ip_output.c revision 1.267 1 /* $NetBSD: ip_output.c,v 1.267 2017/01/11 13:08:29 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.267 2017/01/11 13:08:29 ozaki-r Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130
131 #ifdef INET6
132 #include <netinet6/ip6_var.h>
133 #endif
134
135 #ifdef MROUTING
136 #include <netinet/ip_mroute.h>
137 #endif
138
139 #ifdef IPSEC
140 #include <netipsec/ipsec.h>
141 #include <netipsec/key.h>
142 #endif
143
144 #ifdef MPLS
145 #include <netmpls/mpls.h>
146 #include <netmpls/mpls_var.h>
147 #endif
148
149 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
150 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
151 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
152 static void ip_mloopback(struct ifnet *, struct mbuf *,
153 const struct sockaddr_in *);
154 static int ip_ifaddrvalid(const struct in_ifaddr *);
155
156 extern pfil_head_t *inet_pfil_hook; /* XXX */
157
158 int ip_do_loopback_cksum = 0;
159
160 static int
161 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
162 const struct rtentry *rt)
163 {
164 int error = 0;
165 #ifdef MPLS
166 union mpls_shim msh;
167
168 if (rt == NULL || rt_gettag(rt) == NULL ||
169 rt_gettag(rt)->sa_family != AF_MPLS ||
170 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
171 ifp->if_type != IFT_ETHER)
172 return 0;
173
174 msh.s_addr = MPLS_GETSADDR(rt);
175 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
176 struct m_tag *mtag;
177 /*
178 * XXX tentative solution to tell ether_output
179 * it's MPLS. Need some more efficient solution.
180 */
181 mtag = m_tag_get(PACKET_TAG_MPLS,
182 sizeof(int) /* dummy */,
183 M_NOWAIT);
184 if (mtag == NULL)
185 return ENOMEM;
186 m_tag_prepend(m, mtag);
187 }
188 #endif
189 return error;
190 }
191
192 /*
193 * Send an IP packet to a host.
194 */
195 int
196 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
197 const struct sockaddr * const dst, const struct rtentry *rt)
198 {
199 int error = 0;
200
201 if (rt != NULL) {
202 error = rt_check_reject_route(rt, ifp);
203 if (error != 0) {
204 m_freem(m);
205 return error;
206 }
207 }
208
209 error = ip_mark_mpls(ifp, m, rt);
210 if (error != 0) {
211 m_freem(m);
212 return error;
213 }
214
215 error = if_output_lock(ifp, ifp, m, dst, rt);
216
217 return error;
218 }
219
220 /*
221 * IP output. The packet in mbuf chain m contains a skeletal IP
222 * header (with len, off, ttl, proto, tos, src, dst).
223 * The mbuf chain containing the packet will be freed.
224 * The mbuf opt, if present, will not be freed.
225 */
226 int
227 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
228 struct ip_moptions *imo, struct socket *so)
229 {
230 struct rtentry *rt;
231 struct ip *ip;
232 struct ifnet *ifp, *mifp = NULL;
233 struct mbuf *m = m0;
234 int hlen = sizeof (struct ip);
235 int len, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia = NULL;
239 int isbroadcast;
240 int sw_csum;
241 u_long mtu;
242 #ifdef IPSEC
243 struct secpolicy *sp = NULL;
244 #endif
245 bool natt_frag = false;
246 bool rtmtu_nolock;
247 union {
248 struct sockaddr dst;
249 struct sockaddr_in dst4;
250 } u;
251 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
252 * to the nexthop
253 */
254 struct psref psref, psref_ia;
255 int bound;
256 bool bind_need_restore = false;
257
258 len = 0;
259
260 MCLAIM(m, &ip_tx_mowner);
261
262 KASSERT((m->m_flags & M_PKTHDR) != 0);
263 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
264 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
265 (M_CSUM_TCPv4|M_CSUM_UDPv4));
266
267 if (opt) {
268 m = ip_insertoptions(m, opt, &len);
269 if (len >= sizeof(struct ip))
270 hlen = len;
271 }
272 ip = mtod(m, struct ip *);
273
274 /*
275 * Fill in IP header.
276 */
277 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
278 ip->ip_v = IPVERSION;
279 ip->ip_off = htons(0);
280 /* ip->ip_id filled in after we find out source ia */
281 ip->ip_hl = hlen >> 2;
282 IP_STATINC(IP_STAT_LOCALOUT);
283 } else {
284 hlen = ip->ip_hl << 2;
285 }
286
287 /*
288 * Route packet.
289 */
290 if (ro == NULL) {
291 memset(&iproute, 0, sizeof(iproute));
292 ro = &iproute;
293 }
294 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
295 dst = satocsin(rtcache_getdst(ro));
296
297 /*
298 * If there is a cached route, check that it is to the same
299 * destination and is still up. If not, free it and try again.
300 * The address family should also be checked in case of sharing
301 * the cache with IPv6.
302 */
303 if (dst && (dst->sin_family != AF_INET ||
304 !in_hosteq(dst->sin_addr, ip->ip_dst)))
305 rtcache_free(ro);
306
307 if ((rt = rtcache_validate(ro)) == NULL &&
308 (rt = rtcache_update(ro, 1)) == NULL) {
309 dst = &u.dst4;
310 error = rtcache_setdst(ro, &u.dst);
311 if (error != 0)
312 goto bad;
313 }
314
315 bound = curlwp_bind();
316 bind_need_restore = true;
317 /*
318 * If routing to interface only, short circuit routing lookup.
319 */
320 if (flags & IP_ROUTETOIF) {
321 struct ifaddr *ifa;
322
323 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
324 if (ifa == NULL) {
325 IP_STATINC(IP_STAT_NOROUTE);
326 error = ENETUNREACH;
327 goto bad;
328 }
329 /* ia is already referenced by psref_ia */
330 ia = ifatoia(ifa);
331
332 ifp = ia->ia_ifp;
333 mtu = ifp->if_mtu;
334 ip->ip_ttl = 1;
335 isbroadcast = in_broadcast(dst->sin_addr, ifp);
336 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
337 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 isbroadcast = 0;
352 } else {
353 if (rt == NULL)
354 rt = rtcache_init(ro);
355 if (rt == NULL) {
356 IP_STATINC(IP_STAT_NOROUTE);
357 error = EHOSTUNREACH;
358 goto bad;
359 }
360 if (ifa_is_destroying(rt->rt_ifa)) {
361 rtcache_unref(rt, ro);
362 rt = NULL;
363 IP_STATINC(IP_STAT_NOROUTE);
364 error = EHOSTUNREACH;
365 goto bad;
366 }
367 ifa_acquire(rt->rt_ifa, &psref_ia);
368 ia = ifatoia(rt->rt_ifa);
369 ifp = rt->rt_ifp;
370 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
371 mtu = ifp->if_mtu;
372 rt->rt_use++;
373 if (rt->rt_flags & RTF_GATEWAY)
374 dst = satosin(rt->rt_gateway);
375 if (rt->rt_flags & RTF_HOST)
376 isbroadcast = rt->rt_flags & RTF_BROADCAST;
377 else
378 isbroadcast = in_broadcast(dst->sin_addr, ifp);
379 }
380 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
381
382 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
383 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
384 bool inmgroup;
385
386 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
387 M_BCAST : M_MCAST;
388 /*
389 * See if the caller provided any multicast options
390 */
391 if (imo != NULL)
392 ip->ip_ttl = imo->imo_multicast_ttl;
393 else
394 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
395
396 /*
397 * if we don't know the outgoing ifp yet, we can't generate
398 * output
399 */
400 if (!ifp) {
401 IP_STATINC(IP_STAT_NOROUTE);
402 error = ENETUNREACH;
403 goto bad;
404 }
405
406 /*
407 * If the packet is multicast or broadcast, confirm that
408 * the outgoing interface can transmit it.
409 */
410 if (((m->m_flags & M_MCAST) &&
411 (ifp->if_flags & IFF_MULTICAST) == 0) ||
412 ((m->m_flags & M_BCAST) &&
413 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
414 IP_STATINC(IP_STAT_NOROUTE);
415 error = ENETUNREACH;
416 goto bad;
417 }
418 /*
419 * If source address not specified yet, use an address
420 * of outgoing interface.
421 */
422 if (in_nullhost(ip->ip_src)) {
423 struct in_ifaddr *xia;
424 struct ifaddr *xifa;
425 struct psref _psref;
426
427 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
428 if (!xia) {
429 error = EADDRNOTAVAIL;
430 goto bad;
431 }
432 xifa = &xia->ia_ifa;
433 if (xifa->ifa_getifa != NULL) {
434 ia4_release(xia, &_psref);
435 /* FIXME NOMPSAFE */
436 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
437 if (xia == NULL) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 ia4_acquire(xia, &_psref);
442 }
443 ip->ip_src = xia->ia_addr.sin_addr;
444 ia4_release(xia, &_psref);
445 }
446
447 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
448 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
449 /*
450 * If we belong to the destination multicast group
451 * on the outgoing interface, and the caller did not
452 * forbid loopback, loop back a copy.
453 */
454 ip_mloopback(ifp, m, &u.dst4);
455 }
456 #ifdef MROUTING
457 else {
458 /*
459 * If we are acting as a multicast router, perform
460 * multicast forwarding as if the packet had just
461 * arrived on the interface to which we are about
462 * to send. The multicast forwarding function
463 * recursively calls this function, using the
464 * IP_FORWARDING flag to prevent infinite recursion.
465 *
466 * Multicasts that are looped back by ip_mloopback(),
467 * above, will be forwarded by the ip_input() routine,
468 * if necessary.
469 */
470 extern struct socket *ip_mrouter;
471
472 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
473 if (ip_mforward(m, ifp) != 0) {
474 m_freem(m);
475 goto done;
476 }
477 }
478 }
479 #endif
480 /*
481 * Multicasts with a time-to-live of zero may be looped-
482 * back, above, but must not be transmitted on a network.
483 * Also, multicasts addressed to the loopback interface
484 * are not sent -- the above call to ip_mloopback() will
485 * loop back a copy if this host actually belongs to the
486 * destination group on the loopback interface.
487 */
488 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
489 m_freem(m);
490 goto done;
491 }
492 goto sendit;
493 }
494
495 /*
496 * If source address not specified yet, use address
497 * of outgoing interface.
498 */
499 if (in_nullhost(ip->ip_src)) {
500 struct ifaddr *xifa;
501
502 xifa = &ia->ia_ifa;
503 if (xifa->ifa_getifa != NULL) {
504 ia4_release(ia, &psref_ia);
505 /* FIXME NOMPSAFE */
506 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
507 if (ia == NULL) {
508 error = EADDRNOTAVAIL;
509 goto bad;
510 }
511 ia4_acquire(ia, &psref_ia);
512 }
513 ip->ip_src = ia->ia_addr.sin_addr;
514 }
515
516 /*
517 * packets with Class-D address as source are not valid per
518 * RFC 1112
519 */
520 if (IN_MULTICAST(ip->ip_src.s_addr)) {
521 IP_STATINC(IP_STAT_ODROPPED);
522 error = EADDRNOTAVAIL;
523 goto bad;
524 }
525
526 /*
527 * Look for broadcast address and and verify user is allowed to
528 * send such a packet.
529 */
530 if (isbroadcast) {
531 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 if ((flags & IP_ALLOWBROADCAST) == 0) {
536 error = EACCES;
537 goto bad;
538 }
539 /* don't allow broadcast messages to be fragmented */
540 if (ntohs(ip->ip_len) > ifp->if_mtu) {
541 error = EMSGSIZE;
542 goto bad;
543 }
544 m->m_flags |= M_BCAST;
545 } else
546 m->m_flags &= ~M_BCAST;
547
548 sendit:
549 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
550 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
551 ip->ip_id = 0;
552 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
553 ip->ip_id = ip_newid(ia);
554 } else {
555
556 /*
557 * TSO capable interfaces (typically?) increment
558 * ip_id for each segment.
559 * "allocate" enough ids here to increase the chance
560 * for them to be unique.
561 *
562 * note that the following calculation is not
563 * needed to be precise. wasting some ip_id is fine.
564 */
565
566 unsigned int segsz = m->m_pkthdr.segsz;
567 unsigned int datasz = ntohs(ip->ip_len) - hlen;
568 unsigned int num = howmany(datasz, segsz);
569
570 ip->ip_id = ip_newid_range(ia, num);
571 }
572 }
573 if (ia != NULL) {
574 ia4_release(ia, &psref_ia);
575 ia = NULL;
576 }
577
578 /*
579 * If we're doing Path MTU Discovery, we need to set DF unless
580 * the route's MTU is locked.
581 */
582 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
583 ip->ip_off |= htons(IP_DF);
584 }
585
586 #ifdef IPSEC
587 if (ipsec_used) {
588 bool ipsec_done = false;
589
590 /* Perform IPsec processing, if any. */
591 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
592 &ipsec_done);
593 if (error || ipsec_done)
594 goto done;
595 }
596 #endif
597
598 /*
599 * Run through list of hooks for output packets.
600 */
601 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
602 if (error)
603 goto done;
604 if (m == NULL)
605 goto done;
606
607 ip = mtod(m, struct ip *);
608 hlen = ip->ip_hl << 2;
609
610 m->m_pkthdr.csum_data |= hlen << 16;
611
612 /*
613 * search for the source address structure to
614 * maintain output statistics.
615 */
616 KASSERT(ia == NULL);
617 ia = in_get_ia_psref(ip->ip_src, &psref_ia);
618
619 /* Ensure we only send from a valid address. */
620 if ((ia != NULL || (flags & IP_FORWARDING) == 0) &&
621 (error = ip_ifaddrvalid(ia)) != 0)
622 {
623 arplog(LOG_ERR,
624 "refusing to send from invalid address %s (pid %d)\n",
625 in_fmtaddr(ip->ip_src), curproc->p_pid);
626 IP_STATINC(IP_STAT_ODROPPED);
627 if (error == 1)
628 /*
629 * Address exists, but is tentative or detached.
630 * We can't send from it because it's invalid,
631 * so we drop the packet.
632 */
633 error = 0;
634 else
635 error = EADDRNOTAVAIL;
636 goto bad;
637 }
638
639 /* Maybe skip checksums on loopback interfaces. */
640 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
641 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
642 }
643 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
644 /*
645 * If small enough for mtu of path, or if using TCP segmentation
646 * offload, can just send directly.
647 */
648 if (ntohs(ip->ip_len) <= mtu ||
649 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
650 const struct sockaddr *sa;
651
652 #if IFA_STATS
653 if (ia)
654 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
655 #endif
656 /*
657 * Always initialize the sum to 0! Some HW assisted
658 * checksumming requires this.
659 */
660 ip->ip_sum = 0;
661
662 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
663 /*
664 * Perform any checksums that the hardware can't do
665 * for us.
666 *
667 * XXX Does any hardware require the {th,uh}_sum
668 * XXX fields to be 0?
669 */
670 if (sw_csum & M_CSUM_IPv4) {
671 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
672 ip->ip_sum = in_cksum(m, hlen);
673 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
674 }
675 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
676 if (IN_NEED_CHECKSUM(ifp,
677 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
678 in_delayed_cksum(m);
679 }
680 m->m_pkthdr.csum_flags &=
681 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
682 }
683 }
684
685 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
686 if (__predict_true(
687 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
688 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
689 error = ip_if_output(ifp, m, sa, rt);
690 } else {
691 error = ip_tso_output(ifp, m, sa, rt);
692 }
693 goto done;
694 }
695
696 /*
697 * We can't use HW checksumming if we're about to
698 * to fragment the packet.
699 *
700 * XXX Some hardware can do this.
701 */
702 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
703 if (IN_NEED_CHECKSUM(ifp,
704 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
705 in_delayed_cksum(m);
706 }
707 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
708 }
709
710 /*
711 * Too large for interface; fragment if possible.
712 * Must be able to put at least 8 bytes per fragment.
713 */
714 if (ntohs(ip->ip_off) & IP_DF) {
715 if (flags & IP_RETURNMTU) {
716 struct inpcb *inp;
717
718 KASSERT(so && solocked(so));
719 inp = sotoinpcb(so);
720 inp->inp_errormtu = mtu;
721 }
722 error = EMSGSIZE;
723 IP_STATINC(IP_STAT_CANTFRAG);
724 goto bad;
725 }
726
727 error = ip_fragment(m, ifp, mtu);
728 if (error) {
729 m = NULL;
730 goto bad;
731 }
732
733 for (; m; m = m0) {
734 m0 = m->m_nextpkt;
735 m->m_nextpkt = 0;
736 if (error) {
737 m_freem(m);
738 continue;
739 }
740 #if IFA_STATS
741 if (ia)
742 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
743 #endif
744 /*
745 * If we get there, the packet has not been handled by
746 * IPsec whereas it should have. Now that it has been
747 * fragmented, re-inject it in ip_output so that IPsec
748 * processing can occur.
749 */
750 if (natt_frag) {
751 error = ip_output(m, opt, ro,
752 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
753 imo, so);
754 } else {
755 KASSERT((m->m_pkthdr.csum_flags &
756 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
757 error = ip_if_output(ifp, m,
758 (m->m_flags & M_MCAST) ?
759 sintocsa(rdst) : sintocsa(dst), rt);
760 }
761 }
762 if (error == 0) {
763 IP_STATINC(IP_STAT_FRAGMENTED);
764 }
765 done:
766 ia4_release(ia, &psref_ia);
767 rtcache_unref(rt, ro);
768 if (ro == &iproute) {
769 rtcache_free(&iproute);
770 }
771 #ifdef IPSEC
772 if (sp) {
773 KEY_FREESP(&sp);
774 }
775 #endif
776 if (mifp != NULL) {
777 if_put(mifp, &psref);
778 }
779 if (bind_need_restore)
780 curlwp_bindx(bound);
781 return error;
782 bad:
783 m_freem(m);
784 goto done;
785 }
786
787 int
788 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
789 {
790 struct ip *ip, *mhip;
791 struct mbuf *m0;
792 int len, hlen, off;
793 int mhlen, firstlen;
794 struct mbuf **mnext;
795 int sw_csum = m->m_pkthdr.csum_flags;
796 int fragments = 0;
797 int s;
798 int error = 0;
799
800 ip = mtod(m, struct ip *);
801 hlen = ip->ip_hl << 2;
802 if (ifp != NULL)
803 sw_csum &= ~ifp->if_csum_flags_tx;
804
805 len = (mtu - hlen) &~ 7;
806 if (len < 8) {
807 m_freem(m);
808 return (EMSGSIZE);
809 }
810
811 firstlen = len;
812 mnext = &m->m_nextpkt;
813
814 /*
815 * Loop through length of segment after first fragment,
816 * make new header and copy data of each part and link onto chain.
817 */
818 m0 = m;
819 mhlen = sizeof (struct ip);
820 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
821 MGETHDR(m, M_DONTWAIT, MT_HEADER);
822 if (m == 0) {
823 error = ENOBUFS;
824 IP_STATINC(IP_STAT_ODROPPED);
825 goto sendorfree;
826 }
827 MCLAIM(m, m0->m_owner);
828 *mnext = m;
829 mnext = &m->m_nextpkt;
830 m->m_data += max_linkhdr;
831 mhip = mtod(m, struct ip *);
832 *mhip = *ip;
833 /* we must inherit MCAST and BCAST flags */
834 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
835 if (hlen > sizeof (struct ip)) {
836 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
837 mhip->ip_hl = mhlen >> 2;
838 }
839 m->m_len = mhlen;
840 mhip->ip_off = ((off - hlen) >> 3) +
841 (ntohs(ip->ip_off) & ~IP_MF);
842 if (ip->ip_off & htons(IP_MF))
843 mhip->ip_off |= IP_MF;
844 if (off + len >= ntohs(ip->ip_len))
845 len = ntohs(ip->ip_len) - off;
846 else
847 mhip->ip_off |= IP_MF;
848 HTONS(mhip->ip_off);
849 mhip->ip_len = htons((u_int16_t)(len + mhlen));
850 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
851 if (m->m_next == 0) {
852 error = ENOBUFS; /* ??? */
853 IP_STATINC(IP_STAT_ODROPPED);
854 goto sendorfree;
855 }
856 m->m_pkthdr.len = mhlen + len;
857 m_reset_rcvif(m);
858 mhip->ip_sum = 0;
859 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
860 if (sw_csum & M_CSUM_IPv4) {
861 mhip->ip_sum = in_cksum(m, mhlen);
862 } else {
863 /*
864 * checksum is hw-offloaded or not necessary.
865 */
866 m->m_pkthdr.csum_flags |=
867 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
868 m->m_pkthdr.csum_data |= mhlen << 16;
869 KASSERT(!(ifp != NULL &&
870 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
871 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
872 }
873 IP_STATINC(IP_STAT_OFRAGMENTS);
874 fragments++;
875 }
876 /*
877 * Update first fragment by trimming what's been copied out
878 * and updating header, then send each fragment (in order).
879 */
880 m = m0;
881 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
882 m->m_pkthdr.len = hlen + firstlen;
883 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
884 ip->ip_off |= htons(IP_MF);
885 ip->ip_sum = 0;
886 if (sw_csum & M_CSUM_IPv4) {
887 ip->ip_sum = in_cksum(m, hlen);
888 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
889 } else {
890 /*
891 * checksum is hw-offloaded or not necessary.
892 */
893 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
894 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
895 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
896 sizeof(struct ip));
897 }
898 sendorfree:
899 /*
900 * If there is no room for all the fragments, don't queue
901 * any of them.
902 */
903 if (ifp != NULL) {
904 s = splnet();
905 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
906 error == 0) {
907 error = ENOBUFS;
908 IP_STATINC(IP_STAT_ODROPPED);
909 IFQ_INC_DROPS(&ifp->if_snd);
910 }
911 splx(s);
912 }
913 if (error) {
914 for (m = m0; m; m = m0) {
915 m0 = m->m_nextpkt;
916 m->m_nextpkt = NULL;
917 m_freem(m);
918 }
919 }
920 return (error);
921 }
922
923 /*
924 * Process a delayed payload checksum calculation.
925 */
926 void
927 in_delayed_cksum(struct mbuf *m)
928 {
929 struct ip *ip;
930 u_int16_t csum, offset;
931
932 ip = mtod(m, struct ip *);
933 offset = ip->ip_hl << 2;
934 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
935 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
936 csum = 0xffff;
937
938 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
939
940 if ((offset + sizeof(u_int16_t)) > m->m_len) {
941 /* This happen when ip options were inserted
942 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
943 m->m_len, offset, ip->ip_p);
944 */
945 m_copyback(m, offset, sizeof(csum), (void *) &csum);
946 } else
947 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
948 }
949
950 /*
951 * Determine the maximum length of the options to be inserted;
952 * we would far rather allocate too much space rather than too little.
953 */
954
955 u_int
956 ip_optlen(struct inpcb *inp)
957 {
958 struct mbuf *m = inp->inp_options;
959
960 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
961 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
962 }
963 return 0;
964 }
965
966 /*
967 * Insert IP options into preformed packet.
968 * Adjust IP destination as required for IP source routing,
969 * as indicated by a non-zero in_addr at the start of the options.
970 */
971 static struct mbuf *
972 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
973 {
974 struct ipoption *p = mtod(opt, struct ipoption *);
975 struct mbuf *n;
976 struct ip *ip = mtod(m, struct ip *);
977 unsigned optlen;
978
979 optlen = opt->m_len - sizeof(p->ipopt_dst);
980 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
981 return (m); /* XXX should fail */
982 if (!in_nullhost(p->ipopt_dst))
983 ip->ip_dst = p->ipopt_dst;
984 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
985 MGETHDR(n, M_DONTWAIT, MT_HEADER);
986 if (n == 0)
987 return (m);
988 MCLAIM(n, m->m_owner);
989 M_MOVE_PKTHDR(n, m);
990 m->m_len -= sizeof(struct ip);
991 m->m_data += sizeof(struct ip);
992 n->m_next = m;
993 m = n;
994 m->m_len = optlen + sizeof(struct ip);
995 m->m_data += max_linkhdr;
996 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
997 } else {
998 m->m_data -= optlen;
999 m->m_len += optlen;
1000 memmove(mtod(m, void *), ip, sizeof(struct ip));
1001 }
1002 m->m_pkthdr.len += optlen;
1003 ip = mtod(m, struct ip *);
1004 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1005 *phlen = sizeof(struct ip) + optlen;
1006 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1007 return (m);
1008 }
1009
1010 /*
1011 * Copy options from ip to jp,
1012 * omitting those not copied during fragmentation.
1013 */
1014 int
1015 ip_optcopy(struct ip *ip, struct ip *jp)
1016 {
1017 u_char *cp, *dp;
1018 int opt, optlen, cnt;
1019
1020 cp = (u_char *)(ip + 1);
1021 dp = (u_char *)(jp + 1);
1022 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1023 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1024 opt = cp[0];
1025 if (opt == IPOPT_EOL)
1026 break;
1027 if (opt == IPOPT_NOP) {
1028 /* Preserve for IP mcast tunnel's LSRR alignment. */
1029 *dp++ = IPOPT_NOP;
1030 optlen = 1;
1031 continue;
1032 }
1033
1034 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1035 optlen = cp[IPOPT_OLEN];
1036 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1037
1038 /* Invalid lengths should have been caught by ip_dooptions. */
1039 if (optlen > cnt)
1040 optlen = cnt;
1041 if (IPOPT_COPIED(opt)) {
1042 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1043 dp += optlen;
1044 }
1045 }
1046 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1047 *dp++ = IPOPT_EOL;
1048 return (optlen);
1049 }
1050
1051 /*
1052 * IP socket option processing.
1053 */
1054 int
1055 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1056 {
1057 struct inpcb *inp = sotoinpcb(so);
1058 struct ip *ip = &inp->inp_ip;
1059 int inpflags = inp->inp_flags;
1060 int optval = 0, error = 0;
1061
1062 if (sopt->sopt_level != IPPROTO_IP) {
1063 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1064 return 0;
1065 return ENOPROTOOPT;
1066 }
1067
1068 switch (op) {
1069 case PRCO_SETOPT:
1070 switch (sopt->sopt_name) {
1071 case IP_OPTIONS:
1072 #ifdef notyet
1073 case IP_RETOPTS:
1074 #endif
1075 error = ip_pcbopts(inp, sopt);
1076 break;
1077
1078 case IP_TOS:
1079 case IP_TTL:
1080 case IP_MINTTL:
1081 case IP_PKTINFO:
1082 case IP_RECVOPTS:
1083 case IP_RECVRETOPTS:
1084 case IP_RECVDSTADDR:
1085 case IP_RECVIF:
1086 case IP_RECVPKTINFO:
1087 case IP_RECVTTL:
1088 error = sockopt_getint(sopt, &optval);
1089 if (error)
1090 break;
1091
1092 switch (sopt->sopt_name) {
1093 case IP_TOS:
1094 ip->ip_tos = optval;
1095 break;
1096
1097 case IP_TTL:
1098 ip->ip_ttl = optval;
1099 break;
1100
1101 case IP_MINTTL:
1102 if (optval > 0 && optval <= MAXTTL)
1103 inp->inp_ip_minttl = optval;
1104 else
1105 error = EINVAL;
1106 break;
1107 #define OPTSET(bit) \
1108 if (optval) \
1109 inpflags |= bit; \
1110 else \
1111 inpflags &= ~bit;
1112
1113 case IP_PKTINFO:
1114 OPTSET(INP_PKTINFO);
1115 break;
1116
1117 case IP_RECVOPTS:
1118 OPTSET(INP_RECVOPTS);
1119 break;
1120
1121 case IP_RECVPKTINFO:
1122 OPTSET(INP_RECVPKTINFO);
1123 break;
1124
1125 case IP_RECVRETOPTS:
1126 OPTSET(INP_RECVRETOPTS);
1127 break;
1128
1129 case IP_RECVDSTADDR:
1130 OPTSET(INP_RECVDSTADDR);
1131 break;
1132
1133 case IP_RECVIF:
1134 OPTSET(INP_RECVIF);
1135 break;
1136
1137 case IP_RECVTTL:
1138 OPTSET(INP_RECVTTL);
1139 break;
1140 }
1141 break;
1142 #undef OPTSET
1143
1144 case IP_MULTICAST_IF:
1145 case IP_MULTICAST_TTL:
1146 case IP_MULTICAST_LOOP:
1147 case IP_ADD_MEMBERSHIP:
1148 case IP_DROP_MEMBERSHIP:
1149 error = ip_setmoptions(&inp->inp_moptions, sopt);
1150 break;
1151
1152 case IP_PORTRANGE:
1153 error = sockopt_getint(sopt, &optval);
1154 if (error)
1155 break;
1156
1157 switch (optval) {
1158 case IP_PORTRANGE_DEFAULT:
1159 case IP_PORTRANGE_HIGH:
1160 inpflags &= ~(INP_LOWPORT);
1161 break;
1162
1163 case IP_PORTRANGE_LOW:
1164 inpflags |= INP_LOWPORT;
1165 break;
1166
1167 default:
1168 error = EINVAL;
1169 break;
1170 }
1171 break;
1172
1173 case IP_PORTALGO:
1174 error = sockopt_getint(sopt, &optval);
1175 if (error)
1176 break;
1177
1178 error = portalgo_algo_index_select(
1179 (struct inpcb_hdr *)inp, optval);
1180 break;
1181
1182 #if defined(IPSEC)
1183 case IP_IPSEC_POLICY:
1184 if (ipsec_enabled) {
1185 error = ipsec4_set_policy(inp, sopt->sopt_name,
1186 sopt->sopt_data, sopt->sopt_size,
1187 curlwp->l_cred);
1188 break;
1189 }
1190 /*FALLTHROUGH*/
1191 #endif /* IPSEC */
1192
1193 default:
1194 error = ENOPROTOOPT;
1195 break;
1196 }
1197 break;
1198
1199 case PRCO_GETOPT:
1200 switch (sopt->sopt_name) {
1201 case IP_OPTIONS:
1202 case IP_RETOPTS: {
1203 struct mbuf *mopts = inp->inp_options;
1204
1205 if (mopts) {
1206 struct mbuf *m;
1207
1208 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1209 if (m == NULL) {
1210 error = ENOBUFS;
1211 break;
1212 }
1213 error = sockopt_setmbuf(sopt, m);
1214 }
1215 break;
1216 }
1217 case IP_PKTINFO:
1218 case IP_TOS:
1219 case IP_TTL:
1220 case IP_MINTTL:
1221 case IP_RECVOPTS:
1222 case IP_RECVRETOPTS:
1223 case IP_RECVDSTADDR:
1224 case IP_RECVIF:
1225 case IP_RECVPKTINFO:
1226 case IP_RECVTTL:
1227 case IP_ERRORMTU:
1228 switch (sopt->sopt_name) {
1229 case IP_TOS:
1230 optval = ip->ip_tos;
1231 break;
1232
1233 case IP_TTL:
1234 optval = ip->ip_ttl;
1235 break;
1236
1237 case IP_MINTTL:
1238 optval = inp->inp_ip_minttl;
1239 break;
1240
1241 case IP_ERRORMTU:
1242 optval = inp->inp_errormtu;
1243 break;
1244
1245 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1246
1247 case IP_PKTINFO:
1248 optval = OPTBIT(INP_PKTINFO);
1249 break;
1250
1251 case IP_RECVOPTS:
1252 optval = OPTBIT(INP_RECVOPTS);
1253 break;
1254
1255 case IP_RECVPKTINFO:
1256 optval = OPTBIT(INP_RECVPKTINFO);
1257 break;
1258
1259 case IP_RECVRETOPTS:
1260 optval = OPTBIT(INP_RECVRETOPTS);
1261 break;
1262
1263 case IP_RECVDSTADDR:
1264 optval = OPTBIT(INP_RECVDSTADDR);
1265 break;
1266
1267 case IP_RECVIF:
1268 optval = OPTBIT(INP_RECVIF);
1269 break;
1270
1271 case IP_RECVTTL:
1272 optval = OPTBIT(INP_RECVTTL);
1273 break;
1274 }
1275 error = sockopt_setint(sopt, optval);
1276 break;
1277
1278 #if 0 /* defined(IPSEC) */
1279 case IP_IPSEC_POLICY:
1280 {
1281 struct mbuf *m = NULL;
1282
1283 /* XXX this will return EINVAL as sopt is empty */
1284 error = ipsec4_get_policy(inp, sopt->sopt_data,
1285 sopt->sopt_size, &m);
1286 if (error == 0)
1287 error = sockopt_setmbuf(sopt, m);
1288 break;
1289 }
1290 #endif /*IPSEC*/
1291
1292 case IP_MULTICAST_IF:
1293 case IP_MULTICAST_TTL:
1294 case IP_MULTICAST_LOOP:
1295 case IP_ADD_MEMBERSHIP:
1296 case IP_DROP_MEMBERSHIP:
1297 error = ip_getmoptions(inp->inp_moptions, sopt);
1298 break;
1299
1300 case IP_PORTRANGE:
1301 if (inpflags & INP_LOWPORT)
1302 optval = IP_PORTRANGE_LOW;
1303 else
1304 optval = IP_PORTRANGE_DEFAULT;
1305 error = sockopt_setint(sopt, optval);
1306 break;
1307
1308 case IP_PORTALGO:
1309 optval = inp->inp_portalgo;
1310 error = sockopt_setint(sopt, optval);
1311 break;
1312
1313 default:
1314 error = ENOPROTOOPT;
1315 break;
1316 }
1317 break;
1318 }
1319
1320 if (!error) {
1321 inp->inp_flags = inpflags;
1322 }
1323 return error;
1324 }
1325
1326 /*
1327 * Set up IP options in pcb for insertion in output packets.
1328 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1329 * with destination address if source routed.
1330 */
1331 static int
1332 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1333 {
1334 struct mbuf *m;
1335 const u_char *cp;
1336 u_char *dp;
1337 int cnt;
1338
1339 /* Turn off any old options. */
1340 if (inp->inp_options) {
1341 m_free(inp->inp_options);
1342 }
1343 inp->inp_options = NULL;
1344 if ((cnt = sopt->sopt_size) == 0) {
1345 /* Only turning off any previous options. */
1346 return 0;
1347 }
1348 cp = sopt->sopt_data;
1349
1350 #ifndef __vax__
1351 if (cnt % sizeof(int32_t))
1352 return (EINVAL);
1353 #endif
1354
1355 m = m_get(M_DONTWAIT, MT_SOOPTS);
1356 if (m == NULL)
1357 return (ENOBUFS);
1358
1359 dp = mtod(m, u_char *);
1360 memset(dp, 0, sizeof(struct in_addr));
1361 dp += sizeof(struct in_addr);
1362 m->m_len = sizeof(struct in_addr);
1363
1364 /*
1365 * IP option list according to RFC791. Each option is of the form
1366 *
1367 * [optval] [olen] [(olen - 2) data bytes]
1368 *
1369 * We validate the list and copy options to an mbuf for prepending
1370 * to data packets. The IP first-hop destination address will be
1371 * stored before actual options and is zero if unset.
1372 */
1373 while (cnt > 0) {
1374 uint8_t optval, olen, offset;
1375
1376 optval = cp[IPOPT_OPTVAL];
1377
1378 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1379 olen = 1;
1380 } else {
1381 if (cnt < IPOPT_OLEN + 1)
1382 goto bad;
1383
1384 olen = cp[IPOPT_OLEN];
1385 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1386 goto bad;
1387 }
1388
1389 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1390 /*
1391 * user process specifies route as:
1392 * ->A->B->C->D
1393 * D must be our final destination (but we can't
1394 * check that since we may not have connected yet).
1395 * A is first hop destination, which doesn't appear in
1396 * actual IP option, but is stored before the options.
1397 */
1398 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1399 goto bad;
1400
1401 offset = cp[IPOPT_OFFSET];
1402 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1403 sizeof(struct in_addr));
1404
1405 cp += sizeof(struct in_addr);
1406 cnt -= sizeof(struct in_addr);
1407 olen -= sizeof(struct in_addr);
1408
1409 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1410 goto bad;
1411
1412 memcpy(dp, cp, olen);
1413 dp[IPOPT_OPTVAL] = optval;
1414 dp[IPOPT_OLEN] = olen;
1415 dp[IPOPT_OFFSET] = offset;
1416 break;
1417 } else {
1418 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1419 goto bad;
1420
1421 memcpy(dp, cp, olen);
1422 break;
1423 }
1424
1425 dp += olen;
1426 m->m_len += olen;
1427
1428 if (optval == IPOPT_EOL)
1429 break;
1430
1431 cp += olen;
1432 cnt -= olen;
1433 }
1434
1435 inp->inp_options = m;
1436 return 0;
1437 bad:
1438 (void)m_free(m);
1439 return EINVAL;
1440 }
1441
1442 /*
1443 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1444 */
1445 static struct ifnet *
1446 ip_multicast_if(struct in_addr *a, int *ifindexp)
1447 {
1448 int ifindex;
1449 struct ifnet *ifp = NULL;
1450 struct in_ifaddr *ia;
1451
1452 if (ifindexp)
1453 *ifindexp = 0;
1454 if (ntohl(a->s_addr) >> 24 == 0) {
1455 ifindex = ntohl(a->s_addr) & 0xffffff;
1456 ifp = if_byindex(ifindex);
1457 if (!ifp)
1458 return NULL;
1459 if (ifindexp)
1460 *ifindexp = ifindex;
1461 } else {
1462 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1463 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1464 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1465 ifp = ia->ia_ifp;
1466 break;
1467 }
1468 }
1469 }
1470 return ifp;
1471 }
1472
1473 static int
1474 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1475 {
1476 u_int tval;
1477 u_char cval;
1478 int error;
1479
1480 if (sopt == NULL)
1481 return EINVAL;
1482
1483 switch (sopt->sopt_size) {
1484 case sizeof(u_char):
1485 error = sockopt_get(sopt, &cval, sizeof(u_char));
1486 tval = cval;
1487 break;
1488
1489 case sizeof(u_int):
1490 error = sockopt_get(sopt, &tval, sizeof(u_int));
1491 break;
1492
1493 default:
1494 error = EINVAL;
1495 }
1496
1497 if (error)
1498 return error;
1499
1500 if (tval > maxval)
1501 return EINVAL;
1502
1503 *val = tval;
1504 return 0;
1505 }
1506
1507 static int
1508 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1509 struct in_addr *ia, bool add)
1510 {
1511 int error;
1512 struct ip_mreq mreq;
1513
1514 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1515 if (error)
1516 return error;
1517
1518 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1519 return EINVAL;
1520
1521 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1522
1523 if (in_nullhost(mreq.imr_interface)) {
1524 union {
1525 struct sockaddr dst;
1526 struct sockaddr_in dst4;
1527 } u;
1528 struct route ro;
1529
1530 if (!add) {
1531 *ifp = NULL;
1532 return 0;
1533 }
1534 /*
1535 * If no interface address was provided, use the interface of
1536 * the route to the given multicast address.
1537 */
1538 struct rtentry *rt;
1539 memset(&ro, 0, sizeof(ro));
1540
1541 sockaddr_in_init(&u.dst4, ia, 0);
1542 error = rtcache_setdst(&ro, &u.dst);
1543 if (error != 0)
1544 return error;
1545 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1546 rtcache_unref(rt, &ro);
1547 rtcache_free(&ro);
1548 } else {
1549 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1550 if (!add && *ifp == NULL)
1551 return EADDRNOTAVAIL;
1552 }
1553 return 0;
1554 }
1555
1556 /*
1557 * Add a multicast group membership.
1558 * Group must be a valid IP multicast address.
1559 */
1560 static int
1561 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1562 {
1563 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1564 struct in_addr ia;
1565 int i, error;
1566
1567 if (sopt->sopt_size == sizeof(struct ip_mreq))
1568 error = ip_get_membership(sopt, &ifp, &ia, true);
1569 else
1570 #ifdef INET6
1571 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1572 #else
1573 return EINVAL;
1574 #endif
1575
1576 if (error)
1577 return error;
1578
1579 /*
1580 * See if we found an interface, and confirm that it
1581 * supports multicast.
1582 */
1583 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1584 return EADDRNOTAVAIL;
1585
1586 /*
1587 * See if the membership already exists or if all the
1588 * membership slots are full.
1589 */
1590 for (i = 0; i < imo->imo_num_memberships; ++i) {
1591 if (imo->imo_membership[i]->inm_ifp == ifp &&
1592 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1593 break;
1594 }
1595 if (i < imo->imo_num_memberships)
1596 return EADDRINUSE;
1597
1598 if (i == IP_MAX_MEMBERSHIPS)
1599 return ETOOMANYREFS;
1600
1601 /*
1602 * Everything looks good; add a new record to the multicast
1603 * address list for the given interface.
1604 */
1605 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1606 return ENOBUFS;
1607
1608 ++imo->imo_num_memberships;
1609 return 0;
1610 }
1611
1612 /*
1613 * Drop a multicast group membership.
1614 * Group must be a valid IP multicast address.
1615 */
1616 static int
1617 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1618 {
1619 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1620 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1621 int i, error;
1622
1623 if (sopt->sopt_size == sizeof(struct ip_mreq))
1624 error = ip_get_membership(sopt, &ifp, &ia, false);
1625 else
1626 #ifdef INET6
1627 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1628 #else
1629 return EINVAL;
1630 #endif
1631
1632 if (error)
1633 return error;
1634
1635 /*
1636 * Find the membership in the membership array.
1637 */
1638 for (i = 0; i < imo->imo_num_memberships; ++i) {
1639 if ((ifp == NULL ||
1640 imo->imo_membership[i]->inm_ifp == ifp) &&
1641 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1642 break;
1643 }
1644 if (i == imo->imo_num_memberships)
1645 return EADDRNOTAVAIL;
1646
1647 /*
1648 * Give up the multicast address record to which the
1649 * membership points.
1650 */
1651 in_delmulti(imo->imo_membership[i]);
1652
1653 /*
1654 * Remove the gap in the membership array.
1655 */
1656 for (++i; i < imo->imo_num_memberships; ++i)
1657 imo->imo_membership[i-1] = imo->imo_membership[i];
1658 --imo->imo_num_memberships;
1659 return 0;
1660 }
1661
1662 /*
1663 * Set the IP multicast options in response to user setsockopt().
1664 */
1665 int
1666 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1667 {
1668 struct ip_moptions *imo = *pimo;
1669 struct in_addr addr;
1670 struct ifnet *ifp;
1671 int ifindex, error = 0;
1672
1673 if (!imo) {
1674 /*
1675 * No multicast option buffer attached to the pcb;
1676 * allocate one and initialize to default values.
1677 */
1678 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1679 if (imo == NULL)
1680 return ENOBUFS;
1681
1682 imo->imo_multicast_if_index = 0;
1683 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1684 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1685 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1686 imo->imo_num_memberships = 0;
1687 *pimo = imo;
1688 }
1689
1690 switch (sopt->sopt_name) {
1691 case IP_MULTICAST_IF:
1692 /*
1693 * Select the interface for outgoing multicast packets.
1694 */
1695 error = sockopt_get(sopt, &addr, sizeof(addr));
1696 if (error)
1697 break;
1698
1699 /*
1700 * INADDR_ANY is used to remove a previous selection.
1701 * When no interface is selected, a default one is
1702 * chosen every time a multicast packet is sent.
1703 */
1704 if (in_nullhost(addr)) {
1705 imo->imo_multicast_if_index = 0;
1706 break;
1707 }
1708 /*
1709 * The selected interface is identified by its local
1710 * IP address. Find the interface and confirm that
1711 * it supports multicasting.
1712 */
1713 ifp = ip_multicast_if(&addr, &ifindex);
1714 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1715 error = EADDRNOTAVAIL;
1716 break;
1717 }
1718 imo->imo_multicast_if_index = ifp->if_index;
1719 if (ifindex)
1720 imo->imo_multicast_addr = addr;
1721 else
1722 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1723 break;
1724
1725 case IP_MULTICAST_TTL:
1726 /*
1727 * Set the IP time-to-live for outgoing multicast packets.
1728 */
1729 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1730 break;
1731
1732 case IP_MULTICAST_LOOP:
1733 /*
1734 * Set the loopback flag for outgoing multicast packets.
1735 * Must be zero or one.
1736 */
1737 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1738 break;
1739
1740 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1741 error = ip_add_membership(imo, sopt);
1742 break;
1743
1744 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1745 error = ip_drop_membership(imo, sopt);
1746 break;
1747
1748 default:
1749 error = EOPNOTSUPP;
1750 break;
1751 }
1752
1753 /*
1754 * If all options have default values, no need to keep the mbuf.
1755 */
1756 if (imo->imo_multicast_if_index == 0 &&
1757 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1758 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1759 imo->imo_num_memberships == 0) {
1760 kmem_free(imo, sizeof(*imo));
1761 *pimo = NULL;
1762 }
1763
1764 return error;
1765 }
1766
1767 /*
1768 * Return the IP multicast options in response to user getsockopt().
1769 */
1770 int
1771 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1772 {
1773 struct in_addr addr;
1774 uint8_t optval;
1775 int error = 0;
1776
1777 switch (sopt->sopt_name) {
1778 case IP_MULTICAST_IF:
1779 if (imo == NULL || imo->imo_multicast_if_index == 0)
1780 addr = zeroin_addr;
1781 else if (imo->imo_multicast_addr.s_addr) {
1782 /* return the value user has set */
1783 addr = imo->imo_multicast_addr;
1784 } else {
1785 struct ifnet *ifp;
1786 struct in_ifaddr *ia = NULL;
1787 int s = pserialize_read_enter();
1788
1789 ifp = if_byindex(imo->imo_multicast_if_index);
1790 if (ifp != NULL) {
1791 ia = in_get_ia_from_ifp(ifp);
1792 }
1793 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1794 pserialize_read_exit(s);
1795 }
1796 error = sockopt_set(sopt, &addr, sizeof(addr));
1797 break;
1798
1799 case IP_MULTICAST_TTL:
1800 optval = imo ? imo->imo_multicast_ttl
1801 : IP_DEFAULT_MULTICAST_TTL;
1802
1803 error = sockopt_set(sopt, &optval, sizeof(optval));
1804 break;
1805
1806 case IP_MULTICAST_LOOP:
1807 optval = imo ? imo->imo_multicast_loop
1808 : IP_DEFAULT_MULTICAST_LOOP;
1809
1810 error = sockopt_set(sopt, &optval, sizeof(optval));
1811 break;
1812
1813 default:
1814 error = EOPNOTSUPP;
1815 }
1816
1817 return error;
1818 }
1819
1820 /*
1821 * Discard the IP multicast options.
1822 */
1823 void
1824 ip_freemoptions(struct ip_moptions *imo)
1825 {
1826 int i;
1827
1828 if (imo != NULL) {
1829 for (i = 0; i < imo->imo_num_memberships; ++i)
1830 in_delmulti(imo->imo_membership[i]);
1831 kmem_free(imo, sizeof(*imo));
1832 }
1833 }
1834
1835 /*
1836 * Routine called from ip_output() to loop back a copy of an IP multicast
1837 * packet to the input queue of a specified interface. Note that this
1838 * calls the output routine of the loopback "driver", but with an interface
1839 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1840 */
1841 static void
1842 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1843 {
1844 struct ip *ip;
1845 struct mbuf *copym;
1846
1847 copym = m_copypacket(m, M_DONTWAIT);
1848 if (copym != NULL &&
1849 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1850 copym = m_pullup(copym, sizeof(struct ip));
1851 if (copym == NULL)
1852 return;
1853 /*
1854 * We don't bother to fragment if the IP length is greater
1855 * than the interface's MTU. Can this possibly matter?
1856 */
1857 ip = mtod(copym, struct ip *);
1858
1859 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1860 in_delayed_cksum(copym);
1861 copym->m_pkthdr.csum_flags &=
1862 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1863 }
1864
1865 ip->ip_sum = 0;
1866 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1867 #ifndef NET_MPSAFE
1868 KERNEL_LOCK(1, NULL);
1869 #endif
1870 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1871 #ifndef NET_MPSAFE
1872 KERNEL_UNLOCK_ONE(NULL);
1873 #endif
1874 }
1875
1876 /*
1877 * Ensure sending address is valid.
1878 * Returns 0 on success, -1 if an error should be sent back or 1
1879 * if the packet could be dropped without error (protocol dependent).
1880 */
1881 static int
1882 ip_ifaddrvalid(const struct in_ifaddr *ia)
1883 {
1884
1885 if (ia == NULL)
1886 return -1;
1887
1888 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
1889 return 0;
1890
1891 if (ia->ia4_flags & IN_IFF_DUPLICATED)
1892 return -1;
1893 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
1894 return 1;
1895
1896 return 0;
1897 }
1898