Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.255
      1 /*	$NetBSD: ip_output.c,v 1.255 2016/05/09 07:02:10 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.255 2016/05/09 07:02:10 ozaki-r Exp $");
     95 
     96 #ifdef _KERNEL_OPT
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mpls.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/kmem.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/protosw.h>
    108 #include <sys/socket.h>
    109 #include <sys/socketvar.h>
    110 #include <sys/kauth.h>
    111 #ifdef IPSEC
    112 #include <sys/domain.h>
    113 #endif
    114 #include <sys/systm.h>
    115 
    116 #include <net/if.h>
    117 #include <net/if_types.h>
    118 #include <net/route.h>
    119 #include <net/pfil.h>
    120 
    121 #include <netinet/in.h>
    122 #include <netinet/in_systm.h>
    123 #include <netinet/ip.h>
    124 #include <netinet/in_pcb.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/ip_var.h>
    127 #include <netinet/ip_private.h>
    128 #include <netinet/in_offload.h>
    129 #include <netinet/portalgo.h>
    130 #include <netinet/udp.h>
    131 
    132 #ifdef INET6
    133 #include <netinet6/ip6_var.h>
    134 #endif
    135 
    136 #ifdef MROUTING
    137 #include <netinet/ip_mroute.h>
    138 #endif
    139 
    140 #ifdef IPSEC
    141 #include <netipsec/ipsec.h>
    142 #include <netipsec/key.h>
    143 #endif
    144 
    145 #ifdef MPLS
    146 #include <netmpls/mpls.h>
    147 #include <netmpls/mpls_var.h>
    148 #endif
    149 
    150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    153 static void ip_mloopback(struct ifnet *, struct mbuf *,
    154     const struct sockaddr_in *);
    155 
    156 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    157 
    158 int	ip_do_loopback_cksum = 0;
    159 
    160 static int
    161 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
    162     const struct rtentry *rt)
    163 {
    164 	int error = 0;
    165 #ifdef MPLS
    166 	union mpls_shim msh;
    167 
    168 	if (rt == NULL || rt_gettag(rt) == NULL ||
    169 	    rt_gettag(rt)->sa_family != AF_MPLS ||
    170 	    (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
    171 	    ifp->if_type != IFT_ETHER)
    172 		return 0;
    173 
    174 	msh.s_addr = MPLS_GETSADDR(rt);
    175 	if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    176 		struct m_tag *mtag;
    177 		/*
    178 		 * XXX tentative solution to tell ether_output
    179 		 * it's MPLS. Need some more efficient solution.
    180 		 */
    181 		mtag = m_tag_get(PACKET_TAG_MPLS,
    182 		    sizeof(int) /* dummy */,
    183 		    M_NOWAIT);
    184 		if (mtag == NULL)
    185 			return ENOMEM;
    186 		m_tag_prepend(m, mtag);
    187 	}
    188 #endif
    189 	return error;
    190 }
    191 
    192 /*
    193  * Send an IP packet to a host.
    194  */
    195 int
    196 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
    197     const struct sockaddr * const dst, const struct rtentry *rt)
    198 {
    199 	int error = 0;
    200 
    201 	if (rt != NULL) {
    202 		error = rt_check_reject_route(rt, ifp);
    203 		if (error != 0) {
    204 			m_freem(m);
    205 			return error;
    206 		}
    207 	}
    208 
    209 	error = ip_mark_mpls(ifp, m, rt);
    210 	if (error != 0) {
    211 		m_freem(m);
    212 		return error;
    213 	}
    214 
    215 #ifndef NET_MPSAFE
    216 	KERNEL_LOCK(1, NULL);
    217 #endif
    218 
    219 	error = (*ifp->if_output)(ifp, m, dst, rt);
    220 
    221 #ifndef NET_MPSAFE
    222 	KERNEL_UNLOCK_ONE(NULL);
    223 #endif
    224 	return error;
    225 }
    226 
    227 /*
    228  * IP output.  The packet in mbuf chain m contains a skeletal IP
    229  * header (with len, off, ttl, proto, tos, src, dst).
    230  * The mbuf chain containing the packet will be freed.
    231  * The mbuf opt, if present, will not be freed.
    232  */
    233 int
    234 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
    235     struct ip_moptions *imo, struct socket *so)
    236 {
    237 	struct rtentry *rt;
    238 	struct ip *ip;
    239 	struct ifnet *ifp;
    240 	struct mbuf *m = m0;
    241 	int hlen = sizeof (struct ip);
    242 	int len, error = 0;
    243 	struct route iproute;
    244 	const struct sockaddr_in *dst;
    245 	struct in_ifaddr *ia;
    246 	int isbroadcast;
    247 	int sw_csum;
    248 	u_long mtu;
    249 #ifdef IPSEC
    250 	struct secpolicy *sp = NULL;
    251 #endif
    252 	bool natt_frag = false;
    253 	bool rtmtu_nolock;
    254 	union {
    255 		struct sockaddr		dst;
    256 		struct sockaddr_in	dst4;
    257 	} u;
    258 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
    259 					 * to the nexthop
    260 					 */
    261 
    262 	len = 0;
    263 
    264 	MCLAIM(m, &ip_tx_mowner);
    265 
    266 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    267 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    268 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    269 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    270 
    271 	if (opt) {
    272 		m = ip_insertoptions(m, opt, &len);
    273 		if (len >= sizeof(struct ip))
    274 			hlen = len;
    275 	}
    276 	ip = mtod(m, struct ip *);
    277 
    278 	/*
    279 	 * Fill in IP header.
    280 	 */
    281 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    282 		ip->ip_v = IPVERSION;
    283 		ip->ip_off = htons(0);
    284 		/* ip->ip_id filled in after we find out source ia */
    285 		ip->ip_hl = hlen >> 2;
    286 		IP_STATINC(IP_STAT_LOCALOUT);
    287 	} else {
    288 		hlen = ip->ip_hl << 2;
    289 	}
    290 
    291 	/*
    292 	 * Route packet.
    293 	 */
    294 	if (ro == NULL) {
    295 		memset(&iproute, 0, sizeof(iproute));
    296 		ro = &iproute;
    297 	}
    298 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
    299 	dst = satocsin(rtcache_getdst(ro));
    300 
    301 	/*
    302 	 * If there is a cached route, check that it is to the same
    303 	 * destination and is still up.  If not, free it and try again.
    304 	 * The address family should also be checked in case of sharing
    305 	 * the cache with IPv6.
    306 	 */
    307 	if (dst && (dst->sin_family != AF_INET ||
    308 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    309 		rtcache_free(ro);
    310 
    311 	if ((rt = rtcache_validate(ro)) == NULL &&
    312 	    (rt = rtcache_update(ro, 1)) == NULL) {
    313 		dst = &u.dst4;
    314 		error = rtcache_setdst(ro, &u.dst);
    315 		if (error != 0)
    316 			goto bad;
    317 	}
    318 
    319 	/*
    320 	 * If routing to interface only, short circuit routing lookup.
    321 	 */
    322 	if (flags & IP_ROUTETOIF) {
    323 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
    324 			IP_STATINC(IP_STAT_NOROUTE);
    325 			error = ENETUNREACH;
    326 			goto bad;
    327 		}
    328 		ifp = ia->ia_ifp;
    329 		mtu = ifp->if_mtu;
    330 		ip->ip_ttl = 1;
    331 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    332 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    333 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    334 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    335 		ifp = imo->imo_multicast_ifp;
    336 		mtu = ifp->if_mtu;
    337 		IFP_TO_IA(ifp, ia);
    338 		isbroadcast = 0;
    339 	} else {
    340 		if (rt == NULL)
    341 			rt = rtcache_init(ro);
    342 		if (rt == NULL) {
    343 			IP_STATINC(IP_STAT_NOROUTE);
    344 			error = EHOSTUNREACH;
    345 			goto bad;
    346 		}
    347 		ia = ifatoia(rt->rt_ifa);
    348 		ifp = rt->rt_ifp;
    349 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    350 			mtu = ifp->if_mtu;
    351 		rt->rt_use++;
    352 		if (rt->rt_flags & RTF_GATEWAY)
    353 			dst = satosin(rt->rt_gateway);
    354 		if (rt->rt_flags & RTF_HOST)
    355 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    356 		else
    357 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    358 	}
    359 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    360 
    361 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    362 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    363 		bool inmgroup;
    364 
    365 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    366 		    M_BCAST : M_MCAST;
    367 		/*
    368 		 * See if the caller provided any multicast options
    369 		 */
    370 		if (imo != NULL)
    371 			ip->ip_ttl = imo->imo_multicast_ttl;
    372 		else
    373 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    374 
    375 		/*
    376 		 * if we don't know the outgoing ifp yet, we can't generate
    377 		 * output
    378 		 */
    379 		if (!ifp) {
    380 			IP_STATINC(IP_STAT_NOROUTE);
    381 			error = ENETUNREACH;
    382 			goto bad;
    383 		}
    384 
    385 		/*
    386 		 * If the packet is multicast or broadcast, confirm that
    387 		 * the outgoing interface can transmit it.
    388 		 */
    389 		if (((m->m_flags & M_MCAST) &&
    390 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    391 		    ((m->m_flags & M_BCAST) &&
    392 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    393 			IP_STATINC(IP_STAT_NOROUTE);
    394 			error = ENETUNREACH;
    395 			goto bad;
    396 		}
    397 		/*
    398 		 * If source address not specified yet, use an address
    399 		 * of outgoing interface.
    400 		 */
    401 		if (in_nullhost(ip->ip_src)) {
    402 			struct in_ifaddr *xia;
    403 			struct ifaddr *xifa;
    404 
    405 			IFP_TO_IA(ifp, xia);
    406 			if (!xia) {
    407 				error = EADDRNOTAVAIL;
    408 				goto bad;
    409 			}
    410 			xifa = &xia->ia_ifa;
    411 			if (xifa->ifa_getifa != NULL) {
    412 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    413 				if (xia == NULL) {
    414 					error = EADDRNOTAVAIL;
    415 					goto bad;
    416 				}
    417 			}
    418 			ip->ip_src = xia->ia_addr.sin_addr;
    419 		}
    420 
    421 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    422 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    423 			/*
    424 			 * If we belong to the destination multicast group
    425 			 * on the outgoing interface, and the caller did not
    426 			 * forbid loopback, loop back a copy.
    427 			 */
    428 			ip_mloopback(ifp, m, &u.dst4);
    429 		}
    430 #ifdef MROUTING
    431 		else {
    432 			/*
    433 			 * If we are acting as a multicast router, perform
    434 			 * multicast forwarding as if the packet had just
    435 			 * arrived on the interface to which we are about
    436 			 * to send.  The multicast forwarding function
    437 			 * recursively calls this function, using the
    438 			 * IP_FORWARDING flag to prevent infinite recursion.
    439 			 *
    440 			 * Multicasts that are looped back by ip_mloopback(),
    441 			 * above, will be forwarded by the ip_input() routine,
    442 			 * if necessary.
    443 			 */
    444 			extern struct socket *ip_mrouter;
    445 
    446 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    447 				if (ip_mforward(m, ifp) != 0) {
    448 					m_freem(m);
    449 					goto done;
    450 				}
    451 			}
    452 		}
    453 #endif
    454 		/*
    455 		 * Multicasts with a time-to-live of zero may be looped-
    456 		 * back, above, but must not be transmitted on a network.
    457 		 * Also, multicasts addressed to the loopback interface
    458 		 * are not sent -- the above call to ip_mloopback() will
    459 		 * loop back a copy if this host actually belongs to the
    460 		 * destination group on the loopback interface.
    461 		 */
    462 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    463 			m_freem(m);
    464 			goto done;
    465 		}
    466 		goto sendit;
    467 	}
    468 
    469 	/*
    470 	 * If source address not specified yet, use address
    471 	 * of outgoing interface.
    472 	 */
    473 	if (in_nullhost(ip->ip_src)) {
    474 		struct ifaddr *xifa;
    475 
    476 		xifa = &ia->ia_ifa;
    477 		if (xifa->ifa_getifa != NULL) {
    478 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    479 			if (ia == NULL) {
    480 				error = EADDRNOTAVAIL;
    481 				goto bad;
    482 			}
    483 		}
    484 		ip->ip_src = ia->ia_addr.sin_addr;
    485 	}
    486 
    487 	/*
    488 	 * packets with Class-D address as source are not valid per
    489 	 * RFC 1112
    490 	 */
    491 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    492 		IP_STATINC(IP_STAT_ODROPPED);
    493 		error = EADDRNOTAVAIL;
    494 		goto bad;
    495 	}
    496 
    497 	/*
    498 	 * Look for broadcast address and and verify user is allowed to
    499 	 * send such a packet.
    500 	 */
    501 	if (isbroadcast) {
    502 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    503 			error = EADDRNOTAVAIL;
    504 			goto bad;
    505 		}
    506 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    507 			error = EACCES;
    508 			goto bad;
    509 		}
    510 		/* don't allow broadcast messages to be fragmented */
    511 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    512 			error = EMSGSIZE;
    513 			goto bad;
    514 		}
    515 		m->m_flags |= M_BCAST;
    516 	} else
    517 		m->m_flags &= ~M_BCAST;
    518 
    519 sendit:
    520 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    521 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    522 			ip->ip_id = 0;
    523 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    524 			ip->ip_id = ip_newid(ia);
    525 		} else {
    526 
    527 			/*
    528 			 * TSO capable interfaces (typically?) increment
    529 			 * ip_id for each segment.
    530 			 * "allocate" enough ids here to increase the chance
    531 			 * for them to be unique.
    532 			 *
    533 			 * note that the following calculation is not
    534 			 * needed to be precise.  wasting some ip_id is fine.
    535 			 */
    536 
    537 			unsigned int segsz = m->m_pkthdr.segsz;
    538 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    539 			unsigned int num = howmany(datasz, segsz);
    540 
    541 			ip->ip_id = ip_newid_range(ia, num);
    542 		}
    543 	}
    544 
    545 	/*
    546 	 * If we're doing Path MTU Discovery, we need to set DF unless
    547 	 * the route's MTU is locked.
    548 	 */
    549 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    550 		ip->ip_off |= htons(IP_DF);
    551 	}
    552 
    553 #ifdef IPSEC
    554 	if (ipsec_used) {
    555 		bool ipsec_done = false;
    556 
    557 		/* Perform IPsec processing, if any. */
    558 		error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
    559 		    &ipsec_done);
    560 		if (error || ipsec_done)
    561 			goto done;
    562 	}
    563 #endif
    564 
    565 	/*
    566 	 * Run through list of hooks for output packets.
    567 	 */
    568 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    569 	if (error)
    570 		goto done;
    571 	if (m == NULL)
    572 		goto done;
    573 
    574 	ip = mtod(m, struct ip *);
    575 	hlen = ip->ip_hl << 2;
    576 
    577 	m->m_pkthdr.csum_data |= hlen << 16;
    578 
    579 #if IFA_STATS
    580 	/*
    581 	 * search for the source address structure to
    582 	 * maintain output statistics.
    583 	 */
    584 	INADDR_TO_IA(ip->ip_src, ia);
    585 #endif
    586 
    587 	/* Maybe skip checksums on loopback interfaces. */
    588 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    589 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    590 	}
    591 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    592 	/*
    593 	 * If small enough for mtu of path, or if using TCP segmentation
    594 	 * offload, can just send directly.
    595 	 */
    596 	if (ntohs(ip->ip_len) <= mtu ||
    597 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    598 		const struct sockaddr *sa;
    599 
    600 #if IFA_STATS
    601 		if (ia)
    602 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    603 #endif
    604 		/*
    605 		 * Always initialize the sum to 0!  Some HW assisted
    606 		 * checksumming requires this.
    607 		 */
    608 		ip->ip_sum = 0;
    609 
    610 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    611 			/*
    612 			 * Perform any checksums that the hardware can't do
    613 			 * for us.
    614 			 *
    615 			 * XXX Does any hardware require the {th,uh}_sum
    616 			 * XXX fields to be 0?
    617 			 */
    618 			if (sw_csum & M_CSUM_IPv4) {
    619 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    620 				ip->ip_sum = in_cksum(m, hlen);
    621 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    622 			}
    623 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    624 				if (IN_NEED_CHECKSUM(ifp,
    625 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    626 					in_delayed_cksum(m);
    627 				}
    628 				m->m_pkthdr.csum_flags &=
    629 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    630 			}
    631 		}
    632 
    633 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    634 		if (__predict_true(
    635 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    636 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    637 			error = ip_if_output(ifp, m, sa, rt);
    638 		} else {
    639 			error = ip_tso_output(ifp, m, sa, rt);
    640 		}
    641 		goto done;
    642 	}
    643 
    644 	/*
    645 	 * We can't use HW checksumming if we're about to
    646 	 * to fragment the packet.
    647 	 *
    648 	 * XXX Some hardware can do this.
    649 	 */
    650 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    651 		if (IN_NEED_CHECKSUM(ifp,
    652 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    653 			in_delayed_cksum(m);
    654 		}
    655 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    656 	}
    657 
    658 	/*
    659 	 * Too large for interface; fragment if possible.
    660 	 * Must be able to put at least 8 bytes per fragment.
    661 	 */
    662 	if (ntohs(ip->ip_off) & IP_DF) {
    663 		if (flags & IP_RETURNMTU) {
    664 			struct inpcb *inp;
    665 
    666 			KASSERT(so && solocked(so));
    667 			inp = sotoinpcb(so);
    668 			inp->inp_errormtu = mtu;
    669 		}
    670 		error = EMSGSIZE;
    671 		IP_STATINC(IP_STAT_CANTFRAG);
    672 		goto bad;
    673 	}
    674 
    675 	error = ip_fragment(m, ifp, mtu);
    676 	if (error) {
    677 		m = NULL;
    678 		goto bad;
    679 	}
    680 
    681 	for (; m; m = m0) {
    682 		m0 = m->m_nextpkt;
    683 		m->m_nextpkt = 0;
    684 		if (error) {
    685 			m_freem(m);
    686 			continue;
    687 		}
    688 #if IFA_STATS
    689 		if (ia)
    690 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    691 #endif
    692 		/*
    693 		 * If we get there, the packet has not been handled by
    694 		 * IPsec whereas it should have. Now that it has been
    695 		 * fragmented, re-inject it in ip_output so that IPsec
    696 		 * processing can occur.
    697 		 */
    698 		if (natt_frag) {
    699 			error = ip_output(m, opt, ro,
    700 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    701 			    imo, so);
    702 		} else {
    703 			KASSERT((m->m_pkthdr.csum_flags &
    704 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    705 			error = ip_if_output(ifp, m,
    706 			    (m->m_flags & M_MCAST) ?
    707 			    sintocsa(rdst) : sintocsa(dst), rt);
    708 		}
    709 	}
    710 	if (error == 0) {
    711 		IP_STATINC(IP_STAT_FRAGMENTED);
    712 	}
    713 done:
    714 	if (ro == &iproute) {
    715 		rtcache_free(&iproute);
    716 	}
    717 #ifdef IPSEC
    718 	if (sp) {
    719 		KEY_FREESP(&sp);
    720 	}
    721 #endif
    722 	return error;
    723 bad:
    724 	m_freem(m);
    725 	goto done;
    726 }
    727 
    728 int
    729 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    730 {
    731 	struct ip *ip, *mhip;
    732 	struct mbuf *m0;
    733 	int len, hlen, off;
    734 	int mhlen, firstlen;
    735 	struct mbuf **mnext;
    736 	int sw_csum = m->m_pkthdr.csum_flags;
    737 	int fragments = 0;
    738 	int s;
    739 	int error = 0;
    740 
    741 	ip = mtod(m, struct ip *);
    742 	hlen = ip->ip_hl << 2;
    743 	if (ifp != NULL)
    744 		sw_csum &= ~ifp->if_csum_flags_tx;
    745 
    746 	len = (mtu - hlen) &~ 7;
    747 	if (len < 8) {
    748 		m_freem(m);
    749 		return (EMSGSIZE);
    750 	}
    751 
    752 	firstlen = len;
    753 	mnext = &m->m_nextpkt;
    754 
    755 	/*
    756 	 * Loop through length of segment after first fragment,
    757 	 * make new header and copy data of each part and link onto chain.
    758 	 */
    759 	m0 = m;
    760 	mhlen = sizeof (struct ip);
    761 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    762 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    763 		if (m == 0) {
    764 			error = ENOBUFS;
    765 			IP_STATINC(IP_STAT_ODROPPED);
    766 			goto sendorfree;
    767 		}
    768 		MCLAIM(m, m0->m_owner);
    769 		*mnext = m;
    770 		mnext = &m->m_nextpkt;
    771 		m->m_data += max_linkhdr;
    772 		mhip = mtod(m, struct ip *);
    773 		*mhip = *ip;
    774 		/* we must inherit MCAST and BCAST flags */
    775 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    776 		if (hlen > sizeof (struct ip)) {
    777 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    778 			mhip->ip_hl = mhlen >> 2;
    779 		}
    780 		m->m_len = mhlen;
    781 		mhip->ip_off = ((off - hlen) >> 3) +
    782 		    (ntohs(ip->ip_off) & ~IP_MF);
    783 		if (ip->ip_off & htons(IP_MF))
    784 			mhip->ip_off |= IP_MF;
    785 		if (off + len >= ntohs(ip->ip_len))
    786 			len = ntohs(ip->ip_len) - off;
    787 		else
    788 			mhip->ip_off |= IP_MF;
    789 		HTONS(mhip->ip_off);
    790 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    791 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    792 		if (m->m_next == 0) {
    793 			error = ENOBUFS;	/* ??? */
    794 			IP_STATINC(IP_STAT_ODROPPED);
    795 			goto sendorfree;
    796 		}
    797 		m->m_pkthdr.len = mhlen + len;
    798 		m->m_pkthdr.rcvif = NULL;
    799 		mhip->ip_sum = 0;
    800 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    801 		if (sw_csum & M_CSUM_IPv4) {
    802 			mhip->ip_sum = in_cksum(m, mhlen);
    803 		} else {
    804 			/*
    805 			 * checksum is hw-offloaded or not necessary.
    806 			 */
    807 			m->m_pkthdr.csum_flags |=
    808 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    809 			m->m_pkthdr.csum_data |= mhlen << 16;
    810 			KASSERT(!(ifp != NULL &&
    811 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    812 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    813 		}
    814 		IP_STATINC(IP_STAT_OFRAGMENTS);
    815 		fragments++;
    816 	}
    817 	/*
    818 	 * Update first fragment by trimming what's been copied out
    819 	 * and updating header, then send each fragment (in order).
    820 	 */
    821 	m = m0;
    822 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    823 	m->m_pkthdr.len = hlen + firstlen;
    824 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    825 	ip->ip_off |= htons(IP_MF);
    826 	ip->ip_sum = 0;
    827 	if (sw_csum & M_CSUM_IPv4) {
    828 		ip->ip_sum = in_cksum(m, hlen);
    829 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    830 	} else {
    831 		/*
    832 		 * checksum is hw-offloaded or not necessary.
    833 		 */
    834 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    835 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    836 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    837 		    sizeof(struct ip));
    838 	}
    839 sendorfree:
    840 	/*
    841 	 * If there is no room for all the fragments, don't queue
    842 	 * any of them.
    843 	 */
    844 	if (ifp != NULL) {
    845 		s = splnet();
    846 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    847 		    error == 0) {
    848 			error = ENOBUFS;
    849 			IP_STATINC(IP_STAT_ODROPPED);
    850 			IFQ_INC_DROPS(&ifp->if_snd);
    851 		}
    852 		splx(s);
    853 	}
    854 	if (error) {
    855 		for (m = m0; m; m = m0) {
    856 			m0 = m->m_nextpkt;
    857 			m->m_nextpkt = NULL;
    858 			m_freem(m);
    859 		}
    860 	}
    861 	return (error);
    862 }
    863 
    864 /*
    865  * Process a delayed payload checksum calculation.
    866  */
    867 void
    868 in_delayed_cksum(struct mbuf *m)
    869 {
    870 	struct ip *ip;
    871 	u_int16_t csum, offset;
    872 
    873 	ip = mtod(m, struct ip *);
    874 	offset = ip->ip_hl << 2;
    875 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    876 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    877 		csum = 0xffff;
    878 
    879 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    880 
    881 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    882 		/* This happen when ip options were inserted
    883 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    884 		    m->m_len, offset, ip->ip_p);
    885 		 */
    886 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    887 	} else
    888 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    889 }
    890 
    891 /*
    892  * Determine the maximum length of the options to be inserted;
    893  * we would far rather allocate too much space rather than too little.
    894  */
    895 
    896 u_int
    897 ip_optlen(struct inpcb *inp)
    898 {
    899 	struct mbuf *m = inp->inp_options;
    900 
    901 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    902 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    903 	}
    904 	return 0;
    905 }
    906 
    907 /*
    908  * Insert IP options into preformed packet.
    909  * Adjust IP destination as required for IP source routing,
    910  * as indicated by a non-zero in_addr at the start of the options.
    911  */
    912 static struct mbuf *
    913 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    914 {
    915 	struct ipoption *p = mtod(opt, struct ipoption *);
    916 	struct mbuf *n;
    917 	struct ip *ip = mtod(m, struct ip *);
    918 	unsigned optlen;
    919 
    920 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    921 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    922 		return (m);		/* XXX should fail */
    923 	if (!in_nullhost(p->ipopt_dst))
    924 		ip->ip_dst = p->ipopt_dst;
    925 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    926 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    927 		if (n == 0)
    928 			return (m);
    929 		MCLAIM(n, m->m_owner);
    930 		M_MOVE_PKTHDR(n, m);
    931 		m->m_len -= sizeof(struct ip);
    932 		m->m_data += sizeof(struct ip);
    933 		n->m_next = m;
    934 		m = n;
    935 		m->m_len = optlen + sizeof(struct ip);
    936 		m->m_data += max_linkhdr;
    937 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    938 	} else {
    939 		m->m_data -= optlen;
    940 		m->m_len += optlen;
    941 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    942 	}
    943 	m->m_pkthdr.len += optlen;
    944 	ip = mtod(m, struct ip *);
    945 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
    946 	*phlen = sizeof(struct ip) + optlen;
    947 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
    948 	return (m);
    949 }
    950 
    951 /*
    952  * Copy options from ip to jp,
    953  * omitting those not copied during fragmentation.
    954  */
    955 int
    956 ip_optcopy(struct ip *ip, struct ip *jp)
    957 {
    958 	u_char *cp, *dp;
    959 	int opt, optlen, cnt;
    960 
    961 	cp = (u_char *)(ip + 1);
    962 	dp = (u_char *)(jp + 1);
    963 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
    964 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    965 		opt = cp[0];
    966 		if (opt == IPOPT_EOL)
    967 			break;
    968 		if (opt == IPOPT_NOP) {
    969 			/* Preserve for IP mcast tunnel's LSRR alignment. */
    970 			*dp++ = IPOPT_NOP;
    971 			optlen = 1;
    972 			continue;
    973 		}
    974 
    975 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
    976 		optlen = cp[IPOPT_OLEN];
    977 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
    978 
    979 		/* Invalid lengths should have been caught by ip_dooptions. */
    980 		if (optlen > cnt)
    981 			optlen = cnt;
    982 		if (IPOPT_COPIED(opt)) {
    983 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
    984 			dp += optlen;
    985 		}
    986 	}
    987 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
    988 		*dp++ = IPOPT_EOL;
    989 	return (optlen);
    990 }
    991 
    992 /*
    993  * IP socket option processing.
    994  */
    995 int
    996 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    997 {
    998 	struct inpcb *inp = sotoinpcb(so);
    999 	struct ip *ip = &inp->inp_ip;
   1000 	int inpflags = inp->inp_flags;
   1001 	int optval = 0, error = 0;
   1002 
   1003 	if (sopt->sopt_level != IPPROTO_IP) {
   1004 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1005 			return 0;
   1006 		return ENOPROTOOPT;
   1007 	}
   1008 
   1009 	switch (op) {
   1010 	case PRCO_SETOPT:
   1011 		switch (sopt->sopt_name) {
   1012 		case IP_OPTIONS:
   1013 #ifdef notyet
   1014 		case IP_RETOPTS:
   1015 #endif
   1016 			error = ip_pcbopts(inp, sopt);
   1017 			break;
   1018 
   1019 		case IP_TOS:
   1020 		case IP_TTL:
   1021 		case IP_MINTTL:
   1022 		case IP_PKTINFO:
   1023 		case IP_RECVOPTS:
   1024 		case IP_RECVRETOPTS:
   1025 		case IP_RECVDSTADDR:
   1026 		case IP_RECVIF:
   1027 		case IP_RECVPKTINFO:
   1028 		case IP_RECVTTL:
   1029 			error = sockopt_getint(sopt, &optval);
   1030 			if (error)
   1031 				break;
   1032 
   1033 			switch (sopt->sopt_name) {
   1034 			case IP_TOS:
   1035 				ip->ip_tos = optval;
   1036 				break;
   1037 
   1038 			case IP_TTL:
   1039 				ip->ip_ttl = optval;
   1040 				break;
   1041 
   1042 			case IP_MINTTL:
   1043 				if (optval > 0 && optval <= MAXTTL)
   1044 					inp->inp_ip_minttl = optval;
   1045 				else
   1046 					error = EINVAL;
   1047 				break;
   1048 #define	OPTSET(bit) \
   1049 	if (optval) \
   1050 		inpflags |= bit; \
   1051 	else \
   1052 		inpflags &= ~bit;
   1053 
   1054 			case IP_PKTINFO:
   1055 				OPTSET(INP_PKTINFO);
   1056 				break;
   1057 
   1058 			case IP_RECVOPTS:
   1059 				OPTSET(INP_RECVOPTS);
   1060 				break;
   1061 
   1062 			case IP_RECVPKTINFO:
   1063 				OPTSET(INP_RECVPKTINFO);
   1064 				break;
   1065 
   1066 			case IP_RECVRETOPTS:
   1067 				OPTSET(INP_RECVRETOPTS);
   1068 				break;
   1069 
   1070 			case IP_RECVDSTADDR:
   1071 				OPTSET(INP_RECVDSTADDR);
   1072 				break;
   1073 
   1074 			case IP_RECVIF:
   1075 				OPTSET(INP_RECVIF);
   1076 				break;
   1077 
   1078 			case IP_RECVTTL:
   1079 				OPTSET(INP_RECVTTL);
   1080 				break;
   1081 			}
   1082 		break;
   1083 #undef OPTSET
   1084 
   1085 		case IP_MULTICAST_IF:
   1086 		case IP_MULTICAST_TTL:
   1087 		case IP_MULTICAST_LOOP:
   1088 		case IP_ADD_MEMBERSHIP:
   1089 		case IP_DROP_MEMBERSHIP:
   1090 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1091 			break;
   1092 
   1093 		case IP_PORTRANGE:
   1094 			error = sockopt_getint(sopt, &optval);
   1095 			if (error)
   1096 				break;
   1097 
   1098 			switch (optval) {
   1099 			case IP_PORTRANGE_DEFAULT:
   1100 			case IP_PORTRANGE_HIGH:
   1101 				inpflags &= ~(INP_LOWPORT);
   1102 				break;
   1103 
   1104 			case IP_PORTRANGE_LOW:
   1105 				inpflags |= INP_LOWPORT;
   1106 				break;
   1107 
   1108 			default:
   1109 				error = EINVAL;
   1110 				break;
   1111 			}
   1112 			break;
   1113 
   1114 		case IP_PORTALGO:
   1115 			error = sockopt_getint(sopt, &optval);
   1116 			if (error)
   1117 				break;
   1118 
   1119 			error = portalgo_algo_index_select(
   1120 			    (struct inpcb_hdr *)inp, optval);
   1121 			break;
   1122 
   1123 #if defined(IPSEC)
   1124 		case IP_IPSEC_POLICY:
   1125 			if (ipsec_enabled) {
   1126 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1127 				    sopt->sopt_data, sopt->sopt_size,
   1128 				    curlwp->l_cred);
   1129 				break;
   1130 			}
   1131 			/*FALLTHROUGH*/
   1132 #endif /* IPSEC */
   1133 
   1134 		default:
   1135 			error = ENOPROTOOPT;
   1136 			break;
   1137 		}
   1138 		break;
   1139 
   1140 	case PRCO_GETOPT:
   1141 		switch (sopt->sopt_name) {
   1142 		case IP_OPTIONS:
   1143 		case IP_RETOPTS: {
   1144 			struct mbuf *mopts = inp->inp_options;
   1145 
   1146 			if (mopts) {
   1147 				struct mbuf *m;
   1148 
   1149 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1150 				if (m == NULL) {
   1151 					error = ENOBUFS;
   1152 					break;
   1153 				}
   1154 				error = sockopt_setmbuf(sopt, m);
   1155 			}
   1156 			break;
   1157 		}
   1158 		case IP_PKTINFO:
   1159 		case IP_TOS:
   1160 		case IP_TTL:
   1161 		case IP_MINTTL:
   1162 		case IP_RECVOPTS:
   1163 		case IP_RECVRETOPTS:
   1164 		case IP_RECVDSTADDR:
   1165 		case IP_RECVIF:
   1166 		case IP_RECVPKTINFO:
   1167 		case IP_RECVTTL:
   1168 		case IP_ERRORMTU:
   1169 			switch (sopt->sopt_name) {
   1170 			case IP_TOS:
   1171 				optval = ip->ip_tos;
   1172 				break;
   1173 
   1174 			case IP_TTL:
   1175 				optval = ip->ip_ttl;
   1176 				break;
   1177 
   1178 			case IP_MINTTL:
   1179 				optval = inp->inp_ip_minttl;
   1180 				break;
   1181 
   1182 			case IP_ERRORMTU:
   1183 				optval = inp->inp_errormtu;
   1184 				break;
   1185 
   1186 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1187 
   1188 			case IP_PKTINFO:
   1189 				optval = OPTBIT(INP_PKTINFO);
   1190 				break;
   1191 
   1192 			case IP_RECVOPTS:
   1193 				optval = OPTBIT(INP_RECVOPTS);
   1194 				break;
   1195 
   1196 			case IP_RECVPKTINFO:
   1197 				optval = OPTBIT(INP_RECVPKTINFO);
   1198 				break;
   1199 
   1200 			case IP_RECVRETOPTS:
   1201 				optval = OPTBIT(INP_RECVRETOPTS);
   1202 				break;
   1203 
   1204 			case IP_RECVDSTADDR:
   1205 				optval = OPTBIT(INP_RECVDSTADDR);
   1206 				break;
   1207 
   1208 			case IP_RECVIF:
   1209 				optval = OPTBIT(INP_RECVIF);
   1210 				break;
   1211 
   1212 			case IP_RECVTTL:
   1213 				optval = OPTBIT(INP_RECVTTL);
   1214 				break;
   1215 			}
   1216 			error = sockopt_setint(sopt, optval);
   1217 			break;
   1218 
   1219 #if 0	/* defined(IPSEC) */
   1220 		case IP_IPSEC_POLICY:
   1221 		{
   1222 			struct mbuf *m = NULL;
   1223 
   1224 			/* XXX this will return EINVAL as sopt is empty */
   1225 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1226 			    sopt->sopt_size, &m);
   1227 			if (error == 0)
   1228 				error = sockopt_setmbuf(sopt, m);
   1229 			break;
   1230 		}
   1231 #endif /*IPSEC*/
   1232 
   1233 		case IP_MULTICAST_IF:
   1234 		case IP_MULTICAST_TTL:
   1235 		case IP_MULTICAST_LOOP:
   1236 		case IP_ADD_MEMBERSHIP:
   1237 		case IP_DROP_MEMBERSHIP:
   1238 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1239 			break;
   1240 
   1241 		case IP_PORTRANGE:
   1242 			if (inpflags & INP_LOWPORT)
   1243 				optval = IP_PORTRANGE_LOW;
   1244 			else
   1245 				optval = IP_PORTRANGE_DEFAULT;
   1246 			error = sockopt_setint(sopt, optval);
   1247 			break;
   1248 
   1249 		case IP_PORTALGO:
   1250 			optval = inp->inp_portalgo;
   1251 			error = sockopt_setint(sopt, optval);
   1252 			break;
   1253 
   1254 		default:
   1255 			error = ENOPROTOOPT;
   1256 			break;
   1257 		}
   1258 		break;
   1259 	}
   1260 
   1261 	if (!error) {
   1262 		inp->inp_flags = inpflags;
   1263 	}
   1264 	return error;
   1265 }
   1266 
   1267 /*
   1268  * Set up IP options in pcb for insertion in output packets.
   1269  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1270  * with destination address if source routed.
   1271  */
   1272 static int
   1273 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1274 {
   1275 	struct mbuf *m;
   1276 	const u_char *cp;
   1277 	u_char *dp;
   1278 	int cnt;
   1279 
   1280 	/* Turn off any old options. */
   1281 	if (inp->inp_options) {
   1282 		m_free(inp->inp_options);
   1283 	}
   1284 	inp->inp_options = NULL;
   1285 	if ((cnt = sopt->sopt_size) == 0) {
   1286 		/* Only turning off any previous options. */
   1287 		return 0;
   1288 	}
   1289 	cp = sopt->sopt_data;
   1290 
   1291 #ifndef	__vax__
   1292 	if (cnt % sizeof(int32_t))
   1293 		return (EINVAL);
   1294 #endif
   1295 
   1296 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1297 	if (m == NULL)
   1298 		return (ENOBUFS);
   1299 
   1300 	dp = mtod(m, u_char *);
   1301 	memset(dp, 0, sizeof(struct in_addr));
   1302 	dp += sizeof(struct in_addr);
   1303 	m->m_len = sizeof(struct in_addr);
   1304 
   1305 	/*
   1306 	 * IP option list according to RFC791. Each option is of the form
   1307 	 *
   1308 	 *	[optval] [olen] [(olen - 2) data bytes]
   1309 	 *
   1310 	 * We validate the list and copy options to an mbuf for prepending
   1311 	 * to data packets. The IP first-hop destination address will be
   1312 	 * stored before actual options and is zero if unset.
   1313 	 */
   1314 	while (cnt > 0) {
   1315 		uint8_t optval, olen, offset;
   1316 
   1317 		optval = cp[IPOPT_OPTVAL];
   1318 
   1319 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1320 			olen = 1;
   1321 		} else {
   1322 			if (cnt < IPOPT_OLEN + 1)
   1323 				goto bad;
   1324 
   1325 			olen = cp[IPOPT_OLEN];
   1326 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1327 				goto bad;
   1328 		}
   1329 
   1330 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1331 			/*
   1332 			 * user process specifies route as:
   1333 			 *	->A->B->C->D
   1334 			 * D must be our final destination (but we can't
   1335 			 * check that since we may not have connected yet).
   1336 			 * A is first hop destination, which doesn't appear in
   1337 			 * actual IP option, but is stored before the options.
   1338 			 */
   1339 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1340 				goto bad;
   1341 
   1342 			offset = cp[IPOPT_OFFSET];
   1343 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1344 			    sizeof(struct in_addr));
   1345 
   1346 			cp += sizeof(struct in_addr);
   1347 			cnt -= sizeof(struct in_addr);
   1348 			olen -= sizeof(struct in_addr);
   1349 
   1350 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1351 				goto bad;
   1352 
   1353 			memcpy(dp, cp, olen);
   1354 			dp[IPOPT_OPTVAL] = optval;
   1355 			dp[IPOPT_OLEN] = olen;
   1356 			dp[IPOPT_OFFSET] = offset;
   1357 			break;
   1358 		} else {
   1359 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1360 				goto bad;
   1361 
   1362 			memcpy(dp, cp, olen);
   1363 			break;
   1364 		}
   1365 
   1366 		dp += olen;
   1367 		m->m_len += olen;
   1368 
   1369 		if (optval == IPOPT_EOL)
   1370 			break;
   1371 
   1372 		cp += olen;
   1373 		cnt -= olen;
   1374 	}
   1375 
   1376 	inp->inp_options = m;
   1377 	return 0;
   1378 bad:
   1379 	(void)m_free(m);
   1380 	return EINVAL;
   1381 }
   1382 
   1383 /*
   1384  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1385  */
   1386 static struct ifnet *
   1387 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1388 {
   1389 	int ifindex;
   1390 	struct ifnet *ifp = NULL;
   1391 	struct in_ifaddr *ia;
   1392 
   1393 	if (ifindexp)
   1394 		*ifindexp = 0;
   1395 	if (ntohl(a->s_addr) >> 24 == 0) {
   1396 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1397 		ifp = if_byindex(ifindex);
   1398 		if (!ifp)
   1399 			return NULL;
   1400 		if (ifindexp)
   1401 			*ifindexp = ifindex;
   1402 	} else {
   1403 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1404 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1405 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1406 				ifp = ia->ia_ifp;
   1407 				break;
   1408 			}
   1409 		}
   1410 	}
   1411 	return ifp;
   1412 }
   1413 
   1414 static int
   1415 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1416 {
   1417 	u_int tval;
   1418 	u_char cval;
   1419 	int error;
   1420 
   1421 	if (sopt == NULL)
   1422 		return EINVAL;
   1423 
   1424 	switch (sopt->sopt_size) {
   1425 	case sizeof(u_char):
   1426 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1427 		tval = cval;
   1428 		break;
   1429 
   1430 	case sizeof(u_int):
   1431 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1432 		break;
   1433 
   1434 	default:
   1435 		error = EINVAL;
   1436 	}
   1437 
   1438 	if (error)
   1439 		return error;
   1440 
   1441 	if (tval > maxval)
   1442 		return EINVAL;
   1443 
   1444 	*val = tval;
   1445 	return 0;
   1446 }
   1447 
   1448 static int
   1449 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1450     struct in_addr *ia, bool add)
   1451 {
   1452 	int error;
   1453 	struct ip_mreq mreq;
   1454 
   1455 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1456 	if (error)
   1457 		return error;
   1458 
   1459 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1460 		return EINVAL;
   1461 
   1462 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1463 
   1464 	if (in_nullhost(mreq.imr_interface)) {
   1465 		union {
   1466 			struct sockaddr		dst;
   1467 			struct sockaddr_in	dst4;
   1468 		} u;
   1469 		struct route ro;
   1470 
   1471 		if (!add) {
   1472 			*ifp = NULL;
   1473 			return 0;
   1474 		}
   1475 		/*
   1476 		 * If no interface address was provided, use the interface of
   1477 		 * the route to the given multicast address.
   1478 		 */
   1479 		struct rtentry *rt;
   1480 		memset(&ro, 0, sizeof(ro));
   1481 
   1482 		sockaddr_in_init(&u.dst4, ia, 0);
   1483 		error = rtcache_setdst(&ro, &u.dst);
   1484 		if (error != 0)
   1485 			return error;
   1486 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1487 		rtcache_free(&ro);
   1488 	} else {
   1489 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1490 		if (!add && *ifp == NULL)
   1491 			return EADDRNOTAVAIL;
   1492 	}
   1493 	return 0;
   1494 }
   1495 
   1496 /*
   1497  * Add a multicast group membership.
   1498  * Group must be a valid IP multicast address.
   1499  */
   1500 static int
   1501 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1502 {
   1503 	struct ifnet *ifp = NULL;	// XXX: gcc [ppc]
   1504 	struct in_addr ia;
   1505 	int i, error;
   1506 
   1507 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1508 		error = ip_get_membership(sopt, &ifp, &ia, true);
   1509 	else
   1510 #ifdef INET6
   1511 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1512 #else
   1513 		return EINVAL;
   1514 #endif
   1515 
   1516 	if (error)
   1517 		return error;
   1518 
   1519 	/*
   1520 	 * See if we found an interface, and confirm that it
   1521 	 * supports multicast.
   1522 	 */
   1523 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
   1524 		return EADDRNOTAVAIL;
   1525 
   1526 	/*
   1527 	 * See if the membership already exists or if all the
   1528 	 * membership slots are full.
   1529 	 */
   1530 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1531 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1532 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1533 			break;
   1534 	}
   1535 	if (i < imo->imo_num_memberships)
   1536 		return EADDRINUSE;
   1537 
   1538 	if (i == IP_MAX_MEMBERSHIPS)
   1539 		return ETOOMANYREFS;
   1540 
   1541 	/*
   1542 	 * Everything looks good; add a new record to the multicast
   1543 	 * address list for the given interface.
   1544 	 */
   1545 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
   1546 		return ENOBUFS;
   1547 
   1548 	++imo->imo_num_memberships;
   1549 	return 0;
   1550 }
   1551 
   1552 /*
   1553  * Drop a multicast group membership.
   1554  * Group must be a valid IP multicast address.
   1555  */
   1556 static int
   1557 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1558 {
   1559 	struct in_addr ia = { .s_addr = 0 };	// XXX: gcc [ppc]
   1560 	struct ifnet *ifp = NULL;		// XXX: gcc [ppc]
   1561 	int i, error;
   1562 
   1563 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1564 		error = ip_get_membership(sopt, &ifp, &ia, false);
   1565 	else
   1566 #ifdef INET6
   1567 		error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
   1568 #else
   1569 		return EINVAL;
   1570 #endif
   1571 
   1572 	if (error)
   1573 		return error;
   1574 
   1575 	/*
   1576 	 * Find the membership in the membership array.
   1577 	 */
   1578 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1579 		if ((ifp == NULL ||
   1580 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1581 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1582 			break;
   1583 	}
   1584 	if (i == imo->imo_num_memberships)
   1585 		return EADDRNOTAVAIL;
   1586 
   1587 	/*
   1588 	 * Give up the multicast address record to which the
   1589 	 * membership points.
   1590 	 */
   1591 	in_delmulti(imo->imo_membership[i]);
   1592 
   1593 	/*
   1594 	 * Remove the gap in the membership array.
   1595 	 */
   1596 	for (++i; i < imo->imo_num_memberships; ++i)
   1597 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1598 	--imo->imo_num_memberships;
   1599 	return 0;
   1600 }
   1601 
   1602 /*
   1603  * Set the IP multicast options in response to user setsockopt().
   1604  */
   1605 int
   1606 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1607 {
   1608 	struct ip_moptions *imo = *pimo;
   1609 	struct in_addr addr;
   1610 	struct ifnet *ifp;
   1611 	int ifindex, error = 0;
   1612 
   1613 	if (!imo) {
   1614 		/*
   1615 		 * No multicast option buffer attached to the pcb;
   1616 		 * allocate one and initialize to default values.
   1617 		 */
   1618 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1619 		if (imo == NULL)
   1620 			return ENOBUFS;
   1621 
   1622 		imo->imo_multicast_ifp = NULL;
   1623 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1624 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1625 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1626 		imo->imo_num_memberships = 0;
   1627 		*pimo = imo;
   1628 	}
   1629 
   1630 	switch (sopt->sopt_name) {
   1631 	case IP_MULTICAST_IF:
   1632 		/*
   1633 		 * Select the interface for outgoing multicast packets.
   1634 		 */
   1635 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1636 		if (error)
   1637 			break;
   1638 
   1639 		/*
   1640 		 * INADDR_ANY is used to remove a previous selection.
   1641 		 * When no interface is selected, a default one is
   1642 		 * chosen every time a multicast packet is sent.
   1643 		 */
   1644 		if (in_nullhost(addr)) {
   1645 			imo->imo_multicast_ifp = NULL;
   1646 			break;
   1647 		}
   1648 		/*
   1649 		 * The selected interface is identified by its local
   1650 		 * IP address.  Find the interface and confirm that
   1651 		 * it supports multicasting.
   1652 		 */
   1653 		ifp = ip_multicast_if(&addr, &ifindex);
   1654 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1655 			error = EADDRNOTAVAIL;
   1656 			break;
   1657 		}
   1658 		imo->imo_multicast_ifp = ifp;
   1659 		if (ifindex)
   1660 			imo->imo_multicast_addr = addr;
   1661 		else
   1662 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1663 		break;
   1664 
   1665 	case IP_MULTICAST_TTL:
   1666 		/*
   1667 		 * Set the IP time-to-live for outgoing multicast packets.
   1668 		 */
   1669 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1670 		break;
   1671 
   1672 	case IP_MULTICAST_LOOP:
   1673 		/*
   1674 		 * Set the loopback flag for outgoing multicast packets.
   1675 		 * Must be zero or one.
   1676 		 */
   1677 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1678 		break;
   1679 
   1680 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1681 		error = ip_add_membership(imo, sopt);
   1682 		break;
   1683 
   1684 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1685 		error = ip_drop_membership(imo, sopt);
   1686 		break;
   1687 
   1688 	default:
   1689 		error = EOPNOTSUPP;
   1690 		break;
   1691 	}
   1692 
   1693 	/*
   1694 	 * If all options have default values, no need to keep the mbuf.
   1695 	 */
   1696 	if (imo->imo_multicast_ifp == NULL &&
   1697 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1698 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1699 	    imo->imo_num_memberships == 0) {
   1700 		kmem_free(imo, sizeof(*imo));
   1701 		*pimo = NULL;
   1702 	}
   1703 
   1704 	return error;
   1705 }
   1706 
   1707 /*
   1708  * Return the IP multicast options in response to user getsockopt().
   1709  */
   1710 int
   1711 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1712 {
   1713 	struct in_addr addr;
   1714 	struct in_ifaddr *ia;
   1715 	uint8_t optval;
   1716 	int error = 0;
   1717 
   1718 	switch (sopt->sopt_name) {
   1719 	case IP_MULTICAST_IF:
   1720 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1721 			addr = zeroin_addr;
   1722 		else if (imo->imo_multicast_addr.s_addr) {
   1723 			/* return the value user has set */
   1724 			addr = imo->imo_multicast_addr;
   1725 		} else {
   1726 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1727 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1728 		}
   1729 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1730 		break;
   1731 
   1732 	case IP_MULTICAST_TTL:
   1733 		optval = imo ? imo->imo_multicast_ttl
   1734 		    : IP_DEFAULT_MULTICAST_TTL;
   1735 
   1736 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1737 		break;
   1738 
   1739 	case IP_MULTICAST_LOOP:
   1740 		optval = imo ? imo->imo_multicast_loop
   1741 		    : IP_DEFAULT_MULTICAST_LOOP;
   1742 
   1743 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1744 		break;
   1745 
   1746 	default:
   1747 		error = EOPNOTSUPP;
   1748 	}
   1749 
   1750 	return error;
   1751 }
   1752 
   1753 /*
   1754  * Discard the IP multicast options.
   1755  */
   1756 void
   1757 ip_freemoptions(struct ip_moptions *imo)
   1758 {
   1759 	int i;
   1760 
   1761 	if (imo != NULL) {
   1762 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1763 			in_delmulti(imo->imo_membership[i]);
   1764 		kmem_free(imo, sizeof(*imo));
   1765 	}
   1766 }
   1767 
   1768 /*
   1769  * Routine called from ip_output() to loop back a copy of an IP multicast
   1770  * packet to the input queue of a specified interface.  Note that this
   1771  * calls the output routine of the loopback "driver", but with an interface
   1772  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1773  */
   1774 static void
   1775 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1776 {
   1777 	struct ip *ip;
   1778 	struct mbuf *copym;
   1779 
   1780 	copym = m_copypacket(m, M_DONTWAIT);
   1781 	if (copym != NULL &&
   1782 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1783 		copym = m_pullup(copym, sizeof(struct ip));
   1784 	if (copym == NULL)
   1785 		return;
   1786 	/*
   1787 	 * We don't bother to fragment if the IP length is greater
   1788 	 * than the interface's MTU.  Can this possibly matter?
   1789 	 */
   1790 	ip = mtod(copym, struct ip *);
   1791 
   1792 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1793 		in_delayed_cksum(copym);
   1794 		copym->m_pkthdr.csum_flags &=
   1795 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1796 	}
   1797 
   1798 	ip->ip_sum = 0;
   1799 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1800 #ifndef NET_MPSAFE
   1801 	KERNEL_LOCK(1, NULL);
   1802 #endif
   1803 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1804 #ifndef NET_MPSAFE
   1805 	KERNEL_UNLOCK_ONE(NULL);
   1806 #endif
   1807 }
   1808