcb;
1711 * allocate one and initialize to default values.
1712 */
1713 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1714 if (imo == NULL)
1715 return ENOBUFS;
1716
1717 imo->imo_multicast_ifp = NULL;
1718 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1719 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1720 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1721 imo->imo_num_memberships = 0;
1722 *pimo = imo;
1723 }
1724
1725 switch (sopt->sopt_name) {
1726 case IP_MULTICAST_IF:
1727 /*
1728 * Select the interface for outgoing multicast packets.
1729 */
1730 error = sockopt_get(sopt, &addr, sizeof(addr));
1731 if (error)
1732 break;
1733
1734 /*
1735 * INADDR_ANY is used to remove a previous selection.
1736 * When no interface is selected, a default one is
1737 * chosen every time a multicast packet is sent.
1738 */
1739 if (in_nullhost(addr)) {
1740 imo->imo_multicast_ifp = NULL;
1741 break;
1742 }
1743 /*
1744 * The selected interface is identified by its local
1745 * IP address. Find the interface and confirm that
1746 * it supports multicasting.
1747 */
1748 ifp = ip_multicast_if(&addr, &ifindex);
1749 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1750 error = EADDRNOTAVAIL;
1751 break;
1752 }
1753 imo->imo_multicast_ifp = ifp;
1754 if (ifindex)
1755 imo->imo_multicast_addr = addr;
1756 else
1757 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1758 break;
1759
1760 case IP_MULTICAST_TTL:
1761 /*
1762 * Set the IP time-to-live for outgoing multicast packets.
1763 */
1764 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1765 break;
1766
1767 case IP_MULTICAST_LOOP:
1768 /*
1769 * Set the loopback flag for outgoing multicast packets.
1770 * Must be zero or one.
1771 */
1772 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1773 break;
1774
1775 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1776 error = ip_add_membership(imo, sopt);
1777 break;
1778
1779 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1780 error = ip_drop_membership(imo, sopt);
1781 break;
1782
1783 default:
1784 error = EOPNOTSUPP;
1785 break;
1786 }
1787
1788 /*
1789 * If all options have default values, no need to keep the mbuf.
1790 */
1791 if (imo->imo_multicast_ifp == NULL &&
1792 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1793 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1794 imo->imo_num_memberships == 0) {
1795 kmem_free(imo, sizeof(*imo));
1796 *pimo = NULL;
1797 }
1798
1799 return error;
1800 }
1801
1802 /*
1803 * Return the IP multicast options in response to user getsockopt().
1804 */
1805 int
1806 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1807 {
1808 struct in_addr addr;
1809 struct in_ifaddr *ia;
1810 uint8_t optval;
1811 int error = 0;
1812
1813 switch (sopt->sopt_name) {
1814 case IP_MULTICAST_IF:
1815 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1816 addr = zeroin_addr;
1817 else if (imo->imo_multicast_addr.s_addr) {
1818 /* return the value user has set */
1819 addr = imo->imo_multicast_addr;
1820 } else {
1821 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1822 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1823 }
1824 error = sockopt_set(sopt, &addr, sizeof(addr));
1825 break;
1826
1827 case IP_MULTICAST_TTL:
1828 optval = imo ? imo->imo_multicast_ttl
1829 : IP_DEFAULT_MULTICAST_TTL;
1830
1831 error = sockopt_set(sopt, &optval, sizeof(optval));
1832 break;
1833
1834 case IP_MULTICAST_LOOP:
1835 optval = imo ? imo->imo_multicast_loop
1836 : IP_DEFAULT_MULTICAST_LOOP;
1837
1838 error = sockopt_set(sopt, &optval, sizeof(optval));
1839 break;
1840
1841 default:
1842 error = EOPNOTSUPP;
1843 }
1844
1845 return error;
1846 }
1847
1848 /*
1849 * Discard the IP multicast options.
1850 */
1851 void
1852 ip_freemoptions(struct ip_moptions *imo)
1853 {
1854 int i;
1855
1856 if (imo != NULL) {
1857 for (i = 0; i < imo->imo_num_memberships; ++i)
1858 in_delmulti(imo->imo_membership[i]);
1859 kmem_free(imo, sizeof(*imo));
1860 }
1861 }
1862
1863 /*
1864 * Routine called from ip_output() to loop back a copy of an IP multicast
1865 * packet to the input queue of a specified interface. Note that this
1866 * calls the output routine of the loopback "driver", but with an interface
1867 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1868 */
1869 static void
1870 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1871 {
1872 struct ip *ip;
1873 struct mbuf *copym;
1874
1875 copym = m_copypacket(m, M_DONTWAIT);
1876 if (copym != NULL &&
1877 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1878 copym = m_pullup(copym, sizeof(struct ip));
1879 if (copym == NULL)
1880 return;
1881 /*
1882 * We don't bother to fragment if the IP length is greater
1883 * than the interface's MTU. Can this possibly matter?
1884 */
1885 ip = mtod(copym, struct ip *);
1886
1887 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1888 in_delayed_cksum(copym);
1889 copym->m_pkthdr.csum_flags &=
1890 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1891 }
1892
1893 ip->ip_sum = 0;
1894 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1895 #ifndef NET_MPSAFE
1896 KERNEL_LOCK(1, NULL);
1897 #endif
1898 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1899 #ifndef NET_MPSAFE
1900 KERNEL_UNLOCK_ONE(NULL);
1901 #endif
1902 }
1903