Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.248
      1 /*	$NetBSD: ip_output.c,v 1.248 2016/01/20 22:12:22 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.248 2016/01/20 22:12:22 riastradh Exp $");
     95 
     96 #ifdef _KERNEL_OPT
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mpls.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/kmem.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/protosw.h>
    108 #include <sys/socket.h>
    109 #include <sys/socketvar.h>
    110 #include <sys/kauth.h>
    111 #ifdef IPSEC
    112 #include <sys/domain.h>
    113 #endif
    114 #include <sys/systm.h>
    115 
    116 #include <net/if.h>
    117 #include <net/if_types.h>
    118 #include <net/route.h>
    119 #include <net/pfil.h>
    120 
    121 #include <netinet/in.h>
    122 #include <netinet/in_systm.h>
    123 #include <netinet/ip.h>
    124 #include <netinet/in_pcb.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/ip_var.h>
    127 #include <netinet/ip_private.h>
    128 #include <netinet/in_offload.h>
    129 #include <netinet/portalgo.h>
    130 #include <netinet/udp.h>
    131 
    132 #ifdef INET6
    133 #include <netinet6/ip6_var.h>
    134 #endif
    135 
    136 #ifdef MROUTING
    137 #include <netinet/ip_mroute.h>
    138 #endif
    139 
    140 #ifdef IPSEC
    141 #include <netipsec/ipsec.h>
    142 #include <netipsec/key.h>
    143 #endif
    144 
    145 #ifdef MPLS
    146 #include <netmpls/mpls.h>
    147 #include <netmpls/mpls_var.h>
    148 #endif
    149 
    150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    153 static void ip_mloopback(struct ifnet *, struct mbuf *,
    154     const struct sockaddr_in *);
    155 
    156 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    157 
    158 int	ip_do_loopback_cksum = 0;
    159 
    160 static bool
    161 ip_hresolv_needed(const struct ifnet * const ifp)
    162 {
    163 	switch (ifp->if_type) {
    164 	case IFT_ARCNET:
    165 	case IFT_ATM:
    166 	case IFT_ECONET:
    167 	case IFT_ETHER:
    168 	case IFT_FDDI:
    169 	case IFT_HIPPI:
    170 	case IFT_IEEE1394:
    171 	case IFT_ISO88025:
    172 	case IFT_SLIP:
    173 		return true;
    174 	default:
    175 		return false;
    176 	}
    177 }
    178 
    179 static int
    180 klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
    181     const struct sockaddr * const dst, struct rtentry *rt)
    182 {
    183 	int error;
    184 
    185 #ifndef NET_MPSAFE
    186 	KERNEL_LOCK(1, NULL);
    187 #endif
    188 
    189 	error = (*ifp->if_output)(ifp, m, dst, rt);
    190 
    191 #ifndef NET_MPSAFE
    192 	KERNEL_UNLOCK_ONE(NULL);
    193 #endif
    194 
    195 	return error;
    196 }
    197 
    198 /*
    199  * Send an IP packet to a host.
    200  *
    201  * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
    202  * calling ifp's output routine.
    203  */
    204 int
    205 ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
    206     const struct sockaddr * const dst, struct rtentry *rt00)
    207 {
    208 	int error = 0;
    209 	struct ifnet *ifp = ifp0;
    210 	struct rtentry *rt, *rt0, *gwrt;
    211 
    212 #define RTFREE_IF_NEEDED(_rt) \
    213 	if ((_rt) != NULL && (_rt) != rt00) \
    214 		rtfree((_rt));
    215 
    216 	rt0 = rt00;
    217 retry:
    218 	if (!ip_hresolv_needed(ifp)) {
    219 		rt = rt0;
    220 		goto out;
    221 	}
    222 
    223 	if (rt0 == NULL) {
    224 		rt = NULL;
    225 		goto out;
    226 	}
    227 
    228 	rt = rt0;
    229 
    230 	/*
    231 	 * The following block is highly questionable.  How did we get here
    232 	 * with a !RTF_UP route?  Does rtalloc1() always return an RTF_UP
    233 	 * route?
    234 	 */
    235 	if ((rt->rt_flags & RTF_UP) == 0) {
    236 		rt = rtalloc1(dst, 1);
    237 		if (rt == NULL) {
    238 			error = EHOSTUNREACH;
    239 			goto bad;
    240 		}
    241 		rt0 = rt;
    242 		if (rt->rt_ifp != ifp) {
    243 			ifp = rt->rt_ifp;
    244 			goto retry;
    245 		}
    246 	}
    247 
    248 	if ((rt->rt_flags & RTF_GATEWAY) == 0)
    249 		goto out;
    250 
    251 	gwrt = rt_get_gwroute(rt);
    252 	RTFREE_IF_NEEDED(rt);
    253 	rt = gwrt;
    254 	if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
    255 		if (rt != NULL) {
    256 			RTFREE_IF_NEEDED(rt);
    257 			rt = rt0;
    258 		}
    259 		if (rt == NULL) {
    260 			error = EHOSTUNREACH;
    261 			goto bad;
    262 		}
    263 		gwrt = rtalloc1(rt->rt_gateway, 1);
    264 		rt_set_gwroute(rt, gwrt);
    265 		RTFREE_IF_NEEDED(rt);
    266 		rt = gwrt;
    267 		if (rt == NULL) {
    268 			error = EHOSTUNREACH;
    269 			goto bad;
    270 		}
    271 		/* the "G" test below also prevents rt == rt0 */
    272 		if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
    273 			if (rt0->rt_gwroute != NULL)
    274 				rtfree(rt0->rt_gwroute);
    275 			rt0->rt_gwroute = NULL;
    276 			error = EHOSTUNREACH;
    277 			goto bad;
    278 		}
    279 	}
    280 	if ((rt->rt_flags & RTF_REJECT) != 0) {
    281 		if (rt->rt_rmx.rmx_expire == 0 ||
    282 		    time_uptime < rt->rt_rmx.rmx_expire) {
    283 			error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
    284 			goto bad;
    285 		}
    286 	}
    287 
    288 out:
    289 #ifdef MPLS
    290 	if (rt0 != NULL && rt_gettag(rt0) != NULL &&
    291 	    rt_gettag(rt0)->sa_family == AF_MPLS &&
    292 	    (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
    293 	    ifp->if_type == IFT_ETHER) {
    294 		union mpls_shim msh;
    295 		msh.s_addr = MPLS_GETSADDR(rt0);
    296 		if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    297 			struct m_tag *mtag;
    298 			/*
    299 			 * XXX tentative solution to tell ether_output
    300 			 * it's MPLS. Need some more efficient solution.
    301 			 */
    302 			mtag = m_tag_get(PACKET_TAG_MPLS,
    303 			    sizeof(int) /* dummy */,
    304 			    M_NOWAIT);
    305 			if (mtag == NULL) {
    306 				error = ENOMEM;
    307 				goto bad;
    308 			}
    309 			m_tag_prepend(m, mtag);
    310 		}
    311 	}
    312 #endif
    313 
    314 	error = klock_if_output(ifp, m, dst, rt);
    315 	goto exit;
    316 
    317 bad:
    318 	if (m != NULL)
    319 		m_freem(m);
    320 exit:
    321 	RTFREE_IF_NEEDED(rt);
    322 
    323 	return error;
    324 
    325 #undef RTFREE_IF_NEEDED
    326 }
    327 
    328 /*
    329  * IP output.  The packet in mbuf chain m contains a skeletal IP
    330  * header (with len, off, ttl, proto, tos, src, dst).
    331  * The mbuf chain containing the packet will be freed.
    332  * The mbuf opt, if present, will not be freed.
    333  */
    334 int
    335 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
    336     struct ip_moptions *imo, struct socket *so)
    337 {
    338 	struct rtentry *rt;
    339 	struct ip *ip;
    340 	struct ifnet *ifp;
    341 	struct mbuf *m = m0;
    342 	int hlen = sizeof (struct ip);
    343 	int len, error = 0;
    344 	struct route iproute;
    345 	const struct sockaddr_in *dst;
    346 	struct in_ifaddr *ia;
    347 	int isbroadcast;
    348 	int sw_csum;
    349 	u_long mtu;
    350 #ifdef IPSEC
    351 	struct secpolicy *sp = NULL;
    352 #endif
    353 	bool natt_frag = false;
    354 	bool rtmtu_nolock;
    355 	union {
    356 		struct sockaddr		dst;
    357 		struct sockaddr_in	dst4;
    358 	} u;
    359 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    360 					 * to the nexthop
    361 					 */
    362 
    363 	len = 0;
    364 
    365 	MCLAIM(m, &ip_tx_mowner);
    366 
    367 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    368 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    369 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    370 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    371 
    372 	if (opt) {
    373 		m = ip_insertoptions(m, opt, &len);
    374 		if (len >= sizeof(struct ip))
    375 			hlen = len;
    376 	}
    377 	ip = mtod(m, struct ip *);
    378 
    379 	/*
    380 	 * Fill in IP header.
    381 	 */
    382 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    383 		ip->ip_v = IPVERSION;
    384 		ip->ip_off = htons(0);
    385 		/* ip->ip_id filled in after we find out source ia */
    386 		ip->ip_hl = hlen >> 2;
    387 		IP_STATINC(IP_STAT_LOCALOUT);
    388 	} else {
    389 		hlen = ip->ip_hl << 2;
    390 	}
    391 
    392 	/*
    393 	 * Route packet.
    394 	 */
    395 	if (ro == NULL) {
    396 		memset(&iproute, 0, sizeof(iproute));
    397 		ro = &iproute;
    398 	}
    399 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    400 	dst = satocsin(rtcache_getdst(ro));
    401 
    402 	/*
    403 	 * If there is a cached route, check that it is to the same
    404 	 * destination and is still up.  If not, free it and try again.
    405 	 * The address family should also be checked in case of sharing
    406 	 * the cache with IPv6.
    407 	 */
    408 	if (dst && (dst->sin_family != AF_INET ||
    409 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    410 		rtcache_free(ro);
    411 
    412 	if ((rt = rtcache_validate(ro)) == NULL &&
    413 	    (rt = rtcache_update(ro, 1)) == NULL) {
    414 		dst = &u.dst4;
    415 		error = rtcache_setdst(ro, &u.dst);
    416 		if (error != 0)
    417 			goto bad;
    418 	}
    419 
    420 	/*
    421 	 * If routing to interface only, short circuit routing lookup.
    422 	 */
    423 	if (flags & IP_ROUTETOIF) {
    424 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    425 			IP_STATINC(IP_STAT_NOROUTE);
    426 			error = ENETUNREACH;
    427 			goto bad;
    428 		}
    429 		ifp = ia->ia_ifp;
    430 		mtu = ifp->if_mtu;
    431 		ip->ip_ttl = 1;
    432 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    433 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    434 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    435 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    436 		ifp = imo->imo_multicast_ifp;
    437 		mtu = ifp->if_mtu;
    438 		IFP_TO_IA(ifp, ia);
    439 		isbroadcast = 0;
    440 	} else {
    441 		if (rt == NULL)
    442 			rt = rtcache_init(ro);
    443 		if (rt == NULL) {
    444 			IP_STATINC(IP_STAT_NOROUTE);
    445 			error = EHOSTUNREACH;
    446 			goto bad;
    447 		}
    448 		ia = ifatoia(rt->rt_ifa);
    449 		ifp = rt->rt_ifp;
    450 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    451 			mtu = ifp->if_mtu;
    452 		rt->rt_use++;
    453 		if (rt->rt_flags & RTF_GATEWAY)
    454 			dst = satosin(rt->rt_gateway);
    455 		if (rt->rt_flags & RTF_HOST)
    456 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    457 		else
    458 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    459 	}
    460 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    461 
    462 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    463 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    464 		bool inmgroup;
    465 
    466 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    467 		    M_BCAST : M_MCAST;
    468 		/*
    469 		 * See if the caller provided any multicast options
    470 		 */
    471 		if (imo != NULL)
    472 			ip->ip_ttl = imo->imo_multicast_ttl;
    473 		else
    474 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    475 
    476 		/*
    477 		 * if we don't know the outgoing ifp yet, we can't generate
    478 		 * output
    479 		 */
    480 		if (!ifp) {
    481 			IP_STATINC(IP_STAT_NOROUTE);
    482 			error = ENETUNREACH;
    483 			goto bad;
    484 		}
    485 
    486 		/*
    487 		 * If the packet is multicast or broadcast, confirm that
    488 		 * the outgoing interface can transmit it.
    489 		 */
    490 		if (((m->m_flags & M_MCAST) &&
    491 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    492 		    ((m->m_flags & M_BCAST) &&
    493 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    494 			IP_STATINC(IP_STAT_NOROUTE);
    495 			error = ENETUNREACH;
    496 			goto bad;
    497 		}
    498 		/*
    499 		 * If source address not specified yet, use an address
    500 		 * of outgoing interface.
    501 		 */
    502 		if (in_nullhost(ip->ip_src)) {
    503 			struct in_ifaddr *xia;
    504 			struct ifaddr *xifa;
    505 
    506 			IFP_TO_IA(ifp, xia);
    507 			if (!xia) {
    508 				error = EADDRNOTAVAIL;
    509 				goto bad;
    510 			}
    511 			xifa = &xia->ia_ifa;
    512 			if (xifa->ifa_getifa != NULL) {
    513 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    514 				if (xia == NULL) {
    515 					error = EADDRNOTAVAIL;
    516 					goto bad;
    517 				}
    518 			}
    519 			ip->ip_src = xia->ia_addr.sin_addr;
    520 		}
    521 
    522 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    523 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    524 			/*
    525 			 * If we belong to the destination multicast group
    526 			 * on the outgoing interface, and the caller did not
    527 			 * forbid loopback, loop back a copy.
    528 			 */
    529 			ip_mloopback(ifp, m, &u.dst4);
    530 		}
    531 #ifdef MROUTING
    532 		else {
    533 			/*
    534 			 * If we are acting as a multicast router, perform
    535 			 * multicast forwarding as if the packet had just
    536 			 * arrived on the interface to which we are about
    537 			 * to send.  The multicast forwarding function
    538 			 * recursively calls this function, using the
    539 			 * IP_FORWARDING flag to prevent infinite recursion.
    540 			 *
    541 			 * Multicasts that are looped back by ip_mloopback(),
    542 			 * above, will be forwarded by the ip_input() routine,
    543 			 * if necessary.
    544 			 */
    545 			extern struct socket *ip_mrouter;
    546 
    547 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    548 				if (ip_mforward(m, ifp) != 0) {
    549 					m_freem(m);
    550 					goto done;
    551 				}
    552 			}
    553 		}
    554 #endif
    555 		/*
    556 		 * Multicasts with a time-to-live of zero may be looped-
    557 		 * back, above, but must not be transmitted on a network.
    558 		 * Also, multicasts addressed to the loopback interface
    559 		 * are not sent -- the above call to ip_mloopback() will
    560 		 * loop back a copy if this host actually belongs to the
    561 		 * destination group on the loopback interface.
    562 		 */
    563 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    564 			m_freem(m);
    565 			goto done;
    566 		}
    567 		goto sendit;
    568 	}
    569 
    570 	/*
    571 	 * If source address not specified yet, use address
    572 	 * of outgoing interface.
    573 	 */
    574 	if (in_nullhost(ip->ip_src)) {
    575 		struct ifaddr *xifa;
    576 
    577 		xifa = &ia->ia_ifa;
    578 		if (xifa->ifa_getifa != NULL) {
    579 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    580 			if (ia == NULL) {
    581 				error = EADDRNOTAVAIL;
    582 				goto bad;
    583 			}
    584 		}
    585 		ip->ip_src = ia->ia_addr.sin_addr;
    586 	}
    587 
    588 	/*
    589 	 * packets with Class-D address as source are not valid per
    590 	 * RFC 1112
    591 	 */
    592 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    593 		IP_STATINC(IP_STAT_ODROPPED);
    594 		error = EADDRNOTAVAIL;
    595 		goto bad;
    596 	}
    597 
    598 	/*
    599 	 * Look for broadcast address and and verify user is allowed to
    600 	 * send such a packet.
    601 	 */
    602 	if (isbroadcast) {
    603 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    604 			error = EADDRNOTAVAIL;
    605 			goto bad;
    606 		}
    607 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    608 			error = EACCES;
    609 			goto bad;
    610 		}
    611 		/* don't allow broadcast messages to be fragmented */
    612 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    613 			error = EMSGSIZE;
    614 			goto bad;
    615 		}
    616 		m->m_flags |= M_BCAST;
    617 	} else
    618 		m->m_flags &= ~M_BCAST;
    619 
    620 sendit:
    621 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    622 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    623 			ip->ip_id = 0;
    624 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    625 			ip->ip_id = ip_newid(ia);
    626 		} else {
    627 
    628 			/*
    629 			 * TSO capable interfaces (typically?) increment
    630 			 * ip_id for each segment.
    631 			 * "allocate" enough ids here to increase the chance
    632 			 * for them to be unique.
    633 			 *
    634 			 * note that the following calculation is not
    635 			 * needed to be precise.  wasting some ip_id is fine.
    636 			 */
    637 
    638 			unsigned int segsz = m->m_pkthdr.segsz;
    639 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    640 			unsigned int num = howmany(datasz, segsz);
    641 
    642 			ip->ip_id = ip_newid_range(ia, num);
    643 		}
    644 	}
    645 
    646 	/*
    647 	 * If we're doing Path MTU Discovery, we need to set DF unless
    648 	 * the route's MTU is locked.
    649 	 */
    650 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    651 		ip->ip_off |= htons(IP_DF);
    652 	}
    653 
    654 #ifdef IPSEC
    655 	if (ipsec_used) {
    656 		bool ipsec_done = false;
    657 
    658 		/* Perform IPsec processing, if any. */
    659 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    660 		    &ipsec_done);
    661 		if (error || ipsec_done)
    662 			goto done;
    663 	}
    664 #endif
    665 
    666 	/*
    667 	 * Run through list of hooks for output packets.
    668 	 */
    669 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    670 	if (error)
    671 		goto done;
    672 	if (m == NULL)
    673 		goto done;
    674 
    675 	ip = mtod(m, struct ip *);
    676 	hlen = ip->ip_hl << 2;
    677 
    678 	m->m_pkthdr.csum_data |= hlen << 16;
    679 
    680 #if IFA_STATS
    681 	/*
    682 	 * search for the source address structure to
    683 	 * maintain output statistics.
    684 	 */
    685 	INADDR_TO_IA(ip->ip_src, ia);
    686 #endif
    687 
    688 	/* Maybe skip checksums on loopback interfaces. */
    689 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    690 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    691 	}
    692 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    693 	/*
    694 	 * If small enough for mtu of path, or if using TCP segmentation
    695 	 * offload, can just send directly.
    696 	 */
    697 	if (ntohs(ip->ip_len) <= mtu ||
    698 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    699 		const struct sockaddr *sa;
    700 
    701 #if IFA_STATS
    702 		if (ia)
    703 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    704 #endif
    705 		/*
    706 		 * Always initialize the sum to 0!  Some HW assisted
    707 		 * checksumming requires this.
    708 		 */
    709 		ip->ip_sum = 0;
    710 
    711 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    712 			/*
    713 			 * Perform any checksums that the hardware can't do
    714 			 * for us.
    715 			 *
    716 			 * XXX Does any hardware require the {th,uh}_sum
    717 			 * XXX fields to be 0?
    718 			 */
    719 			if (sw_csum & M_CSUM_IPv4) {
    720 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    721 				ip->ip_sum = in_cksum(m, hlen);
    722 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    723 			}
    724 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    725 				if (IN_NEED_CHECKSUM(ifp,
    726 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    727 					in_delayed_cksum(m);
    728 				}
    729 				m->m_pkthdr.csum_flags &=
    730 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    731 			}
    732 		}
    733 
    734 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    735 		if (__predict_true(
    736 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    737 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    738 			error = ip_hresolv_output(ifp, m, sa, rt);
    739 		} else {
    740 			error = ip_tso_output(ifp, m, sa, rt);
    741 		}
    742 		goto done;
    743 	}
    744 
    745 	/*
    746 	 * We can't use HW checksumming if we're about to
    747 	 * to fragment the packet.
    748 	 *
    749 	 * XXX Some hardware can do this.
    750 	 */
    751 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    752 		if (IN_NEED_CHECKSUM(ifp,
    753 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    754 			in_delayed_cksum(m);
    755 		}
    756 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    757 	}
    758 
    759 	/*
    760 	 * Too large for interface; fragment if possible.
    761 	 * Must be able to put at least 8 bytes per fragment.
    762 	 */
    763 	if (ntohs(ip->ip_off) & IP_DF) {
    764 		if (flags & IP_RETURNMTU) {
    765 			struct inpcb *inp;
    766 
    767 			KASSERT(so && solocked(so));
    768 			inp = sotoinpcb(so);
    769 			inp->inp_errormtu = mtu;
    770 		}
    771 		error = EMSGSIZE;
    772 		IP_STATINC(IP_STAT_CANTFRAG);
    773 		goto bad;
    774 	}
    775 
    776 	error = ip_fragment(m, ifp, mtu);
    777 	if (error) {
    778 		m = NULL;
    779 		goto bad;
    780 	}
    781 
    782 	for (; m; m = m0) {
    783 		m0 = m->m_nextpkt;
    784 		m->m_nextpkt = 0;
    785 		if (error) {
    786 			m_freem(m);
    787 			continue;
    788 		}
    789 #if IFA_STATS
    790 		if (ia)
    791 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    792 #endif
    793 		/*
    794 		 * If we get there, the packet has not been handled by
    795 		 * IPsec whereas it should have. Now that it has been
    796 		 * fragmented, re-inject it in ip_output so that IPsec
    797 		 * processing can occur.
    798 		 */
    799 		if (natt_frag) {
    800 			error = ip_output(m, opt, ro,
    801 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    802 			    imo, so);
    803 		} else {
    804 			KASSERT((m->m_pkthdr.csum_flags &
    805 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    806 			error = ip_hresolv_output(ifp, m,
    807 			    (m->m_flags & M_MCAST) ?
    808 			    sintocsa(rdst) : sintocsa(dst), rt);
    809 		}
    810 	}
    811 	if (error == 0) {
    812 		IP_STATINC(IP_STAT_FRAGMENTED);
    813 	}
    814 done:
    815 	if (ro == &iproute) {
    816 		rtcache_free(&iproute);
    817 	}
    818 #ifdef IPSEC
    819 	if (sp) {
    820 		KEY_FREESP(&sp);
    821 	}
    822 #endif
    823 	return error;
    824 bad:
    825 	m_freem(m);
    826 	goto done;
    827 }
    828 
    829 int
    830 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    831 {
    832 	struct ip *ip, *mhip;
    833 	struct mbuf *m0;
    834 	int len, hlen, off;
    835 	int mhlen, firstlen;
    836 	struct mbuf **mnext;
    837 	int sw_csum = m->m_pkthdr.csum_flags;
    838 	int fragments = 0;
    839 	int s;
    840 	int error = 0;
    841 
    842 	ip = mtod(m, struct ip *);
    843 	hlen = ip->ip_hl << 2;
    844 	if (ifp != NULL)
    845 		sw_csum &= ~ifp->if_csum_flags_tx;
    846 
    847 	len = (mtu - hlen) &~ 7;
    848 	if (len < 8) {
    849 		m_freem(m);
    850 		return (EMSGSIZE);
    851 	}
    852 
    853 	firstlen = len;
    854 	mnext = &m->m_nextpkt;
    855 
    856 	/*
    857 	 * Loop through length of segment after first fragment,
    858 	 * make new header and copy data of each part and link onto chain.
    859 	 */
    860 	m0 = m;
    861 	mhlen = sizeof (struct ip);
    862 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    863 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    864 		if (m == 0) {
    865 			error = ENOBUFS;
    866 			IP_STATINC(IP_STAT_ODROPPED);
    867 			goto sendorfree;
    868 		}
    869 		MCLAIM(m, m0->m_owner);
    870 		*mnext = m;
    871 		mnext = &m->m_nextpkt;
    872 		m->m_data += max_linkhdr;
    873 		mhip = mtod(m, struct ip *);
    874 		*mhip = *ip;
    875 		/* we must inherit MCAST and BCAST flags */
    876 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    877 		if (hlen > sizeof (struct ip)) {
    878 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    879 			mhip->ip_hl = mhlen >> 2;
    880 		}
    881 		m->m_len = mhlen;
    882 		mhip->ip_off = ((off - hlen) >> 3) +
    883 		    (ntohs(ip->ip_off) & ~IP_MF);
    884 		if (ip->ip_off & htons(IP_MF))
    885 			mhip->ip_off |= IP_MF;
    886 		if (off + len >= ntohs(ip->ip_len))
    887 			len = ntohs(ip->ip_len) - off;
    888 		else
    889 			mhip->ip_off |= IP_MF;
    890 		HTONS(mhip->ip_off);
    891 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    892 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    893 		if (m->m_next == 0) {
    894 			error = ENOBUFS;	/* ??? */
    895 			IP_STATINC(IP_STAT_ODROPPED);
    896 			goto sendorfree;
    897 		}
    898 		m->m_pkthdr.len = mhlen + len;
    899 		m->m_pkthdr.rcvif = NULL;
    900 		mhip->ip_sum = 0;
    901 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    902 		if (sw_csum & M_CSUM_IPv4) {
    903 			mhip->ip_sum = in_cksum(m, mhlen);
    904 		} else {
    905 			/*
    906 			 * checksum is hw-offloaded or not necessary.
    907 			 */
    908 			m->m_pkthdr.csum_flags |=
    909 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    910 			m->m_pkthdr.csum_data |= mhlen << 16;
    911 			KASSERT(!(ifp != NULL &&
    912 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    913 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    914 		}
    915 		IP_STATINC(IP_STAT_OFRAGMENTS);
    916 		fragments++;
    917 	}
    918 	/*
    919 	 * Update first fragment by trimming what's been copied out
    920 	 * and updating header, then send each fragment (in order).
    921 	 */
    922 	m = m0;
    923 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    924 	m->m_pkthdr.len = hlen + firstlen;
    925 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    926 	ip->ip_off |= htons(IP_MF);
    927 	ip->ip_sum = 0;
    928 	if (sw_csum & M_CSUM_IPv4) {
    929 		ip->ip_sum = in_cksum(m, hlen);
    930 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    931 	} else {
    932 		/*
    933 		 * checksum is hw-offloaded or not necessary.
    934 		 */
    935 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    936 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    937 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    938 		    sizeof(struct ip));
    939 	}
    940 sendorfree:
    941 	/*
    942 	 * If there is no room for all the fragments, don't queue
    943 	 * any of them.
    944 	 */
    945 	if (ifp != NULL) {
    946 		s = splnet();
    947 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    948 		    error == 0) {
    949 			error = ENOBUFS;
    950 			IP_STATINC(IP_STAT_ODROPPED);
    951 			IFQ_INC_DROPS(&ifp->if_snd);
    952 		}
    953 		splx(s);
    954 	}
    955 	if (error) {
    956 		for (m = m0; m; m = m0) {
    957 			m0 = m->m_nextpkt;
    958 			m->m_nextpkt = NULL;
    959 			m_freem(m);
    960 		}
    961 	}
    962 	return (error);
    963 }
    964 
    965 /*
    966  * Process a delayed payload checksum calculation.
    967  */
    968 void
    969 in_delayed_cksum(struct mbuf *m)
    970 {
    971 	struct ip *ip;
    972 	u_int16_t csum, offset;
    973 
    974 	ip = mtod(m, struct ip *);
    975 	offset = ip->ip_hl << 2;
    976 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    977 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    978 		csum = 0xffff;
    979 
    980 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    981 
    982 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    983 		/* This happen when ip options were inserted
    984 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    985 		    m->m_len, offset, ip->ip_p);
    986 		 */
    987 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    988 	} else
    989 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    990 }
    991 
    992 /*
    993  * Determine the maximum length of the options to be inserted;
    994  * we would far rather allocate too much space rather than too little.
    995  */
    996 
    997 u_int
    998 ip_optlen(struct inpcb *inp)
    999 {
   1000 	struct mbuf *m = inp->inp_options;
   1001 
   1002 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
   1003 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1004 	}
   1005 	return 0;
   1006 }
   1007 
   1008 /*
   1009  * Insert IP options into preformed packet.
   1010  * Adjust IP destination as required for IP source routing,
   1011  * as indicated by a non-zero in_addr at the start of the options.
   1012  */
   1013 static struct mbuf *
   1014 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1015 {
   1016 	struct ipoption *p = mtod(opt, struct ipoption *);
   1017 	struct mbuf *n;
   1018 	struct ip *ip = mtod(m, struct ip *);
   1019 	unsigned optlen;
   1020 
   1021 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1022 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1023 		return (m);		/* XXX should fail */
   1024 	if (!in_nullhost(p->ipopt_dst))
   1025 		ip->ip_dst = p->ipopt_dst;
   1026 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1027 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1028 		if (n == 0)
   1029 			return (m);
   1030 		MCLAIM(n, m->m_owner);
   1031 		M_MOVE_PKTHDR(n, m);
   1032 		m->m_len -= sizeof(struct ip);
   1033 		m->m_data += sizeof(struct ip);
   1034 		n->m_next = m;
   1035 		m = n;
   1036 		m->m_len = optlen + sizeof(struct ip);
   1037 		m->m_data += max_linkhdr;
   1038 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1039 	} else {
   1040 		m->m_data -= optlen;
   1041 		m->m_len += optlen;
   1042 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1043 	}
   1044 	m->m_pkthdr.len += optlen;
   1045 	ip = mtod(m, struct ip *);
   1046 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1047 	*phlen = sizeof(struct ip) + optlen;
   1048 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1049 	return (m);
   1050 }
   1051 
   1052 /*
   1053  * Copy options from ip to jp,
   1054  * omitting those not copied during fragmentation.
   1055  */
   1056 int
   1057 ip_optcopy(struct ip *ip, struct ip *jp)
   1058 {
   1059 	u_char *cp, *dp;
   1060 	int opt, optlen, cnt;
   1061 
   1062 	cp = (u_char *)(ip + 1);
   1063 	dp = (u_char *)(jp + 1);
   1064 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1065 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1066 		opt = cp[0];
   1067 		if (opt == IPOPT_EOL)
   1068 			break;
   1069 		if (opt == IPOPT_NOP) {
   1070 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1071 			*dp++ = IPOPT_NOP;
   1072 			optlen = 1;
   1073 			continue;
   1074 		}
   1075 
   1076 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
   1077 		optlen = cp[IPOPT_OLEN];
   1078 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
   1079 
   1080 		/* Invalid lengths should have been caught by ip_dooptions. */
   1081 		if (optlen > cnt)
   1082 			optlen = cnt;
   1083 		if (IPOPT_COPIED(opt)) {
   1084 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1085 			dp += optlen;
   1086 		}
   1087 	}
   1088 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1089 		*dp++ = IPOPT_EOL;
   1090 	return (optlen);
   1091 }
   1092 
   1093 /*
   1094  * IP socket option processing.
   1095  */
   1096 int
   1097 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1098 {
   1099 	struct inpcb *inp = sotoinpcb(so);
   1100 	struct ip *ip = &inp->inp_ip;
   1101 	int inpflags = inp->inp_flags;
   1102 	int optval = 0, error = 0;
   1103 
   1104 	if (sopt->sopt_level != IPPROTO_IP) {
   1105 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1106 			return 0;
   1107 		return ENOPROTOOPT;
   1108 	}
   1109 
   1110 	switch (op) {
   1111 	case PRCO_SETOPT:
   1112 		switch (sopt->sopt_name) {
   1113 		case IP_OPTIONS:
   1114 #ifdef notyet
   1115 		case IP_RETOPTS:
   1116 #endif
   1117 			error = ip_pcbopts(inp, sopt);
   1118 			break;
   1119 
   1120 		case IP_TOS:
   1121 		case IP_TTL:
   1122 		case IP_MINTTL:
   1123 		case IP_PKTINFO:
   1124 		case IP_RECVOPTS:
   1125 		case IP_RECVRETOPTS:
   1126 		case IP_RECVDSTADDR:
   1127 		case IP_RECVIF:
   1128 		case IP_RECVPKTINFO:
   1129 		case IP_RECVTTL:
   1130 			error = sockopt_getint(sopt, &optval);
   1131 			if (error)
   1132 				break;
   1133 
   1134 			switch (sopt->sopt_name) {
   1135 			case IP_TOS:
   1136 				ip->ip_tos = optval;
   1137 				break;
   1138 
   1139 			case IP_TTL:
   1140 				ip->ip_ttl = optval;
   1141 				break;
   1142 
   1143 			case IP_MINTTL:
   1144 				if (optval > 0 && optval <= MAXTTL)
   1145 					inp->inp_ip_minttl = optval;
   1146 				else
   1147 					error = EINVAL;
   1148 				break;
   1149 #define	OPTSET(bit) \
   1150 	if (optval) \
   1151 		inpflags |= bit; \
   1152 	else \
   1153 		inpflags &= ~bit;
   1154 
   1155 			case IP_PKTINFO:
   1156 				OPTSET(INP_PKTINFO);
   1157 				break;
   1158 
   1159 			case IP_RECVOPTS:
   1160 				OPTSET(INP_RECVOPTS);
   1161 				break;
   1162 
   1163 			case IP_RECVPKTINFO:
   1164 				OPTSET(INP_RECVPKTINFO);
   1165 				break;
   1166 
   1167 			case IP_RECVRETOPTS:
   1168 				OPTSET(INP_RECVRETOPTS);
   1169 				break;
   1170 
   1171 			case IP_RECVDSTADDR:
   1172 				OPTSET(INP_RECVDSTADDR);
   1173 				break;
   1174 
   1175 			case IP_RECVIF:
   1176 				OPTSET(INP_RECVIF);
   1177 				break;
   1178 
   1179 			case IP_RECVTTL:
   1180 				OPTSET(INP_RECVTTL);
   1181 				break;
   1182 			}
   1183 		break;
   1184 #undef OPTSET
   1185 
   1186 		case IP_MULTICAST_IF:
   1187 		case IP_MULTICAST_TTL:
   1188 		case IP_MULTICAST_LOOP:
   1189 		case IP_ADD_MEMBERSHIP:
   1190 		case IP_DROP_MEMBERSHIP:
   1191 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1192 			break;
   1193 
   1194 		case IP_PORTRANGE:
   1195 			error = sockopt_getint(sopt, &optval);
   1196 			if (error)
   1197 				break;
   1198 
   1199 			switch (optval) {
   1200 			case IP_PORTRANGE_DEFAULT:
   1201 			case IP_PORTRANGE_HIGH:
   1202 				inpflags &= ~(INP_LOWPORT);
   1203 				break;
   1204 
   1205 			case IP_PORTRANGE_LOW:
   1206 				inpflags |= INP_LOWPORT;
   1207 				break;
   1208 
   1209 			default:
   1210 				error = EINVAL;
   1211 				break;
   1212 			}
   1213 			break;
   1214 
   1215 		case IP_PORTALGO:
   1216 			error = sockopt_getint(sopt, &optval);
   1217 			if (error)
   1218 				break;
   1219 
   1220 			error = portalgo_algo_index_select(
   1221 			    (struct inpcb_hdr *)inp, optval);
   1222 			break;
   1223 
   1224 #if defined(IPSEC)
   1225 		case IP_IPSEC_POLICY:
   1226 			if (ipsec_enabled) {
   1227 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1228 				    sopt->sopt_data, sopt->sopt_size,
   1229 				    curlwp->l_cred);
   1230 				break;
   1231 			}
   1232 			/*FALLTHROUGH*/
   1233 #endif /* IPSEC */
   1234 
   1235 		default:
   1236 			error = ENOPROTOOPT;
   1237 			break;
   1238 		}
   1239 		break;
   1240 
   1241 	case PRCO_GETOPT:
   1242 		switch (sopt->sopt_name) {
   1243 		case IP_OPTIONS:
   1244 		case IP_RETOPTS: {
   1245 			struct mbuf *mopts = inp->inp_options;
   1246 
   1247 			if (mopts) {
   1248 				struct mbuf *m;
   1249 
   1250 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1251 				if (m == NULL) {
   1252 					error = ENOBUFS;
   1253 					break;
   1254 				}
   1255 				error = sockopt_setmbuf(sopt, m);
   1256 			}
   1257 			break;
   1258 		}
   1259 		case IP_PKTINFO:
   1260 		case IP_TOS:
   1261 		case IP_TTL:
   1262 		case IP_MINTTL:
   1263 		case IP_RECVOPTS:
   1264 		case IP_RECVRETOPTS:
   1265 		case IP_RECVDSTADDR:
   1266 		case IP_RECVIF:
   1267 		case IP_RECVPKTINFO:
   1268 		case IP_RECVTTL:
   1269 		case IP_ERRORMTU:
   1270 			switch (sopt->sopt_name) {
   1271 			case IP_TOS:
   1272 				optval = ip->ip_tos;
   1273 				break;
   1274 
   1275 			case IP_TTL:
   1276 				optval = ip->ip_ttl;
   1277 				break;
   1278 
   1279 			case IP_MINTTL:
   1280 				optval = inp->inp_ip_minttl;
   1281 				break;
   1282 
   1283 			case IP_ERRORMTU:
   1284 				optval = inp->inp_errormtu;
   1285 				break;
   1286 
   1287 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1288 
   1289 			case IP_PKTINFO:
   1290 				optval = OPTBIT(INP_PKTINFO);
   1291 				break;
   1292 
   1293 			case IP_RECVOPTS:
   1294 				optval = OPTBIT(INP_RECVOPTS);
   1295 				break;
   1296 
   1297 			case IP_RECVPKTINFO:
   1298 				optval = OPTBIT(INP_RECVPKTINFO);
   1299 				break;
   1300 
   1301 			case IP_RECVRETOPTS:
   1302 				optval = OPTBIT(INP_RECVRETOPTS);
   1303 				break;
   1304 
   1305 			case IP_RECVDSTADDR:
   1306 				optval = OPTBIT(INP_RECVDSTADDR);
   1307 				break;
   1308 
   1309 			case IP_RECVIF:
   1310 				optval = OPTBIT(INP_RECVIF);
   1311 				break;
   1312 
   1313 			case IP_RECVTTL:
   1314 				optval = OPTBIT(INP_RECVTTL);
   1315 				break;
   1316 			}
   1317 			error = sockopt_setint(sopt, optval);
   1318 			break;
   1319 
   1320 #if 0	/* defined(IPSEC) */
   1321 		case IP_IPSEC_POLICY:
   1322 		{
   1323 			struct mbuf *m = NULL;
   1324 
   1325 			/* XXX this will return EINVAL as sopt is empty */
   1326 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1327 			    sopt->sopt_size, &m);
   1328 			if (error == 0)
   1329 				error = sockopt_setmbuf(sopt, m);
   1330 			break;
   1331 		}
   1332 #endif /*IPSEC*/
   1333 
   1334 		case IP_MULTICAST_IF:
   1335 		case IP_MULTICAST_TTL:
   1336 		case IP_MULTICAST_LOOP:
   1337 		case IP_ADD_MEMBERSHIP:
   1338 		case IP_DROP_MEMBERSHIP:
   1339 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1340 			break;
   1341 
   1342 		case IP_PORTRANGE:
   1343 			if (inpflags & INP_LOWPORT)
   1344 				optval = IP_PORTRANGE_LOW;
   1345 			else
   1346 				optval = IP_PORTRANGE_DEFAULT;
   1347 			error = sockopt_setint(sopt, optval);
   1348 			break;
   1349 
   1350 		case IP_PORTALGO:
   1351 			optval = inp->inp_portalgo;
   1352 			error = sockopt_setint(sopt, optval);
   1353 			break;
   1354 
   1355 		default:
   1356 			error = ENOPROTOOPT;
   1357 			break;
   1358 		}
   1359 		break;
   1360 	}
   1361 
   1362 	if (!error) {
   1363 		inp->inp_flags = inpflags;
   1364 	}
   1365 	return error;
   1366 }
   1367 
   1368 /*
   1369  * Set up IP options in pcb for insertion in output packets.
   1370  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1371  * with destination address if source routed.
   1372  */
   1373 static int
   1374 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1375 {
   1376 	struct mbuf *m;
   1377 	const u_char *cp;
   1378 	u_char *dp;
   1379 	int cnt;
   1380 
   1381 	/* Turn off any old options. */
   1382 	if (inp->inp_options) {
   1383 		m_free(inp->inp_options);
   1384 	}
   1385 	inp->inp_options = NULL;
   1386 	if ((cnt = sopt->sopt_size) == 0) {
   1387 		/* Only turning off any previous options. */
   1388 		return 0;
   1389 	}
   1390 	cp = sopt->sopt_data;
   1391 
   1392 #ifndef	__vax__
   1393 	if (cnt % sizeof(int32_t))
   1394 		return (EINVAL);
   1395 #endif
   1396 
   1397 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1398 	if (m == NULL)
   1399 		return (ENOBUFS);
   1400 
   1401 	dp = mtod(m, u_char *);
   1402 	memset(dp, 0, sizeof(struct in_addr));
   1403 	dp += sizeof(struct in_addr);
   1404 	m->m_len = sizeof(struct in_addr);
   1405 
   1406 	/*
   1407 	 * IP option list according to RFC791. Each option is of the form
   1408 	 *
   1409 	 *	[optval] [olen] [(olen - 2) data bytes]
   1410 	 *
   1411 	 * We validate the list and copy options to an mbuf for prepending
   1412 	 * to data packets. The IP first-hop destination address will be
   1413 	 * stored before actual options and is zero if unset.
   1414 	 */
   1415 	while (cnt > 0) {
   1416 		uint8_t optval, olen, offset;
   1417 
   1418 		optval = cp[IPOPT_OPTVAL];
   1419 
   1420 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1421 			olen = 1;
   1422 		} else {
   1423 			if (cnt < IPOPT_OLEN + 1)
   1424 				goto bad;
   1425 
   1426 			olen = cp[IPOPT_OLEN];
   1427 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1428 				goto bad;
   1429 		}
   1430 
   1431 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1432 			/*
   1433 			 * user process specifies route as:
   1434 			 *	->A->B->C->D
   1435 			 * D must be our final destination (but we can't
   1436 			 * check that since we may not have connected yet).
   1437 			 * A is first hop destination, which doesn't appear in
   1438 			 * actual IP option, but is stored before the options.
   1439 			 */
   1440 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1441 				goto bad;
   1442 
   1443 			offset = cp[IPOPT_OFFSET];
   1444 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1445 			    sizeof(struct in_addr));
   1446 
   1447 			cp += sizeof(struct in_addr);
   1448 			cnt -= sizeof(struct in_addr);
   1449 			olen -= sizeof(struct in_addr);
   1450 
   1451 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1452 				goto bad;
   1453 
   1454 			memcpy(dp, cp, olen);
   1455 			dp[IPOPT_OPTVAL] = optval;
   1456 			dp[IPOPT_OLEN] = olen;
   1457 			dp[IPOPT_OFFSET] = offset;
   1458 			break;
   1459 		} else {
   1460 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1461 				goto bad;
   1462 
   1463 			memcpy(dp, cp, olen);
   1464 			break;
   1465 		}
   1466 
   1467 		dp += olen;
   1468 		m->m_len += olen;
   1469 
   1470 		if (optval == IPOPT_EOL)
   1471 			break;
   1472 
   1473 		cp += olen;
   1474 		cnt -= olen;
   1475 	}
   1476 
   1477 	inp->inp_options = m;
   1478 	return 0;
   1479 bad:
   1480 	(void)m_free(m);
   1481 	return EINVAL;
   1482 }
   1483 
   1484 /*
   1485  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1486  */
   1487 static struct ifnet *
   1488 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1489 {
   1490 	int ifindex;
   1491 	struct ifnet *ifp = NULL;
   1492 	struct in_ifaddr *ia;
   1493 
   1494 	if (ifindexp)
   1495 		*ifindexp = 0;
   1496 	if (ntohl(a->s_addr) >> 24 == 0) {
   1497 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1498 		ifp = if_byindex(ifindex);
   1499 		if (!ifp)
   1500 			return NULL;
   1501 		if (ifindexp)
   1502 			*ifindexp = ifindex;
   1503 	} else {
   1504 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1505 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1506 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1507 				ifp = ia->ia_ifp;
   1508 				break;
   1509 			}
   1510 		}
   1511 	}
   1512 	return ifp;
   1513 }
   1514 
   1515 static int
   1516 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1517 {
   1518 	u_int tval;
   1519 	u_char cval;
   1520 	int error;
   1521 
   1522 	if (sopt == NULL)
   1523 		return EINVAL;
   1524 
   1525 	switch (sopt->sopt_size) {
   1526 	case sizeof(u_char):
   1527 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1528 		tval = cval;
   1529 		break;
   1530 
   1531 	case sizeof(u_int):
   1532 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1533 		break;
   1534 
   1535 	default:
   1536 		error = EINVAL;
   1537 	}
   1538 
   1539 	if (error)
   1540 		return error;
   1541 
   1542 	if (tval > maxval)
   1543 		return EINVAL;
   1544 
   1545 	*val = tval;
   1546 	return 0;
   1547 }
   1548 
   1549 static int
   1550 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1551     struct in_addr *ia, bool add)
   1552 {
   1553 	int error;
   1554 	struct ip_mreq mreq;
   1555 
   1556 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1557 	if (error)
   1558 		return error;
   1559 
   1560 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1561 		return EINVAL;
   1562 
   1563 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1564 
   1565 	if (in_nullhost(mreq.imr_interface)) {
   1566 		union {
   1567 			struct sockaddr		dst;
   1568 			struct sockaddr_in	dst4;
   1569 		} u;
   1570 		struct route ro;
   1571 
   1572 		if (!add) {
   1573 			*ifp = NULL;
   1574 			return 0;
   1575 		}
   1576 		/*
   1577 		 * If no interface address was provided, use the interface of
   1578 		 * the route to the given multicast address.
   1579 		 */
   1580 		struct rtentry *rt;
   1581 		memset(&ro, 0, sizeof(ro));
   1582 
   1583 		sockaddr_in_init(&u.dst4, ia, 0);
   1584 		error = rtcache_setdst(&ro, &u.dst);
   1585 		if (error != 0)
   1586 			return error;
   1587 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1588 		rtcache_free(&ro);
   1589 	} else {
   1590 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1591 		if (!add && *ifp == NULL)
   1592 			return EADDRNOTAVAIL;
   1593 	}
   1594 	return 0;
   1595 }
   1596 
   1597 /*
   1598  * Add a multicast group membership.
   1599  * Group must be a valid IP multicast address.
   1600  */
   1601 static int
   1602 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1603 {
   1604 	struct ifnet *ifp;
   1605 	struct in_addr ia;
   1606 	int i, error;
   1607 
   1608 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1609 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1610 	else
   1611 #ifdef INET6
   1612 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1613 #else
   1614 		return EINVAL;
   1615 #endif
   1616 
   1617 	if (error)
   1618 		return error;
   1619 
   1620 	/*
   1621 	 * See if we found an interface, and confirm that it
   1622 	 * supports multicast.
   1623 	 */
   1624 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1625 		return EADDRNOTAVAIL;
   1626 
   1627 	/*
   1628 	 * See if the membership already exists or if all the
   1629 	 * membership slots are full.
   1630 	 */
   1631 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1632 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1633 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1634 			break;
   1635 	}
   1636 	if (i < imo->imo_num_memberships)
   1637 		return EADDRINUSE;
   1638 
   1639 	if (i == IP_MAX_MEMBERSHIPS)
   1640 		return ETOOMANYREFS;
   1641 
   1642 	/*
   1643 	 * Everything looks good; add a new record to the multicast
   1644 	 * address list for the given interface.
   1645 	 */
   1646 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1647 		return ENOBUFS;
   1648 
   1649 	++imo->imo_num_memberships;
   1650 	return 0;
   1651 }
   1652 
   1653 /*
   1654  * Drop a multicast group membership.
   1655  * Group must be a valid IP multicast address.
   1656  */
   1657 static int
   1658 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1659 {
   1660 	struct in_addr ia;
   1661 	struct ifnet *ifp;
   1662 	int i, error;
   1663 
   1664 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1665 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1666 	else
   1667 #ifdef INET6
   1668 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1669 #else
   1670 		return EINVAL;
   1671 #endif
   1672 
   1673 	if (error)
   1674 		return error;
   1675 
   1676 	/*
   1677 	 * Find the membership in the membership array.
   1678 	 */
   1679 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1680 		if ((ifp == NULL ||
   1681 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1682 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1683 			break;
   1684 	}
   1685 	if (i == imo->imo_num_memberships)
   1686 		return EADDRNOTAVAIL;
   1687 
   1688 	/*
   1689 	 * Give up the multicast address record to which the
   1690 	 * membership points.
   1691 	 */
   1692 	in_delmulti(imo->imo_membership[i]);
   1693 
   1694 	/*
   1695 	 * Remove the gap in the membership array.
   1696 	 */
   1697 	for (++i; i < imo->imo_num_memberships; ++i)
   1698 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1699 	--imo->imo_num_memberships;
   1700 	return 0;
   1701 }
   1702 
   1703 /*
   1704  * Set the IP multicast options in response to user setsockopt().
   1705  */
   1706 int
   1707 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1708 {
   1709 	struct ip_moptions *imo = *pimo;
   1710 	struct in_addr addr;
   1711 	struct ifnet *ifp;
   1712 	int ifindex, error = 0;
   1713 
   1714 	if (!imo) {
   1715 		/*
   1716 		 * No multicast option buffer attached to the pcb;
   1717 		 * allocate one and initialize to default values.
   1718 		 */
   1719 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1720 		if (imo == NULL)
   1721 			return ENOBUFS;
   1722 
   1723 		imo->imo_multicast_ifp = NULL;
   1724 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1725 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1726 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1727 		imo->imo_num_memberships = 0;
   1728 		*pimo = imo;
   1729 	}
   1730 
   1731 	switch (sopt->sopt_name) {
   1732 	case IP_MULTICAST_IF:
   1733 		/*
   1734 		 * Select the interface for outgoing multicast packets.
   1735 		 */
   1736 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1737 		if (error)
   1738 			break;
   1739 
   1740 		/*
   1741 		 * INADDR_ANY is used to remove a previous selection.
   1742 		 * When no interface is selected, a default one is
   1743 		 * chosen every time a multicast packet is sent.
   1744 		 */
   1745 		if (in_nullhost(addr)) {
   1746 			imo->imo_multicast_ifp = NULL;
   1747 			break;
   1748 		}
   1749 		/*
   1750 		 * The selected interface is identified by its local
   1751 		 * IP address.  Find the interface and confirm that
   1752 		 * it supports multicasting.
   1753 		 */
   1754 		ifp = ip_multicast_if(&addr, &ifindex);
   1755 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1756 			error = EADDRNOTAVAIL;
   1757 			break;
   1758 		}
   1759 		imo->imo_multicast_ifp = ifp;
   1760 		if (ifindex)
   1761 			imo->imo_multicast_addr = addr;
   1762 		else
   1763 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1764 		break;
   1765 
   1766 	case IP_MULTICAST_TTL:
   1767 		/*
   1768 		 * Set the IP time-to-live for outgoing multicast packets.
   1769 		 */
   1770 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1771 		break;
   1772 
   1773 	case IP_MULTICAST_LOOP:
   1774 		/*
   1775 		 * Set the loopback flag for outgoing multicast packets.
   1776 		 * Must be zero or one.
   1777 		 */
   1778 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1779 		break;
   1780 
   1781 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1782 		error = ip_add_membership(imo, sopt);
   1783 		break;
   1784 
   1785 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1786 		error = ip_drop_membership(imo, sopt);
   1787 		break;
   1788 
   1789 	default:
   1790 		error = EOPNOTSUPP;
   1791 		break;
   1792 	}
   1793 
   1794 	/*
   1795 	 * If all options have default values, no need to keep the mbuf.
   1796 	 */
   1797 	if (imo->imo_multicast_ifp == NULL &&
   1798 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1799 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1800 	    imo->imo_num_memberships == 0) {
   1801 		kmem_free(imo, sizeof(*imo));
   1802 		*pimo = NULL;
   1803 	}
   1804 
   1805 	return error;
   1806 }
   1807 
   1808 /*
   1809  * Return the IP multicast options in response to user getsockopt().
   1810  */
   1811 int
   1812 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1813 {
   1814 	struct in_addr addr;
   1815 	struct in_ifaddr *ia;
   1816 	uint8_t optval;
   1817 	int error = 0;
   1818 
   1819 	switch (sopt->sopt_name) {
   1820 	case IP_MULTICAST_IF:
   1821 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1822 			addr = zeroin_addr;
   1823 		else if (imo->imo_multicast_addr.s_addr) {
   1824 			/* return the value user has set */
   1825 			addr = imo->imo_multicast_addr;
   1826 		} else {
   1827 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1828 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1829 		}
   1830 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1831 		break;
   1832 
   1833 	case IP_MULTICAST_TTL:
   1834 		optval = imo ? imo->imo_multicast_ttl
   1835 		    : IP_DEFAULT_MULTICAST_TTL;
   1836 
   1837 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1838 		break;
   1839 
   1840 	case IP_MULTICAST_LOOP:
   1841 		optval = imo ? imo->imo_multicast_loop
   1842 		    : IP_DEFAULT_MULTICAST_LOOP;
   1843 
   1844 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1845 		break;
   1846 
   1847 	default:
   1848 		error = EOPNOTSUPP;
   1849 	}
   1850 
   1851 	return error;
   1852 }
   1853 
   1854 /*
   1855  * Discard the IP multicast options.
   1856  */
   1857 void
   1858 ip_freemoptions(struct ip_moptions *imo)
   1859 {
   1860 	int i;
   1861 
   1862 	if (imo != NULL) {
   1863 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1864 			in_delmulti(imo->imo_membership[i]);
   1865 		kmem_free(imo, sizeof(*imo));
   1866 	}
   1867 }
   1868 
   1869 /*
   1870  * Routine called from ip_output() to loop back a copy of an IP multicast
   1871  * packet to the input queue of a specified interface.  Note that this
   1872  * calls the output routine of the loopback "driver", but with an interface
   1873  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1874  */
   1875 static void
   1876 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1877 {
   1878 	struct ip *ip;
   1879 	struct mbuf *copym;
   1880 
   1881 	copym = m_copypacket(m, M_DONTWAIT);
   1882 	if (copym != NULL &&
   1883 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1884 		copym = m_pullup(copym, sizeof(struct ip));
   1885 	if (copym == NULL)
   1886 		return;
   1887 	/*
   1888 	 * We don't bother to fragment if the IP length is greater
   1889 	 * than the interface's MTU.  Can this possibly matter?
   1890 	 */
   1891 	ip = mtod(copym, struct ip *);
   1892 
   1893 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1894 		in_delayed_cksum(copym);
   1895 		copym->m_pkthdr.csum_flags &=
   1896 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1897 	}
   1898 
   1899 	ip->ip_sum = 0;
   1900 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1901 #ifndef NET_MPSAFE
   1902 	KERNEL_LOCK(1, NULL);
   1903 #endif
   1904 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1905 #ifndef NET_MPSAFE
   1906 	KERNEL_UNLOCK_ONE(NULL);
   1907 #endif
   1908 }
   1909