ip_output.c revision 1.252 1 /* $NetBSD: ip_output.c,v 1.252 2016/04/26 09:30:01 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.252 2016/04/26 09:30:01 ozaki-r Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/kmem.h>
106 #include <sys/mbuf.h>
107 #include <sys/protosw.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/kauth.h>
111 #ifdef IPSEC
112 #include <sys/domain.h>
113 #endif
114 #include <sys/systm.h>
115
116 #include <net/if.h>
117 #include <net/if_types.h>
118 #include <net/route.h>
119 #include <net/pfil.h>
120
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_private.h>
128 #include <netinet/in_offload.h>
129 #include <netinet/portalgo.h>
130 #include <netinet/udp.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155
156 extern pfil_head_t *inet_pfil_hook; /* XXX */
157
158 int ip_do_loopback_cksum = 0;
159
160 static int
161 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m, struct rtentry *rt)
162 {
163 int error = 0;
164 #ifdef MPLS
165 union mpls_shim msh;
166
167 if (rt == NULL || rt_gettag(rt) == NULL ||
168 rt_gettag(rt)->sa_family != AF_MPLS ||
169 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
170 ifp->if_type != IFT_ETHER)
171 return 0;
172
173 msh.s_addr = MPLS_GETSADDR(rt);
174 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
175 struct m_tag *mtag;
176 /*
177 * XXX tentative solution to tell ether_output
178 * it's MPLS. Need some more efficient solution.
179 */
180 mtag = m_tag_get(PACKET_TAG_MPLS,
181 sizeof(int) /* dummy */,
182 M_NOWAIT);
183 if (mtag == NULL)
184 return ENOMEM;
185 m_tag_prepend(m, mtag);
186 }
187 #endif
188 return error;
189 }
190
191 /*
192 * Send an IP packet to a host.
193 */
194 int
195 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
196 const struct sockaddr * const dst, struct rtentry *rt)
197 {
198 int error = 0;
199
200 if (rt != NULL) {
201 error = rt_check_reject_route(rt, ifp);
202 if (error != 0) {
203 m_freem(m);
204 return error;
205 }
206 }
207
208 error = ip_mark_mpls(ifp, m, rt);
209 if (error != 0) {
210 m_freem(m);
211 return error;
212 }
213
214 #ifndef NET_MPSAFE
215 KERNEL_LOCK(1, NULL);
216 #endif
217
218 error = (*ifp->if_output)(ifp, m, dst, rt);
219
220 #ifndef NET_MPSAFE
221 KERNEL_UNLOCK_ONE(NULL);
222 #endif
223 return error;
224 }
225
226 /*
227 * IP output. The packet in mbuf chain m contains a skeletal IP
228 * header (with len, off, ttl, proto, tos, src, dst).
229 * The mbuf chain containing the packet will be freed.
230 * The mbuf opt, if present, will not be freed.
231 */
232 int
233 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
234 struct ip_moptions *imo, struct socket *so)
235 {
236 struct rtentry *rt;
237 struct ip *ip;
238 struct ifnet *ifp;
239 struct mbuf *m = m0;
240 int hlen = sizeof (struct ip);
241 int len, error = 0;
242 struct route iproute;
243 const struct sockaddr_in *dst;
244 struct in_ifaddr *ia;
245 int isbroadcast;
246 int sw_csum;
247 u_long mtu;
248 #ifdef IPSEC
249 struct secpolicy *sp = NULL;
250 #endif
251 bool natt_frag = false;
252 bool rtmtu_nolock;
253 union {
254 struct sockaddr dst;
255 struct sockaddr_in dst4;
256 } u;
257 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
258 * to the nexthop
259 */
260
261 len = 0;
262
263 MCLAIM(m, &ip_tx_mowner);
264
265 KASSERT((m->m_flags & M_PKTHDR) != 0);
266 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
267 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
268 (M_CSUM_TCPv4|M_CSUM_UDPv4));
269
270 if (opt) {
271 m = ip_insertoptions(m, opt, &len);
272 if (len >= sizeof(struct ip))
273 hlen = len;
274 }
275 ip = mtod(m, struct ip *);
276
277 /*
278 * Fill in IP header.
279 */
280 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
281 ip->ip_v = IPVERSION;
282 ip->ip_off = htons(0);
283 /* ip->ip_id filled in after we find out source ia */
284 ip->ip_hl = hlen >> 2;
285 IP_STATINC(IP_STAT_LOCALOUT);
286 } else {
287 hlen = ip->ip_hl << 2;
288 }
289
290 /*
291 * Route packet.
292 */
293 if (ro == NULL) {
294 memset(&iproute, 0, sizeof(iproute));
295 ro = &iproute;
296 }
297 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
298 dst = satocsin(rtcache_getdst(ro));
299
300 /*
301 * If there is a cached route, check that it is to the same
302 * destination and is still up. If not, free it and try again.
303 * The address family should also be checked in case of sharing
304 * the cache with IPv6.
305 */
306 if (dst && (dst->sin_family != AF_INET ||
307 !in_hosteq(dst->sin_addr, ip->ip_dst)))
308 rtcache_free(ro);
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &u.dst4;
313 error = rtcache_setdst(ro, &u.dst);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
323 IP_STATINC(IP_STAT_NOROUTE);
324 error = ENETUNREACH;
325 goto bad;
326 }
327 ifp = ia->ia_ifp;
328 mtu = ifp->if_mtu;
329 ip->ip_ttl = 1;
330 isbroadcast = in_broadcast(dst->sin_addr, ifp);
331 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
332 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
333 imo != NULL && imo->imo_multicast_ifp != NULL) {
334 ifp = imo->imo_multicast_ifp;
335 mtu = ifp->if_mtu;
336 IFP_TO_IA(ifp, ia);
337 isbroadcast = 0;
338 } else {
339 if (rt == NULL)
340 rt = rtcache_init(ro);
341 if (rt == NULL) {
342 IP_STATINC(IP_STAT_NOROUTE);
343 error = EHOSTUNREACH;
344 goto bad;
345 }
346 ia = ifatoia(rt->rt_ifa);
347 ifp = rt->rt_ifp;
348 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
349 mtu = ifp->if_mtu;
350 rt->rt_use++;
351 if (rt->rt_flags & RTF_GATEWAY)
352 dst = satosin(rt->rt_gateway);
353 if (rt->rt_flags & RTF_HOST)
354 isbroadcast = rt->rt_flags & RTF_BROADCAST;
355 else
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 }
358 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
359
360 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
361 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
362 bool inmgroup;
363
364 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
365 M_BCAST : M_MCAST;
366 /*
367 * See if the caller provided any multicast options
368 */
369 if (imo != NULL)
370 ip->ip_ttl = imo->imo_multicast_ttl;
371 else
372 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
373
374 /*
375 * if we don't know the outgoing ifp yet, we can't generate
376 * output
377 */
378 if (!ifp) {
379 IP_STATINC(IP_STAT_NOROUTE);
380 error = ENETUNREACH;
381 goto bad;
382 }
383
384 /*
385 * If the packet is multicast or broadcast, confirm that
386 * the outgoing interface can transmit it.
387 */
388 if (((m->m_flags & M_MCAST) &&
389 (ifp->if_flags & IFF_MULTICAST) == 0) ||
390 ((m->m_flags & M_BCAST) &&
391 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
392 IP_STATINC(IP_STAT_NOROUTE);
393 error = ENETUNREACH;
394 goto bad;
395 }
396 /*
397 * If source address not specified yet, use an address
398 * of outgoing interface.
399 */
400 if (in_nullhost(ip->ip_src)) {
401 struct in_ifaddr *xia;
402 struct ifaddr *xifa;
403
404 IFP_TO_IA(ifp, xia);
405 if (!xia) {
406 error = EADDRNOTAVAIL;
407 goto bad;
408 }
409 xifa = &xia->ia_ifa;
410 if (xifa->ifa_getifa != NULL) {
411 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
412 if (xia == NULL) {
413 error = EADDRNOTAVAIL;
414 goto bad;
415 }
416 }
417 ip->ip_src = xia->ia_addr.sin_addr;
418 }
419
420 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
421 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
422 /*
423 * If we belong to the destination multicast group
424 * on the outgoing interface, and the caller did not
425 * forbid loopback, loop back a copy.
426 */
427 ip_mloopback(ifp, m, &u.dst4);
428 }
429 #ifdef MROUTING
430 else {
431 /*
432 * If we are acting as a multicast router, perform
433 * multicast forwarding as if the packet had just
434 * arrived on the interface to which we are about
435 * to send. The multicast forwarding function
436 * recursively calls this function, using the
437 * IP_FORWARDING flag to prevent infinite recursion.
438 *
439 * Multicasts that are looped back by ip_mloopback(),
440 * above, will be forwarded by the ip_input() routine,
441 * if necessary.
442 */
443 extern struct socket *ip_mrouter;
444
445 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
446 if (ip_mforward(m, ifp) != 0) {
447 m_freem(m);
448 goto done;
449 }
450 }
451 }
452 #endif
453 /*
454 * Multicasts with a time-to-live of zero may be looped-
455 * back, above, but must not be transmitted on a network.
456 * Also, multicasts addressed to the loopback interface
457 * are not sent -- the above call to ip_mloopback() will
458 * loop back a copy if this host actually belongs to the
459 * destination group on the loopback interface.
460 */
461 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
462 m_freem(m);
463 goto done;
464 }
465 goto sendit;
466 }
467
468 /*
469 * If source address not specified yet, use address
470 * of outgoing interface.
471 */
472 if (in_nullhost(ip->ip_src)) {
473 struct ifaddr *xifa;
474
475 xifa = &ia->ia_ifa;
476 if (xifa->ifa_getifa != NULL) {
477 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
478 if (ia == NULL) {
479 error = EADDRNOTAVAIL;
480 goto bad;
481 }
482 }
483 ip->ip_src = ia->ia_addr.sin_addr;
484 }
485
486 /*
487 * packets with Class-D address as source are not valid per
488 * RFC 1112
489 */
490 if (IN_MULTICAST(ip->ip_src.s_addr)) {
491 IP_STATINC(IP_STAT_ODROPPED);
492 error = EADDRNOTAVAIL;
493 goto bad;
494 }
495
496 /*
497 * Look for broadcast address and and verify user is allowed to
498 * send such a packet.
499 */
500 if (isbroadcast) {
501 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
502 error = EADDRNOTAVAIL;
503 goto bad;
504 }
505 if ((flags & IP_ALLOWBROADCAST) == 0) {
506 error = EACCES;
507 goto bad;
508 }
509 /* don't allow broadcast messages to be fragmented */
510 if (ntohs(ip->ip_len) > ifp->if_mtu) {
511 error = EMSGSIZE;
512 goto bad;
513 }
514 m->m_flags |= M_BCAST;
515 } else
516 m->m_flags &= ~M_BCAST;
517
518 sendit:
519 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
520 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
521 ip->ip_id = 0;
522 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
523 ip->ip_id = ip_newid(ia);
524 } else {
525
526 /*
527 * TSO capable interfaces (typically?) increment
528 * ip_id for each segment.
529 * "allocate" enough ids here to increase the chance
530 * for them to be unique.
531 *
532 * note that the following calculation is not
533 * needed to be precise. wasting some ip_id is fine.
534 */
535
536 unsigned int segsz = m->m_pkthdr.segsz;
537 unsigned int datasz = ntohs(ip->ip_len) - hlen;
538 unsigned int num = howmany(datasz, segsz);
539
540 ip->ip_id = ip_newid_range(ia, num);
541 }
542 }
543
544 /*
545 * If we're doing Path MTU Discovery, we need to set DF unless
546 * the route's MTU is locked.
547 */
548 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
549 ip->ip_off |= htons(IP_DF);
550 }
551
552 #ifdef IPSEC
553 if (ipsec_used) {
554 bool ipsec_done = false;
555
556 /* Perform IPsec processing, if any. */
557 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
558 &ipsec_done);
559 if (error || ipsec_done)
560 goto done;
561 }
562 #endif
563
564 /*
565 * Run through list of hooks for output packets.
566 */
567 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
568 if (error)
569 goto done;
570 if (m == NULL)
571 goto done;
572
573 ip = mtod(m, struct ip *);
574 hlen = ip->ip_hl << 2;
575
576 m->m_pkthdr.csum_data |= hlen << 16;
577
578 #if IFA_STATS
579 /*
580 * search for the source address structure to
581 * maintain output statistics.
582 */
583 INADDR_TO_IA(ip->ip_src, ia);
584 #endif
585
586 /* Maybe skip checksums on loopback interfaces. */
587 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
588 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
589 }
590 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
591 /*
592 * If small enough for mtu of path, or if using TCP segmentation
593 * offload, can just send directly.
594 */
595 if (ntohs(ip->ip_len) <= mtu ||
596 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
597 const struct sockaddr *sa;
598
599 #if IFA_STATS
600 if (ia)
601 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
602 #endif
603 /*
604 * Always initialize the sum to 0! Some HW assisted
605 * checksumming requires this.
606 */
607 ip->ip_sum = 0;
608
609 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
610 /*
611 * Perform any checksums that the hardware can't do
612 * for us.
613 *
614 * XXX Does any hardware require the {th,uh}_sum
615 * XXX fields to be 0?
616 */
617 if (sw_csum & M_CSUM_IPv4) {
618 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
619 ip->ip_sum = in_cksum(m, hlen);
620 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
621 }
622 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
623 if (IN_NEED_CHECKSUM(ifp,
624 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
625 in_delayed_cksum(m);
626 }
627 m->m_pkthdr.csum_flags &=
628 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
629 }
630 }
631
632 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
633 if (__predict_true(
634 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
635 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
636 error = ip_if_output(ifp, m, sa, rt);
637 } else {
638 error = ip_tso_output(ifp, m, sa, rt);
639 }
640 goto done;
641 }
642
643 /*
644 * We can't use HW checksumming if we're about to
645 * to fragment the packet.
646 *
647 * XXX Some hardware can do this.
648 */
649 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
650 if (IN_NEED_CHECKSUM(ifp,
651 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
652 in_delayed_cksum(m);
653 }
654 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
655 }
656
657 /*
658 * Too large for interface; fragment if possible.
659 * Must be able to put at least 8 bytes per fragment.
660 */
661 if (ntohs(ip->ip_off) & IP_DF) {
662 if (flags & IP_RETURNMTU) {
663 struct inpcb *inp;
664
665 KASSERT(so && solocked(so));
666 inp = sotoinpcb(so);
667 inp->inp_errormtu = mtu;
668 }
669 error = EMSGSIZE;
670 IP_STATINC(IP_STAT_CANTFRAG);
671 goto bad;
672 }
673
674 error = ip_fragment(m, ifp, mtu);
675 if (error) {
676 m = NULL;
677 goto bad;
678 }
679
680 for (; m; m = m0) {
681 m0 = m->m_nextpkt;
682 m->m_nextpkt = 0;
683 if (error) {
684 m_freem(m);
685 continue;
686 }
687 #if IFA_STATS
688 if (ia)
689 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
690 #endif
691 /*
692 * If we get there, the packet has not been handled by
693 * IPsec whereas it should have. Now that it has been
694 * fragmented, re-inject it in ip_output so that IPsec
695 * processing can occur.
696 */
697 if (natt_frag) {
698 error = ip_output(m, opt, ro,
699 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
700 imo, so);
701 } else {
702 KASSERT((m->m_pkthdr.csum_flags &
703 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
704 error = ip_if_output(ifp, m,
705 (m->m_flags & M_MCAST) ?
706 sintocsa(rdst) : sintocsa(dst), rt);
707 }
708 }
709 if (error == 0) {
710 IP_STATINC(IP_STAT_FRAGMENTED);
711 }
712 done:
713 if (ro == &iproute) {
714 rtcache_free(&iproute);
715 }
716 #ifdef IPSEC
717 if (sp) {
718 KEY_FREESP(&sp);
719 }
720 #endif
721 return error;
722 bad:
723 m_freem(m);
724 goto done;
725 }
726
727 int
728 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
729 {
730 struct ip *ip, *mhip;
731 struct mbuf *m0;
732 int len, hlen, off;
733 int mhlen, firstlen;
734 struct mbuf **mnext;
735 int sw_csum = m->m_pkthdr.csum_flags;
736 int fragments = 0;
737 int s;
738 int error = 0;
739
740 ip = mtod(m, struct ip *);
741 hlen = ip->ip_hl << 2;
742 if (ifp != NULL)
743 sw_csum &= ~ifp->if_csum_flags_tx;
744
745 len = (mtu - hlen) &~ 7;
746 if (len < 8) {
747 m_freem(m);
748 return (EMSGSIZE);
749 }
750
751 firstlen = len;
752 mnext = &m->m_nextpkt;
753
754 /*
755 * Loop through length of segment after first fragment,
756 * make new header and copy data of each part and link onto chain.
757 */
758 m0 = m;
759 mhlen = sizeof (struct ip);
760 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
761 MGETHDR(m, M_DONTWAIT, MT_HEADER);
762 if (m == 0) {
763 error = ENOBUFS;
764 IP_STATINC(IP_STAT_ODROPPED);
765 goto sendorfree;
766 }
767 MCLAIM(m, m0->m_owner);
768 *mnext = m;
769 mnext = &m->m_nextpkt;
770 m->m_data += max_linkhdr;
771 mhip = mtod(m, struct ip *);
772 *mhip = *ip;
773 /* we must inherit MCAST and BCAST flags */
774 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
775 if (hlen > sizeof (struct ip)) {
776 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
777 mhip->ip_hl = mhlen >> 2;
778 }
779 m->m_len = mhlen;
780 mhip->ip_off = ((off - hlen) >> 3) +
781 (ntohs(ip->ip_off) & ~IP_MF);
782 if (ip->ip_off & htons(IP_MF))
783 mhip->ip_off |= IP_MF;
784 if (off + len >= ntohs(ip->ip_len))
785 len = ntohs(ip->ip_len) - off;
786 else
787 mhip->ip_off |= IP_MF;
788 HTONS(mhip->ip_off);
789 mhip->ip_len = htons((u_int16_t)(len + mhlen));
790 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
791 if (m->m_next == 0) {
792 error = ENOBUFS; /* ??? */
793 IP_STATINC(IP_STAT_ODROPPED);
794 goto sendorfree;
795 }
796 m->m_pkthdr.len = mhlen + len;
797 m->m_pkthdr.rcvif = NULL;
798 mhip->ip_sum = 0;
799 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
800 if (sw_csum & M_CSUM_IPv4) {
801 mhip->ip_sum = in_cksum(m, mhlen);
802 } else {
803 /*
804 * checksum is hw-offloaded or not necessary.
805 */
806 m->m_pkthdr.csum_flags |=
807 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
808 m->m_pkthdr.csum_data |= mhlen << 16;
809 KASSERT(!(ifp != NULL &&
810 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
811 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
812 }
813 IP_STATINC(IP_STAT_OFRAGMENTS);
814 fragments++;
815 }
816 /*
817 * Update first fragment by trimming what's been copied out
818 * and updating header, then send each fragment (in order).
819 */
820 m = m0;
821 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
822 m->m_pkthdr.len = hlen + firstlen;
823 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
824 ip->ip_off |= htons(IP_MF);
825 ip->ip_sum = 0;
826 if (sw_csum & M_CSUM_IPv4) {
827 ip->ip_sum = in_cksum(m, hlen);
828 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
829 } else {
830 /*
831 * checksum is hw-offloaded or not necessary.
832 */
833 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
834 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
835 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
836 sizeof(struct ip));
837 }
838 sendorfree:
839 /*
840 * If there is no room for all the fragments, don't queue
841 * any of them.
842 */
843 if (ifp != NULL) {
844 s = splnet();
845 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
846 error == 0) {
847 error = ENOBUFS;
848 IP_STATINC(IP_STAT_ODROPPED);
849 IFQ_INC_DROPS(&ifp->if_snd);
850 }
851 splx(s);
852 }
853 if (error) {
854 for (m = m0; m; m = m0) {
855 m0 = m->m_nextpkt;
856 m->m_nextpkt = NULL;
857 m_freem(m);
858 }
859 }
860 return (error);
861 }
862
863 /*
864 * Process a delayed payload checksum calculation.
865 */
866 void
867 in_delayed_cksum(struct mbuf *m)
868 {
869 struct ip *ip;
870 u_int16_t csum, offset;
871
872 ip = mtod(m, struct ip *);
873 offset = ip->ip_hl << 2;
874 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
875 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
876 csum = 0xffff;
877
878 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
879
880 if ((offset + sizeof(u_int16_t)) > m->m_len) {
881 /* This happen when ip options were inserted
882 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
883 m->m_len, offset, ip->ip_p);
884 */
885 m_copyback(m, offset, sizeof(csum), (void *) &csum);
886 } else
887 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
888 }
889
890 /*
891 * Determine the maximum length of the options to be inserted;
892 * we would far rather allocate too much space rather than too little.
893 */
894
895 u_int
896 ip_optlen(struct inpcb *inp)
897 {
898 struct mbuf *m = inp->inp_options;
899
900 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
901 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
902 }
903 return 0;
904 }
905
906 /*
907 * Insert IP options into preformed packet.
908 * Adjust IP destination as required for IP source routing,
909 * as indicated by a non-zero in_addr at the start of the options.
910 */
911 static struct mbuf *
912 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
913 {
914 struct ipoption *p = mtod(opt, struct ipoption *);
915 struct mbuf *n;
916 struct ip *ip = mtod(m, struct ip *);
917 unsigned optlen;
918
919 optlen = opt->m_len - sizeof(p->ipopt_dst);
920 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
921 return (m); /* XXX should fail */
922 if (!in_nullhost(p->ipopt_dst))
923 ip->ip_dst = p->ipopt_dst;
924 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
925 MGETHDR(n, M_DONTWAIT, MT_HEADER);
926 if (n == 0)
927 return (m);
928 MCLAIM(n, m->m_owner);
929 M_MOVE_PKTHDR(n, m);
930 m->m_len -= sizeof(struct ip);
931 m->m_data += sizeof(struct ip);
932 n->m_next = m;
933 m = n;
934 m->m_len = optlen + sizeof(struct ip);
935 m->m_data += max_linkhdr;
936 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
937 } else {
938 m->m_data -= optlen;
939 m->m_len += optlen;
940 memmove(mtod(m, void *), ip, sizeof(struct ip));
941 }
942 m->m_pkthdr.len += optlen;
943 ip = mtod(m, struct ip *);
944 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
945 *phlen = sizeof(struct ip) + optlen;
946 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
947 return (m);
948 }
949
950 /*
951 * Copy options from ip to jp,
952 * omitting those not copied during fragmentation.
953 */
954 int
955 ip_optcopy(struct ip *ip, struct ip *jp)
956 {
957 u_char *cp, *dp;
958 int opt, optlen, cnt;
959
960 cp = (u_char *)(ip + 1);
961 dp = (u_char *)(jp + 1);
962 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
963 for (; cnt > 0; cnt -= optlen, cp += optlen) {
964 opt = cp[0];
965 if (opt == IPOPT_EOL)
966 break;
967 if (opt == IPOPT_NOP) {
968 /* Preserve for IP mcast tunnel's LSRR alignment. */
969 *dp++ = IPOPT_NOP;
970 optlen = 1;
971 continue;
972 }
973
974 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
975 optlen = cp[IPOPT_OLEN];
976 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
977
978 /* Invalid lengths should have been caught by ip_dooptions. */
979 if (optlen > cnt)
980 optlen = cnt;
981 if (IPOPT_COPIED(opt)) {
982 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
983 dp += optlen;
984 }
985 }
986 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
987 *dp++ = IPOPT_EOL;
988 return (optlen);
989 }
990
991 /*
992 * IP socket option processing.
993 */
994 int
995 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
996 {
997 struct inpcb *inp = sotoinpcb(so);
998 struct ip *ip = &inp->inp_ip;
999 int inpflags = inp->inp_flags;
1000 int optval = 0, error = 0;
1001
1002 if (sopt->sopt_level != IPPROTO_IP) {
1003 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1004 return 0;
1005 return ENOPROTOOPT;
1006 }
1007
1008 switch (op) {
1009 case PRCO_SETOPT:
1010 switch (sopt->sopt_name) {
1011 case IP_OPTIONS:
1012 #ifdef notyet
1013 case IP_RETOPTS:
1014 #endif
1015 error = ip_pcbopts(inp, sopt);
1016 break;
1017
1018 case IP_TOS:
1019 case IP_TTL:
1020 case IP_MINTTL:
1021 case IP_PKTINFO:
1022 case IP_RECVOPTS:
1023 case IP_RECVRETOPTS:
1024 case IP_RECVDSTADDR:
1025 case IP_RECVIF:
1026 case IP_RECVPKTINFO:
1027 case IP_RECVTTL:
1028 error = sockopt_getint(sopt, &optval);
1029 if (error)
1030 break;
1031
1032 switch (sopt->sopt_name) {
1033 case IP_TOS:
1034 ip->ip_tos = optval;
1035 break;
1036
1037 case IP_TTL:
1038 ip->ip_ttl = optval;
1039 break;
1040
1041 case IP_MINTTL:
1042 if (optval > 0 && optval <= MAXTTL)
1043 inp->inp_ip_minttl = optval;
1044 else
1045 error = EINVAL;
1046 break;
1047 #define OPTSET(bit) \
1048 if (optval) \
1049 inpflags |= bit; \
1050 else \
1051 inpflags &= ~bit;
1052
1053 case IP_PKTINFO:
1054 OPTSET(INP_PKTINFO);
1055 break;
1056
1057 case IP_RECVOPTS:
1058 OPTSET(INP_RECVOPTS);
1059 break;
1060
1061 case IP_RECVPKTINFO:
1062 OPTSET(INP_RECVPKTINFO);
1063 break;
1064
1065 case IP_RECVRETOPTS:
1066 OPTSET(INP_RECVRETOPTS);
1067 break;
1068
1069 case IP_RECVDSTADDR:
1070 OPTSET(INP_RECVDSTADDR);
1071 break;
1072
1073 case IP_RECVIF:
1074 OPTSET(INP_RECVIF);
1075 break;
1076
1077 case IP_RECVTTL:
1078 OPTSET(INP_RECVTTL);
1079 break;
1080 }
1081 break;
1082 #undef OPTSET
1083
1084 case IP_MULTICAST_IF:
1085 case IP_MULTICAST_TTL:
1086 case IP_MULTICAST_LOOP:
1087 case IP_ADD_MEMBERSHIP:
1088 case IP_DROP_MEMBERSHIP:
1089 error = ip_setmoptions(&inp->inp_moptions, sopt);
1090 break;
1091
1092 case IP_PORTRANGE:
1093 error = sockopt_getint(sopt, &optval);
1094 if (error)
1095 break;
1096
1097 switch (optval) {
1098 case IP_PORTRANGE_DEFAULT:
1099 case IP_PORTRANGE_HIGH:
1100 inpflags &= ~(INP_LOWPORT);
1101 break;
1102
1103 case IP_PORTRANGE_LOW:
1104 inpflags |= INP_LOWPORT;
1105 break;
1106
1107 default:
1108 error = EINVAL;
1109 break;
1110 }
1111 break;
1112
1113 case IP_PORTALGO:
1114 error = sockopt_getint(sopt, &optval);
1115 if (error)
1116 break;
1117
1118 error = portalgo_algo_index_select(
1119 (struct inpcb_hdr *)inp, optval);
1120 break;
1121
1122 #if defined(IPSEC)
1123 case IP_IPSEC_POLICY:
1124 if (ipsec_enabled) {
1125 error = ipsec4_set_policy(inp, sopt->sopt_name,
1126 sopt->sopt_data, sopt->sopt_size,
1127 curlwp->l_cred);
1128 break;
1129 }
1130 /*FALLTHROUGH*/
1131 #endif /* IPSEC */
1132
1133 default:
1134 error = ENOPROTOOPT;
1135 break;
1136 }
1137 break;
1138
1139 case PRCO_GETOPT:
1140 switch (sopt->sopt_name) {
1141 case IP_OPTIONS:
1142 case IP_RETOPTS: {
1143 struct mbuf *mopts = inp->inp_options;
1144
1145 if (mopts) {
1146 struct mbuf *m;
1147
1148 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1149 if (m == NULL) {
1150 error = ENOBUFS;
1151 break;
1152 }
1153 error = sockopt_setmbuf(sopt, m);
1154 }
1155 break;
1156 }
1157 case IP_PKTINFO:
1158 case IP_TOS:
1159 case IP_TTL:
1160 case IP_MINTTL:
1161 case IP_RECVOPTS:
1162 case IP_RECVRETOPTS:
1163 case IP_RECVDSTADDR:
1164 case IP_RECVIF:
1165 case IP_RECVPKTINFO:
1166 case IP_RECVTTL:
1167 case IP_ERRORMTU:
1168 switch (sopt->sopt_name) {
1169 case IP_TOS:
1170 optval = ip->ip_tos;
1171 break;
1172
1173 case IP_TTL:
1174 optval = ip->ip_ttl;
1175 break;
1176
1177 case IP_MINTTL:
1178 optval = inp->inp_ip_minttl;
1179 break;
1180
1181 case IP_ERRORMTU:
1182 optval = inp->inp_errormtu;
1183 break;
1184
1185 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1186
1187 case IP_PKTINFO:
1188 optval = OPTBIT(INP_PKTINFO);
1189 break;
1190
1191 case IP_RECVOPTS:
1192 optval = OPTBIT(INP_RECVOPTS);
1193 break;
1194
1195 case IP_RECVPKTINFO:
1196 optval = OPTBIT(INP_RECVPKTINFO);
1197 break;
1198
1199 case IP_RECVRETOPTS:
1200 optval = OPTBIT(INP_RECVRETOPTS);
1201 break;
1202
1203 case IP_RECVDSTADDR:
1204 optval = OPTBIT(INP_RECVDSTADDR);
1205 break;
1206
1207 case IP_RECVIF:
1208 optval = OPTBIT(INP_RECVIF);
1209 break;
1210
1211 case IP_RECVTTL:
1212 optval = OPTBIT(INP_RECVTTL);
1213 break;
1214 }
1215 error = sockopt_setint(sopt, optval);
1216 break;
1217
1218 #if 0 /* defined(IPSEC) */
1219 case IP_IPSEC_POLICY:
1220 {
1221 struct mbuf *m = NULL;
1222
1223 /* XXX this will return EINVAL as sopt is empty */
1224 error = ipsec4_get_policy(inp, sopt->sopt_data,
1225 sopt->sopt_size, &m);
1226 if (error == 0)
1227 error = sockopt_setmbuf(sopt, m);
1228 break;
1229 }
1230 #endif /*IPSEC*/
1231
1232 case IP_MULTICAST_IF:
1233 case IP_MULTICAST_TTL:
1234 case IP_MULTICAST_LOOP:
1235 case IP_ADD_MEMBERSHIP:
1236 case IP_DROP_MEMBERSHIP:
1237 error = ip_getmoptions(inp->inp_moptions, sopt);
1238 break;
1239
1240 case IP_PORTRANGE:
1241 if (inpflags & INP_LOWPORT)
1242 optval = IP_PORTRANGE_LOW;
1243 else
1244 optval = IP_PORTRANGE_DEFAULT;
1245 error = sockopt_setint(sopt, optval);
1246 break;
1247
1248 case IP_PORTALGO:
1249 optval = inp->inp_portalgo;
1250 error = sockopt_setint(sopt, optval);
1251 break;
1252
1253 default:
1254 error = ENOPROTOOPT;
1255 break;
1256 }
1257 break;
1258 }
1259
1260 if (!error) {
1261 inp->inp_flags = inpflags;
1262 }
1263 return error;
1264 }
1265
1266 /*
1267 * Set up IP options in pcb for insertion in output packets.
1268 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1269 * with destination address if source routed.
1270 */
1271 static int
1272 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1273 {
1274 struct mbuf *m;
1275 const u_char *cp;
1276 u_char *dp;
1277 int cnt;
1278
1279 /* Turn off any old options. */
1280 if (inp->inp_options) {
1281 m_free(inp->inp_options);
1282 }
1283 inp->inp_options = NULL;
1284 if ((cnt = sopt->sopt_size) == 0) {
1285 /* Only turning off any previous options. */
1286 return 0;
1287 }
1288 cp = sopt->sopt_data;
1289
1290 #ifndef __vax__
1291 if (cnt % sizeof(int32_t))
1292 return (EINVAL);
1293 #endif
1294
1295 m = m_get(M_DONTWAIT, MT_SOOPTS);
1296 if (m == NULL)
1297 return (ENOBUFS);
1298
1299 dp = mtod(m, u_char *);
1300 memset(dp, 0, sizeof(struct in_addr));
1301 dp += sizeof(struct in_addr);
1302 m->m_len = sizeof(struct in_addr);
1303
1304 /*
1305 * IP option list according to RFC791. Each option is of the form
1306 *
1307 * [optval] [olen] [(olen - 2) data bytes]
1308 *
1309 * We validate the list and copy options to an mbuf for prepending
1310 * to data packets. The IP first-hop destination address will be
1311 * stored before actual options and is zero if unset.
1312 */
1313 while (cnt > 0) {
1314 uint8_t optval, olen, offset;
1315
1316 optval = cp[IPOPT_OPTVAL];
1317
1318 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1319 olen = 1;
1320 } else {
1321 if (cnt < IPOPT_OLEN + 1)
1322 goto bad;
1323
1324 olen = cp[IPOPT_OLEN];
1325 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1326 goto bad;
1327 }
1328
1329 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1330 /*
1331 * user process specifies route as:
1332 * ->A->B->C->D
1333 * D must be our final destination (but we can't
1334 * check that since we may not have connected yet).
1335 * A is first hop destination, which doesn't appear in
1336 * actual IP option, but is stored before the options.
1337 */
1338 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1339 goto bad;
1340
1341 offset = cp[IPOPT_OFFSET];
1342 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1343 sizeof(struct in_addr));
1344
1345 cp += sizeof(struct in_addr);
1346 cnt -= sizeof(struct in_addr);
1347 olen -= sizeof(struct in_addr);
1348
1349 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1350 goto bad;
1351
1352 memcpy(dp, cp, olen);
1353 dp[IPOPT_OPTVAL] = optval;
1354 dp[IPOPT_OLEN] = olen;
1355 dp[IPOPT_OFFSET] = offset;
1356 break;
1357 } else {
1358 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1359 goto bad;
1360
1361 memcpy(dp, cp, olen);
1362 break;
1363 }
1364
1365 dp += olen;
1366 m->m_len += olen;
1367
1368 if (optval == IPOPT_EOL)
1369 break;
1370
1371 cp += olen;
1372 cnt -= olen;
1373 }
1374
1375 inp->inp_options = m;
1376 return 0;
1377 bad:
1378 (void)m_free(m);
1379 return EINVAL;
1380 }
1381
1382 /*
1383 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1384 */
1385 static struct ifnet *
1386 ip_multicast_if(struct in_addr *a, int *ifindexp)
1387 {
1388 int ifindex;
1389 struct ifnet *ifp = NULL;
1390 struct in_ifaddr *ia;
1391
1392 if (ifindexp)
1393 *ifindexp = 0;
1394 if (ntohl(a->s_addr) >> 24 == 0) {
1395 ifindex = ntohl(a->s_addr) & 0xffffff;
1396 ifp = if_byindex(ifindex);
1397 if (!ifp)
1398 return NULL;
1399 if (ifindexp)
1400 *ifindexp = ifindex;
1401 } else {
1402 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1403 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1404 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1405 ifp = ia->ia_ifp;
1406 break;
1407 }
1408 }
1409 }
1410 return ifp;
1411 }
1412
1413 static int
1414 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1415 {
1416 u_int tval;
1417 u_char cval;
1418 int error;
1419
1420 if (sopt == NULL)
1421 return EINVAL;
1422
1423 switch (sopt->sopt_size) {
1424 case sizeof(u_char):
1425 error = sockopt_get(sopt, &cval, sizeof(u_char));
1426 tval = cval;
1427 break;
1428
1429 case sizeof(u_int):
1430 error = sockopt_get(sopt, &tval, sizeof(u_int));
1431 break;
1432
1433 default:
1434 error = EINVAL;
1435 }
1436
1437 if (error)
1438 return error;
1439
1440 if (tval > maxval)
1441 return EINVAL;
1442
1443 *val = tval;
1444 return 0;
1445 }
1446
1447 static int
1448 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1449 struct in_addr *ia, bool add)
1450 {
1451 int error;
1452 struct ip_mreq mreq;
1453
1454 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1455 if (error)
1456 return error;
1457
1458 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1459 return EINVAL;
1460
1461 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1462
1463 if (in_nullhost(mreq.imr_interface)) {
1464 union {
1465 struct sockaddr dst;
1466 struct sockaddr_in dst4;
1467 } u;
1468 struct route ro;
1469
1470 if (!add) {
1471 *ifp = NULL;
1472 return 0;
1473 }
1474 /*
1475 * If no interface address was provided, use the interface of
1476 * the route to the given multicast address.
1477 */
1478 struct rtentry *rt;
1479 memset(&ro, 0, sizeof(ro));
1480
1481 sockaddr_in_init(&u.dst4, ia, 0);
1482 error = rtcache_setdst(&ro, &u.dst);
1483 if (error != 0)
1484 return error;
1485 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1486 rtcache_free(&ro);
1487 } else {
1488 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1489 if (!add && *ifp == NULL)
1490 return EADDRNOTAVAIL;
1491 }
1492 return 0;
1493 }
1494
1495 /*
1496 * Add a multicast group membership.
1497 * Group must be a valid IP multicast address.
1498 */
1499 static int
1500 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1501 {
1502 struct ifnet *ifp;
1503 struct in_addr ia;
1504 int i, error;
1505
1506 if (sopt->sopt_size == sizeof(struct ip_mreq))
1507 error = ip_get_membership(sopt, &ifp, &ia, true);
1508 else
1509 #ifdef INET6
1510 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1511 #else
1512 return EINVAL;
1513 #endif
1514
1515 if (error)
1516 return error;
1517
1518 /*
1519 * See if we found an interface, and confirm that it
1520 * supports multicast.
1521 */
1522 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1523 return EADDRNOTAVAIL;
1524
1525 /*
1526 * See if the membership already exists or if all the
1527 * membership slots are full.
1528 */
1529 for (i = 0; i < imo->imo_num_memberships; ++i) {
1530 if (imo->imo_membership[i]->inm_ifp == ifp &&
1531 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1532 break;
1533 }
1534 if (i < imo->imo_num_memberships)
1535 return EADDRINUSE;
1536
1537 if (i == IP_MAX_MEMBERSHIPS)
1538 return ETOOMANYREFS;
1539
1540 /*
1541 * Everything looks good; add a new record to the multicast
1542 * address list for the given interface.
1543 */
1544 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1545 return ENOBUFS;
1546
1547 ++imo->imo_num_memberships;
1548 return 0;
1549 }
1550
1551 /*
1552 * Drop a multicast group membership.
1553 * Group must be a valid IP multicast address.
1554 */
1555 static int
1556 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1557 {
1558 struct in_addr ia;
1559 struct ifnet *ifp;
1560 int i, error;
1561
1562 if (sopt->sopt_size == sizeof(struct ip_mreq))
1563 error = ip_get_membership(sopt, &ifp, &ia, false);
1564 else
1565 #ifdef INET6
1566 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1567 #else
1568 return EINVAL;
1569 #endif
1570
1571 if (error)
1572 return error;
1573
1574 /*
1575 * Find the membership in the membership array.
1576 */
1577 for (i = 0; i < imo->imo_num_memberships; ++i) {
1578 if ((ifp == NULL ||
1579 imo->imo_membership[i]->inm_ifp == ifp) &&
1580 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1581 break;
1582 }
1583 if (i == imo->imo_num_memberships)
1584 return EADDRNOTAVAIL;
1585
1586 /*
1587 * Give up the multicast address record to which the
1588 * membership points.
1589 */
1590 in_delmulti(imo->imo_membership[i]);
1591
1592 /*
1593 * Remove the gap in the membership array.
1594 */
1595 for (++i; i < imo->imo_num_memberships; ++i)
1596 imo->imo_membership[i-1] = imo->imo_membership[i];
1597 --imo->imo_num_memberships;
1598 return 0;
1599 }
1600
1601 /*
1602 * Set the IP multicast options in response to user setsockopt().
1603 */
1604 int
1605 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1606 {
1607 struct ip_moptions *imo = *pimo;
1608 struct in_addr addr;
1609 struct ifnet *ifp;
1610 int ifindex, error = 0;
1611
1612 if (!imo) {
1613 /*
1614 * No multicast option buffer attached to the pcb;
1615 * allocate one and initialize to default values.
1616 */
1617 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1618 if (imo == NULL)
1619 return ENOBUFS;
1620
1621 imo->imo_multicast_ifp = NULL;
1622 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1623 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1624 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1625 imo->imo_num_memberships = 0;
1626 *pimo = imo;
1627 }
1628
1629 switch (sopt->sopt_name) {
1630 case IP_MULTICAST_IF:
1631 /*
1632 * Select the interface for outgoing multicast packets.
1633 */
1634 error = sockopt_get(sopt, &addr, sizeof(addr));
1635 if (error)
1636 break;
1637
1638 /*
1639 * INADDR_ANY is used to remove a previous selection.
1640 * When no interface is selected, a default one is
1641 * chosen every time a multicast packet is sent.
1642 */
1643 if (in_nullhost(addr)) {
1644 imo->imo_multicast_ifp = NULL;
1645 break;
1646 }
1647 /*
1648 * The selected interface is identified by its local
1649 * IP address. Find the interface and confirm that
1650 * it supports multicasting.
1651 */
1652 ifp = ip_multicast_if(&addr, &ifindex);
1653 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1654 error = EADDRNOTAVAIL;
1655 break;
1656 }
1657 imo->imo_multicast_ifp = ifp;
1658 if (ifindex)
1659 imo->imo_multicast_addr = addr;
1660 else
1661 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1662 break;
1663
1664 case IP_MULTICAST_TTL:
1665 /*
1666 * Set the IP time-to-live for outgoing multicast packets.
1667 */
1668 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1669 break;
1670
1671 case IP_MULTICAST_LOOP:
1672 /*
1673 * Set the loopback flag for outgoing multicast packets.
1674 * Must be zero or one.
1675 */
1676 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1677 break;
1678
1679 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1680 error = ip_add_membership(imo, sopt);
1681 break;
1682
1683 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1684 error = ip_drop_membership(imo, sopt);
1685 break;
1686
1687 default:
1688 error = EOPNOTSUPP;
1689 break;
1690 }
1691
1692 /*
1693 * If all options have default values, no need to keep the mbuf.
1694 */
1695 if (imo->imo_multicast_ifp == NULL &&
1696 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1697 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1698 imo->imo_num_memberships == 0) {
1699 kmem_free(imo, sizeof(*imo));
1700 *pimo = NULL;
1701 }
1702
1703 return error;
1704 }
1705
1706 /*
1707 * Return the IP multicast options in response to user getsockopt().
1708 */
1709 int
1710 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1711 {
1712 struct in_addr addr;
1713 struct in_ifaddr *ia;
1714 uint8_t optval;
1715 int error = 0;
1716
1717 switch (sopt->sopt_name) {
1718 case IP_MULTICAST_IF:
1719 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1720 addr = zeroin_addr;
1721 else if (imo->imo_multicast_addr.s_addr) {
1722 /* return the value user has set */
1723 addr = imo->imo_multicast_addr;
1724 } else {
1725 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1726 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1727 }
1728 error = sockopt_set(sopt, &addr, sizeof(addr));
1729 break;
1730
1731 case IP_MULTICAST_TTL:
1732 optval = imo ? imo->imo_multicast_ttl
1733 : IP_DEFAULT_MULTICAST_TTL;
1734
1735 error = sockopt_set(sopt, &optval, sizeof(optval));
1736 break;
1737
1738 case IP_MULTICAST_LOOP:
1739 optval = imo ? imo->imo_multicast_loop
1740 : IP_DEFAULT_MULTICAST_LOOP;
1741
1742 error = sockopt_set(sopt, &optval, sizeof(optval));
1743 break;
1744
1745 default:
1746 error = EOPNOTSUPP;
1747 }
1748
1749 return error;
1750 }
1751
1752 /*
1753 * Discard the IP multicast options.
1754 */
1755 void
1756 ip_freemoptions(struct ip_moptions *imo)
1757 {
1758 int i;
1759
1760 if (imo != NULL) {
1761 for (i = 0; i < imo->imo_num_memberships; ++i)
1762 in_delmulti(imo->imo_membership[i]);
1763 kmem_free(imo, sizeof(*imo));
1764 }
1765 }
1766
1767 /*
1768 * Routine called from ip_output() to loop back a copy of an IP multicast
1769 * packet to the input queue of a specified interface. Note that this
1770 * calls the output routine of the loopback "driver", but with an interface
1771 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1772 */
1773 static void
1774 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1775 {
1776 struct ip *ip;
1777 struct mbuf *copym;
1778
1779 copym = m_copypacket(m, M_DONTWAIT);
1780 if (copym != NULL &&
1781 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1782 copym = m_pullup(copym, sizeof(struct ip));
1783 if (copym == NULL)
1784 return;
1785 /*
1786 * We don't bother to fragment if the IP length is greater
1787 * than the interface's MTU. Can this possibly matter?
1788 */
1789 ip = mtod(copym, struct ip *);
1790
1791 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1792 in_delayed_cksum(copym);
1793 copym->m_pkthdr.csum_flags &=
1794 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1795 }
1796
1797 ip->ip_sum = 0;
1798 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1799 #ifndef NET_MPSAFE
1800 KERNEL_LOCK(1, NULL);
1801 #endif
1802 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1803 #ifndef NET_MPSAFE
1804 KERNEL_UNLOCK_ONE(NULL);
1805 #endif
1806 }
1807