ip_output.c revision 1.259.2.1 1 /* $NetBSD: ip_output.c,v 1.259.2.1 2016/08/06 00:19:10 pgoyette Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.259.2.1 2016/08/06 00:19:10 pgoyette Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/kmem.h>
106 #include <sys/mbuf.h>
107 #include <sys/protosw.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/kauth.h>
111 #ifdef IPSEC
112 #include <sys/domain.h>
113 #endif
114 #include <sys/systm.h>
115 #include <sys/syslog.h>
116
117 #include <net/if.h>
118 #include <net/if_types.h>
119 #include <net/route.h>
120 #include <net/pfil.h>
121
122 #include <netinet/in.h>
123 #include <netinet/in_systm.h>
124 #include <netinet/ip.h>
125 #include <netinet/in_pcb.h>
126 #include <netinet/in_var.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/ip_private.h>
129 #include <netinet/in_offload.h>
130 #include <netinet/portalgo.h>
131 #include <netinet/udp.h>
132
133 #ifdef INET6
134 #include <netinet6/ip6_var.h>
135 #endif
136
137 #ifdef MROUTING
138 #include <netinet/ip_mroute.h>
139 #endif
140
141 #ifdef IPSEC
142 #include <netipsec/ipsec.h>
143 #include <netipsec/key.h>
144 #endif
145
146 #ifdef MPLS
147 #include <netmpls/mpls.h>
148 #include <netmpls/mpls_var.h>
149 #endif
150
151 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
152 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
153 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
154 static void ip_mloopback(struct ifnet *, struct mbuf *,
155 const struct sockaddr_in *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct socket *so)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int hlen = sizeof (struct ip);
236 int len, error = 0;
237 struct route iproute;
238 const struct sockaddr_in *dst;
239 struct in_ifaddr *ia = NULL;
240 int isbroadcast;
241 int sw_csum;
242 u_long mtu;
243 #ifdef IPSEC
244 struct secpolicy *sp = NULL;
245 #endif
246 bool natt_frag = false;
247 bool rtmtu_nolock;
248 union {
249 struct sockaddr dst;
250 struct sockaddr_in dst4;
251 } u;
252 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
253 * to the nexthop
254 */
255 struct psref psref, psref_ia;
256 int bound;
257 bool bind_need_restore = false;
258
259 len = 0;
260
261 MCLAIM(m, &ip_tx_mowner);
262
263 KASSERT((m->m_flags & M_PKTHDR) != 0);
264 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
265 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
266 (M_CSUM_TCPv4|M_CSUM_UDPv4));
267
268 if (opt) {
269 m = ip_insertoptions(m, opt, &len);
270 if (len >= sizeof(struct ip))
271 hlen = len;
272 }
273 ip = mtod(m, struct ip *);
274
275 /*
276 * Fill in IP header.
277 */
278 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
279 ip->ip_v = IPVERSION;
280 ip->ip_off = htons(0);
281 /* ip->ip_id filled in after we find out source ia */
282 ip->ip_hl = hlen >> 2;
283 IP_STATINC(IP_STAT_LOCALOUT);
284 } else {
285 hlen = ip->ip_hl << 2;
286 }
287
288 /*
289 * Route packet.
290 */
291 if (ro == NULL) {
292 memset(&iproute, 0, sizeof(iproute));
293 ro = &iproute;
294 }
295 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
296 dst = satocsin(rtcache_getdst(ro));
297
298 /*
299 * If there is a cached route, check that it is to the same
300 * destination and is still up. If not, free it and try again.
301 * The address family should also be checked in case of sharing
302 * the cache with IPv6.
303 */
304 if (dst && (dst->sin_family != AF_INET ||
305 !in_hosteq(dst->sin_addr, ip->ip_dst)))
306 rtcache_free(ro);
307
308 if ((rt = rtcache_validate(ro)) == NULL &&
309 (rt = rtcache_update(ro, 1)) == NULL) {
310 dst = &u.dst4;
311 error = rtcache_setdst(ro, &u.dst);
312 if (error != 0)
313 goto bad;
314 }
315
316 bound = curlwp_bind();
317 bind_need_restore = true;
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 struct ifaddr *ifa;
323
324 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
325 if (ifa == NULL) {
326 IP_STATINC(IP_STAT_NOROUTE);
327 error = ENETUNREACH;
328 goto bad;
329 }
330 /* ia is already referenced by psref_ia */
331 ia = ifatoia(ifa);
332
333 ifp = ia->ia_ifp;
334 mtu = ifp->if_mtu;
335 ip->ip_ttl = 1;
336 isbroadcast = in_broadcast(dst->sin_addr, ifp);
337 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
338 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
339 imo != NULL && imo->imo_multicast_if_index != 0) {
340 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
341 if (ifp == NULL) {
342 IP_STATINC(IP_STAT_NOROUTE);
343 error = ENETUNREACH;
344 goto bad;
345 }
346 mtu = ifp->if_mtu;
347 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
348 if (ia == NULL) {
349 error = EADDRNOTAVAIL;
350 goto bad;
351 }
352 isbroadcast = 0;
353 } else {
354 if (rt == NULL)
355 rt = rtcache_init(ro);
356 if (rt == NULL) {
357 IP_STATINC(IP_STAT_NOROUTE);
358 error = EHOSTUNREACH;
359 goto bad;
360 }
361 /*
362 * XXX NOMPSAFE: depends on accessing rt->rt_ifa isn't racy.
363 * Revisit when working on rtentry MP-ification.
364 */
365 ifa_acquire(rt->rt_ifa, &psref_ia);
366 ia = ifatoia(rt->rt_ifa);
367 ifp = rt->rt_ifp;
368 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
369 mtu = ifp->if_mtu;
370 rt->rt_use++;
371 if (rt->rt_flags & RTF_GATEWAY)
372 dst = satosin(rt->rt_gateway);
373 if (rt->rt_flags & RTF_HOST)
374 isbroadcast = rt->rt_flags & RTF_BROADCAST;
375 else
376 isbroadcast = in_broadcast(dst->sin_addr, ifp);
377 }
378 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
379
380 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
381 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
382 bool inmgroup;
383
384 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
385 M_BCAST : M_MCAST;
386 /*
387 * See if the caller provided any multicast options
388 */
389 if (imo != NULL)
390 ip->ip_ttl = imo->imo_multicast_ttl;
391 else
392 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
393
394 /*
395 * if we don't know the outgoing ifp yet, we can't generate
396 * output
397 */
398 if (!ifp) {
399 IP_STATINC(IP_STAT_NOROUTE);
400 error = ENETUNREACH;
401 goto bad;
402 }
403
404 /*
405 * If the packet is multicast or broadcast, confirm that
406 * the outgoing interface can transmit it.
407 */
408 if (((m->m_flags & M_MCAST) &&
409 (ifp->if_flags & IFF_MULTICAST) == 0) ||
410 ((m->m_flags & M_BCAST) &&
411 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
412 IP_STATINC(IP_STAT_NOROUTE);
413 error = ENETUNREACH;
414 goto bad;
415 }
416 /*
417 * If source address not specified yet, use an address
418 * of outgoing interface.
419 */
420 if (in_nullhost(ip->ip_src)) {
421 struct in_ifaddr *xia;
422 struct ifaddr *xifa;
423 struct psref _psref;
424
425 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
426 if (!xia) {
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430 xifa = &xia->ia_ifa;
431 if (xifa->ifa_getifa != NULL) {
432 ia4_release(xia, &_psref);
433 /* FIXME NOMPSAFE */
434 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
435 if (xia == NULL) {
436 error = EADDRNOTAVAIL;
437 goto bad;
438 }
439 ia4_acquire(xia, &_psref);
440 }
441 ip->ip_src = xia->ia_addr.sin_addr;
442 ia4_release(xia, &_psref);
443 }
444
445 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
446 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
447 /*
448 * If we belong to the destination multicast group
449 * on the outgoing interface, and the caller did not
450 * forbid loopback, loop back a copy.
451 */
452 ip_mloopback(ifp, m, &u.dst4);
453 }
454 #ifdef MROUTING
455 else {
456 /*
457 * If we are acting as a multicast router, perform
458 * multicast forwarding as if the packet had just
459 * arrived on the interface to which we are about
460 * to send. The multicast forwarding function
461 * recursively calls this function, using the
462 * IP_FORWARDING flag to prevent infinite recursion.
463 *
464 * Multicasts that are looped back by ip_mloopback(),
465 * above, will be forwarded by the ip_input() routine,
466 * if necessary.
467 */
468 extern struct socket *ip_mrouter;
469
470 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
471 if (ip_mforward(m, ifp) != 0) {
472 m_freem(m);
473 goto done;
474 }
475 }
476 }
477 #endif
478 /*
479 * Multicasts with a time-to-live of zero may be looped-
480 * back, above, but must not be transmitted on a network.
481 * Also, multicasts addressed to the loopback interface
482 * are not sent -- the above call to ip_mloopback() will
483 * loop back a copy if this host actually belongs to the
484 * destination group on the loopback interface.
485 */
486 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
487 m_freem(m);
488 goto done;
489 }
490 goto sendit;
491 }
492
493 /*
494 * If source address not specified yet, use address
495 * of outgoing interface.
496 */
497 if (in_nullhost(ip->ip_src)) {
498 struct ifaddr *xifa;
499
500 xifa = &ia->ia_ifa;
501 if (xifa->ifa_getifa != NULL) {
502 ia4_release(ia, &psref_ia);
503 /* FIXME NOMPSAFE */
504 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
505 if (ia == NULL) {
506 error = EADDRNOTAVAIL;
507 goto bad;
508 }
509 ia4_acquire(ia, &psref_ia);
510 }
511 ip->ip_src = ia->ia_addr.sin_addr;
512 }
513
514 /*
515 * packets with Class-D address as source are not valid per
516 * RFC 1112
517 */
518 if (IN_MULTICAST(ip->ip_src.s_addr)) {
519 IP_STATINC(IP_STAT_ODROPPED);
520 error = EADDRNOTAVAIL;
521 goto bad;
522 }
523
524 /*
525 * Look for broadcast address and and verify user is allowed to
526 * send such a packet.
527 */
528 if (isbroadcast) {
529 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
530 error = EADDRNOTAVAIL;
531 goto bad;
532 }
533 if ((flags & IP_ALLOWBROADCAST) == 0) {
534 error = EACCES;
535 goto bad;
536 }
537 /* don't allow broadcast messages to be fragmented */
538 if (ntohs(ip->ip_len) > ifp->if_mtu) {
539 error = EMSGSIZE;
540 goto bad;
541 }
542 m->m_flags |= M_BCAST;
543 } else
544 m->m_flags &= ~M_BCAST;
545
546 sendit:
547 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
548 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
549 ip->ip_id = 0;
550 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
551 ip->ip_id = ip_newid(ia);
552 } else {
553
554 /*
555 * TSO capable interfaces (typically?) increment
556 * ip_id for each segment.
557 * "allocate" enough ids here to increase the chance
558 * for them to be unique.
559 *
560 * note that the following calculation is not
561 * needed to be precise. wasting some ip_id is fine.
562 */
563
564 unsigned int segsz = m->m_pkthdr.segsz;
565 unsigned int datasz = ntohs(ip->ip_len) - hlen;
566 unsigned int num = howmany(datasz, segsz);
567
568 ip->ip_id = ip_newid_range(ia, num);
569 }
570 }
571 if (ia != NULL) {
572 ia4_release(ia, &psref_ia);
573 ia = NULL;
574 }
575
576 /*
577 * If we're doing Path MTU Discovery, we need to set DF unless
578 * the route's MTU is locked.
579 */
580 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
581 ip->ip_off |= htons(IP_DF);
582 }
583
584 #ifdef IPSEC
585 if (ipsec_used) {
586 bool ipsec_done = false;
587
588 /* Perform IPsec processing, if any. */
589 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
590 &ipsec_done);
591 if (error || ipsec_done)
592 goto done;
593 }
594 #endif
595
596 /*
597 * Run through list of hooks for output packets.
598 */
599 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
600 if (error)
601 goto done;
602 if (m == NULL)
603 goto done;
604
605 ip = mtod(m, struct ip *);
606 hlen = ip->ip_hl << 2;
607
608 m->m_pkthdr.csum_data |= hlen << 16;
609
610 #if IFA_STATS
611 /*
612 * search for the source address structure to
613 * maintain output statistics.
614 */
615 KASSERT(ia == NULL);
616 ia = in_get_ia_psref(ip->ip_src, &psref_ia);
617 #endif
618
619 /* Maybe skip checksums on loopback interfaces. */
620 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
621 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
622 }
623 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
624 /*
625 * If small enough for mtu of path, or if using TCP segmentation
626 * offload, can just send directly.
627 */
628 if (ntohs(ip->ip_len) <= mtu ||
629 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
630 const struct sockaddr *sa;
631
632 #if IFA_STATS
633 if (ia)
634 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
635 #endif
636 /*
637 * Always initialize the sum to 0! Some HW assisted
638 * checksumming requires this.
639 */
640 ip->ip_sum = 0;
641
642 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
643 /*
644 * Perform any checksums that the hardware can't do
645 * for us.
646 *
647 * XXX Does any hardware require the {th,uh}_sum
648 * XXX fields to be 0?
649 */
650 if (sw_csum & M_CSUM_IPv4) {
651 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
652 ip->ip_sum = in_cksum(m, hlen);
653 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
654 }
655 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
656 if (IN_NEED_CHECKSUM(ifp,
657 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
658 in_delayed_cksum(m);
659 }
660 m->m_pkthdr.csum_flags &=
661 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
662 }
663 }
664
665 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
666 if (__predict_true(
667 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
668 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
669 error = ip_if_output(ifp, m, sa, rt);
670 } else {
671 error = ip_tso_output(ifp, m, sa, rt);
672 }
673 goto done;
674 }
675
676 /*
677 * We can't use HW checksumming if we're about to
678 * to fragment the packet.
679 *
680 * XXX Some hardware can do this.
681 */
682 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
683 if (IN_NEED_CHECKSUM(ifp,
684 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
685 in_delayed_cksum(m);
686 }
687 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
688 }
689
690 /*
691 * Too large for interface; fragment if possible.
692 * Must be able to put at least 8 bytes per fragment.
693 */
694 if (ntohs(ip->ip_off) & IP_DF) {
695 if (flags & IP_RETURNMTU) {
696 struct inpcb *inp;
697
698 KASSERT(so && solocked(so));
699 inp = sotoinpcb(so);
700 inp->inp_errormtu = mtu;
701 }
702 error = EMSGSIZE;
703 IP_STATINC(IP_STAT_CANTFRAG);
704 goto bad;
705 }
706
707 error = ip_fragment(m, ifp, mtu);
708 if (error) {
709 m = NULL;
710 goto bad;
711 }
712
713 for (; m; m = m0) {
714 m0 = m->m_nextpkt;
715 m->m_nextpkt = 0;
716 if (error) {
717 m_freem(m);
718 continue;
719 }
720 #if IFA_STATS
721 if (ia)
722 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
723 #endif
724 /*
725 * If we get there, the packet has not been handled by
726 * IPsec whereas it should have. Now that it has been
727 * fragmented, re-inject it in ip_output so that IPsec
728 * processing can occur.
729 */
730 if (natt_frag) {
731 error = ip_output(m, opt, ro,
732 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
733 imo, so);
734 } else {
735 KASSERT((m->m_pkthdr.csum_flags &
736 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
737 error = ip_if_output(ifp, m,
738 (m->m_flags & M_MCAST) ?
739 sintocsa(rdst) : sintocsa(dst), rt);
740 }
741 }
742 if (error == 0) {
743 IP_STATINC(IP_STAT_FRAGMENTED);
744 }
745 done:
746 ia4_release(ia, &psref_ia);
747 if (ro == &iproute) {
748 rtcache_free(&iproute);
749 }
750 #ifdef IPSEC
751 if (sp) {
752 KEY_FREESP(&sp);
753 }
754 #endif
755 if (mifp != NULL) {
756 if_put(mifp, &psref);
757 }
758 if (bind_need_restore)
759 curlwp_bindx(bound);
760 return error;
761 bad:
762 m_freem(m);
763 goto done;
764 }
765
766 int
767 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
768 {
769 struct ip *ip, *mhip;
770 struct mbuf *m0;
771 int len, hlen, off;
772 int mhlen, firstlen;
773 struct mbuf **mnext;
774 int sw_csum = m->m_pkthdr.csum_flags;
775 int fragments = 0;
776 int s;
777 int error = 0;
778
779 ip = mtod(m, struct ip *);
780 hlen = ip->ip_hl << 2;
781 if (ifp != NULL)
782 sw_csum &= ~ifp->if_csum_flags_tx;
783
784 len = (mtu - hlen) &~ 7;
785 if (len < 8) {
786 m_freem(m);
787 return (EMSGSIZE);
788 }
789
790 firstlen = len;
791 mnext = &m->m_nextpkt;
792
793 /*
794 * Loop through length of segment after first fragment,
795 * make new header and copy data of each part and link onto chain.
796 */
797 m0 = m;
798 mhlen = sizeof (struct ip);
799 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
800 MGETHDR(m, M_DONTWAIT, MT_HEADER);
801 if (m == 0) {
802 error = ENOBUFS;
803 IP_STATINC(IP_STAT_ODROPPED);
804 goto sendorfree;
805 }
806 MCLAIM(m, m0->m_owner);
807 *mnext = m;
808 mnext = &m->m_nextpkt;
809 m->m_data += max_linkhdr;
810 mhip = mtod(m, struct ip *);
811 *mhip = *ip;
812 /* we must inherit MCAST and BCAST flags */
813 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
814 if (hlen > sizeof (struct ip)) {
815 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
816 mhip->ip_hl = mhlen >> 2;
817 }
818 m->m_len = mhlen;
819 mhip->ip_off = ((off - hlen) >> 3) +
820 (ntohs(ip->ip_off) & ~IP_MF);
821 if (ip->ip_off & htons(IP_MF))
822 mhip->ip_off |= IP_MF;
823 if (off + len >= ntohs(ip->ip_len))
824 len = ntohs(ip->ip_len) - off;
825 else
826 mhip->ip_off |= IP_MF;
827 HTONS(mhip->ip_off);
828 mhip->ip_len = htons((u_int16_t)(len + mhlen));
829 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
830 if (m->m_next == 0) {
831 error = ENOBUFS; /* ??? */
832 IP_STATINC(IP_STAT_ODROPPED);
833 goto sendorfree;
834 }
835 m->m_pkthdr.len = mhlen + len;
836 m_reset_rcvif(m);
837 mhip->ip_sum = 0;
838 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
839 if (sw_csum & M_CSUM_IPv4) {
840 mhip->ip_sum = in_cksum(m, mhlen);
841 } else {
842 /*
843 * checksum is hw-offloaded or not necessary.
844 */
845 m->m_pkthdr.csum_flags |=
846 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
847 m->m_pkthdr.csum_data |= mhlen << 16;
848 KASSERT(!(ifp != NULL &&
849 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
850 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
851 }
852 IP_STATINC(IP_STAT_OFRAGMENTS);
853 fragments++;
854 }
855 /*
856 * Update first fragment by trimming what's been copied out
857 * and updating header, then send each fragment (in order).
858 */
859 m = m0;
860 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
861 m->m_pkthdr.len = hlen + firstlen;
862 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
863 ip->ip_off |= htons(IP_MF);
864 ip->ip_sum = 0;
865 if (sw_csum & M_CSUM_IPv4) {
866 ip->ip_sum = in_cksum(m, hlen);
867 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
868 } else {
869 /*
870 * checksum is hw-offloaded or not necessary.
871 */
872 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
873 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
874 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
875 sizeof(struct ip));
876 }
877 sendorfree:
878 /*
879 * If there is no room for all the fragments, don't queue
880 * any of them.
881 */
882 if (ifp != NULL) {
883 s = splnet();
884 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
885 error == 0) {
886 error = ENOBUFS;
887 IP_STATINC(IP_STAT_ODROPPED);
888 IFQ_INC_DROPS(&ifp->if_snd);
889 }
890 splx(s);
891 }
892 if (error) {
893 for (m = m0; m; m = m0) {
894 m0 = m->m_nextpkt;
895 m->m_nextpkt = NULL;
896 m_freem(m);
897 }
898 }
899 return (error);
900 }
901
902 /*
903 * Process a delayed payload checksum calculation.
904 */
905 void
906 in_delayed_cksum(struct mbuf *m)
907 {
908 struct ip *ip;
909 u_int16_t csum, offset;
910
911 ip = mtod(m, struct ip *);
912 offset = ip->ip_hl << 2;
913 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
914 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
915 csum = 0xffff;
916
917 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
918
919 if ((offset + sizeof(u_int16_t)) > m->m_len) {
920 /* This happen when ip options were inserted
921 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
922 m->m_len, offset, ip->ip_p);
923 */
924 m_copyback(m, offset, sizeof(csum), (void *) &csum);
925 } else
926 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
927 }
928
929 /*
930 * Determine the maximum length of the options to be inserted;
931 * we would far rather allocate too much space rather than too little.
932 */
933
934 u_int
935 ip_optlen(struct inpcb *inp)
936 {
937 struct mbuf *m = inp->inp_options;
938
939 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
940 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
941 }
942 return 0;
943 }
944
945 /*
946 * Insert IP options into preformed packet.
947 * Adjust IP destination as required for IP source routing,
948 * as indicated by a non-zero in_addr at the start of the options.
949 */
950 static struct mbuf *
951 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
952 {
953 struct ipoption *p = mtod(opt, struct ipoption *);
954 struct mbuf *n;
955 struct ip *ip = mtod(m, struct ip *);
956 unsigned optlen;
957
958 optlen = opt->m_len - sizeof(p->ipopt_dst);
959 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
960 return (m); /* XXX should fail */
961 if (!in_nullhost(p->ipopt_dst))
962 ip->ip_dst = p->ipopt_dst;
963 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
964 MGETHDR(n, M_DONTWAIT, MT_HEADER);
965 if (n == 0)
966 return (m);
967 MCLAIM(n, m->m_owner);
968 M_MOVE_PKTHDR(n, m);
969 m->m_len -= sizeof(struct ip);
970 m->m_data += sizeof(struct ip);
971 n->m_next = m;
972 m = n;
973 m->m_len = optlen + sizeof(struct ip);
974 m->m_data += max_linkhdr;
975 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
976 } else {
977 m->m_data -= optlen;
978 m->m_len += optlen;
979 memmove(mtod(m, void *), ip, sizeof(struct ip));
980 }
981 m->m_pkthdr.len += optlen;
982 ip = mtod(m, struct ip *);
983 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
984 *phlen = sizeof(struct ip) + optlen;
985 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
986 return (m);
987 }
988
989 /*
990 * Copy options from ip to jp,
991 * omitting those not copied during fragmentation.
992 */
993 int
994 ip_optcopy(struct ip *ip, struct ip *jp)
995 {
996 u_char *cp, *dp;
997 int opt, optlen, cnt;
998
999 cp = (u_char *)(ip + 1);
1000 dp = (u_char *)(jp + 1);
1001 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1002 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1003 opt = cp[0];
1004 if (opt == IPOPT_EOL)
1005 break;
1006 if (opt == IPOPT_NOP) {
1007 /* Preserve for IP mcast tunnel's LSRR alignment. */
1008 *dp++ = IPOPT_NOP;
1009 optlen = 1;
1010 continue;
1011 }
1012
1013 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1014 optlen = cp[IPOPT_OLEN];
1015 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1016
1017 /* Invalid lengths should have been caught by ip_dooptions. */
1018 if (optlen > cnt)
1019 optlen = cnt;
1020 if (IPOPT_COPIED(opt)) {
1021 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1022 dp += optlen;
1023 }
1024 }
1025 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1026 *dp++ = IPOPT_EOL;
1027 return (optlen);
1028 }
1029
1030 /*
1031 * IP socket option processing.
1032 */
1033 int
1034 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1035 {
1036 struct inpcb *inp = sotoinpcb(so);
1037 struct ip *ip = &inp->inp_ip;
1038 int inpflags = inp->inp_flags;
1039 int optval = 0, error = 0;
1040
1041 if (sopt->sopt_level != IPPROTO_IP) {
1042 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1043 return 0;
1044 return ENOPROTOOPT;
1045 }
1046
1047 switch (op) {
1048 case PRCO_SETOPT:
1049 switch (sopt->sopt_name) {
1050 case IP_OPTIONS:
1051 #ifdef notyet
1052 case IP_RETOPTS:
1053 #endif
1054 error = ip_pcbopts(inp, sopt);
1055 break;
1056
1057 case IP_TOS:
1058 case IP_TTL:
1059 case IP_MINTTL:
1060 case IP_PKTINFO:
1061 case IP_RECVOPTS:
1062 case IP_RECVRETOPTS:
1063 case IP_RECVDSTADDR:
1064 case IP_RECVIF:
1065 case IP_RECVPKTINFO:
1066 case IP_RECVTTL:
1067 error = sockopt_getint(sopt, &optval);
1068 if (error)
1069 break;
1070
1071 switch (sopt->sopt_name) {
1072 case IP_TOS:
1073 ip->ip_tos = optval;
1074 break;
1075
1076 case IP_TTL:
1077 ip->ip_ttl = optval;
1078 break;
1079
1080 case IP_MINTTL:
1081 if (optval > 0 && optval <= MAXTTL)
1082 inp->inp_ip_minttl = optval;
1083 else
1084 error = EINVAL;
1085 break;
1086 #define OPTSET(bit) \
1087 if (optval) \
1088 inpflags |= bit; \
1089 else \
1090 inpflags &= ~bit;
1091
1092 case IP_PKTINFO:
1093 OPTSET(INP_PKTINFO);
1094 break;
1095
1096 case IP_RECVOPTS:
1097 OPTSET(INP_RECVOPTS);
1098 break;
1099
1100 case IP_RECVPKTINFO:
1101 OPTSET(INP_RECVPKTINFO);
1102 break;
1103
1104 case IP_RECVRETOPTS:
1105 OPTSET(INP_RECVRETOPTS);
1106 break;
1107
1108 case IP_RECVDSTADDR:
1109 OPTSET(INP_RECVDSTADDR);
1110 break;
1111
1112 case IP_RECVIF:
1113 OPTSET(INP_RECVIF);
1114 break;
1115
1116 case IP_RECVTTL:
1117 OPTSET(INP_RECVTTL);
1118 break;
1119 }
1120 break;
1121 #undef OPTSET
1122
1123 case IP_MULTICAST_IF:
1124 case IP_MULTICAST_TTL:
1125 case IP_MULTICAST_LOOP:
1126 case IP_ADD_MEMBERSHIP:
1127 case IP_DROP_MEMBERSHIP:
1128 error = ip_setmoptions(&inp->inp_moptions, sopt);
1129 break;
1130
1131 case IP_PORTRANGE:
1132 error = sockopt_getint(sopt, &optval);
1133 if (error)
1134 break;
1135
1136 switch (optval) {
1137 case IP_PORTRANGE_DEFAULT:
1138 case IP_PORTRANGE_HIGH:
1139 inpflags &= ~(INP_LOWPORT);
1140 break;
1141
1142 case IP_PORTRANGE_LOW:
1143 inpflags |= INP_LOWPORT;
1144 break;
1145
1146 default:
1147 error = EINVAL;
1148 break;
1149 }
1150 break;
1151
1152 case IP_PORTALGO:
1153 error = sockopt_getint(sopt, &optval);
1154 if (error)
1155 break;
1156
1157 error = portalgo_algo_index_select(
1158 (struct inpcb_hdr *)inp, optval);
1159 break;
1160
1161 #if defined(IPSEC)
1162 case IP_IPSEC_POLICY:
1163 if (ipsec_enabled) {
1164 error = ipsec4_set_policy(inp, sopt->sopt_name,
1165 sopt->sopt_data, sopt->sopt_size,
1166 curlwp->l_cred);
1167 break;
1168 }
1169 /*FALLTHROUGH*/
1170 #endif /* IPSEC */
1171
1172 default:
1173 error = ENOPROTOOPT;
1174 break;
1175 }
1176 break;
1177
1178 case PRCO_GETOPT:
1179 switch (sopt->sopt_name) {
1180 case IP_OPTIONS:
1181 case IP_RETOPTS: {
1182 struct mbuf *mopts = inp->inp_options;
1183
1184 if (mopts) {
1185 struct mbuf *m;
1186
1187 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1188 if (m == NULL) {
1189 error = ENOBUFS;
1190 break;
1191 }
1192 error = sockopt_setmbuf(sopt, m);
1193 }
1194 break;
1195 }
1196 case IP_PKTINFO:
1197 case IP_TOS:
1198 case IP_TTL:
1199 case IP_MINTTL:
1200 case IP_RECVOPTS:
1201 case IP_RECVRETOPTS:
1202 case IP_RECVDSTADDR:
1203 case IP_RECVIF:
1204 case IP_RECVPKTINFO:
1205 case IP_RECVTTL:
1206 case IP_ERRORMTU:
1207 switch (sopt->sopt_name) {
1208 case IP_TOS:
1209 optval = ip->ip_tos;
1210 break;
1211
1212 case IP_TTL:
1213 optval = ip->ip_ttl;
1214 break;
1215
1216 case IP_MINTTL:
1217 optval = inp->inp_ip_minttl;
1218 break;
1219
1220 case IP_ERRORMTU:
1221 optval = inp->inp_errormtu;
1222 break;
1223
1224 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1225
1226 case IP_PKTINFO:
1227 optval = OPTBIT(INP_PKTINFO);
1228 break;
1229
1230 case IP_RECVOPTS:
1231 optval = OPTBIT(INP_RECVOPTS);
1232 break;
1233
1234 case IP_RECVPKTINFO:
1235 optval = OPTBIT(INP_RECVPKTINFO);
1236 break;
1237
1238 case IP_RECVRETOPTS:
1239 optval = OPTBIT(INP_RECVRETOPTS);
1240 break;
1241
1242 case IP_RECVDSTADDR:
1243 optval = OPTBIT(INP_RECVDSTADDR);
1244 break;
1245
1246 case IP_RECVIF:
1247 optval = OPTBIT(INP_RECVIF);
1248 break;
1249
1250 case IP_RECVTTL:
1251 optval = OPTBIT(INP_RECVTTL);
1252 break;
1253 }
1254 error = sockopt_setint(sopt, optval);
1255 break;
1256
1257 #if 0 /* defined(IPSEC) */
1258 case IP_IPSEC_POLICY:
1259 {
1260 struct mbuf *m = NULL;
1261
1262 /* XXX this will return EINVAL as sopt is empty */
1263 error = ipsec4_get_policy(inp, sopt->sopt_data,
1264 sopt->sopt_size, &m);
1265 if (error == 0)
1266 error = sockopt_setmbuf(sopt, m);
1267 break;
1268 }
1269 #endif /*IPSEC*/
1270
1271 case IP_MULTICAST_IF:
1272 case IP_MULTICAST_TTL:
1273 case IP_MULTICAST_LOOP:
1274 case IP_ADD_MEMBERSHIP:
1275 case IP_DROP_MEMBERSHIP:
1276 error = ip_getmoptions(inp->inp_moptions, sopt);
1277 break;
1278
1279 case IP_PORTRANGE:
1280 if (inpflags & INP_LOWPORT)
1281 optval = IP_PORTRANGE_LOW;
1282 else
1283 optval = IP_PORTRANGE_DEFAULT;
1284 error = sockopt_setint(sopt, optval);
1285 break;
1286
1287 case IP_PORTALGO:
1288 optval = inp->inp_portalgo;
1289 error = sockopt_setint(sopt, optval);
1290 break;
1291
1292 default:
1293 error = ENOPROTOOPT;
1294 break;
1295 }
1296 break;
1297 }
1298
1299 if (!error) {
1300 inp->inp_flags = inpflags;
1301 }
1302 return error;
1303 }
1304
1305 /*
1306 * Set up IP options in pcb for insertion in output packets.
1307 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1308 * with destination address if source routed.
1309 */
1310 static int
1311 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1312 {
1313 struct mbuf *m;
1314 const u_char *cp;
1315 u_char *dp;
1316 int cnt;
1317
1318 /* Turn off any old options. */
1319 if (inp->inp_options) {
1320 m_free(inp->inp_options);
1321 }
1322 inp->inp_options = NULL;
1323 if ((cnt = sopt->sopt_size) == 0) {
1324 /* Only turning off any previous options. */
1325 return 0;
1326 }
1327 cp = sopt->sopt_data;
1328
1329 #ifndef __vax__
1330 if (cnt % sizeof(int32_t))
1331 return (EINVAL);
1332 #endif
1333
1334 m = m_get(M_DONTWAIT, MT_SOOPTS);
1335 if (m == NULL)
1336 return (ENOBUFS);
1337
1338 dp = mtod(m, u_char *);
1339 memset(dp, 0, sizeof(struct in_addr));
1340 dp += sizeof(struct in_addr);
1341 m->m_len = sizeof(struct in_addr);
1342
1343 /*
1344 * IP option list according to RFC791. Each option is of the form
1345 *
1346 * [optval] [olen] [(olen - 2) data bytes]
1347 *
1348 * We validate the list and copy options to an mbuf for prepending
1349 * to data packets. The IP first-hop destination address will be
1350 * stored before actual options and is zero if unset.
1351 */
1352 while (cnt > 0) {
1353 uint8_t optval, olen, offset;
1354
1355 optval = cp[IPOPT_OPTVAL];
1356
1357 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1358 olen = 1;
1359 } else {
1360 if (cnt < IPOPT_OLEN + 1)
1361 goto bad;
1362
1363 olen = cp[IPOPT_OLEN];
1364 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1365 goto bad;
1366 }
1367
1368 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1369 /*
1370 * user process specifies route as:
1371 * ->A->B->C->D
1372 * D must be our final destination (but we can't
1373 * check that since we may not have connected yet).
1374 * A is first hop destination, which doesn't appear in
1375 * actual IP option, but is stored before the options.
1376 */
1377 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1378 goto bad;
1379
1380 offset = cp[IPOPT_OFFSET];
1381 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1382 sizeof(struct in_addr));
1383
1384 cp += sizeof(struct in_addr);
1385 cnt -= sizeof(struct in_addr);
1386 olen -= sizeof(struct in_addr);
1387
1388 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1389 goto bad;
1390
1391 memcpy(dp, cp, olen);
1392 dp[IPOPT_OPTVAL] = optval;
1393 dp[IPOPT_OLEN] = olen;
1394 dp[IPOPT_OFFSET] = offset;
1395 break;
1396 } else {
1397 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1398 goto bad;
1399
1400 memcpy(dp, cp, olen);
1401 break;
1402 }
1403
1404 dp += olen;
1405 m->m_len += olen;
1406
1407 if (optval == IPOPT_EOL)
1408 break;
1409
1410 cp += olen;
1411 cnt -= olen;
1412 }
1413
1414 inp->inp_options = m;
1415 return 0;
1416 bad:
1417 (void)m_free(m);
1418 return EINVAL;
1419 }
1420
1421 /*
1422 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1423 */
1424 static struct ifnet *
1425 ip_multicast_if(struct in_addr *a, int *ifindexp)
1426 {
1427 int ifindex;
1428 struct ifnet *ifp = NULL;
1429 struct in_ifaddr *ia;
1430
1431 if (ifindexp)
1432 *ifindexp = 0;
1433 if (ntohl(a->s_addr) >> 24 == 0) {
1434 ifindex = ntohl(a->s_addr) & 0xffffff;
1435 ifp = if_byindex(ifindex);
1436 if (!ifp)
1437 return NULL;
1438 if (ifindexp)
1439 *ifindexp = ifindex;
1440 } else {
1441 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1442 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1443 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1444 ifp = ia->ia_ifp;
1445 break;
1446 }
1447 }
1448 }
1449 return ifp;
1450 }
1451
1452 static int
1453 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1454 {
1455 u_int tval;
1456 u_char cval;
1457 int error;
1458
1459 if (sopt == NULL)
1460 return EINVAL;
1461
1462 switch (sopt->sopt_size) {
1463 case sizeof(u_char):
1464 error = sockopt_get(sopt, &cval, sizeof(u_char));
1465 tval = cval;
1466 break;
1467
1468 case sizeof(u_int):
1469 error = sockopt_get(sopt, &tval, sizeof(u_int));
1470 break;
1471
1472 default:
1473 error = EINVAL;
1474 }
1475
1476 if (error)
1477 return error;
1478
1479 if (tval > maxval)
1480 return EINVAL;
1481
1482 *val = tval;
1483 return 0;
1484 }
1485
1486 static int
1487 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1488 struct in_addr *ia, bool add)
1489 {
1490 int error;
1491 struct ip_mreq mreq;
1492
1493 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1494 if (error)
1495 return error;
1496
1497 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1498 return EINVAL;
1499
1500 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1501
1502 if (in_nullhost(mreq.imr_interface)) {
1503 union {
1504 struct sockaddr dst;
1505 struct sockaddr_in dst4;
1506 } u;
1507 struct route ro;
1508
1509 if (!add) {
1510 *ifp = NULL;
1511 return 0;
1512 }
1513 /*
1514 * If no interface address was provided, use the interface of
1515 * the route to the given multicast address.
1516 */
1517 struct rtentry *rt;
1518 memset(&ro, 0, sizeof(ro));
1519
1520 sockaddr_in_init(&u.dst4, ia, 0);
1521 error = rtcache_setdst(&ro, &u.dst);
1522 if (error != 0)
1523 return error;
1524 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1525 rtcache_free(&ro);
1526 } else {
1527 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1528 if (!add && *ifp == NULL)
1529 return EADDRNOTAVAIL;
1530 }
1531 return 0;
1532 }
1533
1534 /*
1535 * Add a multicast group membership.
1536 * Group must be a valid IP multicast address.
1537 */
1538 static int
1539 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1540 {
1541 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1542 struct in_addr ia;
1543 int i, error;
1544
1545 if (sopt->sopt_size == sizeof(struct ip_mreq))
1546 error = ip_get_membership(sopt, &ifp, &ia, true);
1547 else
1548 #ifdef INET6
1549 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1550 #else
1551 return EINVAL;
1552 #endif
1553
1554 if (error)
1555 return error;
1556
1557 /*
1558 * See if we found an interface, and confirm that it
1559 * supports multicast.
1560 */
1561 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1562 return EADDRNOTAVAIL;
1563
1564 /*
1565 * See if the membership already exists or if all the
1566 * membership slots are full.
1567 */
1568 for (i = 0; i < imo->imo_num_memberships; ++i) {
1569 if (imo->imo_membership[i]->inm_ifp == ifp &&
1570 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1571 break;
1572 }
1573 if (i < imo->imo_num_memberships)
1574 return EADDRINUSE;
1575
1576 if (i == IP_MAX_MEMBERSHIPS)
1577 return ETOOMANYREFS;
1578
1579 /*
1580 * Everything looks good; add a new record to the multicast
1581 * address list for the given interface.
1582 */
1583 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1584 return ENOBUFS;
1585
1586 ++imo->imo_num_memberships;
1587 return 0;
1588 }
1589
1590 /*
1591 * Drop a multicast group membership.
1592 * Group must be a valid IP multicast address.
1593 */
1594 static int
1595 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1596 {
1597 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1598 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1599 int i, error;
1600
1601 if (sopt->sopt_size == sizeof(struct ip_mreq))
1602 error = ip_get_membership(sopt, &ifp, &ia, false);
1603 else
1604 #ifdef INET6
1605 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1606 #else
1607 return EINVAL;
1608 #endif
1609
1610 if (error)
1611 return error;
1612
1613 /*
1614 * Find the membership in the membership array.
1615 */
1616 for (i = 0; i < imo->imo_num_memberships; ++i) {
1617 if ((ifp == NULL ||
1618 imo->imo_membership[i]->inm_ifp == ifp) &&
1619 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1620 break;
1621 }
1622 if (i == imo->imo_num_memberships)
1623 return EADDRNOTAVAIL;
1624
1625 /*
1626 * Give up the multicast address record to which the
1627 * membership points.
1628 */
1629 in_delmulti(imo->imo_membership[i]);
1630
1631 /*
1632 * Remove the gap in the membership array.
1633 */
1634 for (++i; i < imo->imo_num_memberships; ++i)
1635 imo->imo_membership[i-1] = imo->imo_membership[i];
1636 --imo->imo_num_memberships;
1637 return 0;
1638 }
1639
1640 /*
1641 * Set the IP multicast options in response to user setsockopt().
1642 */
1643 int
1644 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1645 {
1646 struct ip_moptions *imo = *pimo;
1647 struct in_addr addr;
1648 struct ifnet *ifp;
1649 int ifindex, error = 0;
1650
1651 if (!imo) {
1652 /*
1653 * No multicast option buffer attached to the pcb;
1654 * allocate one and initialize to default values.
1655 */
1656 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1657 if (imo == NULL)
1658 return ENOBUFS;
1659
1660 imo->imo_multicast_if_index = 0;
1661 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1662 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1663 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1664 imo->imo_num_memberships = 0;
1665 *pimo = imo;
1666 }
1667
1668 switch (sopt->sopt_name) {
1669 case IP_MULTICAST_IF:
1670 /*
1671 * Select the interface for outgoing multicast packets.
1672 */
1673 error = sockopt_get(sopt, &addr, sizeof(addr));
1674 if (error)
1675 break;
1676
1677 /*
1678 * INADDR_ANY is used to remove a previous selection.
1679 * When no interface is selected, a default one is
1680 * chosen every time a multicast packet is sent.
1681 */
1682 if (in_nullhost(addr)) {
1683 imo->imo_multicast_if_index = 0;
1684 break;
1685 }
1686 /*
1687 * The selected interface is identified by its local
1688 * IP address. Find the interface and confirm that
1689 * it supports multicasting.
1690 */
1691 ifp = ip_multicast_if(&addr, &ifindex);
1692 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1693 error = EADDRNOTAVAIL;
1694 break;
1695 }
1696 imo->imo_multicast_if_index = ifp->if_index;
1697 if (ifindex)
1698 imo->imo_multicast_addr = addr;
1699 else
1700 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1701 break;
1702
1703 case IP_MULTICAST_TTL:
1704 /*
1705 * Set the IP time-to-live for outgoing multicast packets.
1706 */
1707 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1708 break;
1709
1710 case IP_MULTICAST_LOOP:
1711 /*
1712 * Set the loopback flag for outgoing multicast packets.
1713 * Must be zero or one.
1714 */
1715 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1716 break;
1717
1718 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1719 error = ip_add_membership(imo, sopt);
1720 break;
1721
1722 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1723 error = ip_drop_membership(imo, sopt);
1724 break;
1725
1726 default:
1727 error = EOPNOTSUPP;
1728 break;
1729 }
1730
1731 /*
1732 * If all options have default values, no need to keep the mbuf.
1733 */
1734 if (imo->imo_multicast_if_index == 0 &&
1735 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1736 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1737 imo->imo_num_memberships == 0) {
1738 kmem_free(imo, sizeof(*imo));
1739 *pimo = NULL;
1740 }
1741
1742 return error;
1743 }
1744
1745 /*
1746 * Return the IP multicast options in response to user getsockopt().
1747 */
1748 int
1749 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1750 {
1751 struct in_addr addr;
1752 uint8_t optval;
1753 int error = 0;
1754
1755 switch (sopt->sopt_name) {
1756 case IP_MULTICAST_IF:
1757 if (imo == NULL || imo->imo_multicast_if_index == 0)
1758 addr = zeroin_addr;
1759 else if (imo->imo_multicast_addr.s_addr) {
1760 /* return the value user has set */
1761 addr = imo->imo_multicast_addr;
1762 } else {
1763 struct ifnet *ifp;
1764 struct in_ifaddr *ia = NULL;
1765 int s = pserialize_read_enter();
1766
1767 ifp = if_byindex(imo->imo_multicast_if_index);
1768 if (ifp != NULL) {
1769 ia = in_get_ia_from_ifp(ifp);
1770 }
1771 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1772 pserialize_read_exit(s);
1773 }
1774 error = sockopt_set(sopt, &addr, sizeof(addr));
1775 break;
1776
1777 case IP_MULTICAST_TTL:
1778 optval = imo ? imo->imo_multicast_ttl
1779 : IP_DEFAULT_MULTICAST_TTL;
1780
1781 error = sockopt_set(sopt, &optval, sizeof(optval));
1782 break;
1783
1784 case IP_MULTICAST_LOOP:
1785 optval = imo ? imo->imo_multicast_loop
1786 : IP_DEFAULT_MULTICAST_LOOP;
1787
1788 error = sockopt_set(sopt, &optval, sizeof(optval));
1789 break;
1790
1791 default:
1792 error = EOPNOTSUPP;
1793 }
1794
1795 return error;
1796 }
1797
1798 /*
1799 * Discard the IP multicast options.
1800 */
1801 void
1802 ip_freemoptions(struct ip_moptions *imo)
1803 {
1804 int i;
1805
1806 if (imo != NULL) {
1807 for (i = 0; i < imo->imo_num_memberships; ++i)
1808 in_delmulti(imo->imo_membership[i]);
1809 kmem_free(imo, sizeof(*imo));
1810 }
1811 }
1812
1813 /*
1814 * Routine called from ip_output() to loop back a copy of an IP multicast
1815 * packet to the input queue of a specified interface. Note that this
1816 * calls the output routine of the loopback "driver", but with an interface
1817 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1818 */
1819 static void
1820 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1821 {
1822 struct ip *ip;
1823 struct mbuf *copym;
1824
1825 copym = m_copypacket(m, M_DONTWAIT);
1826 if (copym != NULL &&
1827 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1828 copym = m_pullup(copym, sizeof(struct ip));
1829 if (copym == NULL)
1830 return;
1831 /*
1832 * We don't bother to fragment if the IP length is greater
1833 * than the interface's MTU. Can this possibly matter?
1834 */
1835 ip = mtod(copym, struct ip *);
1836
1837 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1838 in_delayed_cksum(copym);
1839 copym->m_pkthdr.csum_flags &=
1840 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1841 }
1842
1843 ip->ip_sum = 0;
1844 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1845 #ifndef NET_MPSAFE
1846 KERNEL_LOCK(1, NULL);
1847 #endif
1848 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1849 #ifndef NET_MPSAFE
1850 KERNEL_UNLOCK_ONE(NULL);
1851 #endif
1852 }
1853