ip_output.c revision 1.255 1 /* $NetBSD: ip_output.c,v 1.255 2016/05/09 07:02:10 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.255 2016/05/09 07:02:10 ozaki-r Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/kmem.h>
106 #include <sys/mbuf.h>
107 #include <sys/protosw.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/kauth.h>
111 #ifdef IPSEC
112 #include <sys/domain.h>
113 #endif
114 #include <sys/systm.h>
115
116 #include <net/if.h>
117 #include <net/if_types.h>
118 #include <net/route.h>
119 #include <net/pfil.h>
120
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_private.h>
128 #include <netinet/in_offload.h>
129 #include <netinet/portalgo.h>
130 #include <netinet/udp.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155
156 extern pfil_head_t *inet_pfil_hook; /* XXX */
157
158 int ip_do_loopback_cksum = 0;
159
160 static int
161 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
162 const struct rtentry *rt)
163 {
164 int error = 0;
165 #ifdef MPLS
166 union mpls_shim msh;
167
168 if (rt == NULL || rt_gettag(rt) == NULL ||
169 rt_gettag(rt)->sa_family != AF_MPLS ||
170 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
171 ifp->if_type != IFT_ETHER)
172 return 0;
173
174 msh.s_addr = MPLS_GETSADDR(rt);
175 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
176 struct m_tag *mtag;
177 /*
178 * XXX tentative solution to tell ether_output
179 * it's MPLS. Need some more efficient solution.
180 */
181 mtag = m_tag_get(PACKET_TAG_MPLS,
182 sizeof(int) /* dummy */,
183 M_NOWAIT);
184 if (mtag == NULL)
185 return ENOMEM;
186 m_tag_prepend(m, mtag);
187 }
188 #endif
189 return error;
190 }
191
192 /*
193 * Send an IP packet to a host.
194 */
195 int
196 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
197 const struct sockaddr * const dst, const struct rtentry *rt)
198 {
199 int error = 0;
200
201 if (rt != NULL) {
202 error = rt_check_reject_route(rt, ifp);
203 if (error != 0) {
204 m_freem(m);
205 return error;
206 }
207 }
208
209 error = ip_mark_mpls(ifp, m, rt);
210 if (error != 0) {
211 m_freem(m);
212 return error;
213 }
214
215 #ifndef NET_MPSAFE
216 KERNEL_LOCK(1, NULL);
217 #endif
218
219 error = (*ifp->if_output)(ifp, m, dst, rt);
220
221 #ifndef NET_MPSAFE
222 KERNEL_UNLOCK_ONE(NULL);
223 #endif
224 return error;
225 }
226
227 /*
228 * IP output. The packet in mbuf chain m contains a skeletal IP
229 * header (with len, off, ttl, proto, tos, src, dst).
230 * The mbuf chain containing the packet will be freed.
231 * The mbuf opt, if present, will not be freed.
232 */
233 int
234 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
235 struct ip_moptions *imo, struct socket *so)
236 {
237 struct rtentry *rt;
238 struct ip *ip;
239 struct ifnet *ifp;
240 struct mbuf *m = m0;
241 int hlen = sizeof (struct ip);
242 int len, error = 0;
243 struct route iproute;
244 const struct sockaddr_in *dst;
245 struct in_ifaddr *ia;
246 int isbroadcast;
247 int sw_csum;
248 u_long mtu;
249 #ifdef IPSEC
250 struct secpolicy *sp = NULL;
251 #endif
252 bool natt_frag = false;
253 bool rtmtu_nolock;
254 union {
255 struct sockaddr dst;
256 struct sockaddr_in dst4;
257 } u;
258 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
259 * to the nexthop
260 */
261
262 len = 0;
263
264 MCLAIM(m, &ip_tx_mowner);
265
266 KASSERT((m->m_flags & M_PKTHDR) != 0);
267 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
268 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
269 (M_CSUM_TCPv4|M_CSUM_UDPv4));
270
271 if (opt) {
272 m = ip_insertoptions(m, opt, &len);
273 if (len >= sizeof(struct ip))
274 hlen = len;
275 }
276 ip = mtod(m, struct ip *);
277
278 /*
279 * Fill in IP header.
280 */
281 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
282 ip->ip_v = IPVERSION;
283 ip->ip_off = htons(0);
284 /* ip->ip_id filled in after we find out source ia */
285 ip->ip_hl = hlen >> 2;
286 IP_STATINC(IP_STAT_LOCALOUT);
287 } else {
288 hlen = ip->ip_hl << 2;
289 }
290
291 /*
292 * Route packet.
293 */
294 if (ro == NULL) {
295 memset(&iproute, 0, sizeof(iproute));
296 ro = &iproute;
297 }
298 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
299 dst = satocsin(rtcache_getdst(ro));
300
301 /*
302 * If there is a cached route, check that it is to the same
303 * destination and is still up. If not, free it and try again.
304 * The address family should also be checked in case of sharing
305 * the cache with IPv6.
306 */
307 if (dst && (dst->sin_family != AF_INET ||
308 !in_hosteq(dst->sin_addr, ip->ip_dst)))
309 rtcache_free(ro);
310
311 if ((rt = rtcache_validate(ro)) == NULL &&
312 (rt = rtcache_update(ro, 1)) == NULL) {
313 dst = &u.dst4;
314 error = rtcache_setdst(ro, &u.dst);
315 if (error != 0)
316 goto bad;
317 }
318
319 /*
320 * If routing to interface only, short circuit routing lookup.
321 */
322 if (flags & IP_ROUTETOIF) {
323 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 ifp = ia->ia_ifp;
329 mtu = ifp->if_mtu;
330 ip->ip_ttl = 1;
331 isbroadcast = in_broadcast(dst->sin_addr, ifp);
332 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
333 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
334 imo != NULL && imo->imo_multicast_ifp != NULL) {
335 ifp = imo->imo_multicast_ifp;
336 mtu = ifp->if_mtu;
337 IFP_TO_IA(ifp, ia);
338 isbroadcast = 0;
339 } else {
340 if (rt == NULL)
341 rt = rtcache_init(ro);
342 if (rt == NULL) {
343 IP_STATINC(IP_STAT_NOROUTE);
344 error = EHOSTUNREACH;
345 goto bad;
346 }
347 ia = ifatoia(rt->rt_ifa);
348 ifp = rt->rt_ifp;
349 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
350 mtu = ifp->if_mtu;
351 rt->rt_use++;
352 if (rt->rt_flags & RTF_GATEWAY)
353 dst = satosin(rt->rt_gateway);
354 if (rt->rt_flags & RTF_HOST)
355 isbroadcast = rt->rt_flags & RTF_BROADCAST;
356 else
357 isbroadcast = in_broadcast(dst->sin_addr, ifp);
358 }
359 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
360
361 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
362 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
363 bool inmgroup;
364
365 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
366 M_BCAST : M_MCAST;
367 /*
368 * See if the caller provided any multicast options
369 */
370 if (imo != NULL)
371 ip->ip_ttl = imo->imo_multicast_ttl;
372 else
373 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
374
375 /*
376 * if we don't know the outgoing ifp yet, we can't generate
377 * output
378 */
379 if (!ifp) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = ENETUNREACH;
382 goto bad;
383 }
384
385 /*
386 * If the packet is multicast or broadcast, confirm that
387 * the outgoing interface can transmit it.
388 */
389 if (((m->m_flags & M_MCAST) &&
390 (ifp->if_flags & IFF_MULTICAST) == 0) ||
391 ((m->m_flags & M_BCAST) &&
392 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
393 IP_STATINC(IP_STAT_NOROUTE);
394 error = ENETUNREACH;
395 goto bad;
396 }
397 /*
398 * If source address not specified yet, use an address
399 * of outgoing interface.
400 */
401 if (in_nullhost(ip->ip_src)) {
402 struct in_ifaddr *xia;
403 struct ifaddr *xifa;
404
405 IFP_TO_IA(ifp, xia);
406 if (!xia) {
407 error = EADDRNOTAVAIL;
408 goto bad;
409 }
410 xifa = &xia->ia_ifa;
411 if (xifa->ifa_getifa != NULL) {
412 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
413 if (xia == NULL) {
414 error = EADDRNOTAVAIL;
415 goto bad;
416 }
417 }
418 ip->ip_src = xia->ia_addr.sin_addr;
419 }
420
421 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
422 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
423 /*
424 * If we belong to the destination multicast group
425 * on the outgoing interface, and the caller did not
426 * forbid loopback, loop back a copy.
427 */
428 ip_mloopback(ifp, m, &u.dst4);
429 }
430 #ifdef MROUTING
431 else {
432 /*
433 * If we are acting as a multicast router, perform
434 * multicast forwarding as if the packet had just
435 * arrived on the interface to which we are about
436 * to send. The multicast forwarding function
437 * recursively calls this function, using the
438 * IP_FORWARDING flag to prevent infinite recursion.
439 *
440 * Multicasts that are looped back by ip_mloopback(),
441 * above, will be forwarded by the ip_input() routine,
442 * if necessary.
443 */
444 extern struct socket *ip_mrouter;
445
446 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
447 if (ip_mforward(m, ifp) != 0) {
448 m_freem(m);
449 goto done;
450 }
451 }
452 }
453 #endif
454 /*
455 * Multicasts with a time-to-live of zero may be looped-
456 * back, above, but must not be transmitted on a network.
457 * Also, multicasts addressed to the loopback interface
458 * are not sent -- the above call to ip_mloopback() will
459 * loop back a copy if this host actually belongs to the
460 * destination group on the loopback interface.
461 */
462 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
463 m_freem(m);
464 goto done;
465 }
466 goto sendit;
467 }
468
469 /*
470 * If source address not specified yet, use address
471 * of outgoing interface.
472 */
473 if (in_nullhost(ip->ip_src)) {
474 struct ifaddr *xifa;
475
476 xifa = &ia->ia_ifa;
477 if (xifa->ifa_getifa != NULL) {
478 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
479 if (ia == NULL) {
480 error = EADDRNOTAVAIL;
481 goto bad;
482 }
483 }
484 ip->ip_src = ia->ia_addr.sin_addr;
485 }
486
487 /*
488 * packets with Class-D address as source are not valid per
489 * RFC 1112
490 */
491 if (IN_MULTICAST(ip->ip_src.s_addr)) {
492 IP_STATINC(IP_STAT_ODROPPED);
493 error = EADDRNOTAVAIL;
494 goto bad;
495 }
496
497 /*
498 * Look for broadcast address and and verify user is allowed to
499 * send such a packet.
500 */
501 if (isbroadcast) {
502 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
503 error = EADDRNOTAVAIL;
504 goto bad;
505 }
506 if ((flags & IP_ALLOWBROADCAST) == 0) {
507 error = EACCES;
508 goto bad;
509 }
510 /* don't allow broadcast messages to be fragmented */
511 if (ntohs(ip->ip_len) > ifp->if_mtu) {
512 error = EMSGSIZE;
513 goto bad;
514 }
515 m->m_flags |= M_BCAST;
516 } else
517 m->m_flags &= ~M_BCAST;
518
519 sendit:
520 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
521 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
522 ip->ip_id = 0;
523 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
524 ip->ip_id = ip_newid(ia);
525 } else {
526
527 /*
528 * TSO capable interfaces (typically?) increment
529 * ip_id for each segment.
530 * "allocate" enough ids here to increase the chance
531 * for them to be unique.
532 *
533 * note that the following calculation is not
534 * needed to be precise. wasting some ip_id is fine.
535 */
536
537 unsigned int segsz = m->m_pkthdr.segsz;
538 unsigned int datasz = ntohs(ip->ip_len) - hlen;
539 unsigned int num = howmany(datasz, segsz);
540
541 ip->ip_id = ip_newid_range(ia, num);
542 }
543 }
544
545 /*
546 * If we're doing Path MTU Discovery, we need to set DF unless
547 * the route's MTU is locked.
548 */
549 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
550 ip->ip_off |= htons(IP_DF);
551 }
552
553 #ifdef IPSEC
554 if (ipsec_used) {
555 bool ipsec_done = false;
556
557 /* Perform IPsec processing, if any. */
558 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
559 &ipsec_done);
560 if (error || ipsec_done)
561 goto done;
562 }
563 #endif
564
565 /*
566 * Run through list of hooks for output packets.
567 */
568 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
569 if (error)
570 goto done;
571 if (m == NULL)
572 goto done;
573
574 ip = mtod(m, struct ip *);
575 hlen = ip->ip_hl << 2;
576
577 m->m_pkthdr.csum_data |= hlen << 16;
578
579 #if IFA_STATS
580 /*
581 * search for the source address structure to
582 * maintain output statistics.
583 */
584 INADDR_TO_IA(ip->ip_src, ia);
585 #endif
586
587 /* Maybe skip checksums on loopback interfaces. */
588 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
589 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
590 }
591 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
592 /*
593 * If small enough for mtu of path, or if using TCP segmentation
594 * offload, can just send directly.
595 */
596 if (ntohs(ip->ip_len) <= mtu ||
597 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
598 const struct sockaddr *sa;
599
600 #if IFA_STATS
601 if (ia)
602 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
603 #endif
604 /*
605 * Always initialize the sum to 0! Some HW assisted
606 * checksumming requires this.
607 */
608 ip->ip_sum = 0;
609
610 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
611 /*
612 * Perform any checksums that the hardware can't do
613 * for us.
614 *
615 * XXX Does any hardware require the {th,uh}_sum
616 * XXX fields to be 0?
617 */
618 if (sw_csum & M_CSUM_IPv4) {
619 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
620 ip->ip_sum = in_cksum(m, hlen);
621 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
622 }
623 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
624 if (IN_NEED_CHECKSUM(ifp,
625 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
626 in_delayed_cksum(m);
627 }
628 m->m_pkthdr.csum_flags &=
629 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
630 }
631 }
632
633 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
634 if (__predict_true(
635 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
636 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
637 error = ip_if_output(ifp, m, sa, rt);
638 } else {
639 error = ip_tso_output(ifp, m, sa, rt);
640 }
641 goto done;
642 }
643
644 /*
645 * We can't use HW checksumming if we're about to
646 * to fragment the packet.
647 *
648 * XXX Some hardware can do this.
649 */
650 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
651 if (IN_NEED_CHECKSUM(ifp,
652 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
653 in_delayed_cksum(m);
654 }
655 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
656 }
657
658 /*
659 * Too large for interface; fragment if possible.
660 * Must be able to put at least 8 bytes per fragment.
661 */
662 if (ntohs(ip->ip_off) & IP_DF) {
663 if (flags & IP_RETURNMTU) {
664 struct inpcb *inp;
665
666 KASSERT(so && solocked(so));
667 inp = sotoinpcb(so);
668 inp->inp_errormtu = mtu;
669 }
670 error = EMSGSIZE;
671 IP_STATINC(IP_STAT_CANTFRAG);
672 goto bad;
673 }
674
675 error = ip_fragment(m, ifp, mtu);
676 if (error) {
677 m = NULL;
678 goto bad;
679 }
680
681 for (; m; m = m0) {
682 m0 = m->m_nextpkt;
683 m->m_nextpkt = 0;
684 if (error) {
685 m_freem(m);
686 continue;
687 }
688 #if IFA_STATS
689 if (ia)
690 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
691 #endif
692 /*
693 * If we get there, the packet has not been handled by
694 * IPsec whereas it should have. Now that it has been
695 * fragmented, re-inject it in ip_output so that IPsec
696 * processing can occur.
697 */
698 if (natt_frag) {
699 error = ip_output(m, opt, ro,
700 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
701 imo, so);
702 } else {
703 KASSERT((m->m_pkthdr.csum_flags &
704 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
705 error = ip_if_output(ifp, m,
706 (m->m_flags & M_MCAST) ?
707 sintocsa(rdst) : sintocsa(dst), rt);
708 }
709 }
710 if (error == 0) {
711 IP_STATINC(IP_STAT_FRAGMENTED);
712 }
713 done:
714 if (ro == &iproute) {
715 rtcache_free(&iproute);
716 }
717 #ifdef IPSEC
718 if (sp) {
719 KEY_FREESP(&sp);
720 }
721 #endif
722 return error;
723 bad:
724 m_freem(m);
725 goto done;
726 }
727
728 int
729 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
730 {
731 struct ip *ip, *mhip;
732 struct mbuf *m0;
733 int len, hlen, off;
734 int mhlen, firstlen;
735 struct mbuf **mnext;
736 int sw_csum = m->m_pkthdr.csum_flags;
737 int fragments = 0;
738 int s;
739 int error = 0;
740
741 ip = mtod(m, struct ip *);
742 hlen = ip->ip_hl << 2;
743 if (ifp != NULL)
744 sw_csum &= ~ifp->if_csum_flags_tx;
745
746 len = (mtu - hlen) &~ 7;
747 if (len < 8) {
748 m_freem(m);
749 return (EMSGSIZE);
750 }
751
752 firstlen = len;
753 mnext = &m->m_nextpkt;
754
755 /*
756 * Loop through length of segment after first fragment,
757 * make new header and copy data of each part and link onto chain.
758 */
759 m0 = m;
760 mhlen = sizeof (struct ip);
761 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
762 MGETHDR(m, M_DONTWAIT, MT_HEADER);
763 if (m == 0) {
764 error = ENOBUFS;
765 IP_STATINC(IP_STAT_ODROPPED);
766 goto sendorfree;
767 }
768 MCLAIM(m, m0->m_owner);
769 *mnext = m;
770 mnext = &m->m_nextpkt;
771 m->m_data += max_linkhdr;
772 mhip = mtod(m, struct ip *);
773 *mhip = *ip;
774 /* we must inherit MCAST and BCAST flags */
775 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
776 if (hlen > sizeof (struct ip)) {
777 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
778 mhip->ip_hl = mhlen >> 2;
779 }
780 m->m_len = mhlen;
781 mhip->ip_off = ((off - hlen) >> 3) +
782 (ntohs(ip->ip_off) & ~IP_MF);
783 if (ip->ip_off & htons(IP_MF))
784 mhip->ip_off |= IP_MF;
785 if (off + len >= ntohs(ip->ip_len))
786 len = ntohs(ip->ip_len) - off;
787 else
788 mhip->ip_off |= IP_MF;
789 HTONS(mhip->ip_off);
790 mhip->ip_len = htons((u_int16_t)(len + mhlen));
791 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
792 if (m->m_next == 0) {
793 error = ENOBUFS; /* ??? */
794 IP_STATINC(IP_STAT_ODROPPED);
795 goto sendorfree;
796 }
797 m->m_pkthdr.len = mhlen + len;
798 m->m_pkthdr.rcvif = NULL;
799 mhip->ip_sum = 0;
800 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
801 if (sw_csum & M_CSUM_IPv4) {
802 mhip->ip_sum = in_cksum(m, mhlen);
803 } else {
804 /*
805 * checksum is hw-offloaded or not necessary.
806 */
807 m->m_pkthdr.csum_flags |=
808 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
809 m->m_pkthdr.csum_data |= mhlen << 16;
810 KASSERT(!(ifp != NULL &&
811 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
812 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
813 }
814 IP_STATINC(IP_STAT_OFRAGMENTS);
815 fragments++;
816 }
817 /*
818 * Update first fragment by trimming what's been copied out
819 * and updating header, then send each fragment (in order).
820 */
821 m = m0;
822 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
823 m->m_pkthdr.len = hlen + firstlen;
824 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
825 ip->ip_off |= htons(IP_MF);
826 ip->ip_sum = 0;
827 if (sw_csum & M_CSUM_IPv4) {
828 ip->ip_sum = in_cksum(m, hlen);
829 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
830 } else {
831 /*
832 * checksum is hw-offloaded or not necessary.
833 */
834 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
835 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
836 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
837 sizeof(struct ip));
838 }
839 sendorfree:
840 /*
841 * If there is no room for all the fragments, don't queue
842 * any of them.
843 */
844 if (ifp != NULL) {
845 s = splnet();
846 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
847 error == 0) {
848 error = ENOBUFS;
849 IP_STATINC(IP_STAT_ODROPPED);
850 IFQ_INC_DROPS(&ifp->if_snd);
851 }
852 splx(s);
853 }
854 if (error) {
855 for (m = m0; m; m = m0) {
856 m0 = m->m_nextpkt;
857 m->m_nextpkt = NULL;
858 m_freem(m);
859 }
860 }
861 return (error);
862 }
863
864 /*
865 * Process a delayed payload checksum calculation.
866 */
867 void
868 in_delayed_cksum(struct mbuf *m)
869 {
870 struct ip *ip;
871 u_int16_t csum, offset;
872
873 ip = mtod(m, struct ip *);
874 offset = ip->ip_hl << 2;
875 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
876 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
877 csum = 0xffff;
878
879 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
880
881 if ((offset + sizeof(u_int16_t)) > m->m_len) {
882 /* This happen when ip options were inserted
883 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
884 m->m_len, offset, ip->ip_p);
885 */
886 m_copyback(m, offset, sizeof(csum), (void *) &csum);
887 } else
888 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
889 }
890
891 /*
892 * Determine the maximum length of the options to be inserted;
893 * we would far rather allocate too much space rather than too little.
894 */
895
896 u_int
897 ip_optlen(struct inpcb *inp)
898 {
899 struct mbuf *m = inp->inp_options;
900
901 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
902 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
903 }
904 return 0;
905 }
906
907 /*
908 * Insert IP options into preformed packet.
909 * Adjust IP destination as required for IP source routing,
910 * as indicated by a non-zero in_addr at the start of the options.
911 */
912 static struct mbuf *
913 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
914 {
915 struct ipoption *p = mtod(opt, struct ipoption *);
916 struct mbuf *n;
917 struct ip *ip = mtod(m, struct ip *);
918 unsigned optlen;
919
920 optlen = opt->m_len - sizeof(p->ipopt_dst);
921 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
922 return (m); /* XXX should fail */
923 if (!in_nullhost(p->ipopt_dst))
924 ip->ip_dst = p->ipopt_dst;
925 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
926 MGETHDR(n, M_DONTWAIT, MT_HEADER);
927 if (n == 0)
928 return (m);
929 MCLAIM(n, m->m_owner);
930 M_MOVE_PKTHDR(n, m);
931 m->m_len -= sizeof(struct ip);
932 m->m_data += sizeof(struct ip);
933 n->m_next = m;
934 m = n;
935 m->m_len = optlen + sizeof(struct ip);
936 m->m_data += max_linkhdr;
937 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
938 } else {
939 m->m_data -= optlen;
940 m->m_len += optlen;
941 memmove(mtod(m, void *), ip, sizeof(struct ip));
942 }
943 m->m_pkthdr.len += optlen;
944 ip = mtod(m, struct ip *);
945 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
946 *phlen = sizeof(struct ip) + optlen;
947 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
948 return (m);
949 }
950
951 /*
952 * Copy options from ip to jp,
953 * omitting those not copied during fragmentation.
954 */
955 int
956 ip_optcopy(struct ip *ip, struct ip *jp)
957 {
958 u_char *cp, *dp;
959 int opt, optlen, cnt;
960
961 cp = (u_char *)(ip + 1);
962 dp = (u_char *)(jp + 1);
963 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
964 for (; cnt > 0; cnt -= optlen, cp += optlen) {
965 opt = cp[0];
966 if (opt == IPOPT_EOL)
967 break;
968 if (opt == IPOPT_NOP) {
969 /* Preserve for IP mcast tunnel's LSRR alignment. */
970 *dp++ = IPOPT_NOP;
971 optlen = 1;
972 continue;
973 }
974
975 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
976 optlen = cp[IPOPT_OLEN];
977 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
978
979 /* Invalid lengths should have been caught by ip_dooptions. */
980 if (optlen > cnt)
981 optlen = cnt;
982 if (IPOPT_COPIED(opt)) {
983 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
984 dp += optlen;
985 }
986 }
987 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
988 *dp++ = IPOPT_EOL;
989 return (optlen);
990 }
991
992 /*
993 * IP socket option processing.
994 */
995 int
996 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
997 {
998 struct inpcb *inp = sotoinpcb(so);
999 struct ip *ip = &inp->inp_ip;
1000 int inpflags = inp->inp_flags;
1001 int optval = 0, error = 0;
1002
1003 if (sopt->sopt_level != IPPROTO_IP) {
1004 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1005 return 0;
1006 return ENOPROTOOPT;
1007 }
1008
1009 switch (op) {
1010 case PRCO_SETOPT:
1011 switch (sopt->sopt_name) {
1012 case IP_OPTIONS:
1013 #ifdef notyet
1014 case IP_RETOPTS:
1015 #endif
1016 error = ip_pcbopts(inp, sopt);
1017 break;
1018
1019 case IP_TOS:
1020 case IP_TTL:
1021 case IP_MINTTL:
1022 case IP_PKTINFO:
1023 case IP_RECVOPTS:
1024 case IP_RECVRETOPTS:
1025 case IP_RECVDSTADDR:
1026 case IP_RECVIF:
1027 case IP_RECVPKTINFO:
1028 case IP_RECVTTL:
1029 error = sockopt_getint(sopt, &optval);
1030 if (error)
1031 break;
1032
1033 switch (sopt->sopt_name) {
1034 case IP_TOS:
1035 ip->ip_tos = optval;
1036 break;
1037
1038 case IP_TTL:
1039 ip->ip_ttl = optval;
1040 break;
1041
1042 case IP_MINTTL:
1043 if (optval > 0 && optval <= MAXTTL)
1044 inp->inp_ip_minttl = optval;
1045 else
1046 error = EINVAL;
1047 break;
1048 #define OPTSET(bit) \
1049 if (optval) \
1050 inpflags |= bit; \
1051 else \
1052 inpflags &= ~bit;
1053
1054 case IP_PKTINFO:
1055 OPTSET(INP_PKTINFO);
1056 break;
1057
1058 case IP_RECVOPTS:
1059 OPTSET(INP_RECVOPTS);
1060 break;
1061
1062 case IP_RECVPKTINFO:
1063 OPTSET(INP_RECVPKTINFO);
1064 break;
1065
1066 case IP_RECVRETOPTS:
1067 OPTSET(INP_RECVRETOPTS);
1068 break;
1069
1070 case IP_RECVDSTADDR:
1071 OPTSET(INP_RECVDSTADDR);
1072 break;
1073
1074 case IP_RECVIF:
1075 OPTSET(INP_RECVIF);
1076 break;
1077
1078 case IP_RECVTTL:
1079 OPTSET(INP_RECVTTL);
1080 break;
1081 }
1082 break;
1083 #undef OPTSET
1084
1085 case IP_MULTICAST_IF:
1086 case IP_MULTICAST_TTL:
1087 case IP_MULTICAST_LOOP:
1088 case IP_ADD_MEMBERSHIP:
1089 case IP_DROP_MEMBERSHIP:
1090 error = ip_setmoptions(&inp->inp_moptions, sopt);
1091 break;
1092
1093 case IP_PORTRANGE:
1094 error = sockopt_getint(sopt, &optval);
1095 if (error)
1096 break;
1097
1098 switch (optval) {
1099 case IP_PORTRANGE_DEFAULT:
1100 case IP_PORTRANGE_HIGH:
1101 inpflags &= ~(INP_LOWPORT);
1102 break;
1103
1104 case IP_PORTRANGE_LOW:
1105 inpflags |= INP_LOWPORT;
1106 break;
1107
1108 default:
1109 error = EINVAL;
1110 break;
1111 }
1112 break;
1113
1114 case IP_PORTALGO:
1115 error = sockopt_getint(sopt, &optval);
1116 if (error)
1117 break;
1118
1119 error = portalgo_algo_index_select(
1120 (struct inpcb_hdr *)inp, optval);
1121 break;
1122
1123 #if defined(IPSEC)
1124 case IP_IPSEC_POLICY:
1125 if (ipsec_enabled) {
1126 error = ipsec4_set_policy(inp, sopt->sopt_name,
1127 sopt->sopt_data, sopt->sopt_size,
1128 curlwp->l_cred);
1129 break;
1130 }
1131 /*FALLTHROUGH*/
1132 #endif /* IPSEC */
1133
1134 default:
1135 error = ENOPROTOOPT;
1136 break;
1137 }
1138 break;
1139
1140 case PRCO_GETOPT:
1141 switch (sopt->sopt_name) {
1142 case IP_OPTIONS:
1143 case IP_RETOPTS: {
1144 struct mbuf *mopts = inp->inp_options;
1145
1146 if (mopts) {
1147 struct mbuf *m;
1148
1149 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1150 if (m == NULL) {
1151 error = ENOBUFS;
1152 break;
1153 }
1154 error = sockopt_setmbuf(sopt, m);
1155 }
1156 break;
1157 }
1158 case IP_PKTINFO:
1159 case IP_TOS:
1160 case IP_TTL:
1161 case IP_MINTTL:
1162 case IP_RECVOPTS:
1163 case IP_RECVRETOPTS:
1164 case IP_RECVDSTADDR:
1165 case IP_RECVIF:
1166 case IP_RECVPKTINFO:
1167 case IP_RECVTTL:
1168 case IP_ERRORMTU:
1169 switch (sopt->sopt_name) {
1170 case IP_TOS:
1171 optval = ip->ip_tos;
1172 break;
1173
1174 case IP_TTL:
1175 optval = ip->ip_ttl;
1176 break;
1177
1178 case IP_MINTTL:
1179 optval = inp->inp_ip_minttl;
1180 break;
1181
1182 case IP_ERRORMTU:
1183 optval = inp->inp_errormtu;
1184 break;
1185
1186 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1187
1188 case IP_PKTINFO:
1189 optval = OPTBIT(INP_PKTINFO);
1190 break;
1191
1192 case IP_RECVOPTS:
1193 optval = OPTBIT(INP_RECVOPTS);
1194 break;
1195
1196 case IP_RECVPKTINFO:
1197 optval = OPTBIT(INP_RECVPKTINFO);
1198 break;
1199
1200 case IP_RECVRETOPTS:
1201 optval = OPTBIT(INP_RECVRETOPTS);
1202 break;
1203
1204 case IP_RECVDSTADDR:
1205 optval = OPTBIT(INP_RECVDSTADDR);
1206 break;
1207
1208 case IP_RECVIF:
1209 optval = OPTBIT(INP_RECVIF);
1210 break;
1211
1212 case IP_RECVTTL:
1213 optval = OPTBIT(INP_RECVTTL);
1214 break;
1215 }
1216 error = sockopt_setint(sopt, optval);
1217 break;
1218
1219 #if 0 /* defined(IPSEC) */
1220 case IP_IPSEC_POLICY:
1221 {
1222 struct mbuf *m = NULL;
1223
1224 /* XXX this will return EINVAL as sopt is empty */
1225 error = ipsec4_get_policy(inp, sopt->sopt_data,
1226 sopt->sopt_size, &m);
1227 if (error == 0)
1228 error = sockopt_setmbuf(sopt, m);
1229 break;
1230 }
1231 #endif /*IPSEC*/
1232
1233 case IP_MULTICAST_IF:
1234 case IP_MULTICAST_TTL:
1235 case IP_MULTICAST_LOOP:
1236 case IP_ADD_MEMBERSHIP:
1237 case IP_DROP_MEMBERSHIP:
1238 error = ip_getmoptions(inp->inp_moptions, sopt);
1239 break;
1240
1241 case IP_PORTRANGE:
1242 if (inpflags & INP_LOWPORT)
1243 optval = IP_PORTRANGE_LOW;
1244 else
1245 optval = IP_PORTRANGE_DEFAULT;
1246 error = sockopt_setint(sopt, optval);
1247 break;
1248
1249 case IP_PORTALGO:
1250 optval = inp->inp_portalgo;
1251 error = sockopt_setint(sopt, optval);
1252 break;
1253
1254 default:
1255 error = ENOPROTOOPT;
1256 break;
1257 }
1258 break;
1259 }
1260
1261 if (!error) {
1262 inp->inp_flags = inpflags;
1263 }
1264 return error;
1265 }
1266
1267 /*
1268 * Set up IP options in pcb for insertion in output packets.
1269 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1270 * with destination address if source routed.
1271 */
1272 static int
1273 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1274 {
1275 struct mbuf *m;
1276 const u_char *cp;
1277 u_char *dp;
1278 int cnt;
1279
1280 /* Turn off any old options. */
1281 if (inp->inp_options) {
1282 m_free(inp->inp_options);
1283 }
1284 inp->inp_options = NULL;
1285 if ((cnt = sopt->sopt_size) == 0) {
1286 /* Only turning off any previous options. */
1287 return 0;
1288 }
1289 cp = sopt->sopt_data;
1290
1291 #ifndef __vax__
1292 if (cnt % sizeof(int32_t))
1293 return (EINVAL);
1294 #endif
1295
1296 m = m_get(M_DONTWAIT, MT_SOOPTS);
1297 if (m == NULL)
1298 return (ENOBUFS);
1299
1300 dp = mtod(m, u_char *);
1301 memset(dp, 0, sizeof(struct in_addr));
1302 dp += sizeof(struct in_addr);
1303 m->m_len = sizeof(struct in_addr);
1304
1305 /*
1306 * IP option list according to RFC791. Each option is of the form
1307 *
1308 * [optval] [olen] [(olen - 2) data bytes]
1309 *
1310 * We validate the list and copy options to an mbuf for prepending
1311 * to data packets. The IP first-hop destination address will be
1312 * stored before actual options and is zero if unset.
1313 */
1314 while (cnt > 0) {
1315 uint8_t optval, olen, offset;
1316
1317 optval = cp[IPOPT_OPTVAL];
1318
1319 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1320 olen = 1;
1321 } else {
1322 if (cnt < IPOPT_OLEN + 1)
1323 goto bad;
1324
1325 olen = cp[IPOPT_OLEN];
1326 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1327 goto bad;
1328 }
1329
1330 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1331 /*
1332 * user process specifies route as:
1333 * ->A->B->C->D
1334 * D must be our final destination (but we can't
1335 * check that since we may not have connected yet).
1336 * A is first hop destination, which doesn't appear in
1337 * actual IP option, but is stored before the options.
1338 */
1339 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1340 goto bad;
1341
1342 offset = cp[IPOPT_OFFSET];
1343 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1344 sizeof(struct in_addr));
1345
1346 cp += sizeof(struct in_addr);
1347 cnt -= sizeof(struct in_addr);
1348 olen -= sizeof(struct in_addr);
1349
1350 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1351 goto bad;
1352
1353 memcpy(dp, cp, olen);
1354 dp[IPOPT_OPTVAL] = optval;
1355 dp[IPOPT_OLEN] = olen;
1356 dp[IPOPT_OFFSET] = offset;
1357 break;
1358 } else {
1359 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1360 goto bad;
1361
1362 memcpy(dp, cp, olen);
1363 break;
1364 }
1365
1366 dp += olen;
1367 m->m_len += olen;
1368
1369 if (optval == IPOPT_EOL)
1370 break;
1371
1372 cp += olen;
1373 cnt -= olen;
1374 }
1375
1376 inp->inp_options = m;
1377 return 0;
1378 bad:
1379 (void)m_free(m);
1380 return EINVAL;
1381 }
1382
1383 /*
1384 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1385 */
1386 static struct ifnet *
1387 ip_multicast_if(struct in_addr *a, int *ifindexp)
1388 {
1389 int ifindex;
1390 struct ifnet *ifp = NULL;
1391 struct in_ifaddr *ia;
1392
1393 if (ifindexp)
1394 *ifindexp = 0;
1395 if (ntohl(a->s_addr) >> 24 == 0) {
1396 ifindex = ntohl(a->s_addr) & 0xffffff;
1397 ifp = if_byindex(ifindex);
1398 if (!ifp)
1399 return NULL;
1400 if (ifindexp)
1401 *ifindexp = ifindex;
1402 } else {
1403 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1404 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1405 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1406 ifp = ia->ia_ifp;
1407 break;
1408 }
1409 }
1410 }
1411 return ifp;
1412 }
1413
1414 static int
1415 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1416 {
1417 u_int tval;
1418 u_char cval;
1419 int error;
1420
1421 if (sopt == NULL)
1422 return EINVAL;
1423
1424 switch (sopt->sopt_size) {
1425 case sizeof(u_char):
1426 error = sockopt_get(sopt, &cval, sizeof(u_char));
1427 tval = cval;
1428 break;
1429
1430 case sizeof(u_int):
1431 error = sockopt_get(sopt, &tval, sizeof(u_int));
1432 break;
1433
1434 default:
1435 error = EINVAL;
1436 }
1437
1438 if (error)
1439 return error;
1440
1441 if (tval > maxval)
1442 return EINVAL;
1443
1444 *val = tval;
1445 return 0;
1446 }
1447
1448 static int
1449 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1450 struct in_addr *ia, bool add)
1451 {
1452 int error;
1453 struct ip_mreq mreq;
1454
1455 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1456 if (error)
1457 return error;
1458
1459 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1460 return EINVAL;
1461
1462 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1463
1464 if (in_nullhost(mreq.imr_interface)) {
1465 union {
1466 struct sockaddr dst;
1467 struct sockaddr_in dst4;
1468 } u;
1469 struct route ro;
1470
1471 if (!add) {
1472 *ifp = NULL;
1473 return 0;
1474 }
1475 /*
1476 * If no interface address was provided, use the interface of
1477 * the route to the given multicast address.
1478 */
1479 struct rtentry *rt;
1480 memset(&ro, 0, sizeof(ro));
1481
1482 sockaddr_in_init(&u.dst4, ia, 0);
1483 error = rtcache_setdst(&ro, &u.dst);
1484 if (error != 0)
1485 return error;
1486 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1487 rtcache_free(&ro);
1488 } else {
1489 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1490 if (!add && *ifp == NULL)
1491 return EADDRNOTAVAIL;
1492 }
1493 return 0;
1494 }
1495
1496 /*
1497 * Add a multicast group membership.
1498 * Group must be a valid IP multicast address.
1499 */
1500 static int
1501 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1502 {
1503 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1504 struct in_addr ia;
1505 int i, error;
1506
1507 if (sopt->sopt_size == sizeof(struct ip_mreq))
1508 error = ip_get_membership(sopt, &ifp, &ia, true);
1509 else
1510 #ifdef INET6
1511 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1512 #else
1513 return EINVAL;
1514 #endif
1515
1516 if (error)
1517 return error;
1518
1519 /*
1520 * See if we found an interface, and confirm that it
1521 * supports multicast.
1522 */
1523 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1524 return EADDRNOTAVAIL;
1525
1526 /*
1527 * See if the membership already exists or if all the
1528 * membership slots are full.
1529 */
1530 for (i = 0; i < imo->imo_num_memberships; ++i) {
1531 if (imo->imo_membership[i]->inm_ifp == ifp &&
1532 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1533 break;
1534 }
1535 if (i < imo->imo_num_memberships)
1536 return EADDRINUSE;
1537
1538 if (i == IP_MAX_MEMBERSHIPS)
1539 return ETOOMANYREFS;
1540
1541 /*
1542 * Everything looks good; add a new record to the multicast
1543 * address list for the given interface.
1544 */
1545 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1546 return ENOBUFS;
1547
1548 ++imo->imo_num_memberships;
1549 return 0;
1550 }
1551
1552 /*
1553 * Drop a multicast group membership.
1554 * Group must be a valid IP multicast address.
1555 */
1556 static int
1557 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1558 {
1559 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1560 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1561 int i, error;
1562
1563 if (sopt->sopt_size == sizeof(struct ip_mreq))
1564 error = ip_get_membership(sopt, &ifp, &ia, false);
1565 else
1566 #ifdef INET6
1567 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1568 #else
1569 return EINVAL;
1570 #endif
1571
1572 if (error)
1573 return error;
1574
1575 /*
1576 * Find the membership in the membership array.
1577 */
1578 for (i = 0; i < imo->imo_num_memberships; ++i) {
1579 if ((ifp == NULL ||
1580 imo->imo_membership[i]->inm_ifp == ifp) &&
1581 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1582 break;
1583 }
1584 if (i == imo->imo_num_memberships)
1585 return EADDRNOTAVAIL;
1586
1587 /*
1588 * Give up the multicast address record to which the
1589 * membership points.
1590 */
1591 in_delmulti(imo->imo_membership[i]);
1592
1593 /*
1594 * Remove the gap in the membership array.
1595 */
1596 for (++i; i < imo->imo_num_memberships; ++i)
1597 imo->imo_membership[i-1] = imo->imo_membership[i];
1598 --imo->imo_num_memberships;
1599 return 0;
1600 }
1601
1602 /*
1603 * Set the IP multicast options in response to user setsockopt().
1604 */
1605 int
1606 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1607 {
1608 struct ip_moptions *imo = *pimo;
1609 struct in_addr addr;
1610 struct ifnet *ifp;
1611 int ifindex, error = 0;
1612
1613 if (!imo) {
1614 /*
1615 * No multicast option buffer attached to the pcb;
1616 * allocate one and initialize to default values.
1617 */
1618 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1619 if (imo == NULL)
1620 return ENOBUFS;
1621
1622 imo->imo_multicast_ifp = NULL;
1623 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1624 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1625 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1626 imo->imo_num_memberships = 0;
1627 *pimo = imo;
1628 }
1629
1630 switch (sopt->sopt_name) {
1631 case IP_MULTICAST_IF:
1632 /*
1633 * Select the interface for outgoing multicast packets.
1634 */
1635 error = sockopt_get(sopt, &addr, sizeof(addr));
1636 if (error)
1637 break;
1638
1639 /*
1640 * INADDR_ANY is used to remove a previous selection.
1641 * When no interface is selected, a default one is
1642 * chosen every time a multicast packet is sent.
1643 */
1644 if (in_nullhost(addr)) {
1645 imo->imo_multicast_ifp = NULL;
1646 break;
1647 }
1648 /*
1649 * The selected interface is identified by its local
1650 * IP address. Find the interface and confirm that
1651 * it supports multicasting.
1652 */
1653 ifp = ip_multicast_if(&addr, &ifindex);
1654 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1655 error = EADDRNOTAVAIL;
1656 break;
1657 }
1658 imo->imo_multicast_ifp = ifp;
1659 if (ifindex)
1660 imo->imo_multicast_addr = addr;
1661 else
1662 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1663 break;
1664
1665 case IP_MULTICAST_TTL:
1666 /*
1667 * Set the IP time-to-live for outgoing multicast packets.
1668 */
1669 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1670 break;
1671
1672 case IP_MULTICAST_LOOP:
1673 /*
1674 * Set the loopback flag for outgoing multicast packets.
1675 * Must be zero or one.
1676 */
1677 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1678 break;
1679
1680 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1681 error = ip_add_membership(imo, sopt);
1682 break;
1683
1684 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1685 error = ip_drop_membership(imo, sopt);
1686 break;
1687
1688 default:
1689 error = EOPNOTSUPP;
1690 break;
1691 }
1692
1693 /*
1694 * If all options have default values, no need to keep the mbuf.
1695 */
1696 if (imo->imo_multicast_ifp == NULL &&
1697 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1698 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1699 imo->imo_num_memberships == 0) {
1700 kmem_free(imo, sizeof(*imo));
1701 *pimo = NULL;
1702 }
1703
1704 return error;
1705 }
1706
1707 /*
1708 * Return the IP multicast options in response to user getsockopt().
1709 */
1710 int
1711 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1712 {
1713 struct in_addr addr;
1714 struct in_ifaddr *ia;
1715 uint8_t optval;
1716 int error = 0;
1717
1718 switch (sopt->sopt_name) {
1719 case IP_MULTICAST_IF:
1720 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1721 addr = zeroin_addr;
1722 else if (imo->imo_multicast_addr.s_addr) {
1723 /* return the value user has set */
1724 addr = imo->imo_multicast_addr;
1725 } else {
1726 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1727 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1728 }
1729 error = sockopt_set(sopt, &addr, sizeof(addr));
1730 break;
1731
1732 case IP_MULTICAST_TTL:
1733 optval = imo ? imo->imo_multicast_ttl
1734 : IP_DEFAULT_MULTICAST_TTL;
1735
1736 error = sockopt_set(sopt, &optval, sizeof(optval));
1737 break;
1738
1739 case IP_MULTICAST_LOOP:
1740 optval = imo ? imo->imo_multicast_loop
1741 : IP_DEFAULT_MULTICAST_LOOP;
1742
1743 error = sockopt_set(sopt, &optval, sizeof(optval));
1744 break;
1745
1746 default:
1747 error = EOPNOTSUPP;
1748 }
1749
1750 return error;
1751 }
1752
1753 /*
1754 * Discard the IP multicast options.
1755 */
1756 void
1757 ip_freemoptions(struct ip_moptions *imo)
1758 {
1759 int i;
1760
1761 if (imo != NULL) {
1762 for (i = 0; i < imo->imo_num_memberships; ++i)
1763 in_delmulti(imo->imo_membership[i]);
1764 kmem_free(imo, sizeof(*imo));
1765 }
1766 }
1767
1768 /*
1769 * Routine called from ip_output() to loop back a copy of an IP multicast
1770 * packet to the input queue of a specified interface. Note that this
1771 * calls the output routine of the loopback "driver", but with an interface
1772 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1773 */
1774 static void
1775 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1776 {
1777 struct ip *ip;
1778 struct mbuf *copym;
1779
1780 copym = m_copypacket(m, M_DONTWAIT);
1781 if (copym != NULL &&
1782 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1783 copym = m_pullup(copym, sizeof(struct ip));
1784 if (copym == NULL)
1785 return;
1786 /*
1787 * We don't bother to fragment if the IP length is greater
1788 * than the interface's MTU. Can this possibly matter?
1789 */
1790 ip = mtod(copym, struct ip *);
1791
1792 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1793 in_delayed_cksum(copym);
1794 copym->m_pkthdr.csum_flags &=
1795 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1796 }
1797
1798 ip->ip_sum = 0;
1799 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1800 #ifndef NET_MPSAFE
1801 KERNEL_LOCK(1, NULL);
1802 #endif
1803 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1804 #ifndef NET_MPSAFE
1805 KERNEL_UNLOCK_ONE(NULL);
1806 #endif
1807 }
1808