Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.250
      1 /*	$NetBSD: ip_output.c,v 1.250 2016/04/19 09:29:54 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.250 2016/04/19 09:29:54 ozaki-r Exp $");
     95 
     96 #ifdef _KERNEL_OPT
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mpls.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/kmem.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/protosw.h>
    108 #include <sys/socket.h>
    109 #include <sys/socketvar.h>
    110 #include <sys/kauth.h>
    111 #ifdef IPSEC
    112 #include <sys/domain.h>
    113 #endif
    114 #include <sys/systm.h>
    115 
    116 #include <net/if.h>
    117 #include <net/if_types.h>
    118 #include <net/route.h>
    119 #include <net/pfil.h>
    120 
    121 #include <netinet/in.h>
    122 #include <netinet/in_systm.h>
    123 #include <netinet/ip.h>
    124 #include <netinet/in_pcb.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/ip_var.h>
    127 #include <netinet/ip_private.h>
    128 #include <netinet/in_offload.h>
    129 #include <netinet/portalgo.h>
    130 #include <netinet/udp.h>
    131 
    132 #ifdef INET6
    133 #include <netinet6/ip6_var.h>
    134 #endif
    135 
    136 #ifdef MROUTING
    137 #include <netinet/ip_mroute.h>
    138 #endif
    139 
    140 #ifdef IPSEC
    141 #include <netipsec/ipsec.h>
    142 #include <netipsec/key.h>
    143 #endif
    144 
    145 #ifdef MPLS
    146 #include <netmpls/mpls.h>
    147 #include <netmpls/mpls_var.h>
    148 #endif
    149 
    150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    153 static void ip_mloopback(struct ifnet *, struct mbuf *,
    154     const struct sockaddr_in *);
    155 
    156 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    157 
    158 int	ip_do_loopback_cksum = 0;
    159 
    160 static bool
    161 ip_hresolv_needed(const struct ifnet * const ifp)
    162 {
    163 	switch (ifp->if_type) {
    164 	case IFT_ARCNET:
    165 	case IFT_ATM:
    166 	case IFT_ECONET:
    167 	case IFT_ETHER:
    168 	case IFT_FDDI:
    169 	case IFT_HIPPI:
    170 	case IFT_IEEE1394:
    171 	case IFT_ISO88025:
    172 	case IFT_SLIP:
    173 		return true;
    174 	default:
    175 		return false;
    176 	}
    177 }
    178 
    179 static int
    180 klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
    181     const struct sockaddr * const dst, struct rtentry *rt)
    182 {
    183 	int error;
    184 
    185 #ifndef NET_MPSAFE
    186 	KERNEL_LOCK(1, NULL);
    187 #endif
    188 
    189 	error = (*ifp->if_output)(ifp, m, dst, rt);
    190 
    191 #ifndef NET_MPSAFE
    192 	KERNEL_UNLOCK_ONE(NULL);
    193 #endif
    194 
    195 	return error;
    196 }
    197 
    198 static int
    199 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m, struct rtentry *rt)
    200 {
    201 	int error = 0;
    202 #ifdef MPLS
    203 	union mpls_shim msh;
    204 
    205 	if (rt == NULL || rt_gettag(rt) == NULL ||
    206 	    rt_gettag(rt)->sa_family != AF_MPLS ||
    207 	    (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
    208 	    ifp->if_type != IFT_ETHER)
    209 		return 0;
    210 
    211 	msh.s_addr = MPLS_GETSADDR(rt);
    212 	if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    213 		struct m_tag *mtag;
    214 		/*
    215 		 * XXX tentative solution to tell ether_output
    216 		 * it's MPLS. Need some more efficient solution.
    217 		 */
    218 		mtag = m_tag_get(PACKET_TAG_MPLS,
    219 		    sizeof(int) /* dummy */,
    220 		    M_NOWAIT);
    221 		if (mtag == NULL)
    222 			return ENOMEM;
    223 		m_tag_prepend(m, mtag);
    224 	}
    225 #endif
    226 	return error;
    227 }
    228 
    229 /*
    230  * Send an IP packet to a host.
    231  *
    232  * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
    233  * calling ifp's output routine.
    234  */
    235 int
    236 ip_hresolv_output(struct ifnet * const ifp, struct mbuf * const m,
    237     const struct sockaddr * const dst, struct rtentry *rt0)
    238 {
    239 	int error = 0;
    240 	struct rtentry *rt = rt0, *gwrt;
    241 
    242 #define RTFREE_IF_NEEDED(_rt) \
    243 	if ((_rt) != NULL && (_rt) != rt0) \
    244 		rtfree((_rt));
    245 
    246 	if (!ip_hresolv_needed(ifp))
    247 		goto out;
    248 
    249 	if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) == 0)
    250 		goto out;
    251 
    252 	gwrt = rt_get_gwroute(rt);
    253 	RTFREE_IF_NEEDED(rt);
    254 	rt = gwrt;
    255 	if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
    256 		if (rt != NULL) {
    257 			RTFREE_IF_NEEDED(rt);
    258 			rt = rt0;
    259 		}
    260 		if (rt == NULL) {
    261 			error = EHOSTUNREACH;
    262 			goto bad;
    263 		}
    264 		gwrt = rtalloc1(rt->rt_gateway, 1);
    265 		rt_set_gwroute(rt, gwrt);
    266 		RTFREE_IF_NEEDED(rt);
    267 		rt = gwrt;
    268 		if (rt == NULL) {
    269 			error = EHOSTUNREACH;
    270 			goto bad;
    271 		}
    272 		/* the "G" test below also prevents rt == rt0 */
    273 		if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
    274 			if (rt0->rt_gwroute != NULL)
    275 				rtfree(rt0->rt_gwroute);
    276 			rt0->rt_gwroute = NULL;
    277 			error = EHOSTUNREACH;
    278 			goto bad;
    279 		}
    280 	}
    281 	if ((rt->rt_flags & RTF_REJECT) != 0) {
    282 		if (rt->rt_rmx.rmx_expire == 0 ||
    283 		    time_uptime < rt->rt_rmx.rmx_expire) {
    284 			error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
    285 			goto bad;
    286 		}
    287 	}
    288 
    289 out:
    290 	error = ip_mark_mpls(ifp, m, rt0);
    291 	if (error != 0)
    292 		return error;
    293 
    294 	error = klock_if_output(ifp, m, dst, rt);
    295 	goto exit;
    296 
    297 bad:
    298 	if (m != NULL)
    299 		m_freem(m);
    300 exit:
    301 	RTFREE_IF_NEEDED(rt);
    302 
    303 	return error;
    304 
    305 #undef RTFREE_IF_NEEDED
    306 }
    307 
    308 /*
    309  * IP output.  The packet in mbuf chain m contains a skeletal IP
    310  * header (with len, off, ttl, proto, tos, src, dst).
    311  * The mbuf chain containing the packet will be freed.
    312  * The mbuf opt, if present, will not be freed.
    313  */
    314 int
    315 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
    316     struct ip_moptions *imo, struct socket *so)
    317 {
    318 	struct rtentry *rt;
    319 	struct ip *ip;
    320 	struct ifnet *ifp;
    321 	struct mbuf *m = m0;
    322 	int hlen = sizeof (struct ip);
    323 	int len, error = 0;
    324 	struct route iproute;
    325 	const struct sockaddr_in *dst;
    326 	struct in_ifaddr *ia;
    327 	int isbroadcast;
    328 	int sw_csum;
    329 	u_long mtu;
    330 #ifdef IPSEC
    331 	struct secpolicy *sp = NULL;
    332 #endif
    333 	bool natt_frag = false;
    334 	bool rtmtu_nolock;
    335 	union {
    336 		struct sockaddr		dst;
    337 		struct sockaddr_in	dst4;
    338 	} u;
    339 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    340 					 * to the nexthop
    341 					 */
    342 
    343 	len = 0;
    344 
    345 	MCLAIM(m, &ip_tx_mowner);
    346 
    347 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    348 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    349 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    350 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    351 
    352 	if (opt) {
    353 		m = ip_insertoptions(m, opt, &len);
    354 		if (len >= sizeof(struct ip))
    355 			hlen = len;
    356 	}
    357 	ip = mtod(m, struct ip *);
    358 
    359 	/*
    360 	 * Fill in IP header.
    361 	 */
    362 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    363 		ip->ip_v = IPVERSION;
    364 		ip->ip_off = htons(0);
    365 		/* ip->ip_id filled in after we find out source ia */
    366 		ip->ip_hl = hlen >> 2;
    367 		IP_STATINC(IP_STAT_LOCALOUT);
    368 	} else {
    369 		hlen = ip->ip_hl << 2;
    370 	}
    371 
    372 	/*
    373 	 * Route packet.
    374 	 */
    375 	if (ro == NULL) {
    376 		memset(&iproute, 0, sizeof(iproute));
    377 		ro = &iproute;
    378 	}
    379 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    380 	dst = satocsin(rtcache_getdst(ro));
    381 
    382 	/*
    383 	 * If there is a cached route, check that it is to the same
    384 	 * destination and is still up.  If not, free it and try again.
    385 	 * The address family should also be checked in case of sharing
    386 	 * the cache with IPv6.
    387 	 */
    388 	if (dst && (dst->sin_family != AF_INET ||
    389 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    390 		rtcache_free(ro);
    391 
    392 	if ((rt = rtcache_validate(ro)) == NULL &&
    393 	    (rt = rtcache_update(ro, 1)) == NULL) {
    394 		dst = &u.dst4;
    395 		error = rtcache_setdst(ro, &u.dst);
    396 		if (error != 0)
    397 			goto bad;
    398 	}
    399 
    400 	/*
    401 	 * If routing to interface only, short circuit routing lookup.
    402 	 */
    403 	if (flags & IP_ROUTETOIF) {
    404 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    405 			IP_STATINC(IP_STAT_NOROUTE);
    406 			error = ENETUNREACH;
    407 			goto bad;
    408 		}
    409 		ifp = ia->ia_ifp;
    410 		mtu = ifp->if_mtu;
    411 		ip->ip_ttl = 1;
    412 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    413 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    414 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    415 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    416 		ifp = imo->imo_multicast_ifp;
    417 		mtu = ifp->if_mtu;
    418 		IFP_TO_IA(ifp, ia);
    419 		isbroadcast = 0;
    420 	} else {
    421 		if (rt == NULL)
    422 			rt = rtcache_init(ro);
    423 		if (rt == NULL) {
    424 			IP_STATINC(IP_STAT_NOROUTE);
    425 			error = EHOSTUNREACH;
    426 			goto bad;
    427 		}
    428 		ia = ifatoia(rt->rt_ifa);
    429 		ifp = rt->rt_ifp;
    430 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    431 			mtu = ifp->if_mtu;
    432 		rt->rt_use++;
    433 		if (rt->rt_flags & RTF_GATEWAY)
    434 			dst = satosin(rt->rt_gateway);
    435 		if (rt->rt_flags & RTF_HOST)
    436 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    437 		else
    438 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    439 	}
    440 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    441 
    442 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    443 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    444 		bool inmgroup;
    445 
    446 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    447 		    M_BCAST : M_MCAST;
    448 		/*
    449 		 * See if the caller provided any multicast options
    450 		 */
    451 		if (imo != NULL)
    452 			ip->ip_ttl = imo->imo_multicast_ttl;
    453 		else
    454 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    455 
    456 		/*
    457 		 * if we don't know the outgoing ifp yet, we can't generate
    458 		 * output
    459 		 */
    460 		if (!ifp) {
    461 			IP_STATINC(IP_STAT_NOROUTE);
    462 			error = ENETUNREACH;
    463 			goto bad;
    464 		}
    465 
    466 		/*
    467 		 * If the packet is multicast or broadcast, confirm that
    468 		 * the outgoing interface can transmit it.
    469 		 */
    470 		if (((m->m_flags & M_MCAST) &&
    471 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    472 		    ((m->m_flags & M_BCAST) &&
    473 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    474 			IP_STATINC(IP_STAT_NOROUTE);
    475 			error = ENETUNREACH;
    476 			goto bad;
    477 		}
    478 		/*
    479 		 * If source address not specified yet, use an address
    480 		 * of outgoing interface.
    481 		 */
    482 		if (in_nullhost(ip->ip_src)) {
    483 			struct in_ifaddr *xia;
    484 			struct ifaddr *xifa;
    485 
    486 			IFP_TO_IA(ifp, xia);
    487 			if (!xia) {
    488 				error = EADDRNOTAVAIL;
    489 				goto bad;
    490 			}
    491 			xifa = &xia->ia_ifa;
    492 			if (xifa->ifa_getifa != NULL) {
    493 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    494 				if (xia == NULL) {
    495 					error = EADDRNOTAVAIL;
    496 					goto bad;
    497 				}
    498 			}
    499 			ip->ip_src = xia->ia_addr.sin_addr;
    500 		}
    501 
    502 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    503 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    504 			/*
    505 			 * If we belong to the destination multicast group
    506 			 * on the outgoing interface, and the caller did not
    507 			 * forbid loopback, loop back a copy.
    508 			 */
    509 			ip_mloopback(ifp, m, &u.dst4);
    510 		}
    511 #ifdef MROUTING
    512 		else {
    513 			/*
    514 			 * If we are acting as a multicast router, perform
    515 			 * multicast forwarding as if the packet had just
    516 			 * arrived on the interface to which we are about
    517 			 * to send.  The multicast forwarding function
    518 			 * recursively calls this function, using the
    519 			 * IP_FORWARDING flag to prevent infinite recursion.
    520 			 *
    521 			 * Multicasts that are looped back by ip_mloopback(),
    522 			 * above, will be forwarded by the ip_input() routine,
    523 			 * if necessary.
    524 			 */
    525 			extern struct socket *ip_mrouter;
    526 
    527 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    528 				if (ip_mforward(m, ifp) != 0) {
    529 					m_freem(m);
    530 					goto done;
    531 				}
    532 			}
    533 		}
    534 #endif
    535 		/*
    536 		 * Multicasts with a time-to-live of zero may be looped-
    537 		 * back, above, but must not be transmitted on a network.
    538 		 * Also, multicasts addressed to the loopback interface
    539 		 * are not sent -- the above call to ip_mloopback() will
    540 		 * loop back a copy if this host actually belongs to the
    541 		 * destination group on the loopback interface.
    542 		 */
    543 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    544 			m_freem(m);
    545 			goto done;
    546 		}
    547 		goto sendit;
    548 	}
    549 
    550 	/*
    551 	 * If source address not specified yet, use address
    552 	 * of outgoing interface.
    553 	 */
    554 	if (in_nullhost(ip->ip_src)) {
    555 		struct ifaddr *xifa;
    556 
    557 		xifa = &ia->ia_ifa;
    558 		if (xifa->ifa_getifa != NULL) {
    559 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    560 			if (ia == NULL) {
    561 				error = EADDRNOTAVAIL;
    562 				goto bad;
    563 			}
    564 		}
    565 		ip->ip_src = ia->ia_addr.sin_addr;
    566 	}
    567 
    568 	/*
    569 	 * packets with Class-D address as source are not valid per
    570 	 * RFC 1112
    571 	 */
    572 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    573 		IP_STATINC(IP_STAT_ODROPPED);
    574 		error = EADDRNOTAVAIL;
    575 		goto bad;
    576 	}
    577 
    578 	/*
    579 	 * Look for broadcast address and and verify user is allowed to
    580 	 * send such a packet.
    581 	 */
    582 	if (isbroadcast) {
    583 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    584 			error = EADDRNOTAVAIL;
    585 			goto bad;
    586 		}
    587 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    588 			error = EACCES;
    589 			goto bad;
    590 		}
    591 		/* don't allow broadcast messages to be fragmented */
    592 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    593 			error = EMSGSIZE;
    594 			goto bad;
    595 		}
    596 		m->m_flags |= M_BCAST;
    597 	} else
    598 		m->m_flags &= ~M_BCAST;
    599 
    600 sendit:
    601 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    602 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    603 			ip->ip_id = 0;
    604 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    605 			ip->ip_id = ip_newid(ia);
    606 		} else {
    607 
    608 			/*
    609 			 * TSO capable interfaces (typically?) increment
    610 			 * ip_id for each segment.
    611 			 * "allocate" enough ids here to increase the chance
    612 			 * for them to be unique.
    613 			 *
    614 			 * note that the following calculation is not
    615 			 * needed to be precise.  wasting some ip_id is fine.
    616 			 */
    617 
    618 			unsigned int segsz = m->m_pkthdr.segsz;
    619 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    620 			unsigned int num = howmany(datasz, segsz);
    621 
    622 			ip->ip_id = ip_newid_range(ia, num);
    623 		}
    624 	}
    625 
    626 	/*
    627 	 * If we're doing Path MTU Discovery, we need to set DF unless
    628 	 * the route's MTU is locked.
    629 	 */
    630 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    631 		ip->ip_off |= htons(IP_DF);
    632 	}
    633 
    634 #ifdef IPSEC
    635 	if (ipsec_used) {
    636 		bool ipsec_done = false;
    637 
    638 		/* Perform IPsec processing, if any. */
    639 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    640 		    &ipsec_done);
    641 		if (error || ipsec_done)
    642 			goto done;
    643 	}
    644 #endif
    645 
    646 	/*
    647 	 * Run through list of hooks for output packets.
    648 	 */
    649 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    650 	if (error)
    651 		goto done;
    652 	if (m == NULL)
    653 		goto done;
    654 
    655 	ip = mtod(m, struct ip *);
    656 	hlen = ip->ip_hl << 2;
    657 
    658 	m->m_pkthdr.csum_data |= hlen << 16;
    659 
    660 #if IFA_STATS
    661 	/*
    662 	 * search for the source address structure to
    663 	 * maintain output statistics.
    664 	 */
    665 	INADDR_TO_IA(ip->ip_src, ia);
    666 #endif
    667 
    668 	/* Maybe skip checksums on loopback interfaces. */
    669 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    670 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    671 	}
    672 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    673 	/*
    674 	 * If small enough for mtu of path, or if using TCP segmentation
    675 	 * offload, can just send directly.
    676 	 */
    677 	if (ntohs(ip->ip_len) <= mtu ||
    678 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    679 		const struct sockaddr *sa;
    680 
    681 #if IFA_STATS
    682 		if (ia)
    683 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    684 #endif
    685 		/*
    686 		 * Always initialize the sum to 0!  Some HW assisted
    687 		 * checksumming requires this.
    688 		 */
    689 		ip->ip_sum = 0;
    690 
    691 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    692 			/*
    693 			 * Perform any checksums that the hardware can't do
    694 			 * for us.
    695 			 *
    696 			 * XXX Does any hardware require the {th,uh}_sum
    697 			 * XXX fields to be 0?
    698 			 */
    699 			if (sw_csum & M_CSUM_IPv4) {
    700 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    701 				ip->ip_sum = in_cksum(m, hlen);
    702 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    703 			}
    704 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    705 				if (IN_NEED_CHECKSUM(ifp,
    706 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    707 					in_delayed_cksum(m);
    708 				}
    709 				m->m_pkthdr.csum_flags &=
    710 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    711 			}
    712 		}
    713 
    714 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    715 		if (__predict_true(
    716 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    717 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    718 			error = ip_hresolv_output(ifp, m, sa, rt);
    719 		} else {
    720 			error = ip_tso_output(ifp, m, sa, rt);
    721 		}
    722 		goto done;
    723 	}
    724 
    725 	/*
    726 	 * We can't use HW checksumming if we're about to
    727 	 * to fragment the packet.
    728 	 *
    729 	 * XXX Some hardware can do this.
    730 	 */
    731 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    732 		if (IN_NEED_CHECKSUM(ifp,
    733 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    734 			in_delayed_cksum(m);
    735 		}
    736 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    737 	}
    738 
    739 	/*
    740 	 * Too large for interface; fragment if possible.
    741 	 * Must be able to put at least 8 bytes per fragment.
    742 	 */
    743 	if (ntohs(ip->ip_off) & IP_DF) {
    744 		if (flags & IP_RETURNMTU) {
    745 			struct inpcb *inp;
    746 
    747 			KASSERT(so && solocked(so));
    748 			inp = sotoinpcb(so);
    749 			inp->inp_errormtu = mtu;
    750 		}
    751 		error = EMSGSIZE;
    752 		IP_STATINC(IP_STAT_CANTFRAG);
    753 		goto bad;
    754 	}
    755 
    756 	error = ip_fragment(m, ifp, mtu);
    757 	if (error) {
    758 		m = NULL;
    759 		goto bad;
    760 	}
    761 
    762 	for (; m; m = m0) {
    763 		m0 = m->m_nextpkt;
    764 		m->m_nextpkt = 0;
    765 		if (error) {
    766 			m_freem(m);
    767 			continue;
    768 		}
    769 #if IFA_STATS
    770 		if (ia)
    771 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    772 #endif
    773 		/*
    774 		 * If we get there, the packet has not been handled by
    775 		 * IPsec whereas it should have. Now that it has been
    776 		 * fragmented, re-inject it in ip_output so that IPsec
    777 		 * processing can occur.
    778 		 */
    779 		if (natt_frag) {
    780 			error = ip_output(m, opt, ro,
    781 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    782 			    imo, so);
    783 		} else {
    784 			KASSERT((m->m_pkthdr.csum_flags &
    785 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    786 			error = ip_hresolv_output(ifp, m,
    787 			    (m->m_flags & M_MCAST) ?
    788 			    sintocsa(rdst) : sintocsa(dst), rt);
    789 		}
    790 	}
    791 	if (error == 0) {
    792 		IP_STATINC(IP_STAT_FRAGMENTED);
    793 	}
    794 done:
    795 	if (ro == &iproute) {
    796 		rtcache_free(&iproute);
    797 	}
    798 #ifdef IPSEC
    799 	if (sp) {
    800 		KEY_FREESP(&sp);
    801 	}
    802 #endif
    803 	return error;
    804 bad:
    805 	m_freem(m);
    806 	goto done;
    807 }
    808 
    809 int
    810 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    811 {
    812 	struct ip *ip, *mhip;
    813 	struct mbuf *m0;
    814 	int len, hlen, off;
    815 	int mhlen, firstlen;
    816 	struct mbuf **mnext;
    817 	int sw_csum = m->m_pkthdr.csum_flags;
    818 	int fragments = 0;
    819 	int s;
    820 	int error = 0;
    821 
    822 	ip = mtod(m, struct ip *);
    823 	hlen = ip->ip_hl << 2;
    824 	if (ifp != NULL)
    825 		sw_csum &= ~ifp->if_csum_flags_tx;
    826 
    827 	len = (mtu - hlen) &~ 7;
    828 	if (len < 8) {
    829 		m_freem(m);
    830 		return (EMSGSIZE);
    831 	}
    832 
    833 	firstlen = len;
    834 	mnext = &m->m_nextpkt;
    835 
    836 	/*
    837 	 * Loop through length of segment after first fragment,
    838 	 * make new header and copy data of each part and link onto chain.
    839 	 */
    840 	m0 = m;
    841 	mhlen = sizeof (struct ip);
    842 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    843 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    844 		if (m == 0) {
    845 			error = ENOBUFS;
    846 			IP_STATINC(IP_STAT_ODROPPED);
    847 			goto sendorfree;
    848 		}
    849 		MCLAIM(m, m0->m_owner);
    850 		*mnext = m;
    851 		mnext = &m->m_nextpkt;
    852 		m->m_data += max_linkhdr;
    853 		mhip = mtod(m, struct ip *);
    854 		*mhip = *ip;
    855 		/* we must inherit MCAST and BCAST flags */
    856 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    857 		if (hlen > sizeof (struct ip)) {
    858 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    859 			mhip->ip_hl = mhlen >> 2;
    860 		}
    861 		m->m_len = mhlen;
    862 		mhip->ip_off = ((off - hlen) >> 3) +
    863 		    (ntohs(ip->ip_off) & ~IP_MF);
    864 		if (ip->ip_off & htons(IP_MF))
    865 			mhip->ip_off |= IP_MF;
    866 		if (off + len >= ntohs(ip->ip_len))
    867 			len = ntohs(ip->ip_len) - off;
    868 		else
    869 			mhip->ip_off |= IP_MF;
    870 		HTONS(mhip->ip_off);
    871 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    872 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    873 		if (m->m_next == 0) {
    874 			error = ENOBUFS;	/* ??? */
    875 			IP_STATINC(IP_STAT_ODROPPED);
    876 			goto sendorfree;
    877 		}
    878 		m->m_pkthdr.len = mhlen + len;
    879 		m->m_pkthdr.rcvif = NULL;
    880 		mhip->ip_sum = 0;
    881 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    882 		if (sw_csum & M_CSUM_IPv4) {
    883 			mhip->ip_sum = in_cksum(m, mhlen);
    884 		} else {
    885 			/*
    886 			 * checksum is hw-offloaded or not necessary.
    887 			 */
    888 			m->m_pkthdr.csum_flags |=
    889 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    890 			m->m_pkthdr.csum_data |= mhlen << 16;
    891 			KASSERT(!(ifp != NULL &&
    892 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    893 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    894 		}
    895 		IP_STATINC(IP_STAT_OFRAGMENTS);
    896 		fragments++;
    897 	}
    898 	/*
    899 	 * Update first fragment by trimming what's been copied out
    900 	 * and updating header, then send each fragment (in order).
    901 	 */
    902 	m = m0;
    903 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    904 	m->m_pkthdr.len = hlen + firstlen;
    905 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    906 	ip->ip_off |= htons(IP_MF);
    907 	ip->ip_sum = 0;
    908 	if (sw_csum & M_CSUM_IPv4) {
    909 		ip->ip_sum = in_cksum(m, hlen);
    910 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    911 	} else {
    912 		/*
    913 		 * checksum is hw-offloaded or not necessary.
    914 		 */
    915 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    916 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    917 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    918 		    sizeof(struct ip));
    919 	}
    920 sendorfree:
    921 	/*
    922 	 * If there is no room for all the fragments, don't queue
    923 	 * any of them.
    924 	 */
    925 	if (ifp != NULL) {
    926 		s = splnet();
    927 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    928 		    error == 0) {
    929 			error = ENOBUFS;
    930 			IP_STATINC(IP_STAT_ODROPPED);
    931 			IFQ_INC_DROPS(&ifp->if_snd);
    932 		}
    933 		splx(s);
    934 	}
    935 	if (error) {
    936 		for (m = m0; m; m = m0) {
    937 			m0 = m->m_nextpkt;
    938 			m->m_nextpkt = NULL;
    939 			m_freem(m);
    940 		}
    941 	}
    942 	return (error);
    943 }
    944 
    945 /*
    946  * Process a delayed payload checksum calculation.
    947  */
    948 void
    949 in_delayed_cksum(struct mbuf *m)
    950 {
    951 	struct ip *ip;
    952 	u_int16_t csum, offset;
    953 
    954 	ip = mtod(m, struct ip *);
    955 	offset = ip->ip_hl << 2;
    956 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    957 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    958 		csum = 0xffff;
    959 
    960 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    961 
    962 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    963 		/* This happen when ip options were inserted
    964 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    965 		    m->m_len, offset, ip->ip_p);
    966 		 */
    967 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    968 	} else
    969 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    970 }
    971 
    972 /*
    973  * Determine the maximum length of the options to be inserted;
    974  * we would far rather allocate too much space rather than too little.
    975  */
    976 
    977 u_int
    978 ip_optlen(struct inpcb *inp)
    979 {
    980 	struct mbuf *m = inp->inp_options;
    981 
    982 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    983 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    984 	}
    985 	return 0;
    986 }
    987 
    988 /*
    989  * Insert IP options into preformed packet.
    990  * Adjust IP destination as required for IP source routing,
    991  * as indicated by a non-zero in_addr at the start of the options.
    992  */
    993 static struct mbuf *
    994 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    995 {
    996 	struct ipoption *p = mtod(opt, struct ipoption *);
    997 	struct mbuf *n;
    998 	struct ip *ip = mtod(m, struct ip *);
    999 	unsigned optlen;
   1000 
   1001 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1002 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1003 		return (m);		/* XXX should fail */
   1004 	if (!in_nullhost(p->ipopt_dst))
   1005 		ip->ip_dst = p->ipopt_dst;
   1006 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1007 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1008 		if (n == 0)
   1009 			return (m);
   1010 		MCLAIM(n, m->m_owner);
   1011 		M_MOVE_PKTHDR(n, m);
   1012 		m->m_len -= sizeof(struct ip);
   1013 		m->m_data += sizeof(struct ip);
   1014 		n->m_next = m;
   1015 		m = n;
   1016 		m->m_len = optlen + sizeof(struct ip);
   1017 		m->m_data += max_linkhdr;
   1018 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1019 	} else {
   1020 		m->m_data -= optlen;
   1021 		m->m_len += optlen;
   1022 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1023 	}
   1024 	m->m_pkthdr.len += optlen;
   1025 	ip = mtod(m, struct ip *);
   1026 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1027 	*phlen = sizeof(struct ip) + optlen;
   1028 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1029 	return (m);
   1030 }
   1031 
   1032 /*
   1033  * Copy options from ip to jp,
   1034  * omitting those not copied during fragmentation.
   1035  */
   1036 int
   1037 ip_optcopy(struct ip *ip, struct ip *jp)
   1038 {
   1039 	u_char *cp, *dp;
   1040 	int opt, optlen, cnt;
   1041 
   1042 	cp = (u_char *)(ip + 1);
   1043 	dp = (u_char *)(jp + 1);
   1044 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1045 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1046 		opt = cp[0];
   1047 		if (opt == IPOPT_EOL)
   1048 			break;
   1049 		if (opt == IPOPT_NOP) {
   1050 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1051 			*dp++ = IPOPT_NOP;
   1052 			optlen = 1;
   1053 			continue;
   1054 		}
   1055 
   1056 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
   1057 		optlen = cp[IPOPT_OLEN];
   1058 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
   1059 
   1060 		/* Invalid lengths should have been caught by ip_dooptions. */
   1061 		if (optlen > cnt)
   1062 			optlen = cnt;
   1063 		if (IPOPT_COPIED(opt)) {
   1064 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1065 			dp += optlen;
   1066 		}
   1067 	}
   1068 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1069 		*dp++ = IPOPT_EOL;
   1070 	return (optlen);
   1071 }
   1072 
   1073 /*
   1074  * IP socket option processing.
   1075  */
   1076 int
   1077 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1078 {
   1079 	struct inpcb *inp = sotoinpcb(so);
   1080 	struct ip *ip = &inp->inp_ip;
   1081 	int inpflags = inp->inp_flags;
   1082 	int optval = 0, error = 0;
   1083 
   1084 	if (sopt->sopt_level != IPPROTO_IP) {
   1085 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1086 			return 0;
   1087 		return ENOPROTOOPT;
   1088 	}
   1089 
   1090 	switch (op) {
   1091 	case PRCO_SETOPT:
   1092 		switch (sopt->sopt_name) {
   1093 		case IP_OPTIONS:
   1094 #ifdef notyet
   1095 		case IP_RETOPTS:
   1096 #endif
   1097 			error = ip_pcbopts(inp, sopt);
   1098 			break;
   1099 
   1100 		case IP_TOS:
   1101 		case IP_TTL:
   1102 		case IP_MINTTL:
   1103 		case IP_PKTINFO:
   1104 		case IP_RECVOPTS:
   1105 		case IP_RECVRETOPTS:
   1106 		case IP_RECVDSTADDR:
   1107 		case IP_RECVIF:
   1108 		case IP_RECVPKTINFO:
   1109 		case IP_RECVTTL:
   1110 			error = sockopt_getint(sopt, &optval);
   1111 			if (error)
   1112 				break;
   1113 
   1114 			switch (sopt->sopt_name) {
   1115 			case IP_TOS:
   1116 				ip->ip_tos = optval;
   1117 				break;
   1118 
   1119 			case IP_TTL:
   1120 				ip->ip_ttl = optval;
   1121 				break;
   1122 
   1123 			case IP_MINTTL:
   1124 				if (optval > 0 && optval <= MAXTTL)
   1125 					inp->inp_ip_minttl = optval;
   1126 				else
   1127 					error = EINVAL;
   1128 				break;
   1129 #define	OPTSET(bit) \
   1130 	if (optval) \
   1131 		inpflags |= bit; \
   1132 	else \
   1133 		inpflags &= ~bit;
   1134 
   1135 			case IP_PKTINFO:
   1136 				OPTSET(INP_PKTINFO);
   1137 				break;
   1138 
   1139 			case IP_RECVOPTS:
   1140 				OPTSET(INP_RECVOPTS);
   1141 				break;
   1142 
   1143 			case IP_RECVPKTINFO:
   1144 				OPTSET(INP_RECVPKTINFO);
   1145 				break;
   1146 
   1147 			case IP_RECVRETOPTS:
   1148 				OPTSET(INP_RECVRETOPTS);
   1149 				break;
   1150 
   1151 			case IP_RECVDSTADDR:
   1152 				OPTSET(INP_RECVDSTADDR);
   1153 				break;
   1154 
   1155 			case IP_RECVIF:
   1156 				OPTSET(INP_RECVIF);
   1157 				break;
   1158 
   1159 			case IP_RECVTTL:
   1160 				OPTSET(INP_RECVTTL);
   1161 				break;
   1162 			}
   1163 		break;
   1164 #undef OPTSET
   1165 
   1166 		case IP_MULTICAST_IF:
   1167 		case IP_MULTICAST_TTL:
   1168 		case IP_MULTICAST_LOOP:
   1169 		case IP_ADD_MEMBERSHIP:
   1170 		case IP_DROP_MEMBERSHIP:
   1171 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1172 			break;
   1173 
   1174 		case IP_PORTRANGE:
   1175 			error = sockopt_getint(sopt, &optval);
   1176 			if (error)
   1177 				break;
   1178 
   1179 			switch (optval) {
   1180 			case IP_PORTRANGE_DEFAULT:
   1181 			case IP_PORTRANGE_HIGH:
   1182 				inpflags &= ~(INP_LOWPORT);
   1183 				break;
   1184 
   1185 			case IP_PORTRANGE_LOW:
   1186 				inpflags |= INP_LOWPORT;
   1187 				break;
   1188 
   1189 			default:
   1190 				error = EINVAL;
   1191 				break;
   1192 			}
   1193 			break;
   1194 
   1195 		case IP_PORTALGO:
   1196 			error = sockopt_getint(sopt, &optval);
   1197 			if (error)
   1198 				break;
   1199 
   1200 			error = portalgo_algo_index_select(
   1201 			    (struct inpcb_hdr *)inp, optval);
   1202 			break;
   1203 
   1204 #if defined(IPSEC)
   1205 		case IP_IPSEC_POLICY:
   1206 			if (ipsec_enabled) {
   1207 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1208 				    sopt->sopt_data, sopt->sopt_size,
   1209 				    curlwp->l_cred);
   1210 				break;
   1211 			}
   1212 			/*FALLTHROUGH*/
   1213 #endif /* IPSEC */
   1214 
   1215 		default:
   1216 			error = ENOPROTOOPT;
   1217 			break;
   1218 		}
   1219 		break;
   1220 
   1221 	case PRCO_GETOPT:
   1222 		switch (sopt->sopt_name) {
   1223 		case IP_OPTIONS:
   1224 		case IP_RETOPTS: {
   1225 			struct mbuf *mopts = inp->inp_options;
   1226 
   1227 			if (mopts) {
   1228 				struct mbuf *m;
   1229 
   1230 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1231 				if (m == NULL) {
   1232 					error = ENOBUFS;
   1233 					break;
   1234 				}
   1235 				error = sockopt_setmbuf(sopt, m);
   1236 			}
   1237 			break;
   1238 		}
   1239 		case IP_PKTINFO:
   1240 		case IP_TOS:
   1241 		case IP_TTL:
   1242 		case IP_MINTTL:
   1243 		case IP_RECVOPTS:
   1244 		case IP_RECVRETOPTS:
   1245 		case IP_RECVDSTADDR:
   1246 		case IP_RECVIF:
   1247 		case IP_RECVPKTINFO:
   1248 		case IP_RECVTTL:
   1249 		case IP_ERRORMTU:
   1250 			switch (sopt->sopt_name) {
   1251 			case IP_TOS:
   1252 				optval = ip->ip_tos;
   1253 				break;
   1254 
   1255 			case IP_TTL:
   1256 				optval = ip->ip_ttl;
   1257 				break;
   1258 
   1259 			case IP_MINTTL:
   1260 				optval = inp->inp_ip_minttl;
   1261 				break;
   1262 
   1263 			case IP_ERRORMTU:
   1264 				optval = inp->inp_errormtu;
   1265 				break;
   1266 
   1267 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1268 
   1269 			case IP_PKTINFO:
   1270 				optval = OPTBIT(INP_PKTINFO);
   1271 				break;
   1272 
   1273 			case IP_RECVOPTS:
   1274 				optval = OPTBIT(INP_RECVOPTS);
   1275 				break;
   1276 
   1277 			case IP_RECVPKTINFO:
   1278 				optval = OPTBIT(INP_RECVPKTINFO);
   1279 				break;
   1280 
   1281 			case IP_RECVRETOPTS:
   1282 				optval = OPTBIT(INP_RECVRETOPTS);
   1283 				break;
   1284 
   1285 			case IP_RECVDSTADDR:
   1286 				optval = OPTBIT(INP_RECVDSTADDR);
   1287 				break;
   1288 
   1289 			case IP_RECVIF:
   1290 				optval = OPTBIT(INP_RECVIF);
   1291 				break;
   1292 
   1293 			case IP_RECVTTL:
   1294 				optval = OPTBIT(INP_RECVTTL);
   1295 				break;
   1296 			}
   1297 			error = sockopt_setint(sopt, optval);
   1298 			break;
   1299 
   1300 #if 0	/* defined(IPSEC) */
   1301 		case IP_IPSEC_POLICY:
   1302 		{
   1303 			struct mbuf *m = NULL;
   1304 
   1305 			/* XXX this will return EINVAL as sopt is empty */
   1306 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1307 			    sopt->sopt_size, &m);
   1308 			if (error == 0)
   1309 				error = sockopt_setmbuf(sopt, m);
   1310 			break;
   1311 		}
   1312 #endif /*IPSEC*/
   1313 
   1314 		case IP_MULTICAST_IF:
   1315 		case IP_MULTICAST_TTL:
   1316 		case IP_MULTICAST_LOOP:
   1317 		case IP_ADD_MEMBERSHIP:
   1318 		case IP_DROP_MEMBERSHIP:
   1319 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1320 			break;
   1321 
   1322 		case IP_PORTRANGE:
   1323 			if (inpflags & INP_LOWPORT)
   1324 				optval = IP_PORTRANGE_LOW;
   1325 			else
   1326 				optval = IP_PORTRANGE_DEFAULT;
   1327 			error = sockopt_setint(sopt, optval);
   1328 			break;
   1329 
   1330 		case IP_PORTALGO:
   1331 			optval = inp->inp_portalgo;
   1332 			error = sockopt_setint(sopt, optval);
   1333 			break;
   1334 
   1335 		default:
   1336 			error = ENOPROTOOPT;
   1337 			break;
   1338 		}
   1339 		break;
   1340 	}
   1341 
   1342 	if (!error) {
   1343 		inp->inp_flags = inpflags;
   1344 	}
   1345 	return error;
   1346 }
   1347 
   1348 /*
   1349  * Set up IP options in pcb for insertion in output packets.
   1350  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1351  * with destination address if source routed.
   1352  */
   1353 static int
   1354 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1355 {
   1356 	struct mbuf *m;
   1357 	const u_char *cp;
   1358 	u_char *dp;
   1359 	int cnt;
   1360 
   1361 	/* Turn off any old options. */
   1362 	if (inp->inp_options) {
   1363 		m_free(inp->inp_options);
   1364 	}
   1365 	inp->inp_options = NULL;
   1366 	if ((cnt = sopt->sopt_size) == 0) {
   1367 		/* Only turning off any previous options. */
   1368 		return 0;
   1369 	}
   1370 	cp = sopt->sopt_data;
   1371 
   1372 #ifndef	__vax__
   1373 	if (cnt % sizeof(int32_t))
   1374 		return (EINVAL);
   1375 #endif
   1376 
   1377 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1378 	if (m == NULL)
   1379 		return (ENOBUFS);
   1380 
   1381 	dp = mtod(m, u_char *);
   1382 	memset(dp, 0, sizeof(struct in_addr));
   1383 	dp += sizeof(struct in_addr);
   1384 	m->m_len = sizeof(struct in_addr);
   1385 
   1386 	/*
   1387 	 * IP option list according to RFC791. Each option is of the form
   1388 	 *
   1389 	 *	[optval] [olen] [(olen - 2) data bytes]
   1390 	 *
   1391 	 * We validate the list and copy options to an mbuf for prepending
   1392 	 * to data packets. The IP first-hop destination address will be
   1393 	 * stored before actual options and is zero if unset.
   1394 	 */
   1395 	while (cnt > 0) {
   1396 		uint8_t optval, olen, offset;
   1397 
   1398 		optval = cp[IPOPT_OPTVAL];
   1399 
   1400 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1401 			olen = 1;
   1402 		} else {
   1403 			if (cnt < IPOPT_OLEN + 1)
   1404 				goto bad;
   1405 
   1406 			olen = cp[IPOPT_OLEN];
   1407 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1408 				goto bad;
   1409 		}
   1410 
   1411 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1412 			/*
   1413 			 * user process specifies route as:
   1414 			 *	->A->B->C->D
   1415 			 * D must be our final destination (but we can't
   1416 			 * check that since we may not have connected yet).
   1417 			 * A is first hop destination, which doesn't appear in
   1418 			 * actual IP option, but is stored before the options.
   1419 			 */
   1420 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1421 				goto bad;
   1422 
   1423 			offset = cp[IPOPT_OFFSET];
   1424 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1425 			    sizeof(struct in_addr));
   1426 
   1427 			cp += sizeof(struct in_addr);
   1428 			cnt -= sizeof(struct in_addr);
   1429 			olen -= sizeof(struct in_addr);
   1430 
   1431 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1432 				goto bad;
   1433 
   1434 			memcpy(dp, cp, olen);
   1435 			dp[IPOPT_OPTVAL] = optval;
   1436 			dp[IPOPT_OLEN] = olen;
   1437 			dp[IPOPT_OFFSET] = offset;
   1438 			break;
   1439 		} else {
   1440 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1441 				goto bad;
   1442 
   1443 			memcpy(dp, cp, olen);
   1444 			break;
   1445 		}
   1446 
   1447 		dp += olen;
   1448 		m->m_len += olen;
   1449 
   1450 		if (optval == IPOPT_EOL)
   1451 			break;
   1452 
   1453 		cp += olen;
   1454 		cnt -= olen;
   1455 	}
   1456 
   1457 	inp->inp_options = m;
   1458 	return 0;
   1459 bad:
   1460 	(void)m_free(m);
   1461 	return EINVAL;
   1462 }
   1463 
   1464 /*
   1465  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1466  */
   1467 static struct ifnet *
   1468 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1469 {
   1470 	int ifindex;
   1471 	struct ifnet *ifp = NULL;
   1472 	struct in_ifaddr *ia;
   1473 
   1474 	if (ifindexp)
   1475 		*ifindexp = 0;
   1476 	if (ntohl(a->s_addr) >> 24 == 0) {
   1477 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1478 		ifp = if_byindex(ifindex);
   1479 		if (!ifp)
   1480 			return NULL;
   1481 		if (ifindexp)
   1482 			*ifindexp = ifindex;
   1483 	} else {
   1484 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1485 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1486 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1487 				ifp = ia->ia_ifp;
   1488 				break;
   1489 			}
   1490 		}
   1491 	}
   1492 	return ifp;
   1493 }
   1494 
   1495 static int
   1496 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1497 {
   1498 	u_int tval;
   1499 	u_char cval;
   1500 	int error;
   1501 
   1502 	if (sopt == NULL)
   1503 		return EINVAL;
   1504 
   1505 	switch (sopt->sopt_size) {
   1506 	case sizeof(u_char):
   1507 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1508 		tval = cval;
   1509 		break;
   1510 
   1511 	case sizeof(u_int):
   1512 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1513 		break;
   1514 
   1515 	default:
   1516 		error = EINVAL;
   1517 	}
   1518 
   1519 	if (error)
   1520 		return error;
   1521 
   1522 	if (tval > maxval)
   1523 		return EINVAL;
   1524 
   1525 	*val = tval;
   1526 	return 0;
   1527 }
   1528 
   1529 static int
   1530 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1531     struct in_addr *ia, bool add)
   1532 {
   1533 	int error;
   1534 	struct ip_mreq mreq;
   1535 
   1536 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1537 	if (error)
   1538 		return error;
   1539 
   1540 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1541 		return EINVAL;
   1542 
   1543 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1544 
   1545 	if (in_nullhost(mreq.imr_interface)) {
   1546 		union {
   1547 			struct sockaddr		dst;
   1548 			struct sockaddr_in	dst4;
   1549 		} u;
   1550 		struct route ro;
   1551 
   1552 		if (!add) {
   1553 			*ifp = NULL;
   1554 			return 0;
   1555 		}
   1556 		/*
   1557 		 * If no interface address was provided, use the interface of
   1558 		 * the route to the given multicast address.
   1559 		 */
   1560 		struct rtentry *rt;
   1561 		memset(&ro, 0, sizeof(ro));
   1562 
   1563 		sockaddr_in_init(&u.dst4, ia, 0);
   1564 		error = rtcache_setdst(&ro, &u.dst);
   1565 		if (error != 0)
   1566 			return error;
   1567 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1568 		rtcache_free(&ro);
   1569 	} else {
   1570 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1571 		if (!add && *ifp == NULL)
   1572 			return EADDRNOTAVAIL;
   1573 	}
   1574 	return 0;
   1575 }
   1576 
   1577 /*
   1578  * Add a multicast group membership.
   1579  * Group must be a valid IP multicast address.
   1580  */
   1581 static int
   1582 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1583 {
   1584 	struct ifnet *ifp;
   1585 	struct in_addr ia;
   1586 	int i, error;
   1587 
   1588 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1589 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1590 	else
   1591 #ifdef INET6
   1592 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1593 #else
   1594 		return EINVAL;
   1595 #endif
   1596 
   1597 	if (error)
   1598 		return error;
   1599 
   1600 	/*
   1601 	 * See if we found an interface, and confirm that it
   1602 	 * supports multicast.
   1603 	 */
   1604 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1605 		return EADDRNOTAVAIL;
   1606 
   1607 	/*
   1608 	 * See if the membership already exists or if all the
   1609 	 * membership slots are full.
   1610 	 */
   1611 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1612 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1613 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1614 			break;
   1615 	}
   1616 	if (i < imo->imo_num_memberships)
   1617 		return EADDRINUSE;
   1618 
   1619 	if (i == IP_MAX_MEMBERSHIPS)
   1620 		return ETOOMANYREFS;
   1621 
   1622 	/*
   1623 	 * Everything looks good; add a new record to the multicast
   1624 	 * address list for the given interface.
   1625 	 */
   1626 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1627 		return ENOBUFS;
   1628 
   1629 	++imo->imo_num_memberships;
   1630 	return 0;
   1631 }
   1632 
   1633 /*
   1634  * Drop a multicast group membership.
   1635  * Group must be a valid IP multicast address.
   1636  */
   1637 static int
   1638 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1639 {
   1640 	struct in_addr ia;
   1641 	struct ifnet *ifp;
   1642 	int i, error;
   1643 
   1644 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1645 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1646 	else
   1647 #ifdef INET6
   1648 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1649 #else
   1650 		return EINVAL;
   1651 #endif
   1652 
   1653 	if (error)
   1654 		return error;
   1655 
   1656 	/*
   1657 	 * Find the membership in the membership array.
   1658 	 */
   1659 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1660 		if ((ifp == NULL ||
   1661 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1662 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1663 			break;
   1664 	}
   1665 	if (i == imo->imo_num_memberships)
   1666 		return EADDRNOTAVAIL;
   1667 
   1668 	/*
   1669 	 * Give up the multicast address record to which the
   1670 	 * membership points.
   1671 	 */
   1672 	in_delmulti(imo->imo_membership[i]);
   1673 
   1674 	/*
   1675 	 * Remove the gap in the membership array.
   1676 	 */
   1677 	for (++i; i < imo->imo_num_memberships; ++i)
   1678 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1679 	--imo->imo_num_memberships;
   1680 	return 0;
   1681 }
   1682 
   1683 /*
   1684  * Set the IP multicast options in response to user setsockopt().
   1685  */
   1686 int
   1687 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1688 {
   1689 	struct ip_moptions *imo = *pimo;
   1690 	struct in_addr addr;
   1691 	struct ifnet *ifp;
   1692 	int ifindex, error = 0;
   1693 
   1694 	if (!imo) {
   1695 		/*
   1696 		 * No multicast option buffer attached to the pcb;
   1697 		 * allocate one and initialize to default values.
   1698 		 */
   1699 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1700 		if (imo == NULL)
   1701 			return ENOBUFS;
   1702 
   1703 		imo->imo_multicast_ifp = NULL;
   1704 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1705 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1706 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1707 		imo->imo_num_memberships = 0;
   1708 		*pimo = imo;
   1709 	}
   1710 
   1711 	switch (sopt->sopt_name) {
   1712 	case IP_MULTICAST_IF:
   1713 		/*
   1714 		 * Select the interface for outgoing multicast packets.
   1715 		 */
   1716 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1717 		if (error)
   1718 			break;
   1719 
   1720 		/*
   1721 		 * INADDR_ANY is used to remove a previous selection.
   1722 		 * When no interface is selected, a default one is
   1723 		 * chosen every time a multicast packet is sent.
   1724 		 */
   1725 		if (in_nullhost(addr)) {
   1726 			imo->imo_multicast_ifp = NULL;
   1727 			break;
   1728 		}
   1729 		/*
   1730 		 * The selected interface is identified by its local
   1731 		 * IP address.  Find the interface and confirm that
   1732 		 * it supports multicasting.
   1733 		 */
   1734 		ifp = ip_multicast_if(&addr, &ifindex);
   1735 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1736 			error = EADDRNOTAVAIL;
   1737 			break;
   1738 		}
   1739 		imo->imo_multicast_ifp = ifp;
   1740 		if (ifindex)
   1741 			imo->imo_multicast_addr = addr;
   1742 		else
   1743 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1744 		break;
   1745 
   1746 	case IP_MULTICAST_TTL:
   1747 		/*
   1748 		 * Set the IP time-to-live for outgoing multicast packets.
   1749 		 */
   1750 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1751 		break;
   1752 
   1753 	case IP_MULTICAST_LOOP:
   1754 		/*
   1755 		 * Set the loopback flag for outgoing multicast packets.
   1756 		 * Must be zero or one.
   1757 		 */
   1758 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1759 		break;
   1760 
   1761 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1762 		error = ip_add_membership(imo, sopt);
   1763 		break;
   1764 
   1765 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1766 		error = ip_drop_membership(imo, sopt);
   1767 		break;
   1768 
   1769 	default:
   1770 		error = EOPNOTSUPP;
   1771 		break;
   1772 	}
   1773 
   1774 	/*
   1775 	 * If all options have default values, no need to keep the mbuf.
   1776 	 */
   1777 	if (imo->imo_multicast_ifp == NULL &&
   1778 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1779 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1780 	    imo->imo_num_memberships == 0) {
   1781 		kmem_free(imo, sizeof(*imo));
   1782 		*pimo = NULL;
   1783 	}
   1784 
   1785 	return error;
   1786 }
   1787 
   1788 /*
   1789  * Return the IP multicast options in response to user getsockopt().
   1790  */
   1791 int
   1792 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1793 {
   1794 	struct in_addr addr;
   1795 	struct in_ifaddr *ia;
   1796 	uint8_t optval;
   1797 	int error = 0;
   1798 
   1799 	switch (sopt->sopt_name) {
   1800 	case IP_MULTICAST_IF:
   1801 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1802 			addr = zeroin_addr;
   1803 		else if (imo->imo_multicast_addr.s_addr) {
   1804 			/* return the value user has set */
   1805 			addr = imo->imo_multicast_addr;
   1806 		} else {
   1807 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1808 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1809 		}
   1810 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1811 		break;
   1812 
   1813 	case IP_MULTICAST_TTL:
   1814 		optval = imo ? imo->imo_multicast_ttl
   1815 		    : IP_DEFAULT_MULTICAST_TTL;
   1816 
   1817 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1818 		break;
   1819 
   1820 	case IP_MULTICAST_LOOP:
   1821 		optval = imo ? imo->imo_multicast_loop
   1822 		    : IP_DEFAULT_MULTICAST_LOOP;
   1823 
   1824 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1825 		break;
   1826 
   1827 	default:
   1828 		error = EOPNOTSUPP;
   1829 	}
   1830 
   1831 	return error;
   1832 }
   1833 
   1834 /*
   1835  * Discard the IP multicast options.
   1836  */
   1837 void
   1838 ip_freemoptions(struct ip_moptions *imo)
   1839 {
   1840 	int i;
   1841 
   1842 	if (imo != NULL) {
   1843 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1844 			in_delmulti(imo->imo_membership[i]);
   1845 		kmem_free(imo, sizeof(*imo));
   1846 	}
   1847 }
   1848 
   1849 /*
   1850  * Routine called from ip_output() to loop back a copy of an IP multicast
   1851  * packet to the input queue of a specified interface.  Note that this
   1852  * calls the output routine of the loopback "driver", but with an interface
   1853  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1854  */
   1855 static void
   1856 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1857 {
   1858 	struct ip *ip;
   1859 	struct mbuf *copym;
   1860 
   1861 	copym = m_copypacket(m, M_DONTWAIT);
   1862 	if (copym != NULL &&
   1863 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1864 		copym = m_pullup(copym, sizeof(struct ip));
   1865 	if (copym == NULL)
   1866 		return;
   1867 	/*
   1868 	 * We don't bother to fragment if the IP length is greater
   1869 	 * than the interface's MTU.  Can this possibly matter?
   1870 	 */
   1871 	ip = mtod(copym, struct ip *);
   1872 
   1873 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1874 		in_delayed_cksum(copym);
   1875 		copym->m_pkthdr.csum_flags &=
   1876 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1877 	}
   1878 
   1879 	ip->ip_sum = 0;
   1880 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1881 #ifndef NET_MPSAFE
   1882 	KERNEL_LOCK(1, NULL);
   1883 #endif
   1884 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1885 #ifndef NET_MPSAFE
   1886 	KERNEL_UNLOCK_ONE(NULL);
   1887 #endif
   1888 }
   1889