ip_output.c revision 1.279 1 /* $NetBSD: ip_output.c,v 1.279 2017/05/12 17:53:54 ryo Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.279 2017/05/12 17:53:54 ryo Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130
131 #ifdef INET6
132 #include <netinet6/ip6_var.h>
133 #endif
134
135 #ifdef MROUTING
136 #include <netinet/ip_mroute.h>
137 #endif
138
139 #ifdef IPSEC
140 #include <netipsec/ipsec.h>
141 #include <netipsec/key.h>
142 #endif
143
144 #ifdef MPLS
145 #include <netmpls/mpls.h>
146 #include <netmpls/mpls_var.h>
147 #endif
148
149 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
150 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
151 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
152 static void ip_mloopback(struct ifnet *, struct mbuf *,
153 const struct sockaddr_in *);
154 static int ip_ifaddrvalid(const struct in_ifaddr *);
155
156 extern pfil_head_t *inet_pfil_hook; /* XXX */
157
158 int ip_do_loopback_cksum = 0;
159
160 static int
161 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
162 const struct rtentry *rt)
163 {
164 int error = 0;
165 #ifdef MPLS
166 union mpls_shim msh;
167
168 if (rt == NULL || rt_gettag(rt) == NULL ||
169 rt_gettag(rt)->sa_family != AF_MPLS ||
170 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
171 ifp->if_type != IFT_ETHER)
172 return 0;
173
174 msh.s_addr = MPLS_GETSADDR(rt);
175 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
176 struct m_tag *mtag;
177 /*
178 * XXX tentative solution to tell ether_output
179 * it's MPLS. Need some more efficient solution.
180 */
181 mtag = m_tag_get(PACKET_TAG_MPLS,
182 sizeof(int) /* dummy */,
183 M_NOWAIT);
184 if (mtag == NULL)
185 return ENOMEM;
186 m_tag_prepend(m, mtag);
187 }
188 #endif
189 return error;
190 }
191
192 /*
193 * Send an IP packet to a host.
194 */
195 int
196 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
197 const struct sockaddr * const dst, const struct rtentry *rt)
198 {
199 int error = 0;
200
201 if (rt != NULL) {
202 error = rt_check_reject_route(rt, ifp);
203 if (error != 0) {
204 m_freem(m);
205 return error;
206 }
207 }
208
209 error = ip_mark_mpls(ifp, m, rt);
210 if (error != 0) {
211 m_freem(m);
212 return error;
213 }
214
215 error = if_output_lock(ifp, ifp, m, dst, rt);
216
217 return error;
218 }
219
220 /*
221 * IP output. The packet in mbuf chain m contains a skeletal IP
222 * header (with len, off, ttl, proto, tos, src, dst).
223 * The mbuf chain containing the packet will be freed.
224 * The mbuf opt, if present, will not be freed.
225 */
226 int
227 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
228 struct ip_moptions *imo, struct inpcb *inp)
229 {
230 struct rtentry *rt;
231 struct ip *ip;
232 struct ifnet *ifp, *mifp = NULL;
233 struct mbuf *m = m0;
234 int hlen = sizeof (struct ip);
235 int len, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia = NULL;
239 int isbroadcast;
240 int sw_csum;
241 u_long mtu;
242 bool natt_frag = false;
243 bool rtmtu_nolock;
244 union {
245 struct sockaddr dst;
246 struct sockaddr_in dst4;
247 } u;
248 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
249 * to the nexthop
250 */
251 struct psref psref, psref_ia;
252 int bound;
253 bool bind_need_restore = false;
254
255 len = 0;
256
257 MCLAIM(m, &ip_tx_mowner);
258
259 KASSERT((m->m_flags & M_PKTHDR) != 0);
260 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
261 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
262 (M_CSUM_TCPv4|M_CSUM_UDPv4));
263
264 if (opt) {
265 m = ip_insertoptions(m, opt, &len);
266 if (len >= sizeof(struct ip))
267 hlen = len;
268 }
269 ip = mtod(m, struct ip *);
270
271 /*
272 * Fill in IP header.
273 */
274 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
275 ip->ip_v = IPVERSION;
276 ip->ip_off = htons(0);
277 /* ip->ip_id filled in after we find out source ia */
278 ip->ip_hl = hlen >> 2;
279 IP_STATINC(IP_STAT_LOCALOUT);
280 } else {
281 hlen = ip->ip_hl << 2;
282 }
283
284 /*
285 * Route packet.
286 */
287 if (ro == NULL) {
288 memset(&iproute, 0, sizeof(iproute));
289 ro = &iproute;
290 }
291 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
292 dst = satocsin(rtcache_getdst(ro));
293
294 /*
295 * If there is a cached route, check that it is to the same
296 * destination and is still up. If not, free it and try again.
297 * The address family should also be checked in case of sharing
298 * the cache with IPv6.
299 */
300 if (dst && (dst->sin_family != AF_INET ||
301 !in_hosteq(dst->sin_addr, ip->ip_dst)))
302 rtcache_free(ro);
303
304 if ((rt = rtcache_validate(ro)) == NULL &&
305 (rt = rtcache_update(ro, 1)) == NULL) {
306 dst = &u.dst4;
307 error = rtcache_setdst(ro, &u.dst);
308 if (error != 0)
309 goto bad;
310 }
311
312 bound = curlwp_bind();
313 bind_need_restore = true;
314 /*
315 * If routing to interface only, short circuit routing lookup.
316 */
317 if (flags & IP_ROUTETOIF) {
318 struct ifaddr *ifa;
319
320 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
321 if (ifa == NULL) {
322 IP_STATINC(IP_STAT_NOROUTE);
323 error = ENETUNREACH;
324 goto bad;
325 }
326 /* ia is already referenced by psref_ia */
327 ia = ifatoia(ifa);
328
329 ifp = ia->ia_ifp;
330 mtu = ifp->if_mtu;
331 ip->ip_ttl = 1;
332 isbroadcast = in_broadcast(dst->sin_addr, ifp);
333 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
334 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
335 imo != NULL && imo->imo_multicast_if_index != 0) {
336 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
337 if (ifp == NULL) {
338 IP_STATINC(IP_STAT_NOROUTE);
339 error = ENETUNREACH;
340 goto bad;
341 }
342 mtu = ifp->if_mtu;
343 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
344 if (ia == NULL) {
345 error = EADDRNOTAVAIL;
346 goto bad;
347 }
348 isbroadcast = 0;
349 } else {
350 if (rt == NULL)
351 rt = rtcache_init(ro);
352 if (rt == NULL) {
353 IP_STATINC(IP_STAT_NOROUTE);
354 error = EHOSTUNREACH;
355 goto bad;
356 }
357 if (ifa_is_destroying(rt->rt_ifa)) {
358 rtcache_unref(rt, ro);
359 rt = NULL;
360 IP_STATINC(IP_STAT_NOROUTE);
361 error = EHOSTUNREACH;
362 goto bad;
363 }
364 ifa_acquire(rt->rt_ifa, &psref_ia);
365 ia = ifatoia(rt->rt_ifa);
366 ifp = rt->rt_ifp;
367 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
368 mtu = ifp->if_mtu;
369 rt->rt_use++;
370 if (rt->rt_flags & RTF_GATEWAY)
371 dst = satosin(rt->rt_gateway);
372 if (rt->rt_flags & RTF_HOST)
373 isbroadcast = rt->rt_flags & RTF_BROADCAST;
374 else
375 isbroadcast = in_broadcast(dst->sin_addr, ifp);
376 }
377 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
378
379 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
380 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
381 bool inmgroup;
382
383 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
384 M_BCAST : M_MCAST;
385 /*
386 * See if the caller provided any multicast options
387 */
388 if (imo != NULL)
389 ip->ip_ttl = imo->imo_multicast_ttl;
390 else
391 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
392
393 /*
394 * if we don't know the outgoing ifp yet, we can't generate
395 * output
396 */
397 if (!ifp) {
398 IP_STATINC(IP_STAT_NOROUTE);
399 error = ENETUNREACH;
400 goto bad;
401 }
402
403 /*
404 * If the packet is multicast or broadcast, confirm that
405 * the outgoing interface can transmit it.
406 */
407 if (((m->m_flags & M_MCAST) &&
408 (ifp->if_flags & IFF_MULTICAST) == 0) ||
409 ((m->m_flags & M_BCAST) &&
410 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
411 IP_STATINC(IP_STAT_NOROUTE);
412 error = ENETUNREACH;
413 goto bad;
414 }
415 /*
416 * If source address not specified yet, use an address
417 * of outgoing interface.
418 */
419 if (in_nullhost(ip->ip_src)) {
420 struct in_ifaddr *xia;
421 struct ifaddr *xifa;
422 struct psref _psref;
423
424 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
425 if (!xia) {
426 error = EADDRNOTAVAIL;
427 goto bad;
428 }
429 xifa = &xia->ia_ifa;
430 if (xifa->ifa_getifa != NULL) {
431 ia4_release(xia, &_psref);
432 /* FIXME ifa_getifa is NOMPSAFE */
433 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
434 if (xia == NULL) {
435 error = EADDRNOTAVAIL;
436 goto bad;
437 }
438 ia4_acquire(xia, &_psref);
439 }
440 ip->ip_src = xia->ia_addr.sin_addr;
441 ia4_release(xia, &_psref);
442 }
443
444 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
445 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
446 /*
447 * If we belong to the destination multicast group
448 * on the outgoing interface, and the caller did not
449 * forbid loopback, loop back a copy.
450 */
451 ip_mloopback(ifp, m, &u.dst4);
452 }
453 #ifdef MROUTING
454 else {
455 /*
456 * If we are acting as a multicast router, perform
457 * multicast forwarding as if the packet had just
458 * arrived on the interface to which we are about
459 * to send. The multicast forwarding function
460 * recursively calls this function, using the
461 * IP_FORWARDING flag to prevent infinite recursion.
462 *
463 * Multicasts that are looped back by ip_mloopback(),
464 * above, will be forwarded by the ip_input() routine,
465 * if necessary.
466 */
467 extern struct socket *ip_mrouter;
468
469 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
470 if (ip_mforward(m, ifp) != 0) {
471 m_freem(m);
472 goto done;
473 }
474 }
475 }
476 #endif
477 /*
478 * Multicasts with a time-to-live of zero may be looped-
479 * back, above, but must not be transmitted on a network.
480 * Also, multicasts addressed to the loopback interface
481 * are not sent -- the above call to ip_mloopback() will
482 * loop back a copy if this host actually belongs to the
483 * destination group on the loopback interface.
484 */
485 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
486 m_freem(m);
487 goto done;
488 }
489 goto sendit;
490 }
491
492 /*
493 * If source address not specified yet, use address
494 * of outgoing interface.
495 */
496 if (in_nullhost(ip->ip_src)) {
497 struct ifaddr *xifa;
498
499 xifa = &ia->ia_ifa;
500 if (xifa->ifa_getifa != NULL) {
501 ia4_release(ia, &psref_ia);
502 /* FIXME ifa_getifa is NOMPSAFE */
503 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
504 if (ia == NULL) {
505 error = EADDRNOTAVAIL;
506 goto bad;
507 }
508 ia4_acquire(ia, &psref_ia);
509 }
510 ip->ip_src = ia->ia_addr.sin_addr;
511 }
512
513 /*
514 * packets with Class-D address as source are not valid per
515 * RFC 1112
516 */
517 if (IN_MULTICAST(ip->ip_src.s_addr)) {
518 IP_STATINC(IP_STAT_ODROPPED);
519 error = EADDRNOTAVAIL;
520 goto bad;
521 }
522
523 /*
524 * Look for broadcast address and and verify user is allowed to
525 * send such a packet.
526 */
527 if (isbroadcast) {
528 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
529 error = EADDRNOTAVAIL;
530 goto bad;
531 }
532 if ((flags & IP_ALLOWBROADCAST) == 0) {
533 error = EACCES;
534 goto bad;
535 }
536 /* don't allow broadcast messages to be fragmented */
537 if (ntohs(ip->ip_len) > ifp->if_mtu) {
538 error = EMSGSIZE;
539 goto bad;
540 }
541 m->m_flags |= M_BCAST;
542 } else
543 m->m_flags &= ~M_BCAST;
544
545 sendit:
546 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
547 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
548 ip->ip_id = 0;
549 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
550 ip->ip_id = ip_newid(ia);
551 } else {
552
553 /*
554 * TSO capable interfaces (typically?) increment
555 * ip_id for each segment.
556 * "allocate" enough ids here to increase the chance
557 * for them to be unique.
558 *
559 * note that the following calculation is not
560 * needed to be precise. wasting some ip_id is fine.
561 */
562
563 unsigned int segsz = m->m_pkthdr.segsz;
564 unsigned int datasz = ntohs(ip->ip_len) - hlen;
565 unsigned int num = howmany(datasz, segsz);
566
567 ip->ip_id = ip_newid_range(ia, num);
568 }
569 }
570 if (ia != NULL) {
571 ia4_release(ia, &psref_ia);
572 ia = NULL;
573 }
574
575 /*
576 * If we're doing Path MTU Discovery, we need to set DF unless
577 * the route's MTU is locked.
578 */
579 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
580 ip->ip_off |= htons(IP_DF);
581 }
582
583 #ifdef IPSEC
584 if (ipsec_used) {
585 bool ipsec_done = false;
586
587 /* Perform IPsec processing, if any. */
588 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
589 &ipsec_done);
590 if (error || ipsec_done)
591 goto done;
592 }
593 #endif
594
595 /*
596 * Run through list of hooks for output packets.
597 */
598 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
599 if (error)
600 goto done;
601 if (m == NULL)
602 goto done;
603
604 ip = mtod(m, struct ip *);
605 hlen = ip->ip_hl << 2;
606
607 m->m_pkthdr.csum_data |= hlen << 16;
608
609 /*
610 * search for the source address structure to
611 * maintain output statistics, and verify address
612 * validity
613 */
614 KASSERT(ia == NULL);
615 ia = in_get_ia_psref(ip->ip_src, &psref_ia);
616
617 /*
618 * Ensure we only send from a valid address.
619 * A NULL address is valid because the packet could be
620 * generated from a packet filter.
621 */
622 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
623 (error = ip_ifaddrvalid(ia)) != 0)
624 {
625 ARPLOG(LOG_ERR,
626 "refusing to send from invalid address %s (pid %d)\n",
627 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
628 IP_STATINC(IP_STAT_ODROPPED);
629 if (error == 1)
630 /*
631 * Address exists, but is tentative or detached.
632 * We can't send from it because it's invalid,
633 * so we drop the packet.
634 */
635 error = 0;
636 else
637 error = EADDRNOTAVAIL;
638 goto bad;
639 }
640
641 /* Maybe skip checksums on loopback interfaces. */
642 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
643 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
644 }
645 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
646 /*
647 * If small enough for mtu of path, or if using TCP segmentation
648 * offload, can just send directly.
649 */
650 if (ntohs(ip->ip_len) <= mtu ||
651 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
652 const struct sockaddr *sa;
653
654 #if IFA_STATS
655 if (ia)
656 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
657 #endif
658 /*
659 * Always initialize the sum to 0! Some HW assisted
660 * checksumming requires this.
661 */
662 ip->ip_sum = 0;
663
664 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
665 /*
666 * Perform any checksums that the hardware can't do
667 * for us.
668 *
669 * XXX Does any hardware require the {th,uh}_sum
670 * XXX fields to be 0?
671 */
672 if (sw_csum & M_CSUM_IPv4) {
673 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
674 ip->ip_sum = in_cksum(m, hlen);
675 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
676 }
677 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
678 if (IN_NEED_CHECKSUM(ifp,
679 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
680 in_delayed_cksum(m);
681 }
682 m->m_pkthdr.csum_flags &=
683 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
684 }
685 }
686
687 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
688 if (__predict_true(
689 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
690 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
691 error = ip_if_output(ifp, m, sa, rt);
692 } else {
693 error = ip_tso_output(ifp, m, sa, rt);
694 }
695 goto done;
696 }
697
698 /*
699 * We can't use HW checksumming if we're about to
700 * to fragment the packet.
701 *
702 * XXX Some hardware can do this.
703 */
704 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
705 if (IN_NEED_CHECKSUM(ifp,
706 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
707 in_delayed_cksum(m);
708 }
709 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
710 }
711
712 /*
713 * Too large for interface; fragment if possible.
714 * Must be able to put at least 8 bytes per fragment.
715 */
716 if (ntohs(ip->ip_off) & IP_DF) {
717 if (flags & IP_RETURNMTU) {
718 KASSERT(inp != NULL);
719 inp->inp_errormtu = mtu;
720 }
721 error = EMSGSIZE;
722 IP_STATINC(IP_STAT_CANTFRAG);
723 goto bad;
724 }
725
726 error = ip_fragment(m, ifp, mtu);
727 if (error) {
728 m = NULL;
729 goto bad;
730 }
731
732 for (; m; m = m0) {
733 m0 = m->m_nextpkt;
734 m->m_nextpkt = 0;
735 if (error) {
736 m_freem(m);
737 continue;
738 }
739 #if IFA_STATS
740 if (ia)
741 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
742 #endif
743 /*
744 * If we get there, the packet has not been handled by
745 * IPsec whereas it should have. Now that it has been
746 * fragmented, re-inject it in ip_output so that IPsec
747 * processing can occur.
748 */
749 if (natt_frag) {
750 error = ip_output(m, opt, ro,
751 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
752 imo, inp);
753 } else {
754 KASSERT((m->m_pkthdr.csum_flags &
755 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
756 error = ip_if_output(ifp, m,
757 (m->m_flags & M_MCAST) ?
758 sintocsa(rdst) : sintocsa(dst), rt);
759 }
760 }
761 if (error == 0) {
762 IP_STATINC(IP_STAT_FRAGMENTED);
763 }
764 done:
765 ia4_release(ia, &psref_ia);
766 rtcache_unref(rt, ro);
767 if (ro == &iproute) {
768 rtcache_free(&iproute);
769 }
770 if (mifp != NULL) {
771 if_put(mifp, &psref);
772 }
773 if (bind_need_restore)
774 curlwp_bindx(bound);
775 return error;
776 bad:
777 m_freem(m);
778 goto done;
779 }
780
781 int
782 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
783 {
784 struct ip *ip, *mhip;
785 struct mbuf *m0;
786 int len, hlen, off;
787 int mhlen, firstlen;
788 struct mbuf **mnext;
789 int sw_csum = m->m_pkthdr.csum_flags;
790 int fragments = 0;
791 int error = 0;
792
793 ip = mtod(m, struct ip *);
794 hlen = ip->ip_hl << 2;
795 if (ifp != NULL)
796 sw_csum &= ~ifp->if_csum_flags_tx;
797
798 len = (mtu - hlen) &~ 7;
799 if (len < 8) {
800 m_freem(m);
801 return (EMSGSIZE);
802 }
803
804 firstlen = len;
805 mnext = &m->m_nextpkt;
806
807 /*
808 * Loop through length of segment after first fragment,
809 * make new header and copy data of each part and link onto chain.
810 */
811 m0 = m;
812 mhlen = sizeof (struct ip);
813 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
814 MGETHDR(m, M_DONTWAIT, MT_HEADER);
815 if (m == 0) {
816 error = ENOBUFS;
817 IP_STATINC(IP_STAT_ODROPPED);
818 goto sendorfree;
819 }
820 MCLAIM(m, m0->m_owner);
821 *mnext = m;
822 mnext = &m->m_nextpkt;
823 m->m_data += max_linkhdr;
824 mhip = mtod(m, struct ip *);
825 *mhip = *ip;
826 /* we must inherit MCAST and BCAST flags */
827 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
828 if (hlen > sizeof (struct ip)) {
829 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
830 mhip->ip_hl = mhlen >> 2;
831 }
832 m->m_len = mhlen;
833 mhip->ip_off = ((off - hlen) >> 3) +
834 (ntohs(ip->ip_off) & ~IP_MF);
835 if (ip->ip_off & htons(IP_MF))
836 mhip->ip_off |= IP_MF;
837 if (off + len >= ntohs(ip->ip_len))
838 len = ntohs(ip->ip_len) - off;
839 else
840 mhip->ip_off |= IP_MF;
841 HTONS(mhip->ip_off);
842 mhip->ip_len = htons((u_int16_t)(len + mhlen));
843 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
844 if (m->m_next == 0) {
845 error = ENOBUFS; /* ??? */
846 IP_STATINC(IP_STAT_ODROPPED);
847 goto sendorfree;
848 }
849 m->m_pkthdr.len = mhlen + len;
850 m_reset_rcvif(m);
851 mhip->ip_sum = 0;
852 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
853 if (sw_csum & M_CSUM_IPv4) {
854 mhip->ip_sum = in_cksum(m, mhlen);
855 } else {
856 /*
857 * checksum is hw-offloaded or not necessary.
858 */
859 m->m_pkthdr.csum_flags |=
860 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
861 m->m_pkthdr.csum_data |= mhlen << 16;
862 KASSERT(!(ifp != NULL &&
863 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
864 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
865 }
866 IP_STATINC(IP_STAT_OFRAGMENTS);
867 fragments++;
868 }
869 /*
870 * Update first fragment by trimming what's been copied out
871 * and updating header, then send each fragment (in order).
872 */
873 m = m0;
874 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
875 m->m_pkthdr.len = hlen + firstlen;
876 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
877 ip->ip_off |= htons(IP_MF);
878 ip->ip_sum = 0;
879 if (sw_csum & M_CSUM_IPv4) {
880 ip->ip_sum = in_cksum(m, hlen);
881 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
882 } else {
883 /*
884 * checksum is hw-offloaded or not necessary.
885 */
886 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
887 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
888 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
889 sizeof(struct ip));
890 }
891 sendorfree:
892 /*
893 * If there is no room for all the fragments, don't queue
894 * any of them.
895 */
896 if (ifp != NULL) {
897 IFQ_LOCK(&ifp->if_snd);
898 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
899 error == 0) {
900 error = ENOBUFS;
901 IP_STATINC(IP_STAT_ODROPPED);
902 IFQ_INC_DROPS(&ifp->if_snd);
903 }
904 IFQ_UNLOCK(&ifp->if_snd);
905 }
906 if (error) {
907 for (m = m0; m; m = m0) {
908 m0 = m->m_nextpkt;
909 m->m_nextpkt = NULL;
910 m_freem(m);
911 }
912 }
913 return (error);
914 }
915
916 /*
917 * Process a delayed payload checksum calculation.
918 */
919 void
920 in_delayed_cksum(struct mbuf *m)
921 {
922 struct ip *ip;
923 u_int16_t csum, offset;
924
925 ip = mtod(m, struct ip *);
926 offset = ip->ip_hl << 2;
927 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
928 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
929 csum = 0xffff;
930
931 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
932
933 if ((offset + sizeof(u_int16_t)) > m->m_len) {
934 /* This happen when ip options were inserted
935 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
936 m->m_len, offset, ip->ip_p);
937 */
938 m_copyback(m, offset, sizeof(csum), (void *) &csum);
939 } else
940 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
941 }
942
943 /*
944 * Determine the maximum length of the options to be inserted;
945 * we would far rather allocate too much space rather than too little.
946 */
947
948 u_int
949 ip_optlen(struct inpcb *inp)
950 {
951 struct mbuf *m = inp->inp_options;
952
953 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
954 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
955 }
956 return 0;
957 }
958
959 /*
960 * Insert IP options into preformed packet.
961 * Adjust IP destination as required for IP source routing,
962 * as indicated by a non-zero in_addr at the start of the options.
963 */
964 static struct mbuf *
965 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
966 {
967 struct ipoption *p = mtod(opt, struct ipoption *);
968 struct mbuf *n;
969 struct ip *ip = mtod(m, struct ip *);
970 unsigned optlen;
971
972 optlen = opt->m_len - sizeof(p->ipopt_dst);
973 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
974 return (m); /* XXX should fail */
975 if (!in_nullhost(p->ipopt_dst))
976 ip->ip_dst = p->ipopt_dst;
977 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
978 MGETHDR(n, M_DONTWAIT, MT_HEADER);
979 if (n == 0)
980 return (m);
981 MCLAIM(n, m->m_owner);
982 M_MOVE_PKTHDR(n, m);
983 m->m_len -= sizeof(struct ip);
984 m->m_data += sizeof(struct ip);
985 n->m_next = m;
986 m = n;
987 m->m_len = optlen + sizeof(struct ip);
988 m->m_data += max_linkhdr;
989 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
990 } else {
991 m->m_data -= optlen;
992 m->m_len += optlen;
993 memmove(mtod(m, void *), ip, sizeof(struct ip));
994 }
995 m->m_pkthdr.len += optlen;
996 ip = mtod(m, struct ip *);
997 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
998 *phlen = sizeof(struct ip) + optlen;
999 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1000 return (m);
1001 }
1002
1003 /*
1004 * Copy options from ip to jp,
1005 * omitting those not copied during fragmentation.
1006 */
1007 int
1008 ip_optcopy(struct ip *ip, struct ip *jp)
1009 {
1010 u_char *cp, *dp;
1011 int opt, optlen, cnt;
1012
1013 cp = (u_char *)(ip + 1);
1014 dp = (u_char *)(jp + 1);
1015 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1016 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1017 opt = cp[0];
1018 if (opt == IPOPT_EOL)
1019 break;
1020 if (opt == IPOPT_NOP) {
1021 /* Preserve for IP mcast tunnel's LSRR alignment. */
1022 *dp++ = IPOPT_NOP;
1023 optlen = 1;
1024 continue;
1025 }
1026
1027 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1028 optlen = cp[IPOPT_OLEN];
1029 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1030
1031 /* Invalid lengths should have been caught by ip_dooptions. */
1032 if (optlen > cnt)
1033 optlen = cnt;
1034 if (IPOPT_COPIED(opt)) {
1035 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1036 dp += optlen;
1037 }
1038 }
1039 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1040 *dp++ = IPOPT_EOL;
1041 return (optlen);
1042 }
1043
1044 /*
1045 * IP socket option processing.
1046 */
1047 int
1048 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1049 {
1050 struct inpcb *inp = sotoinpcb(so);
1051 struct ip *ip = &inp->inp_ip;
1052 int inpflags = inp->inp_flags;
1053 int optval = 0, error = 0;
1054
1055 KASSERT(solocked(so));
1056
1057 if (sopt->sopt_level != IPPROTO_IP) {
1058 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1059 return 0;
1060 return ENOPROTOOPT;
1061 }
1062
1063 switch (op) {
1064 case PRCO_SETOPT:
1065 switch (sopt->sopt_name) {
1066 case IP_OPTIONS:
1067 #ifdef notyet
1068 case IP_RETOPTS:
1069 #endif
1070 error = ip_pcbopts(inp, sopt);
1071 break;
1072
1073 case IP_TOS:
1074 case IP_TTL:
1075 case IP_MINTTL:
1076 case IP_PKTINFO:
1077 case IP_RECVOPTS:
1078 case IP_RECVRETOPTS:
1079 case IP_RECVDSTADDR:
1080 case IP_RECVIF:
1081 case IP_RECVPKTINFO:
1082 case IP_RECVTTL:
1083 error = sockopt_getint(sopt, &optval);
1084 if (error)
1085 break;
1086
1087 switch (sopt->sopt_name) {
1088 case IP_TOS:
1089 ip->ip_tos = optval;
1090 break;
1091
1092 case IP_TTL:
1093 ip->ip_ttl = optval;
1094 break;
1095
1096 case IP_MINTTL:
1097 if (optval > 0 && optval <= MAXTTL)
1098 inp->inp_ip_minttl = optval;
1099 else
1100 error = EINVAL;
1101 break;
1102 #define OPTSET(bit) \
1103 if (optval) \
1104 inpflags |= bit; \
1105 else \
1106 inpflags &= ~bit;
1107
1108 case IP_PKTINFO:
1109 OPTSET(INP_PKTINFO);
1110 break;
1111
1112 case IP_RECVOPTS:
1113 OPTSET(INP_RECVOPTS);
1114 break;
1115
1116 case IP_RECVPKTINFO:
1117 OPTSET(INP_RECVPKTINFO);
1118 break;
1119
1120 case IP_RECVRETOPTS:
1121 OPTSET(INP_RECVRETOPTS);
1122 break;
1123
1124 case IP_RECVDSTADDR:
1125 OPTSET(INP_RECVDSTADDR);
1126 break;
1127
1128 case IP_RECVIF:
1129 OPTSET(INP_RECVIF);
1130 break;
1131
1132 case IP_RECVTTL:
1133 OPTSET(INP_RECVTTL);
1134 break;
1135 }
1136 break;
1137 #undef OPTSET
1138
1139 case IP_MULTICAST_IF:
1140 case IP_MULTICAST_TTL:
1141 case IP_MULTICAST_LOOP:
1142 case IP_ADD_MEMBERSHIP:
1143 case IP_DROP_MEMBERSHIP:
1144 error = ip_setmoptions(&inp->inp_moptions, sopt);
1145 break;
1146
1147 case IP_PORTRANGE:
1148 error = sockopt_getint(sopt, &optval);
1149 if (error)
1150 break;
1151
1152 switch (optval) {
1153 case IP_PORTRANGE_DEFAULT:
1154 case IP_PORTRANGE_HIGH:
1155 inpflags &= ~(INP_LOWPORT);
1156 break;
1157
1158 case IP_PORTRANGE_LOW:
1159 inpflags |= INP_LOWPORT;
1160 break;
1161
1162 default:
1163 error = EINVAL;
1164 break;
1165 }
1166 break;
1167
1168 case IP_PORTALGO:
1169 error = sockopt_getint(sopt, &optval);
1170 if (error)
1171 break;
1172
1173 error = portalgo_algo_index_select(
1174 (struct inpcb_hdr *)inp, optval);
1175 break;
1176
1177 #if defined(IPSEC)
1178 case IP_IPSEC_POLICY:
1179 if (ipsec_enabled) {
1180 error = ipsec4_set_policy(inp, sopt->sopt_name,
1181 sopt->sopt_data, sopt->sopt_size,
1182 curlwp->l_cred);
1183 break;
1184 }
1185 /*FALLTHROUGH*/
1186 #endif /* IPSEC */
1187
1188 default:
1189 error = ENOPROTOOPT;
1190 break;
1191 }
1192 break;
1193
1194 case PRCO_GETOPT:
1195 switch (sopt->sopt_name) {
1196 case IP_OPTIONS:
1197 case IP_RETOPTS: {
1198 struct mbuf *mopts = inp->inp_options;
1199
1200 if (mopts) {
1201 struct mbuf *m;
1202
1203 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1204 if (m == NULL) {
1205 error = ENOBUFS;
1206 break;
1207 }
1208 error = sockopt_setmbuf(sopt, m);
1209 }
1210 break;
1211 }
1212 case IP_PKTINFO:
1213 case IP_TOS:
1214 case IP_TTL:
1215 case IP_MINTTL:
1216 case IP_RECVOPTS:
1217 case IP_RECVRETOPTS:
1218 case IP_RECVDSTADDR:
1219 case IP_RECVIF:
1220 case IP_RECVPKTINFO:
1221 case IP_RECVTTL:
1222 case IP_ERRORMTU:
1223 switch (sopt->sopt_name) {
1224 case IP_TOS:
1225 optval = ip->ip_tos;
1226 break;
1227
1228 case IP_TTL:
1229 optval = ip->ip_ttl;
1230 break;
1231
1232 case IP_MINTTL:
1233 optval = inp->inp_ip_minttl;
1234 break;
1235
1236 case IP_ERRORMTU:
1237 optval = inp->inp_errormtu;
1238 break;
1239
1240 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1241
1242 case IP_PKTINFO:
1243 optval = OPTBIT(INP_PKTINFO);
1244 break;
1245
1246 case IP_RECVOPTS:
1247 optval = OPTBIT(INP_RECVOPTS);
1248 break;
1249
1250 case IP_RECVPKTINFO:
1251 optval = OPTBIT(INP_RECVPKTINFO);
1252 break;
1253
1254 case IP_RECVRETOPTS:
1255 optval = OPTBIT(INP_RECVRETOPTS);
1256 break;
1257
1258 case IP_RECVDSTADDR:
1259 optval = OPTBIT(INP_RECVDSTADDR);
1260 break;
1261
1262 case IP_RECVIF:
1263 optval = OPTBIT(INP_RECVIF);
1264 break;
1265
1266 case IP_RECVTTL:
1267 optval = OPTBIT(INP_RECVTTL);
1268 break;
1269 }
1270 error = sockopt_setint(sopt, optval);
1271 break;
1272
1273 #if 0 /* defined(IPSEC) */
1274 case IP_IPSEC_POLICY:
1275 {
1276 struct mbuf *m = NULL;
1277
1278 /* XXX this will return EINVAL as sopt is empty */
1279 error = ipsec4_get_policy(inp, sopt->sopt_data,
1280 sopt->sopt_size, &m);
1281 if (error == 0)
1282 error = sockopt_setmbuf(sopt, m);
1283 break;
1284 }
1285 #endif /*IPSEC*/
1286
1287 case IP_MULTICAST_IF:
1288 case IP_MULTICAST_TTL:
1289 case IP_MULTICAST_LOOP:
1290 case IP_ADD_MEMBERSHIP:
1291 case IP_DROP_MEMBERSHIP:
1292 error = ip_getmoptions(inp->inp_moptions, sopt);
1293 break;
1294
1295 case IP_PORTRANGE:
1296 if (inpflags & INP_LOWPORT)
1297 optval = IP_PORTRANGE_LOW;
1298 else
1299 optval = IP_PORTRANGE_DEFAULT;
1300 error = sockopt_setint(sopt, optval);
1301 break;
1302
1303 case IP_PORTALGO:
1304 optval = inp->inp_portalgo;
1305 error = sockopt_setint(sopt, optval);
1306 break;
1307
1308 default:
1309 error = ENOPROTOOPT;
1310 break;
1311 }
1312 break;
1313 }
1314
1315 if (!error) {
1316 inp->inp_flags = inpflags;
1317 }
1318 return error;
1319 }
1320
1321 /*
1322 * Set up IP options in pcb for insertion in output packets.
1323 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1324 * with destination address if source routed.
1325 */
1326 static int
1327 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1328 {
1329 struct mbuf *m;
1330 const u_char *cp;
1331 u_char *dp;
1332 int cnt;
1333
1334 KASSERT(inp_locked(inp));
1335
1336 /* Turn off any old options. */
1337 if (inp->inp_options) {
1338 m_free(inp->inp_options);
1339 }
1340 inp->inp_options = NULL;
1341 if ((cnt = sopt->sopt_size) == 0) {
1342 /* Only turning off any previous options. */
1343 return 0;
1344 }
1345 cp = sopt->sopt_data;
1346
1347 #ifndef __vax__
1348 if (cnt % sizeof(int32_t))
1349 return (EINVAL);
1350 #endif
1351
1352 m = m_get(M_DONTWAIT, MT_SOOPTS);
1353 if (m == NULL)
1354 return (ENOBUFS);
1355
1356 dp = mtod(m, u_char *);
1357 memset(dp, 0, sizeof(struct in_addr));
1358 dp += sizeof(struct in_addr);
1359 m->m_len = sizeof(struct in_addr);
1360
1361 /*
1362 * IP option list according to RFC791. Each option is of the form
1363 *
1364 * [optval] [olen] [(olen - 2) data bytes]
1365 *
1366 * We validate the list and copy options to an mbuf for prepending
1367 * to data packets. The IP first-hop destination address will be
1368 * stored before actual options and is zero if unset.
1369 */
1370 while (cnt > 0) {
1371 uint8_t optval, olen, offset;
1372
1373 optval = cp[IPOPT_OPTVAL];
1374
1375 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1376 olen = 1;
1377 } else {
1378 if (cnt < IPOPT_OLEN + 1)
1379 goto bad;
1380
1381 olen = cp[IPOPT_OLEN];
1382 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1383 goto bad;
1384 }
1385
1386 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1387 /*
1388 * user process specifies route as:
1389 * ->A->B->C->D
1390 * D must be our final destination (but we can't
1391 * check that since we may not have connected yet).
1392 * A is first hop destination, which doesn't appear in
1393 * actual IP option, but is stored before the options.
1394 */
1395 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1396 goto bad;
1397
1398 offset = cp[IPOPT_OFFSET];
1399 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1400 sizeof(struct in_addr));
1401
1402 cp += sizeof(struct in_addr);
1403 cnt -= sizeof(struct in_addr);
1404 olen -= sizeof(struct in_addr);
1405
1406 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1407 goto bad;
1408
1409 memcpy(dp, cp, olen);
1410 dp[IPOPT_OPTVAL] = optval;
1411 dp[IPOPT_OLEN] = olen;
1412 dp[IPOPT_OFFSET] = offset;
1413 break;
1414 } else {
1415 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1416 goto bad;
1417
1418 memcpy(dp, cp, olen);
1419 break;
1420 }
1421
1422 dp += olen;
1423 m->m_len += olen;
1424
1425 if (optval == IPOPT_EOL)
1426 break;
1427
1428 cp += olen;
1429 cnt -= olen;
1430 }
1431
1432 inp->inp_options = m;
1433 return 0;
1434 bad:
1435 (void)m_free(m);
1436 return EINVAL;
1437 }
1438
1439 /*
1440 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1441 * Must be called in a pserialize critical section.
1442 */
1443 static struct ifnet *
1444 ip_multicast_if(struct in_addr *a, int *ifindexp)
1445 {
1446 int ifindex;
1447 struct ifnet *ifp = NULL;
1448 struct in_ifaddr *ia;
1449
1450 if (ifindexp)
1451 *ifindexp = 0;
1452 if (ntohl(a->s_addr) >> 24 == 0) {
1453 ifindex = ntohl(a->s_addr) & 0xffffff;
1454 ifp = if_byindex(ifindex);
1455 if (!ifp)
1456 return NULL;
1457 if (ifindexp)
1458 *ifindexp = ifindex;
1459 } else {
1460 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1461 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1462 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1463 ifp = ia->ia_ifp;
1464 if (if_is_deactivated(ifp))
1465 ifp = NULL;
1466 break;
1467 }
1468 }
1469 }
1470 return ifp;
1471 }
1472
1473 static int
1474 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1475 {
1476 u_int tval;
1477 u_char cval;
1478 int error;
1479
1480 if (sopt == NULL)
1481 return EINVAL;
1482
1483 switch (sopt->sopt_size) {
1484 case sizeof(u_char):
1485 error = sockopt_get(sopt, &cval, sizeof(u_char));
1486 tval = cval;
1487 break;
1488
1489 case sizeof(u_int):
1490 error = sockopt_get(sopt, &tval, sizeof(u_int));
1491 break;
1492
1493 default:
1494 error = EINVAL;
1495 }
1496
1497 if (error)
1498 return error;
1499
1500 if (tval > maxval)
1501 return EINVAL;
1502
1503 *val = tval;
1504 return 0;
1505 }
1506
1507 static int
1508 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1509 struct psref *psref, struct in_addr *ia, bool add)
1510 {
1511 int error;
1512 struct ip_mreq mreq;
1513
1514 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1515 if (error)
1516 return error;
1517
1518 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1519 return EINVAL;
1520
1521 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1522
1523 if (in_nullhost(mreq.imr_interface)) {
1524 union {
1525 struct sockaddr dst;
1526 struct sockaddr_in dst4;
1527 } u;
1528 struct route ro;
1529
1530 if (!add) {
1531 *ifp = NULL;
1532 return 0;
1533 }
1534 /*
1535 * If no interface address was provided, use the interface of
1536 * the route to the given multicast address.
1537 */
1538 struct rtentry *rt;
1539 memset(&ro, 0, sizeof(ro));
1540
1541 sockaddr_in_init(&u.dst4, ia, 0);
1542 error = rtcache_setdst(&ro, &u.dst);
1543 if (error != 0)
1544 return error;
1545 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1546 if (*ifp != NULL) {
1547 if (if_is_deactivated(*ifp))
1548 *ifp = NULL;
1549 else
1550 if_acquire(*ifp, psref);
1551 }
1552 rtcache_unref(rt, &ro);
1553 rtcache_free(&ro);
1554 } else {
1555 int s = pserialize_read_enter();
1556 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1557 if (!add && *ifp == NULL) {
1558 pserialize_read_exit(s);
1559 return EADDRNOTAVAIL;
1560 }
1561 if (*ifp != NULL) {
1562 if (if_is_deactivated(*ifp))
1563 *ifp = NULL;
1564 else
1565 if_acquire(*ifp, psref);
1566 }
1567 pserialize_read_exit(s);
1568 }
1569 return 0;
1570 }
1571
1572 /*
1573 * Add a multicast group membership.
1574 * Group must be a valid IP multicast address.
1575 */
1576 static int
1577 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1578 {
1579 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1580 struct in_addr ia;
1581 int i, error, bound;
1582 struct psref psref;
1583
1584 /* imo is protected by solock or referenced only by the caller */
1585
1586 bound = curlwp_bind();
1587 if (sopt->sopt_size == sizeof(struct ip_mreq))
1588 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1589 else
1590 #ifdef INET6
1591 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1592 #else
1593 error = EINVAL;
1594 goto out;
1595 #endif
1596
1597 if (error)
1598 goto out;
1599
1600 /*
1601 * See if we found an interface, and confirm that it
1602 * supports multicast.
1603 */
1604 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1605 error = EADDRNOTAVAIL;
1606 goto out;
1607 }
1608
1609 /*
1610 * See if the membership already exists or if all the
1611 * membership slots are full.
1612 */
1613 for (i = 0; i < imo->imo_num_memberships; ++i) {
1614 if (imo->imo_membership[i]->inm_ifp == ifp &&
1615 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1616 break;
1617 }
1618 if (i < imo->imo_num_memberships) {
1619 error = EADDRINUSE;
1620 goto out;
1621 }
1622
1623 if (i == IP_MAX_MEMBERSHIPS) {
1624 error = ETOOMANYREFS;
1625 goto out;
1626 }
1627
1628 /*
1629 * Everything looks good; add a new record to the multicast
1630 * address list for the given interface.
1631 */
1632 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL) {
1633 error = ENOBUFS;
1634 goto out;
1635 }
1636
1637 ++imo->imo_num_memberships;
1638 error = 0;
1639 out:
1640 if_put(ifp, &psref);
1641 curlwp_bindx(bound);
1642 return error;
1643 }
1644
1645 /*
1646 * Drop a multicast group membership.
1647 * Group must be a valid IP multicast address.
1648 */
1649 static int
1650 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1651 {
1652 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1653 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1654 int i, error, bound;
1655 struct psref psref;
1656
1657 /* imo is protected by solock or referenced only by the caller */
1658
1659 bound = curlwp_bind();
1660 if (sopt->sopt_size == sizeof(struct ip_mreq))
1661 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1662 else
1663 #ifdef INET6
1664 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1665 #else
1666 error = EINVAL;
1667 goto out;
1668 #endif
1669
1670 if (error)
1671 goto out;
1672
1673 /*
1674 * Find the membership in the membership array.
1675 */
1676 for (i = 0; i < imo->imo_num_memberships; ++i) {
1677 if ((ifp == NULL ||
1678 imo->imo_membership[i]->inm_ifp == ifp) &&
1679 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1680 break;
1681 }
1682 if (i == imo->imo_num_memberships) {
1683 error = EADDRNOTAVAIL;
1684 goto out;
1685 }
1686
1687 /*
1688 * Give up the multicast address record to which the
1689 * membership points.
1690 */
1691 in_delmulti(imo->imo_membership[i]);
1692
1693 /*
1694 * Remove the gap in the membership array.
1695 */
1696 for (++i; i < imo->imo_num_memberships; ++i)
1697 imo->imo_membership[i-1] = imo->imo_membership[i];
1698 --imo->imo_num_memberships;
1699 error = 0;
1700 out:
1701 if_put(ifp, &psref);
1702 curlwp_bindx(bound);
1703 return error;
1704 }
1705
1706 /*
1707 * Set the IP multicast options in response to user setsockopt().
1708 */
1709 int
1710 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1711 {
1712 struct ip_moptions *imo = *pimo;
1713 struct in_addr addr;
1714 struct ifnet *ifp;
1715 int ifindex, error = 0;
1716
1717 /* The passed imo isn't NULL, it should be protected by solock */
1718
1719 if (!imo) {
1720 /*
1721 * No multicast option buffer attached to the pcb;
1722 * allocate one and initialize to default values.
1723 */
1724 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1725 if (imo == NULL)
1726 return ENOBUFS;
1727
1728 imo->imo_multicast_if_index = 0;
1729 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1730 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1731 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1732 imo->imo_num_memberships = 0;
1733 *pimo = imo;
1734 }
1735
1736 switch (sopt->sopt_name) {
1737 case IP_MULTICAST_IF: {
1738 int s;
1739 /*
1740 * Select the interface for outgoing multicast packets.
1741 */
1742 error = sockopt_get(sopt, &addr, sizeof(addr));
1743 if (error)
1744 break;
1745
1746 /*
1747 * INADDR_ANY is used to remove a previous selection.
1748 * When no interface is selected, a default one is
1749 * chosen every time a multicast packet is sent.
1750 */
1751 if (in_nullhost(addr)) {
1752 imo->imo_multicast_if_index = 0;
1753 break;
1754 }
1755 /*
1756 * The selected interface is identified by its local
1757 * IP address. Find the interface and confirm that
1758 * it supports multicasting.
1759 */
1760 s = pserialize_read_enter();
1761 ifp = ip_multicast_if(&addr, &ifindex);
1762 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1763 pserialize_read_exit(s);
1764 error = EADDRNOTAVAIL;
1765 break;
1766 }
1767 imo->imo_multicast_if_index = ifp->if_index;
1768 pserialize_read_exit(s);
1769 if (ifindex)
1770 imo->imo_multicast_addr = addr;
1771 else
1772 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1773 break;
1774 }
1775
1776 case IP_MULTICAST_TTL:
1777 /*
1778 * Set the IP time-to-live for outgoing multicast packets.
1779 */
1780 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1781 break;
1782
1783 case IP_MULTICAST_LOOP:
1784 /*
1785 * Set the loopback flag for outgoing multicast packets.
1786 * Must be zero or one.
1787 */
1788 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1789 break;
1790
1791 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1792 error = ip_add_membership(imo, sopt);
1793 break;
1794
1795 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1796 error = ip_drop_membership(imo, sopt);
1797 break;
1798
1799 default:
1800 error = EOPNOTSUPP;
1801 break;
1802 }
1803
1804 /*
1805 * If all options have default values, no need to keep the mbuf.
1806 */
1807 if (imo->imo_multicast_if_index == 0 &&
1808 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1809 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1810 imo->imo_num_memberships == 0) {
1811 kmem_free(imo, sizeof(*imo));
1812 *pimo = NULL;
1813 }
1814
1815 return error;
1816 }
1817
1818 /*
1819 * Return the IP multicast options in response to user getsockopt().
1820 */
1821 int
1822 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1823 {
1824 struct in_addr addr;
1825 uint8_t optval;
1826 int error = 0;
1827
1828 /* imo is protected by solock or refereced only by the caller */
1829
1830 switch (sopt->sopt_name) {
1831 case IP_MULTICAST_IF:
1832 if (imo == NULL || imo->imo_multicast_if_index == 0)
1833 addr = zeroin_addr;
1834 else if (imo->imo_multicast_addr.s_addr) {
1835 /* return the value user has set */
1836 addr = imo->imo_multicast_addr;
1837 } else {
1838 struct ifnet *ifp;
1839 struct in_ifaddr *ia = NULL;
1840 int s = pserialize_read_enter();
1841
1842 ifp = if_byindex(imo->imo_multicast_if_index);
1843 if (ifp != NULL) {
1844 ia = in_get_ia_from_ifp(ifp);
1845 }
1846 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1847 pserialize_read_exit(s);
1848 }
1849 error = sockopt_set(sopt, &addr, sizeof(addr));
1850 break;
1851
1852 case IP_MULTICAST_TTL:
1853 optval = imo ? imo->imo_multicast_ttl
1854 : IP_DEFAULT_MULTICAST_TTL;
1855
1856 error = sockopt_set(sopt, &optval, sizeof(optval));
1857 break;
1858
1859 case IP_MULTICAST_LOOP:
1860 optval = imo ? imo->imo_multicast_loop
1861 : IP_DEFAULT_MULTICAST_LOOP;
1862
1863 error = sockopt_set(sopt, &optval, sizeof(optval));
1864 break;
1865
1866 default:
1867 error = EOPNOTSUPP;
1868 }
1869
1870 return error;
1871 }
1872
1873 /*
1874 * Discard the IP multicast options.
1875 */
1876 void
1877 ip_freemoptions(struct ip_moptions *imo)
1878 {
1879 int i;
1880
1881 /* The owner of imo (inp) should be protected by solock */
1882
1883 if (imo != NULL) {
1884 for (i = 0; i < imo->imo_num_memberships; ++i)
1885 in_delmulti(imo->imo_membership[i]);
1886 kmem_free(imo, sizeof(*imo));
1887 }
1888 }
1889
1890 /*
1891 * Routine called from ip_output() to loop back a copy of an IP multicast
1892 * packet to the input queue of a specified interface. Note that this
1893 * calls the output routine of the loopback "driver", but with an interface
1894 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1895 */
1896 static void
1897 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1898 {
1899 struct ip *ip;
1900 struct mbuf *copym;
1901
1902 copym = m_copypacket(m, M_DONTWAIT);
1903 if (copym != NULL &&
1904 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1905 copym = m_pullup(copym, sizeof(struct ip));
1906 if (copym == NULL)
1907 return;
1908 /*
1909 * We don't bother to fragment if the IP length is greater
1910 * than the interface's MTU. Can this possibly matter?
1911 */
1912 ip = mtod(copym, struct ip *);
1913
1914 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1915 in_delayed_cksum(copym);
1916 copym->m_pkthdr.csum_flags &=
1917 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1918 }
1919
1920 ip->ip_sum = 0;
1921 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1922 #ifndef NET_MPSAFE
1923 KERNEL_LOCK(1, NULL);
1924 #endif
1925 (void)looutput(ifp, copym, sintocsa(dst), NULL);
1926 #ifndef NET_MPSAFE
1927 KERNEL_UNLOCK_ONE(NULL);
1928 #endif
1929 }
1930
1931 /*
1932 * Ensure sending address is valid.
1933 * Returns 0 on success, -1 if an error should be sent back or 1
1934 * if the packet could be dropped without error (protocol dependent).
1935 */
1936 static int
1937 ip_ifaddrvalid(const struct in_ifaddr *ia)
1938 {
1939
1940 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
1941 return 0;
1942
1943 if (ia->ia4_flags & IN_IFF_DUPLICATED)
1944 return -1;
1945 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
1946 return 1;
1947
1948 return 0;
1949 }
1950