ip_output.c revision 1.258 1 /* $NetBSD: ip_output.c,v 1.258 2016/06/21 03:28:27 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.258 2016/06/21 03:28:27 ozaki-r Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/kmem.h>
106 #include <sys/mbuf.h>
107 #include <sys/protosw.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/kauth.h>
111 #ifdef IPSEC
112 #include <sys/domain.h>
113 #endif
114 #include <sys/systm.h>
115
116 #include <net/if.h>
117 #include <net/if_types.h>
118 #include <net/route.h>
119 #include <net/pfil.h>
120
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_private.h>
128 #include <netinet/in_offload.h>
129 #include <netinet/portalgo.h>
130 #include <netinet/udp.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155
156 extern pfil_head_t *inet_pfil_hook; /* XXX */
157
158 int ip_do_loopback_cksum = 0;
159
160 static int
161 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
162 const struct rtentry *rt)
163 {
164 int error = 0;
165 #ifdef MPLS
166 union mpls_shim msh;
167
168 if (rt == NULL || rt_gettag(rt) == NULL ||
169 rt_gettag(rt)->sa_family != AF_MPLS ||
170 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
171 ifp->if_type != IFT_ETHER)
172 return 0;
173
174 msh.s_addr = MPLS_GETSADDR(rt);
175 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
176 struct m_tag *mtag;
177 /*
178 * XXX tentative solution to tell ether_output
179 * it's MPLS. Need some more efficient solution.
180 */
181 mtag = m_tag_get(PACKET_TAG_MPLS,
182 sizeof(int) /* dummy */,
183 M_NOWAIT);
184 if (mtag == NULL)
185 return ENOMEM;
186 m_tag_prepend(m, mtag);
187 }
188 #endif
189 return error;
190 }
191
192 /*
193 * Send an IP packet to a host.
194 */
195 int
196 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
197 const struct sockaddr * const dst, const struct rtentry *rt)
198 {
199 int error = 0;
200
201 if (rt != NULL) {
202 error = rt_check_reject_route(rt, ifp);
203 if (error != 0) {
204 m_freem(m);
205 return error;
206 }
207 }
208
209 error = ip_mark_mpls(ifp, m, rt);
210 if (error != 0) {
211 m_freem(m);
212 return error;
213 }
214
215 error = if_output_lock(ifp, ifp, m, dst, rt);
216
217 return error;
218 }
219
220 /*
221 * IP output. The packet in mbuf chain m contains a skeletal IP
222 * header (with len, off, ttl, proto, tos, src, dst).
223 * The mbuf chain containing the packet will be freed.
224 * The mbuf opt, if present, will not be freed.
225 */
226 int
227 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
228 struct ip_moptions *imo, struct socket *so)
229 {
230 struct rtentry *rt;
231 struct ip *ip;
232 struct ifnet *ifp, *mifp = NULL;
233 struct mbuf *m = m0;
234 int hlen = sizeof (struct ip);
235 int len, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia;
239 int isbroadcast;
240 int sw_csum;
241 u_long mtu;
242 #ifdef IPSEC
243 struct secpolicy *sp = NULL;
244 #endif
245 bool natt_frag = false;
246 bool rtmtu_nolock;
247 union {
248 struct sockaddr dst;
249 struct sockaddr_in dst4;
250 } u;
251 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
252 * to the nexthop
253 */
254 struct psref psref;
255 int bound;
256
257 len = 0;
258
259 MCLAIM(m, &ip_tx_mowner);
260
261 KASSERT((m->m_flags & M_PKTHDR) != 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
263 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
264 (M_CSUM_TCPv4|M_CSUM_UDPv4));
265
266 if (opt) {
267 m = ip_insertoptions(m, opt, &len);
268 if (len >= sizeof(struct ip))
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 if ((rt = rtcache_validate(ro)) == NULL &&
307 (rt = rtcache_update(ro, 1)) == NULL) {
308 dst = &u.dst4;
309 error = rtcache_setdst(ro, &u.dst);
310 if (error != 0)
311 goto bad;
312 }
313
314 /*
315 * If routing to interface only, short circuit routing lookup.
316 */
317 if (flags & IP_ROUTETOIF) {
318 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
319 IP_STATINC(IP_STAT_NOROUTE);
320 error = ENETUNREACH;
321 goto bad;
322 }
323 ifp = ia->ia_ifp;
324 mtu = ifp->if_mtu;
325 ip->ip_ttl = 1;
326 isbroadcast = in_broadcast(dst->sin_addr, ifp);
327 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
328 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
329 imo != NULL && imo->imo_multicast_if_index != 0) {
330 bound = curlwp_bind();
331 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
332 if (ifp == NULL) {
333 curlwp_bindx(bound);
334 IP_STATINC(IP_STAT_NOROUTE);
335 error = ENETUNREACH;
336 goto bad;
337 }
338 mtu = ifp->if_mtu;
339 IFP_TO_IA(ifp, ia);
340 isbroadcast = 0;
341 } else {
342 if (rt == NULL)
343 rt = rtcache_init(ro);
344 if (rt == NULL) {
345 IP_STATINC(IP_STAT_NOROUTE);
346 error = EHOSTUNREACH;
347 goto bad;
348 }
349 ia = ifatoia(rt->rt_ifa);
350 ifp = rt->rt_ifp;
351 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
352 mtu = ifp->if_mtu;
353 rt->rt_use++;
354 if (rt->rt_flags & RTF_GATEWAY)
355 dst = satosin(rt->rt_gateway);
356 if (rt->rt_flags & RTF_HOST)
357 isbroadcast = rt->rt_flags & RTF_BROADCAST;
358 else
359 isbroadcast = in_broadcast(dst->sin_addr, ifp);
360 }
361 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
362
363 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
364 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
365 bool inmgroup;
366
367 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
368 M_BCAST : M_MCAST;
369 /*
370 * See if the caller provided any multicast options
371 */
372 if (imo != NULL)
373 ip->ip_ttl = imo->imo_multicast_ttl;
374 else
375 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
376
377 /*
378 * if we don't know the outgoing ifp yet, we can't generate
379 * output
380 */
381 if (!ifp) {
382 IP_STATINC(IP_STAT_NOROUTE);
383 error = ENETUNREACH;
384 goto bad;
385 }
386
387 /*
388 * If the packet is multicast or broadcast, confirm that
389 * the outgoing interface can transmit it.
390 */
391 if (((m->m_flags & M_MCAST) &&
392 (ifp->if_flags & IFF_MULTICAST) == 0) ||
393 ((m->m_flags & M_BCAST) &&
394 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
395 IP_STATINC(IP_STAT_NOROUTE);
396 error = ENETUNREACH;
397 goto bad;
398 }
399 /*
400 * If source address not specified yet, use an address
401 * of outgoing interface.
402 */
403 if (in_nullhost(ip->ip_src)) {
404 struct in_ifaddr *xia;
405 struct ifaddr *xifa;
406
407 IFP_TO_IA(ifp, xia);
408 if (!xia) {
409 error = EADDRNOTAVAIL;
410 goto bad;
411 }
412 xifa = &xia->ia_ifa;
413 if (xifa->ifa_getifa != NULL) {
414 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
415 if (xia == NULL) {
416 error = EADDRNOTAVAIL;
417 goto bad;
418 }
419 }
420 ip->ip_src = xia->ia_addr.sin_addr;
421 }
422
423 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
424 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
425 /*
426 * If we belong to the destination multicast group
427 * on the outgoing interface, and the caller did not
428 * forbid loopback, loop back a copy.
429 */
430 ip_mloopback(ifp, m, &u.dst4);
431 }
432 #ifdef MROUTING
433 else {
434 /*
435 * If we are acting as a multicast router, perform
436 * multicast forwarding as if the packet had just
437 * arrived on the interface to which we are about
438 * to send. The multicast forwarding function
439 * recursively calls this function, using the
440 * IP_FORWARDING flag to prevent infinite recursion.
441 *
442 * Multicasts that are looped back by ip_mloopback(),
443 * above, will be forwarded by the ip_input() routine,
444 * if necessary.
445 */
446 extern struct socket *ip_mrouter;
447
448 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
449 if (ip_mforward(m, ifp) != 0) {
450 m_freem(m);
451 goto done;
452 }
453 }
454 }
455 #endif
456 /*
457 * Multicasts with a time-to-live of zero may be looped-
458 * back, above, but must not be transmitted on a network.
459 * Also, multicasts addressed to the loopback interface
460 * are not sent -- the above call to ip_mloopback() will
461 * loop back a copy if this host actually belongs to the
462 * destination group on the loopback interface.
463 */
464 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
465 m_freem(m);
466 goto done;
467 }
468 goto sendit;
469 }
470
471 /*
472 * If source address not specified yet, use address
473 * of outgoing interface.
474 */
475 if (in_nullhost(ip->ip_src)) {
476 struct ifaddr *xifa;
477
478 xifa = &ia->ia_ifa;
479 if (xifa->ifa_getifa != NULL) {
480 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
481 if (ia == NULL) {
482 error = EADDRNOTAVAIL;
483 goto bad;
484 }
485 }
486 ip->ip_src = ia->ia_addr.sin_addr;
487 }
488
489 /*
490 * packets with Class-D address as source are not valid per
491 * RFC 1112
492 */
493 if (IN_MULTICAST(ip->ip_src.s_addr)) {
494 IP_STATINC(IP_STAT_ODROPPED);
495 error = EADDRNOTAVAIL;
496 goto bad;
497 }
498
499 /*
500 * Look for broadcast address and and verify user is allowed to
501 * send such a packet.
502 */
503 if (isbroadcast) {
504 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
505 error = EADDRNOTAVAIL;
506 goto bad;
507 }
508 if ((flags & IP_ALLOWBROADCAST) == 0) {
509 error = EACCES;
510 goto bad;
511 }
512 /* don't allow broadcast messages to be fragmented */
513 if (ntohs(ip->ip_len) > ifp->if_mtu) {
514 error = EMSGSIZE;
515 goto bad;
516 }
517 m->m_flags |= M_BCAST;
518 } else
519 m->m_flags &= ~M_BCAST;
520
521 sendit:
522 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
523 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
524 ip->ip_id = 0;
525 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
526 ip->ip_id = ip_newid(ia);
527 } else {
528
529 /*
530 * TSO capable interfaces (typically?) increment
531 * ip_id for each segment.
532 * "allocate" enough ids here to increase the chance
533 * for them to be unique.
534 *
535 * note that the following calculation is not
536 * needed to be precise. wasting some ip_id is fine.
537 */
538
539 unsigned int segsz = m->m_pkthdr.segsz;
540 unsigned int datasz = ntohs(ip->ip_len) - hlen;
541 unsigned int num = howmany(datasz, segsz);
542
543 ip->ip_id = ip_newid_range(ia, num);
544 }
545 }
546
547 /*
548 * If we're doing Path MTU Discovery, we need to set DF unless
549 * the route's MTU is locked.
550 */
551 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
552 ip->ip_off |= htons(IP_DF);
553 }
554
555 #ifdef IPSEC
556 if (ipsec_used) {
557 bool ipsec_done = false;
558
559 /* Perform IPsec processing, if any. */
560 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
561 &ipsec_done);
562 if (error || ipsec_done)
563 goto done;
564 }
565 #endif
566
567 /*
568 * Run through list of hooks for output packets.
569 */
570 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
571 if (error)
572 goto done;
573 if (m == NULL)
574 goto done;
575
576 ip = mtod(m, struct ip *);
577 hlen = ip->ip_hl << 2;
578
579 m->m_pkthdr.csum_data |= hlen << 16;
580
581 #if IFA_STATS
582 /*
583 * search for the source address structure to
584 * maintain output statistics.
585 */
586 INADDR_TO_IA(ip->ip_src, ia);
587 #endif
588
589 /* Maybe skip checksums on loopback interfaces. */
590 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
591 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
592 }
593 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
594 /*
595 * If small enough for mtu of path, or if using TCP segmentation
596 * offload, can just send directly.
597 */
598 if (ntohs(ip->ip_len) <= mtu ||
599 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
600 const struct sockaddr *sa;
601
602 #if IFA_STATS
603 if (ia)
604 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
605 #endif
606 /*
607 * Always initialize the sum to 0! Some HW assisted
608 * checksumming requires this.
609 */
610 ip->ip_sum = 0;
611
612 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
613 /*
614 * Perform any checksums that the hardware can't do
615 * for us.
616 *
617 * XXX Does any hardware require the {th,uh}_sum
618 * XXX fields to be 0?
619 */
620 if (sw_csum & M_CSUM_IPv4) {
621 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
622 ip->ip_sum = in_cksum(m, hlen);
623 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
624 }
625 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
626 if (IN_NEED_CHECKSUM(ifp,
627 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
628 in_delayed_cksum(m);
629 }
630 m->m_pkthdr.csum_flags &=
631 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
632 }
633 }
634
635 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
636 if (__predict_true(
637 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
638 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
639 error = ip_if_output(ifp, m, sa, rt);
640 } else {
641 error = ip_tso_output(ifp, m, sa, rt);
642 }
643 goto done;
644 }
645
646 /*
647 * We can't use HW checksumming if we're about to
648 * to fragment the packet.
649 *
650 * XXX Some hardware can do this.
651 */
652 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
653 if (IN_NEED_CHECKSUM(ifp,
654 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
655 in_delayed_cksum(m);
656 }
657 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
658 }
659
660 /*
661 * Too large for interface; fragment if possible.
662 * Must be able to put at least 8 bytes per fragment.
663 */
664 if (ntohs(ip->ip_off) & IP_DF) {
665 if (flags & IP_RETURNMTU) {
666 struct inpcb *inp;
667
668 KASSERT(so && solocked(so));
669 inp = sotoinpcb(so);
670 inp->inp_errormtu = mtu;
671 }
672 error = EMSGSIZE;
673 IP_STATINC(IP_STAT_CANTFRAG);
674 goto bad;
675 }
676
677 error = ip_fragment(m, ifp, mtu);
678 if (error) {
679 m = NULL;
680 goto bad;
681 }
682
683 for (; m; m = m0) {
684 m0 = m->m_nextpkt;
685 m->m_nextpkt = 0;
686 if (error) {
687 m_freem(m);
688 continue;
689 }
690 #if IFA_STATS
691 if (ia)
692 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
693 #endif
694 /*
695 * If we get there, the packet has not been handled by
696 * IPsec whereas it should have. Now that it has been
697 * fragmented, re-inject it in ip_output so that IPsec
698 * processing can occur.
699 */
700 if (natt_frag) {
701 error = ip_output(m, opt, ro,
702 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
703 imo, so);
704 } else {
705 KASSERT((m->m_pkthdr.csum_flags &
706 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
707 error = ip_if_output(ifp, m,
708 (m->m_flags & M_MCAST) ?
709 sintocsa(rdst) : sintocsa(dst), rt);
710 }
711 }
712 if (error == 0) {
713 IP_STATINC(IP_STAT_FRAGMENTED);
714 }
715 done:
716 if (ro == &iproute) {
717 rtcache_free(&iproute);
718 }
719 #ifdef IPSEC
720 if (sp) {
721 KEY_FREESP(&sp);
722 }
723 #endif
724 if (mifp != NULL) {
725 if_put(mifp, &psref);
726 curlwp_bindx(bound);
727 }
728 return error;
729 bad:
730 m_freem(m);
731 goto done;
732 }
733
734 int
735 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
736 {
737 struct ip *ip, *mhip;
738 struct mbuf *m0;
739 int len, hlen, off;
740 int mhlen, firstlen;
741 struct mbuf **mnext;
742 int sw_csum = m->m_pkthdr.csum_flags;
743 int fragments = 0;
744 int s;
745 int error = 0;
746
747 ip = mtod(m, struct ip *);
748 hlen = ip->ip_hl << 2;
749 if (ifp != NULL)
750 sw_csum &= ~ifp->if_csum_flags_tx;
751
752 len = (mtu - hlen) &~ 7;
753 if (len < 8) {
754 m_freem(m);
755 return (EMSGSIZE);
756 }
757
758 firstlen = len;
759 mnext = &m->m_nextpkt;
760
761 /*
762 * Loop through length of segment after first fragment,
763 * make new header and copy data of each part and link onto chain.
764 */
765 m0 = m;
766 mhlen = sizeof (struct ip);
767 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
768 MGETHDR(m, M_DONTWAIT, MT_HEADER);
769 if (m == 0) {
770 error = ENOBUFS;
771 IP_STATINC(IP_STAT_ODROPPED);
772 goto sendorfree;
773 }
774 MCLAIM(m, m0->m_owner);
775 *mnext = m;
776 mnext = &m->m_nextpkt;
777 m->m_data += max_linkhdr;
778 mhip = mtod(m, struct ip *);
779 *mhip = *ip;
780 /* we must inherit MCAST and BCAST flags */
781 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
782 if (hlen > sizeof (struct ip)) {
783 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
784 mhip->ip_hl = mhlen >> 2;
785 }
786 m->m_len = mhlen;
787 mhip->ip_off = ((off - hlen) >> 3) +
788 (ntohs(ip->ip_off) & ~IP_MF);
789 if (ip->ip_off & htons(IP_MF))
790 mhip->ip_off |= IP_MF;
791 if (off + len >= ntohs(ip->ip_len))
792 len = ntohs(ip->ip_len) - off;
793 else
794 mhip->ip_off |= IP_MF;
795 HTONS(mhip->ip_off);
796 mhip->ip_len = htons((u_int16_t)(len + mhlen));
797 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
798 if (m->m_next == 0) {
799 error = ENOBUFS; /* ??? */
800 IP_STATINC(IP_STAT_ODROPPED);
801 goto sendorfree;
802 }
803 m->m_pkthdr.len = mhlen + len;
804 m_reset_rcvif(m);
805 mhip->ip_sum = 0;
806 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
807 if (sw_csum & M_CSUM_IPv4) {
808 mhip->ip_sum = in_cksum(m, mhlen);
809 } else {
810 /*
811 * checksum is hw-offloaded or not necessary.
812 */
813 m->m_pkthdr.csum_flags |=
814 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
815 m->m_pkthdr.csum_data |= mhlen << 16;
816 KASSERT(!(ifp != NULL &&
817 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
818 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
819 }
820 IP_STATINC(IP_STAT_OFRAGMENTS);
821 fragments++;
822 }
823 /*
824 * Update first fragment by trimming what's been copied out
825 * and updating header, then send each fragment (in order).
826 */
827 m = m0;
828 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
829 m->m_pkthdr.len = hlen + firstlen;
830 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
831 ip->ip_off |= htons(IP_MF);
832 ip->ip_sum = 0;
833 if (sw_csum & M_CSUM_IPv4) {
834 ip->ip_sum = in_cksum(m, hlen);
835 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
836 } else {
837 /*
838 * checksum is hw-offloaded or not necessary.
839 */
840 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
841 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
842 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
843 sizeof(struct ip));
844 }
845 sendorfree:
846 /*
847 * If there is no room for all the fragments, don't queue
848 * any of them.
849 */
850 if (ifp != NULL) {
851 s = splnet();
852 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
853 error == 0) {
854 error = ENOBUFS;
855 IP_STATINC(IP_STAT_ODROPPED);
856 IFQ_INC_DROPS(&ifp->if_snd);
857 }
858 splx(s);
859 }
860 if (error) {
861 for (m = m0; m; m = m0) {
862 m0 = m->m_nextpkt;
863 m->m_nextpkt = NULL;
864 m_freem(m);
865 }
866 }
867 return (error);
868 }
869
870 /*
871 * Process a delayed payload checksum calculation.
872 */
873 void
874 in_delayed_cksum(struct mbuf *m)
875 {
876 struct ip *ip;
877 u_int16_t csum, offset;
878
879 ip = mtod(m, struct ip *);
880 offset = ip->ip_hl << 2;
881 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
882 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
883 csum = 0xffff;
884
885 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
886
887 if ((offset + sizeof(u_int16_t)) > m->m_len) {
888 /* This happen when ip options were inserted
889 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
890 m->m_len, offset, ip->ip_p);
891 */
892 m_copyback(m, offset, sizeof(csum), (void *) &csum);
893 } else
894 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
895 }
896
897 /*
898 * Determine the maximum length of the options to be inserted;
899 * we would far rather allocate too much space rather than too little.
900 */
901
902 u_int
903 ip_optlen(struct inpcb *inp)
904 {
905 struct mbuf *m = inp->inp_options;
906
907 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
908 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
909 }
910 return 0;
911 }
912
913 /*
914 * Insert IP options into preformed packet.
915 * Adjust IP destination as required for IP source routing,
916 * as indicated by a non-zero in_addr at the start of the options.
917 */
918 static struct mbuf *
919 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
920 {
921 struct ipoption *p = mtod(opt, struct ipoption *);
922 struct mbuf *n;
923 struct ip *ip = mtod(m, struct ip *);
924 unsigned optlen;
925
926 optlen = opt->m_len - sizeof(p->ipopt_dst);
927 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
928 return (m); /* XXX should fail */
929 if (!in_nullhost(p->ipopt_dst))
930 ip->ip_dst = p->ipopt_dst;
931 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
932 MGETHDR(n, M_DONTWAIT, MT_HEADER);
933 if (n == 0)
934 return (m);
935 MCLAIM(n, m->m_owner);
936 M_MOVE_PKTHDR(n, m);
937 m->m_len -= sizeof(struct ip);
938 m->m_data += sizeof(struct ip);
939 n->m_next = m;
940 m = n;
941 m->m_len = optlen + sizeof(struct ip);
942 m->m_data += max_linkhdr;
943 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
944 } else {
945 m->m_data -= optlen;
946 m->m_len += optlen;
947 memmove(mtod(m, void *), ip, sizeof(struct ip));
948 }
949 m->m_pkthdr.len += optlen;
950 ip = mtod(m, struct ip *);
951 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
952 *phlen = sizeof(struct ip) + optlen;
953 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
954 return (m);
955 }
956
957 /*
958 * Copy options from ip to jp,
959 * omitting those not copied during fragmentation.
960 */
961 int
962 ip_optcopy(struct ip *ip, struct ip *jp)
963 {
964 u_char *cp, *dp;
965 int opt, optlen, cnt;
966
967 cp = (u_char *)(ip + 1);
968 dp = (u_char *)(jp + 1);
969 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
970 for (; cnt > 0; cnt -= optlen, cp += optlen) {
971 opt = cp[0];
972 if (opt == IPOPT_EOL)
973 break;
974 if (opt == IPOPT_NOP) {
975 /* Preserve for IP mcast tunnel's LSRR alignment. */
976 *dp++ = IPOPT_NOP;
977 optlen = 1;
978 continue;
979 }
980
981 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
982 optlen = cp[IPOPT_OLEN];
983 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
984
985 /* Invalid lengths should have been caught by ip_dooptions. */
986 if (optlen > cnt)
987 optlen = cnt;
988 if (IPOPT_COPIED(opt)) {
989 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
990 dp += optlen;
991 }
992 }
993 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
994 *dp++ = IPOPT_EOL;
995 return (optlen);
996 }
997
998 /*
999 * IP socket option processing.
1000 */
1001 int
1002 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1003 {
1004 struct inpcb *inp = sotoinpcb(so);
1005 struct ip *ip = &inp->inp_ip;
1006 int inpflags = inp->inp_flags;
1007 int optval = 0, error = 0;
1008
1009 if (sopt->sopt_level != IPPROTO_IP) {
1010 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1011 return 0;
1012 return ENOPROTOOPT;
1013 }
1014
1015 switch (op) {
1016 case PRCO_SETOPT:
1017 switch (sopt->sopt_name) {
1018 case IP_OPTIONS:
1019 #ifdef notyet
1020 case IP_RETOPTS:
1021 #endif
1022 error = ip_pcbopts(inp, sopt);
1023 break;
1024
1025 case IP_TOS:
1026 case IP_TTL:
1027 case IP_MINTTL:
1028 case IP_PKTINFO:
1029 case IP_RECVOPTS:
1030 case IP_RECVRETOPTS:
1031 case IP_RECVDSTADDR:
1032 case IP_RECVIF:
1033 case IP_RECVPKTINFO:
1034 case IP_RECVTTL:
1035 error = sockopt_getint(sopt, &optval);
1036 if (error)
1037 break;
1038
1039 switch (sopt->sopt_name) {
1040 case IP_TOS:
1041 ip->ip_tos = optval;
1042 break;
1043
1044 case IP_TTL:
1045 ip->ip_ttl = optval;
1046 break;
1047
1048 case IP_MINTTL:
1049 if (optval > 0 && optval <= MAXTTL)
1050 inp->inp_ip_minttl = optval;
1051 else
1052 error = EINVAL;
1053 break;
1054 #define OPTSET(bit) \
1055 if (optval) \
1056 inpflags |= bit; \
1057 else \
1058 inpflags &= ~bit;
1059
1060 case IP_PKTINFO:
1061 OPTSET(INP_PKTINFO);
1062 break;
1063
1064 case IP_RECVOPTS:
1065 OPTSET(INP_RECVOPTS);
1066 break;
1067
1068 case IP_RECVPKTINFO:
1069 OPTSET(INP_RECVPKTINFO);
1070 break;
1071
1072 case IP_RECVRETOPTS:
1073 OPTSET(INP_RECVRETOPTS);
1074 break;
1075
1076 case IP_RECVDSTADDR:
1077 OPTSET(INP_RECVDSTADDR);
1078 break;
1079
1080 case IP_RECVIF:
1081 OPTSET(INP_RECVIF);
1082 break;
1083
1084 case IP_RECVTTL:
1085 OPTSET(INP_RECVTTL);
1086 break;
1087 }
1088 break;
1089 #undef OPTSET
1090
1091 case IP_MULTICAST_IF:
1092 case IP_MULTICAST_TTL:
1093 case IP_MULTICAST_LOOP:
1094 case IP_ADD_MEMBERSHIP:
1095 case IP_DROP_MEMBERSHIP:
1096 error = ip_setmoptions(&inp->inp_moptions, sopt);
1097 break;
1098
1099 case IP_PORTRANGE:
1100 error = sockopt_getint(sopt, &optval);
1101 if (error)
1102 break;
1103
1104 switch (optval) {
1105 case IP_PORTRANGE_DEFAULT:
1106 case IP_PORTRANGE_HIGH:
1107 inpflags &= ~(INP_LOWPORT);
1108 break;
1109
1110 case IP_PORTRANGE_LOW:
1111 inpflags |= INP_LOWPORT;
1112 break;
1113
1114 default:
1115 error = EINVAL;
1116 break;
1117 }
1118 break;
1119
1120 case IP_PORTALGO:
1121 error = sockopt_getint(sopt, &optval);
1122 if (error)
1123 break;
1124
1125 error = portalgo_algo_index_select(
1126 (struct inpcb_hdr *)inp, optval);
1127 break;
1128
1129 #if defined(IPSEC)
1130 case IP_IPSEC_POLICY:
1131 if (ipsec_enabled) {
1132 error = ipsec4_set_policy(inp, sopt->sopt_name,
1133 sopt->sopt_data, sopt->sopt_size,
1134 curlwp->l_cred);
1135 break;
1136 }
1137 /*FALLTHROUGH*/
1138 #endif /* IPSEC */
1139
1140 default:
1141 error = ENOPROTOOPT;
1142 break;
1143 }
1144 break;
1145
1146 case PRCO_GETOPT:
1147 switch (sopt->sopt_name) {
1148 case IP_OPTIONS:
1149 case IP_RETOPTS: {
1150 struct mbuf *mopts = inp->inp_options;
1151
1152 if (mopts) {
1153 struct mbuf *m;
1154
1155 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1156 if (m == NULL) {
1157 error = ENOBUFS;
1158 break;
1159 }
1160 error = sockopt_setmbuf(sopt, m);
1161 }
1162 break;
1163 }
1164 case IP_PKTINFO:
1165 case IP_TOS:
1166 case IP_TTL:
1167 case IP_MINTTL:
1168 case IP_RECVOPTS:
1169 case IP_RECVRETOPTS:
1170 case IP_RECVDSTADDR:
1171 case IP_RECVIF:
1172 case IP_RECVPKTINFO:
1173 case IP_RECVTTL:
1174 case IP_ERRORMTU:
1175 switch (sopt->sopt_name) {
1176 case IP_TOS:
1177 optval = ip->ip_tos;
1178 break;
1179
1180 case IP_TTL:
1181 optval = ip->ip_ttl;
1182 break;
1183
1184 case IP_MINTTL:
1185 optval = inp->inp_ip_minttl;
1186 break;
1187
1188 case IP_ERRORMTU:
1189 optval = inp->inp_errormtu;
1190 break;
1191
1192 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1193
1194 case IP_PKTINFO:
1195 optval = OPTBIT(INP_PKTINFO);
1196 break;
1197
1198 case IP_RECVOPTS:
1199 optval = OPTBIT(INP_RECVOPTS);
1200 break;
1201
1202 case IP_RECVPKTINFO:
1203 optval = OPTBIT(INP_RECVPKTINFO);
1204 break;
1205
1206 case IP_RECVRETOPTS:
1207 optval = OPTBIT(INP_RECVRETOPTS);
1208 break;
1209
1210 case IP_RECVDSTADDR:
1211 optval = OPTBIT(INP_RECVDSTADDR);
1212 break;
1213
1214 case IP_RECVIF:
1215 optval = OPTBIT(INP_RECVIF);
1216 break;
1217
1218 case IP_RECVTTL:
1219 optval = OPTBIT(INP_RECVTTL);
1220 break;
1221 }
1222 error = sockopt_setint(sopt, optval);
1223 break;
1224
1225 #if 0 /* defined(IPSEC) */
1226 case IP_IPSEC_POLICY:
1227 {
1228 struct mbuf *m = NULL;
1229
1230 /* XXX this will return EINVAL as sopt is empty */
1231 error = ipsec4_get_policy(inp, sopt->sopt_data,
1232 sopt->sopt_size, &m);
1233 if (error == 0)
1234 error = sockopt_setmbuf(sopt, m);
1235 break;
1236 }
1237 #endif /*IPSEC*/
1238
1239 case IP_MULTICAST_IF:
1240 case IP_MULTICAST_TTL:
1241 case IP_MULTICAST_LOOP:
1242 case IP_ADD_MEMBERSHIP:
1243 case IP_DROP_MEMBERSHIP:
1244 error = ip_getmoptions(inp->inp_moptions, sopt);
1245 break;
1246
1247 case IP_PORTRANGE:
1248 if (inpflags & INP_LOWPORT)
1249 optval = IP_PORTRANGE_LOW;
1250 else
1251 optval = IP_PORTRANGE_DEFAULT;
1252 error = sockopt_setint(sopt, optval);
1253 break;
1254
1255 case IP_PORTALGO:
1256 optval = inp->inp_portalgo;
1257 error = sockopt_setint(sopt, optval);
1258 break;
1259
1260 default:
1261 error = ENOPROTOOPT;
1262 break;
1263 }
1264 break;
1265 }
1266
1267 if (!error) {
1268 inp->inp_flags = inpflags;
1269 }
1270 return error;
1271 }
1272
1273 /*
1274 * Set up IP options in pcb for insertion in output packets.
1275 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1276 * with destination address if source routed.
1277 */
1278 static int
1279 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1280 {
1281 struct mbuf *m;
1282 const u_char *cp;
1283 u_char *dp;
1284 int cnt;
1285
1286 /* Turn off any old options. */
1287 if (inp->inp_options) {
1288 m_free(inp->inp_options);
1289 }
1290 inp->inp_options = NULL;
1291 if ((cnt = sopt->sopt_size) == 0) {
1292 /* Only turning off any previous options. */
1293 return 0;
1294 }
1295 cp = sopt->sopt_data;
1296
1297 #ifndef __vax__
1298 if (cnt % sizeof(int32_t))
1299 return (EINVAL);
1300 #endif
1301
1302 m = m_get(M_DONTWAIT, MT_SOOPTS);
1303 if (m == NULL)
1304 return (ENOBUFS);
1305
1306 dp = mtod(m, u_char *);
1307 memset(dp, 0, sizeof(struct in_addr));
1308 dp += sizeof(struct in_addr);
1309 m->m_len = sizeof(struct in_addr);
1310
1311 /*
1312 * IP option list according to RFC791. Each option is of the form
1313 *
1314 * [optval] [olen] [(olen - 2) data bytes]
1315 *
1316 * We validate the list and copy options to an mbuf for prepending
1317 * to data packets. The IP first-hop destination address will be
1318 * stored before actual options and is zero if unset.
1319 */
1320 while (cnt > 0) {
1321 uint8_t optval, olen, offset;
1322
1323 optval = cp[IPOPT_OPTVAL];
1324
1325 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1326 olen = 1;
1327 } else {
1328 if (cnt < IPOPT_OLEN + 1)
1329 goto bad;
1330
1331 olen = cp[IPOPT_OLEN];
1332 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1333 goto bad;
1334 }
1335
1336 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1337 /*
1338 * user process specifies route as:
1339 * ->A->B->C->D
1340 * D must be our final destination (but we can't
1341 * check that since we may not have connected yet).
1342 * A is first hop destination, which doesn't appear in
1343 * actual IP option, but is stored before the options.
1344 */
1345 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1346 goto bad;
1347
1348 offset = cp[IPOPT_OFFSET];
1349 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1350 sizeof(struct in_addr));
1351
1352 cp += sizeof(struct in_addr);
1353 cnt -= sizeof(struct in_addr);
1354 olen -= sizeof(struct in_addr);
1355
1356 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1357 goto bad;
1358
1359 memcpy(dp, cp, olen);
1360 dp[IPOPT_OPTVAL] = optval;
1361 dp[IPOPT_OLEN] = olen;
1362 dp[IPOPT_OFFSET] = offset;
1363 break;
1364 } else {
1365 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1366 goto bad;
1367
1368 memcpy(dp, cp, olen);
1369 break;
1370 }
1371
1372 dp += olen;
1373 m->m_len += olen;
1374
1375 if (optval == IPOPT_EOL)
1376 break;
1377
1378 cp += olen;
1379 cnt -= olen;
1380 }
1381
1382 inp->inp_options = m;
1383 return 0;
1384 bad:
1385 (void)m_free(m);
1386 return EINVAL;
1387 }
1388
1389 /*
1390 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1391 */
1392 static struct ifnet *
1393 ip_multicast_if(struct in_addr *a, int *ifindexp)
1394 {
1395 int ifindex;
1396 struct ifnet *ifp = NULL;
1397 struct in_ifaddr *ia;
1398
1399 if (ifindexp)
1400 *ifindexp = 0;
1401 if (ntohl(a->s_addr) >> 24 == 0) {
1402 ifindex = ntohl(a->s_addr) & 0xffffff;
1403 ifp = if_byindex(ifindex);
1404 if (!ifp)
1405 return NULL;
1406 if (ifindexp)
1407 *ifindexp = ifindex;
1408 } else {
1409 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1410 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1411 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1412 ifp = ia->ia_ifp;
1413 break;
1414 }
1415 }
1416 }
1417 return ifp;
1418 }
1419
1420 static int
1421 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1422 {
1423 u_int tval;
1424 u_char cval;
1425 int error;
1426
1427 if (sopt == NULL)
1428 return EINVAL;
1429
1430 switch (sopt->sopt_size) {
1431 case sizeof(u_char):
1432 error = sockopt_get(sopt, &cval, sizeof(u_char));
1433 tval = cval;
1434 break;
1435
1436 case sizeof(u_int):
1437 error = sockopt_get(sopt, &tval, sizeof(u_int));
1438 break;
1439
1440 default:
1441 error = EINVAL;
1442 }
1443
1444 if (error)
1445 return error;
1446
1447 if (tval > maxval)
1448 return EINVAL;
1449
1450 *val = tval;
1451 return 0;
1452 }
1453
1454 static int
1455 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1456 struct in_addr *ia, bool add)
1457 {
1458 int error;
1459 struct ip_mreq mreq;
1460
1461 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1462 if (error)
1463 return error;
1464
1465 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1466 return EINVAL;
1467
1468 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1469
1470 if (in_nullhost(mreq.imr_interface)) {
1471 union {
1472 struct sockaddr dst;
1473 struct sockaddr_in dst4;
1474 } u;
1475 struct route ro;
1476
1477 if (!add) {
1478 *ifp = NULL;
1479 return 0;
1480 }
1481 /*
1482 * If no interface address was provided, use the interface of
1483 * the route to the given multicast address.
1484 */
1485 struct rtentry *rt;
1486 memset(&ro, 0, sizeof(ro));
1487
1488 sockaddr_in_init(&u.dst4, ia, 0);
1489 error = rtcache_setdst(&ro, &u.dst);
1490 if (error != 0)
1491 return error;
1492 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1493 rtcache_free(&ro);
1494 } else {
1495 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1496 if (!add && *ifp == NULL)
1497 return EADDRNOTAVAIL;
1498 }
1499 return 0;
1500 }
1501
1502 /*
1503 * Add a multicast group membership.
1504 * Group must be a valid IP multicast address.
1505 */
1506 static int
1507 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1508 {
1509 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1510 struct in_addr ia;
1511 int i, error;
1512
1513 if (sopt->sopt_size == sizeof(struct ip_mreq))
1514 error = ip_get_membership(sopt, &ifp, &ia, true);
1515 else
1516 #ifdef INET6
1517 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1518 #else
1519 return EINVAL;
1520 #endif
1521
1522 if (error)
1523 return error;
1524
1525 /*
1526 * See if we found an interface, and confirm that it
1527 * supports multicast.
1528 */
1529 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1530 return EADDRNOTAVAIL;
1531
1532 /*
1533 * See if the membership already exists or if all the
1534 * membership slots are full.
1535 */
1536 for (i = 0; i < imo->imo_num_memberships; ++i) {
1537 if (imo->imo_membership[i]->inm_ifp == ifp &&
1538 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1539 break;
1540 }
1541 if (i < imo->imo_num_memberships)
1542 return EADDRINUSE;
1543
1544 if (i == IP_MAX_MEMBERSHIPS)
1545 return ETOOMANYREFS;
1546
1547 /*
1548 * Everything looks good; add a new record to the multicast
1549 * address list for the given interface.
1550 */
1551 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1552 return ENOBUFS;
1553
1554 ++imo->imo_num_memberships;
1555 return 0;
1556 }
1557
1558 /*
1559 * Drop a multicast group membership.
1560 * Group must be a valid IP multicast address.
1561 */
1562 static int
1563 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1564 {
1565 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1566 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1567 int i, error;
1568
1569 if (sopt->sopt_size == sizeof(struct ip_mreq))
1570 error = ip_get_membership(sopt, &ifp, &ia, false);
1571 else
1572 #ifdef INET6
1573 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1574 #else
1575 return EINVAL;
1576 #endif
1577
1578 if (error)
1579 return error;
1580
1581 /*
1582 * Find the membership in the membership array.
1583 */
1584 for (i = 0; i < imo->imo_num_memberships; ++i) {
1585 if ((ifp == NULL ||
1586 imo->imo_membership[i]->inm_ifp == ifp) &&
1587 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1588 break;
1589 }
1590 if (i == imo->imo_num_memberships)
1591 return EADDRNOTAVAIL;
1592
1593 /*
1594 * Give up the multicast address record to which the
1595 * membership points.
1596 */
1597 in_delmulti(imo->imo_membership[i]);
1598
1599 /*
1600 * Remove the gap in the membership array.
1601 */
1602 for (++i; i < imo->imo_num_memberships; ++i)
1603 imo->imo_membership[i-1] = imo->imo_membership[i];
1604 --imo->imo_num_memberships;
1605 return 0;
1606 }
1607
1608 /*
1609 * Set the IP multicast options in response to user setsockopt().
1610 */
1611 int
1612 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1613 {
1614 struct ip_moptions *imo = *pimo;
1615 struct in_addr addr;
1616 struct ifnet *ifp;
1617 int ifindex, error = 0;
1618
1619 if (!imo) {
1620 /*
1621 * No multicast option buffer attached to the pcb;
1622 * allocate one and initialize to default values.
1623 */
1624 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1625 if (imo == NULL)
1626 return ENOBUFS;
1627
1628 imo->imo_multicast_if_index = 0;
1629 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1630 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1631 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1632 imo->imo_num_memberships = 0;
1633 *pimo = imo;
1634 }
1635
1636 switch (sopt->sopt_name) {
1637 case IP_MULTICAST_IF:
1638 /*
1639 * Select the interface for outgoing multicast packets.
1640 */
1641 error = sockopt_get(sopt, &addr, sizeof(addr));
1642 if (error)
1643 break;
1644
1645 /*
1646 * INADDR_ANY is used to remove a previous selection.
1647 * When no interface is selected, a default one is
1648 * chosen every time a multicast packet is sent.
1649 */
1650 if (in_nullhost(addr)) {
1651 imo->imo_multicast_if_index = 0;
1652 break;
1653 }
1654 /*
1655 * The selected interface is identified by its local
1656 * IP address. Find the interface and confirm that
1657 * it supports multicasting.
1658 */
1659 ifp = ip_multicast_if(&addr, &ifindex);
1660 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1661 error = EADDRNOTAVAIL;
1662 break;
1663 }
1664 imo->imo_multicast_if_index = ifp->if_index;
1665 if (ifindex)
1666 imo->imo_multicast_addr = addr;
1667 else
1668 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1669 break;
1670
1671 case IP_MULTICAST_TTL:
1672 /*
1673 * Set the IP time-to-live for outgoing multicast packets.
1674 */
1675 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1676 break;
1677
1678 case IP_MULTICAST_LOOP:
1679 /*
1680 * Set the loopback flag for outgoing multicast packets.
1681 * Must be zero or one.
1682 */
1683 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1684 break;
1685
1686 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1687 error = ip_add_membership(imo, sopt);
1688 break;
1689
1690 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1691 error = ip_drop_membership(imo, sopt);
1692 break;
1693
1694 default:
1695 error = EOPNOTSUPP;
1696 break;
1697 }
1698
1699 /*
1700 * If all options have default values, no need to keep the mbuf.
1701 */
1702 if (imo->imo_multicast_if_index == 0 &&
1703 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1704 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1705 imo->imo_num_memberships == 0) {
1706 kmem_free(imo, sizeof(*imo));
1707 *pimo = NULL;
1708 }
1709
1710 return error;
1711 }
1712
1713 /*
1714 * Return the IP multicast options in response to user getsockopt().
1715 */
1716 int
1717 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1718 {
1719 struct in_addr addr;
1720 uint8_t optval;
1721 int error = 0;
1722
1723 switch (sopt->sopt_name) {
1724 case IP_MULTICAST_IF:
1725 if (imo == NULL || imo->imo_multicast_if_index == 0)
1726 addr = zeroin_addr;
1727 else if (imo->imo_multicast_addr.s_addr) {
1728 /* return the value user has set */
1729 addr = imo->imo_multicast_addr;
1730 } else {
1731 struct ifnet *ifp;
1732 struct in_ifaddr *ia = NULL;
1733 int s = pserialize_read_enter();
1734
1735 ifp = if_byindex(imo->imo_multicast_if_index);
1736 if (ifp != NULL) {
1737 IFP_TO_IA(ifp, ia);
1738 }
1739 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1740 pserialize_read_exit(s);
1741 }
1742 error = sockopt_set(sopt, &addr, sizeof(addr));
1743 break;
1744
1745 case IP_MULTICAST_TTL:
1746 optval = imo ? imo->imo_multicast_ttl
1747 : IP_DEFAULT_MULTICAST_TTL;
1748
1749 error = sockopt_set(sopt, &optval, sizeof(optval));
1750 break;
1751
1752 case IP_MULTICAST_LOOP:
1753 optval = imo ? imo->imo_multicast_loop
1754 : IP_DEFAULT_MULTICAST_LOOP;
1755
1756 error = sockopt_set(sopt, &optval, sizeof(optval));
1757 break;
1758
1759 default:
1760 error = EOPNOTSUPP;
1761 }
1762
1763 return error;
1764 }
1765
1766 /*
1767 * Discard the IP multicast options.
1768 */
1769 void
1770 ip_freemoptions(struct ip_moptions *imo)
1771 {
1772 int i;
1773
1774 if (imo != NULL) {
1775 for (i = 0; i < imo->imo_num_memberships; ++i)
1776 in_delmulti(imo->imo_membership[i]);
1777 kmem_free(imo, sizeof(*imo));
1778 }
1779 }
1780
1781 /*
1782 * Routine called from ip_output() to loop back a copy of an IP multicast
1783 * packet to the input queue of a specified interface. Note that this
1784 * calls the output routine of the loopback "driver", but with an interface
1785 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1786 */
1787 static void
1788 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1789 {
1790 struct ip *ip;
1791 struct mbuf *copym;
1792
1793 copym = m_copypacket(m, M_DONTWAIT);
1794 if (copym != NULL &&
1795 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1796 copym = m_pullup(copym, sizeof(struct ip));
1797 if (copym == NULL)
1798 return;
1799 /*
1800 * We don't bother to fragment if the IP length is greater
1801 * than the interface's MTU. Can this possibly matter?
1802 */
1803 ip = mtod(copym, struct ip *);
1804
1805 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1806 in_delayed_cksum(copym);
1807 copym->m_pkthdr.csum_flags &=
1808 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1809 }
1810
1811 ip->ip_sum = 0;
1812 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1813 #ifndef NET_MPSAFE
1814 KERNEL_LOCK(1, NULL);
1815 #endif
1816 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1817 #ifndef NET_MPSAFE
1818 KERNEL_UNLOCK_ONE(NULL);
1819 #endif
1820 }
1821