Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.282
      1 /*	$NetBSD: ip_output.c,v 1.282 2017/07/04 10:25:45 roy Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.282 2017/07/04 10:25:45 roy Exp $");
     95 
     96 #ifdef _KERNEL_OPT
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mpls.h"
    102 #endif
    103 
    104 #include "arp.h"
    105 
    106 #include <sys/param.h>
    107 #include <sys/kmem.h>
    108 #include <sys/mbuf.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/kauth.h>
    112 #include <sys/systm.h>
    113 #include <sys/syslog.h>
    114 
    115 #include <net/if.h>
    116 #include <net/if_types.h>
    117 #include <net/route.h>
    118 #include <net/pfil.h>
    119 
    120 #include <netinet/in.h>
    121 #include <netinet/in_systm.h>
    122 #include <netinet/ip.h>
    123 #include <netinet/in_pcb.h>
    124 #include <netinet/in_var.h>
    125 #include <netinet/ip_var.h>
    126 #include <netinet/ip_private.h>
    127 #include <netinet/in_offload.h>
    128 #include <netinet/portalgo.h>
    129 #include <netinet/udp.h>
    130 
    131 #ifdef INET6
    132 #include <netinet6/ip6_var.h>
    133 #endif
    134 
    135 #ifdef MROUTING
    136 #include <netinet/ip_mroute.h>
    137 #endif
    138 
    139 #ifdef IPSEC
    140 #include <netipsec/ipsec.h>
    141 #include <netipsec/key.h>
    142 #endif
    143 
    144 #ifdef MPLS
    145 #include <netmpls/mpls.h>
    146 #include <netmpls/mpls_var.h>
    147 #endif
    148 
    149 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    150 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    151 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    152 static void ip_mloopback(struct ifnet *, struct mbuf *,
    153     const struct sockaddr_in *);
    154 static int ip_ifaddrvalid(const struct in_ifaddr *);
    155 
    156 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    157 
    158 int	ip_do_loopback_cksum = 0;
    159 
    160 static int
    161 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
    162     const struct rtentry *rt)
    163 {
    164 	int error = 0;
    165 #ifdef MPLS
    166 	union mpls_shim msh;
    167 
    168 	if (rt == NULL || rt_gettag(rt) == NULL ||
    169 	    rt_gettag(rt)->sa_family != AF_MPLS ||
    170 	    (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
    171 	    ifp->if_type != IFT_ETHER)
    172 		return 0;
    173 
    174 	msh.s_addr = MPLS_GETSADDR(rt);
    175 	if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    176 		struct m_tag *mtag;
    177 		/*
    178 		 * XXX tentative solution to tell ether_output
    179 		 * it's MPLS. Need some more efficient solution.
    180 		 */
    181 		mtag = m_tag_get(PACKET_TAG_MPLS,
    182 		    sizeof(int) /* dummy */,
    183 		    M_NOWAIT);
    184 		if (mtag == NULL)
    185 			return ENOMEM;
    186 		m_tag_prepend(m, mtag);
    187 	}
    188 #endif
    189 	return error;
    190 }
    191 
    192 /*
    193  * Send an IP packet to a host.
    194  */
    195 int
    196 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
    197     const struct sockaddr * const dst, const struct rtentry *rt)
    198 {
    199 	int error = 0;
    200 
    201 	if (rt != NULL) {
    202 		error = rt_check_reject_route(rt, ifp);
    203 		if (error != 0) {
    204 			m_freem(m);
    205 			return error;
    206 		}
    207 	}
    208 
    209 	error = ip_mark_mpls(ifp, m, rt);
    210 	if (error != 0) {
    211 		m_freem(m);
    212 		return error;
    213 	}
    214 
    215 	error = if_output_lock(ifp, ifp, m, dst, rt);
    216 
    217 	return error;
    218 }
    219 
    220 /*
    221  * IP output.  The packet in mbuf chain m contains a skeletal IP
    222  * header (with len, off, ttl, proto, tos, src, dst).
    223  * The mbuf chain containing the packet will be freed.
    224  * The mbuf opt, if present, will not be freed.
    225  */
    226 int
    227 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
    228     struct ip_moptions *imo, struct inpcb *inp)
    229 {
    230 	struct rtentry *rt;
    231 	struct ip *ip;
    232 	struct ifnet *ifp, *mifp = NULL;
    233 	struct mbuf *m = m0;
    234 	int hlen = sizeof (struct ip);
    235 	int len, error = 0;
    236 	struct route iproute;
    237 	const struct sockaddr_in *dst;
    238 	struct in_ifaddr *ia = NULL;
    239 	struct ifaddr *ifa;
    240 	int isbroadcast;
    241 	int sw_csum;
    242 	u_long mtu;
    243 	bool natt_frag = false;
    244 	bool rtmtu_nolock;
    245 	union {
    246 		struct sockaddr		sa;
    247 		struct sockaddr_in	sin;
    248 	} udst, usrc;
    249 	struct sockaddr *rdst = &udst.sa;	/* real IP destination, as
    250 						 * opposed to the nexthop
    251 						 */
    252 	struct psref psref, psref_ia;
    253 	int bound;
    254 	bool bind_need_restore = false;
    255 
    256 	len = 0;
    257 
    258 	MCLAIM(m, &ip_tx_mowner);
    259 
    260 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    261 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    262 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    263 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    264 
    265 	if (opt) {
    266 		m = ip_insertoptions(m, opt, &len);
    267 		if (len >= sizeof(struct ip))
    268 			hlen = len;
    269 	}
    270 	ip = mtod(m, struct ip *);
    271 
    272 	/*
    273 	 * Fill in IP header.
    274 	 */
    275 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    276 		ip->ip_v = IPVERSION;
    277 		ip->ip_off = htons(0);
    278 		/* ip->ip_id filled in after we find out source ia */
    279 		ip->ip_hl = hlen >> 2;
    280 		IP_STATINC(IP_STAT_LOCALOUT);
    281 	} else {
    282 		hlen = ip->ip_hl << 2;
    283 	}
    284 
    285 	/*
    286 	 * Route packet.
    287 	 */
    288 	if (ro == NULL) {
    289 		memset(&iproute, 0, sizeof(iproute));
    290 		ro = &iproute;
    291 	}
    292 	sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
    293 	dst = satocsin(rtcache_getdst(ro));
    294 
    295 	/*
    296 	 * If there is a cached route, check that it is to the same
    297 	 * destination and is still up.  If not, free it and try again.
    298 	 * The address family should also be checked in case of sharing
    299 	 * the cache with IPv6.
    300 	 */
    301 	if (dst && (dst->sin_family != AF_INET ||
    302 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    303 		rtcache_free(ro);
    304 
    305 	if ((rt = rtcache_validate(ro)) == NULL &&
    306 	    (rt = rtcache_update(ro, 1)) == NULL) {
    307 		dst = &udst.sin;
    308 		error = rtcache_setdst(ro, &udst.sa);
    309 		if (error != 0)
    310 			goto bad;
    311 	}
    312 
    313 	bound = curlwp_bind();
    314 	bind_need_restore = true;
    315 	/*
    316 	 * If routing to interface only, short circuit routing lookup.
    317 	 */
    318 	if (flags & IP_ROUTETOIF) {
    319 		ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
    320 		if (ifa == NULL) {
    321 			IP_STATINC(IP_STAT_NOROUTE);
    322 			error = ENETUNREACH;
    323 			goto bad;
    324 		}
    325 		/* ia is already referenced by psref_ia */
    326 		ia = ifatoia(ifa);
    327 
    328 		ifp = ia->ia_ifp;
    329 		mtu = ifp->if_mtu;
    330 		ip->ip_ttl = 1;
    331 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    332 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    333 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    334 	    imo != NULL && imo->imo_multicast_if_index != 0) {
    335 		ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
    336 		if (ifp == NULL) {
    337 			IP_STATINC(IP_STAT_NOROUTE);
    338 			error = ENETUNREACH;
    339 			goto bad;
    340 		}
    341 		mtu = ifp->if_mtu;
    342 		ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
    343 		if (ia == NULL) {
    344 			error = EADDRNOTAVAIL;
    345 			goto bad;
    346 		}
    347 		isbroadcast = 0;
    348 	} else {
    349 		if (rt == NULL)
    350 			rt = rtcache_init(ro);
    351 		if (rt == NULL) {
    352 			IP_STATINC(IP_STAT_NOROUTE);
    353 			error = EHOSTUNREACH;
    354 			goto bad;
    355 		}
    356 		if (ifa_is_destroying(rt->rt_ifa)) {
    357 			rtcache_unref(rt, ro);
    358 			rt = NULL;
    359 			IP_STATINC(IP_STAT_NOROUTE);
    360 			error = EHOSTUNREACH;
    361 			goto bad;
    362 		}
    363 		ifa_acquire(rt->rt_ifa, &psref_ia);
    364 		ia = ifatoia(rt->rt_ifa);
    365 		ifp = rt->rt_ifp;
    366 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    367 			mtu = ifp->if_mtu;
    368 		rt->rt_use++;
    369 		if (rt->rt_flags & RTF_GATEWAY)
    370 			dst = satosin(rt->rt_gateway);
    371 		if (rt->rt_flags & RTF_HOST)
    372 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    373 		else
    374 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    375 	}
    376 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    377 
    378 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    379 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    380 		bool inmgroup;
    381 
    382 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    383 		    M_BCAST : M_MCAST;
    384 		/*
    385 		 * See if the caller provided any multicast options
    386 		 */
    387 		if (imo != NULL)
    388 			ip->ip_ttl = imo->imo_multicast_ttl;
    389 		else
    390 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    391 
    392 		/*
    393 		 * if we don't know the outgoing ifp yet, we can't generate
    394 		 * output
    395 		 */
    396 		if (!ifp) {
    397 			IP_STATINC(IP_STAT_NOROUTE);
    398 			error = ENETUNREACH;
    399 			goto bad;
    400 		}
    401 
    402 		/*
    403 		 * If the packet is multicast or broadcast, confirm that
    404 		 * the outgoing interface can transmit it.
    405 		 */
    406 		if (((m->m_flags & M_MCAST) &&
    407 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    408 		    ((m->m_flags & M_BCAST) &&
    409 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    410 			IP_STATINC(IP_STAT_NOROUTE);
    411 			error = ENETUNREACH;
    412 			goto bad;
    413 		}
    414 		/*
    415 		 * If source address not specified yet, use an address
    416 		 * of outgoing interface.
    417 		 */
    418 		if (in_nullhost(ip->ip_src)) {
    419 			struct in_ifaddr *xia;
    420 			struct ifaddr *xifa;
    421 			struct psref _psref;
    422 
    423 			xia = in_get_ia_from_ifp_psref(ifp, &_psref);
    424 			if (!xia) {
    425 				error = EADDRNOTAVAIL;
    426 				goto bad;
    427 			}
    428 			xifa = &xia->ia_ifa;
    429 			if (xifa->ifa_getifa != NULL) {
    430 				ia4_release(xia, &_psref);
    431 				/* FIXME ifa_getifa is NOMPSAFE */
    432 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    433 				if (xia == NULL) {
    434 					error = EADDRNOTAVAIL;
    435 					goto bad;
    436 				}
    437 				ia4_acquire(xia, &_psref);
    438 			}
    439 			ip->ip_src = xia->ia_addr.sin_addr;
    440 			ia4_release(xia, &_psref);
    441 		}
    442 
    443 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    444 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    445 			/*
    446 			 * If we belong to the destination multicast group
    447 			 * on the outgoing interface, and the caller did not
    448 			 * forbid loopback, loop back a copy.
    449 			 */
    450 			ip_mloopback(ifp, m, &udst.sin);
    451 		}
    452 #ifdef MROUTING
    453 		else {
    454 			/*
    455 			 * If we are acting as a multicast router, perform
    456 			 * multicast forwarding as if the packet had just
    457 			 * arrived on the interface to which we are about
    458 			 * to send.  The multicast forwarding function
    459 			 * recursively calls this function, using the
    460 			 * IP_FORWARDING flag to prevent infinite recursion.
    461 			 *
    462 			 * Multicasts that are looped back by ip_mloopback(),
    463 			 * above, will be forwarded by the ip_input() routine,
    464 			 * if necessary.
    465 			 */
    466 			extern struct socket *ip_mrouter;
    467 
    468 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    469 				if (ip_mforward(m, ifp) != 0) {
    470 					m_freem(m);
    471 					goto done;
    472 				}
    473 			}
    474 		}
    475 #endif
    476 		/*
    477 		 * Multicasts with a time-to-live of zero may be looped-
    478 		 * back, above, but must not be transmitted on a network.
    479 		 * Also, multicasts addressed to the loopback interface
    480 		 * are not sent -- the above call to ip_mloopback() will
    481 		 * loop back a copy if this host actually belongs to the
    482 		 * destination group on the loopback interface.
    483 		 */
    484 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    485 			m_freem(m);
    486 			goto done;
    487 		}
    488 		goto sendit;
    489 	}
    490 
    491 	/*
    492 	 * If source address not specified yet, use address
    493 	 * of outgoing interface.
    494 	 */
    495 	if (in_nullhost(ip->ip_src)) {
    496 		struct ifaddr *xifa;
    497 
    498 		xifa = &ia->ia_ifa;
    499 		if (xifa->ifa_getifa != NULL) {
    500 			ia4_release(ia, &psref_ia);
    501 			/* FIXME ifa_getifa is NOMPSAFE */
    502 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    503 			if (ia == NULL) {
    504 				error = EADDRNOTAVAIL;
    505 				goto bad;
    506 			}
    507 			ia4_acquire(ia, &psref_ia);
    508 		}
    509 		ip->ip_src = ia->ia_addr.sin_addr;
    510 	}
    511 
    512 	/*
    513 	 * packets with Class-D address as source are not valid per
    514 	 * RFC 1112
    515 	 */
    516 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    517 		IP_STATINC(IP_STAT_ODROPPED);
    518 		error = EADDRNOTAVAIL;
    519 		goto bad;
    520 	}
    521 
    522 	/*
    523 	 * Look for broadcast address and and verify user is allowed to
    524 	 * send such a packet.
    525 	 */
    526 	if (isbroadcast) {
    527 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    528 			error = EADDRNOTAVAIL;
    529 			goto bad;
    530 		}
    531 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    532 			error = EACCES;
    533 			goto bad;
    534 		}
    535 		/* don't allow broadcast messages to be fragmented */
    536 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    537 			error = EMSGSIZE;
    538 			goto bad;
    539 		}
    540 		m->m_flags |= M_BCAST;
    541 	} else
    542 		m->m_flags &= ~M_BCAST;
    543 
    544 sendit:
    545 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    546 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    547 			ip->ip_id = 0;
    548 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    549 			ip->ip_id = ip_newid(ia);
    550 		} else {
    551 
    552 			/*
    553 			 * TSO capable interfaces (typically?) increment
    554 			 * ip_id for each segment.
    555 			 * "allocate" enough ids here to increase the chance
    556 			 * for them to be unique.
    557 			 *
    558 			 * note that the following calculation is not
    559 			 * needed to be precise.  wasting some ip_id is fine.
    560 			 */
    561 
    562 			unsigned int segsz = m->m_pkthdr.segsz;
    563 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    564 			unsigned int num = howmany(datasz, segsz);
    565 
    566 			ip->ip_id = ip_newid_range(ia, num);
    567 		}
    568 	}
    569 	if (ia != NULL) {
    570 		ia4_release(ia, &psref_ia);
    571 		ia = NULL;
    572 	}
    573 
    574 	/*
    575 	 * If we're doing Path MTU Discovery, we need to set DF unless
    576 	 * the route's MTU is locked.
    577 	 */
    578 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    579 		ip->ip_off |= htons(IP_DF);
    580 	}
    581 
    582 #ifdef IPSEC
    583 	if (ipsec_used) {
    584 		bool ipsec_done = false;
    585 
    586 		/* Perform IPsec processing, if any. */
    587 		error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
    588 		    &ipsec_done);
    589 		if (error || ipsec_done)
    590 			goto done;
    591 	}
    592 #endif
    593 
    594 	/*
    595 	 * Run through list of hooks for output packets.
    596 	 */
    597 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    598 	if (error)
    599 		goto done;
    600 	if (m == NULL)
    601 		goto done;
    602 
    603 	ip = mtod(m, struct ip *);
    604 	hlen = ip->ip_hl << 2;
    605 
    606 	m->m_pkthdr.csum_data |= hlen << 16;
    607 
    608 	/*
    609 	 * search for the source address structure to
    610 	 * maintain output statistics, and verify address
    611 	 * validity
    612 	 */
    613 	KASSERT(ia == NULL);
    614 	sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
    615 	ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
    616 	if (ifa != NULL)
    617 		ia = ifatoia(ifa);
    618 
    619 	/*
    620 	 * Ensure we only send from a valid address.
    621 	 * A NULL address is valid because the packet could be
    622 	 * generated from a packet filter.
    623 	 */
    624 	if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
    625 	    (error = ip_ifaddrvalid(ia)) != 0)
    626 	{
    627 		ARPLOG(LOG_ERR,
    628 		    "refusing to send from invalid address %s (pid %d)\n",
    629 		    ARPLOGADDR(&ip->ip_src), curproc->p_pid);
    630 		IP_STATINC(IP_STAT_ODROPPED);
    631 		if (error == 1)
    632 			/*
    633 			 * Address exists, but is tentative or detached.
    634 			 * We can't send from it because it's invalid,
    635 			 * so we drop the packet.
    636 			 */
    637 			error = 0;
    638 		else
    639 			error = EADDRNOTAVAIL;
    640 		goto bad;
    641 	}
    642 
    643 	/* Maybe skip checksums on loopback interfaces. */
    644 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    645 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    646 	}
    647 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    648 	/*
    649 	 * If small enough for mtu of path, or if using TCP segmentation
    650 	 * offload, can just send directly.
    651 	 */
    652 	if (ntohs(ip->ip_len) <= mtu ||
    653 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    654 		const struct sockaddr *sa;
    655 
    656 #if IFA_STATS
    657 		if (ia)
    658 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    659 #endif
    660 		/*
    661 		 * Always initialize the sum to 0!  Some HW assisted
    662 		 * checksumming requires this.
    663 		 */
    664 		ip->ip_sum = 0;
    665 
    666 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    667 			/*
    668 			 * Perform any checksums that the hardware can't do
    669 			 * for us.
    670 			 *
    671 			 * XXX Does any hardware require the {th,uh}_sum
    672 			 * XXX fields to be 0?
    673 			 */
    674 			if (sw_csum & M_CSUM_IPv4) {
    675 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    676 				ip->ip_sum = in_cksum(m, hlen);
    677 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    678 			}
    679 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    680 				if (IN_NEED_CHECKSUM(ifp,
    681 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    682 					in_delayed_cksum(m);
    683 				}
    684 				m->m_pkthdr.csum_flags &=
    685 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    686 			}
    687 		}
    688 
    689 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    690 		if (__predict_true(
    691 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    692 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    693 			error = ip_if_output(ifp, m, sa, rt);
    694 		} else {
    695 			error = ip_tso_output(ifp, m, sa, rt);
    696 		}
    697 		goto done;
    698 	}
    699 
    700 	/*
    701 	 * We can't use HW checksumming if we're about to
    702 	 * fragment the packet.
    703 	 *
    704 	 * XXX Some hardware can do this.
    705 	 */
    706 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    707 		if (IN_NEED_CHECKSUM(ifp,
    708 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    709 			in_delayed_cksum(m);
    710 		}
    711 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    712 	}
    713 
    714 	/*
    715 	 * Too large for interface; fragment if possible.
    716 	 * Must be able to put at least 8 bytes per fragment.
    717 	 */
    718 	if (ntohs(ip->ip_off) & IP_DF) {
    719 		if (flags & IP_RETURNMTU) {
    720 			KASSERT(inp != NULL);
    721 			inp->inp_errormtu = mtu;
    722 		}
    723 		error = EMSGSIZE;
    724 		IP_STATINC(IP_STAT_CANTFRAG);
    725 		goto bad;
    726 	}
    727 
    728 	error = ip_fragment(m, ifp, mtu);
    729 	if (error) {
    730 		m = NULL;
    731 		goto bad;
    732 	}
    733 
    734 	for (; m; m = m0) {
    735 		m0 = m->m_nextpkt;
    736 		m->m_nextpkt = 0;
    737 		if (error) {
    738 			m_freem(m);
    739 			continue;
    740 		}
    741 #if IFA_STATS
    742 		if (ia)
    743 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    744 #endif
    745 		/*
    746 		 * If we get there, the packet has not been handled by
    747 		 * IPsec whereas it should have. Now that it has been
    748 		 * fragmented, re-inject it in ip_output so that IPsec
    749 		 * processing can occur.
    750 		 */
    751 		if (natt_frag) {
    752 			error = ip_output(m, opt, ro,
    753 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    754 			    imo, inp);
    755 		} else {
    756 			KASSERT((m->m_pkthdr.csum_flags &
    757 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    758 			error = ip_if_output(ifp, m,
    759 			    (m->m_flags & M_MCAST) ?
    760 			    sintocsa(rdst) : sintocsa(dst), rt);
    761 		}
    762 	}
    763 	if (error == 0) {
    764 		IP_STATINC(IP_STAT_FRAGMENTED);
    765 	}
    766 done:
    767 	ia4_release(ia, &psref_ia);
    768 	rtcache_unref(rt, ro);
    769 	if (ro == &iproute) {
    770 		rtcache_free(&iproute);
    771 	}
    772 	if (mifp != NULL) {
    773 		if_put(mifp, &psref);
    774 	}
    775 	if (bind_need_restore)
    776 		curlwp_bindx(bound);
    777 	return error;
    778 bad:
    779 	m_freem(m);
    780 	goto done;
    781 }
    782 
    783 int
    784 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    785 {
    786 	struct ip *ip, *mhip;
    787 	struct mbuf *m0;
    788 	int len, hlen, off;
    789 	int mhlen, firstlen;
    790 	struct mbuf **mnext;
    791 	int sw_csum = m->m_pkthdr.csum_flags;
    792 	int fragments = 0;
    793 	int error = 0;
    794 
    795 	ip = mtod(m, struct ip *);
    796 	hlen = ip->ip_hl << 2;
    797 	if (ifp != NULL)
    798 		sw_csum &= ~ifp->if_csum_flags_tx;
    799 
    800 	len = (mtu - hlen) &~ 7;
    801 	if (len < 8) {
    802 		m_freem(m);
    803 		return (EMSGSIZE);
    804 	}
    805 
    806 	firstlen = len;
    807 	mnext = &m->m_nextpkt;
    808 
    809 	/*
    810 	 * Loop through length of segment after first fragment,
    811 	 * make new header and copy data of each part and link onto chain.
    812 	 */
    813 	m0 = m;
    814 	mhlen = sizeof (struct ip);
    815 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    816 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    817 		if (m == 0) {
    818 			error = ENOBUFS;
    819 			IP_STATINC(IP_STAT_ODROPPED);
    820 			goto sendorfree;
    821 		}
    822 		MCLAIM(m, m0->m_owner);
    823 		*mnext = m;
    824 		mnext = &m->m_nextpkt;
    825 		m->m_data += max_linkhdr;
    826 		mhip = mtod(m, struct ip *);
    827 		*mhip = *ip;
    828 		/* we must inherit MCAST and BCAST flags */
    829 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    830 		if (hlen > sizeof (struct ip)) {
    831 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    832 			mhip->ip_hl = mhlen >> 2;
    833 		}
    834 		m->m_len = mhlen;
    835 		mhip->ip_off = ((off - hlen) >> 3) +
    836 		    (ntohs(ip->ip_off) & ~IP_MF);
    837 		if (ip->ip_off & htons(IP_MF))
    838 			mhip->ip_off |= IP_MF;
    839 		if (off + len >= ntohs(ip->ip_len))
    840 			len = ntohs(ip->ip_len) - off;
    841 		else
    842 			mhip->ip_off |= IP_MF;
    843 		HTONS(mhip->ip_off);
    844 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    845 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    846 		if (m->m_next == 0) {
    847 			error = ENOBUFS;	/* ??? */
    848 			IP_STATINC(IP_STAT_ODROPPED);
    849 			goto sendorfree;
    850 		}
    851 		m->m_pkthdr.len = mhlen + len;
    852 		m_reset_rcvif(m);
    853 		mhip->ip_sum = 0;
    854 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    855 		if (sw_csum & M_CSUM_IPv4) {
    856 			mhip->ip_sum = in_cksum(m, mhlen);
    857 		} else {
    858 			/*
    859 			 * checksum is hw-offloaded or not necessary.
    860 			 */
    861 			m->m_pkthdr.csum_flags |=
    862 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    863 			m->m_pkthdr.csum_data |= mhlen << 16;
    864 			KASSERT(!(ifp != NULL &&
    865 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    866 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    867 		}
    868 		IP_STATINC(IP_STAT_OFRAGMENTS);
    869 		fragments++;
    870 	}
    871 	/*
    872 	 * Update first fragment by trimming what's been copied out
    873 	 * and updating header, then send each fragment (in order).
    874 	 */
    875 	m = m0;
    876 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    877 	m->m_pkthdr.len = hlen + firstlen;
    878 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    879 	ip->ip_off |= htons(IP_MF);
    880 	ip->ip_sum = 0;
    881 	if (sw_csum & M_CSUM_IPv4) {
    882 		ip->ip_sum = in_cksum(m, hlen);
    883 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    884 	} else {
    885 		/*
    886 		 * checksum is hw-offloaded or not necessary.
    887 		 */
    888 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    889 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    890 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    891 		    sizeof(struct ip));
    892 	}
    893 sendorfree:
    894 	/*
    895 	 * If there is no room for all the fragments, don't queue
    896 	 * any of them.
    897 	 */
    898 	if (ifp != NULL) {
    899 		IFQ_LOCK(&ifp->if_snd);
    900 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    901 		    error == 0) {
    902 			error = ENOBUFS;
    903 			IP_STATINC(IP_STAT_ODROPPED);
    904 			IFQ_INC_DROPS(&ifp->if_snd);
    905 		}
    906 		IFQ_UNLOCK(&ifp->if_snd);
    907 	}
    908 	if (error) {
    909 		for (m = m0; m; m = m0) {
    910 			m0 = m->m_nextpkt;
    911 			m->m_nextpkt = NULL;
    912 			m_freem(m);
    913 		}
    914 	}
    915 	return (error);
    916 }
    917 
    918 /*
    919  * Process a delayed payload checksum calculation.
    920  */
    921 void
    922 in_delayed_cksum(struct mbuf *m)
    923 {
    924 	struct ip *ip;
    925 	u_int16_t csum, offset;
    926 
    927 	ip = mtod(m, struct ip *);
    928 	offset = ip->ip_hl << 2;
    929 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    930 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    931 		csum = 0xffff;
    932 
    933 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    934 
    935 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    936 		/* This happen when ip options were inserted
    937 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    938 		    m->m_len, offset, ip->ip_p);
    939 		 */
    940 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    941 	} else
    942 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    943 }
    944 
    945 /*
    946  * Determine the maximum length of the options to be inserted;
    947  * we would far rather allocate too much space rather than too little.
    948  */
    949 
    950 u_int
    951 ip_optlen(struct inpcb *inp)
    952 {
    953 	struct mbuf *m = inp->inp_options;
    954 
    955 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    956 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    957 	}
    958 	return 0;
    959 }
    960 
    961 /*
    962  * Insert IP options into preformed packet.
    963  * Adjust IP destination as required for IP source routing,
    964  * as indicated by a non-zero in_addr at the start of the options.
    965  */
    966 static struct mbuf *
    967 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    968 {
    969 	struct ipoption *p = mtod(opt, struct ipoption *);
    970 	struct mbuf *n;
    971 	struct ip *ip = mtod(m, struct ip *);
    972 	unsigned optlen;
    973 
    974 	optlen = opt->m_len - sizeof(p->ipopt_dst);
    975 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
    976 		return (m);		/* XXX should fail */
    977 	if (!in_nullhost(p->ipopt_dst))
    978 		ip->ip_dst = p->ipopt_dst;
    979 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
    980 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
    981 		if (n == 0)
    982 			return (m);
    983 		MCLAIM(n, m->m_owner);
    984 		M_MOVE_PKTHDR(n, m);
    985 		m->m_len -= sizeof(struct ip);
    986 		m->m_data += sizeof(struct ip);
    987 		n->m_next = m;
    988 		m = n;
    989 		m->m_len = optlen + sizeof(struct ip);
    990 		m->m_data += max_linkhdr;
    991 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
    992 	} else {
    993 		m->m_data -= optlen;
    994 		m->m_len += optlen;
    995 		memmove(mtod(m, void *), ip, sizeof(struct ip));
    996 	}
    997 	m->m_pkthdr.len += optlen;
    998 	ip = mtod(m, struct ip *);
    999 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1000 	*phlen = sizeof(struct ip) + optlen;
   1001 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1002 	return (m);
   1003 }
   1004 
   1005 /*
   1006  * Copy options from ip to jp,
   1007  * omitting those not copied during fragmentation.
   1008  */
   1009 int
   1010 ip_optcopy(struct ip *ip, struct ip *jp)
   1011 {
   1012 	u_char *cp, *dp;
   1013 	int opt, optlen, cnt;
   1014 
   1015 	cp = (u_char *)(ip + 1);
   1016 	dp = (u_char *)(jp + 1);
   1017 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1018 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1019 		opt = cp[0];
   1020 		if (opt == IPOPT_EOL)
   1021 			break;
   1022 		if (opt == IPOPT_NOP) {
   1023 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1024 			*dp++ = IPOPT_NOP;
   1025 			optlen = 1;
   1026 			continue;
   1027 		}
   1028 
   1029 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
   1030 		optlen = cp[IPOPT_OLEN];
   1031 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
   1032 
   1033 		/* Invalid lengths should have been caught by ip_dooptions. */
   1034 		if (optlen > cnt)
   1035 			optlen = cnt;
   1036 		if (IPOPT_COPIED(opt)) {
   1037 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1038 			dp += optlen;
   1039 		}
   1040 	}
   1041 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1042 		*dp++ = IPOPT_EOL;
   1043 	return (optlen);
   1044 }
   1045 
   1046 /*
   1047  * IP socket option processing.
   1048  */
   1049 int
   1050 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1051 {
   1052 	struct inpcb *inp = sotoinpcb(so);
   1053 	struct ip *ip = &inp->inp_ip;
   1054 	int inpflags = inp->inp_flags;
   1055 	int optval = 0, error = 0;
   1056 
   1057 	KASSERT(solocked(so));
   1058 
   1059 	if (sopt->sopt_level != IPPROTO_IP) {
   1060 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1061 			return 0;
   1062 		return ENOPROTOOPT;
   1063 	}
   1064 
   1065 	switch (op) {
   1066 	case PRCO_SETOPT:
   1067 		switch (sopt->sopt_name) {
   1068 		case IP_OPTIONS:
   1069 #ifdef notyet
   1070 		case IP_RETOPTS:
   1071 #endif
   1072 			error = ip_pcbopts(inp, sopt);
   1073 			break;
   1074 
   1075 		case IP_TOS:
   1076 		case IP_TTL:
   1077 		case IP_MINTTL:
   1078 		case IP_PKTINFO:
   1079 		case IP_RECVOPTS:
   1080 		case IP_RECVRETOPTS:
   1081 		case IP_RECVDSTADDR:
   1082 		case IP_RECVIF:
   1083 		case IP_RECVPKTINFO:
   1084 		case IP_RECVTTL:
   1085 			error = sockopt_getint(sopt, &optval);
   1086 			if (error)
   1087 				break;
   1088 
   1089 			switch (sopt->sopt_name) {
   1090 			case IP_TOS:
   1091 				ip->ip_tos = optval;
   1092 				break;
   1093 
   1094 			case IP_TTL:
   1095 				ip->ip_ttl = optval;
   1096 				break;
   1097 
   1098 			case IP_MINTTL:
   1099 				if (optval > 0 && optval <= MAXTTL)
   1100 					inp->inp_ip_minttl = optval;
   1101 				else
   1102 					error = EINVAL;
   1103 				break;
   1104 #define	OPTSET(bit) \
   1105 	if (optval) \
   1106 		inpflags |= bit; \
   1107 	else \
   1108 		inpflags &= ~bit;
   1109 
   1110 			case IP_PKTINFO:
   1111 				OPTSET(INP_PKTINFO);
   1112 				break;
   1113 
   1114 			case IP_RECVOPTS:
   1115 				OPTSET(INP_RECVOPTS);
   1116 				break;
   1117 
   1118 			case IP_RECVPKTINFO:
   1119 				OPTSET(INP_RECVPKTINFO);
   1120 				break;
   1121 
   1122 			case IP_RECVRETOPTS:
   1123 				OPTSET(INP_RECVRETOPTS);
   1124 				break;
   1125 
   1126 			case IP_RECVDSTADDR:
   1127 				OPTSET(INP_RECVDSTADDR);
   1128 				break;
   1129 
   1130 			case IP_RECVIF:
   1131 				OPTSET(INP_RECVIF);
   1132 				break;
   1133 
   1134 			case IP_RECVTTL:
   1135 				OPTSET(INP_RECVTTL);
   1136 				break;
   1137 			}
   1138 		break;
   1139 #undef OPTSET
   1140 
   1141 		case IP_MULTICAST_IF:
   1142 		case IP_MULTICAST_TTL:
   1143 		case IP_MULTICAST_LOOP:
   1144 		case IP_ADD_MEMBERSHIP:
   1145 		case IP_DROP_MEMBERSHIP:
   1146 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1147 			break;
   1148 
   1149 		case IP_PORTRANGE:
   1150 			error = sockopt_getint(sopt, &optval);
   1151 			if (error)
   1152 				break;
   1153 
   1154 			switch (optval) {
   1155 			case IP_PORTRANGE_DEFAULT:
   1156 			case IP_PORTRANGE_HIGH:
   1157 				inpflags &= ~(INP_LOWPORT);
   1158 				break;
   1159 
   1160 			case IP_PORTRANGE_LOW:
   1161 				inpflags |= INP_LOWPORT;
   1162 				break;
   1163 
   1164 			default:
   1165 				error = EINVAL;
   1166 				break;
   1167 			}
   1168 			break;
   1169 
   1170 		case IP_PORTALGO:
   1171 			error = sockopt_getint(sopt, &optval);
   1172 			if (error)
   1173 				break;
   1174 
   1175 			error = portalgo_algo_index_select(
   1176 			    (struct inpcb_hdr *)inp, optval);
   1177 			break;
   1178 
   1179 #if defined(IPSEC)
   1180 		case IP_IPSEC_POLICY:
   1181 			if (ipsec_enabled) {
   1182 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1183 				    sopt->sopt_data, sopt->sopt_size,
   1184 				    curlwp->l_cred);
   1185 				break;
   1186 			}
   1187 			/*FALLTHROUGH*/
   1188 #endif /* IPSEC */
   1189 
   1190 		default:
   1191 			error = ENOPROTOOPT;
   1192 			break;
   1193 		}
   1194 		break;
   1195 
   1196 	case PRCO_GETOPT:
   1197 		switch (sopt->sopt_name) {
   1198 		case IP_OPTIONS:
   1199 		case IP_RETOPTS: {
   1200 			struct mbuf *mopts = inp->inp_options;
   1201 
   1202 			if (mopts) {
   1203 				struct mbuf *m;
   1204 
   1205 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1206 				if (m == NULL) {
   1207 					error = ENOBUFS;
   1208 					break;
   1209 				}
   1210 				error = sockopt_setmbuf(sopt, m);
   1211 			}
   1212 			break;
   1213 		}
   1214 		case IP_PKTINFO:
   1215 		case IP_TOS:
   1216 		case IP_TTL:
   1217 		case IP_MINTTL:
   1218 		case IP_RECVOPTS:
   1219 		case IP_RECVRETOPTS:
   1220 		case IP_RECVDSTADDR:
   1221 		case IP_RECVIF:
   1222 		case IP_RECVPKTINFO:
   1223 		case IP_RECVTTL:
   1224 		case IP_ERRORMTU:
   1225 			switch (sopt->sopt_name) {
   1226 			case IP_TOS:
   1227 				optval = ip->ip_tos;
   1228 				break;
   1229 
   1230 			case IP_TTL:
   1231 				optval = ip->ip_ttl;
   1232 				break;
   1233 
   1234 			case IP_MINTTL:
   1235 				optval = inp->inp_ip_minttl;
   1236 				break;
   1237 
   1238 			case IP_ERRORMTU:
   1239 				optval = inp->inp_errormtu;
   1240 				break;
   1241 
   1242 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1243 
   1244 			case IP_PKTINFO:
   1245 				optval = OPTBIT(INP_PKTINFO);
   1246 				break;
   1247 
   1248 			case IP_RECVOPTS:
   1249 				optval = OPTBIT(INP_RECVOPTS);
   1250 				break;
   1251 
   1252 			case IP_RECVPKTINFO:
   1253 				optval = OPTBIT(INP_RECVPKTINFO);
   1254 				break;
   1255 
   1256 			case IP_RECVRETOPTS:
   1257 				optval = OPTBIT(INP_RECVRETOPTS);
   1258 				break;
   1259 
   1260 			case IP_RECVDSTADDR:
   1261 				optval = OPTBIT(INP_RECVDSTADDR);
   1262 				break;
   1263 
   1264 			case IP_RECVIF:
   1265 				optval = OPTBIT(INP_RECVIF);
   1266 				break;
   1267 
   1268 			case IP_RECVTTL:
   1269 				optval = OPTBIT(INP_RECVTTL);
   1270 				break;
   1271 			}
   1272 			error = sockopt_setint(sopt, optval);
   1273 			break;
   1274 
   1275 #if 0	/* defined(IPSEC) */
   1276 		case IP_IPSEC_POLICY:
   1277 		{
   1278 			struct mbuf *m = NULL;
   1279 
   1280 			/* XXX this will return EINVAL as sopt is empty */
   1281 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1282 			    sopt->sopt_size, &m);
   1283 			if (error == 0)
   1284 				error = sockopt_setmbuf(sopt, m);
   1285 			break;
   1286 		}
   1287 #endif /*IPSEC*/
   1288 
   1289 		case IP_MULTICAST_IF:
   1290 		case IP_MULTICAST_TTL:
   1291 		case IP_MULTICAST_LOOP:
   1292 		case IP_ADD_MEMBERSHIP:
   1293 		case IP_DROP_MEMBERSHIP:
   1294 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1295 			break;
   1296 
   1297 		case IP_PORTRANGE:
   1298 			if (inpflags & INP_LOWPORT)
   1299 				optval = IP_PORTRANGE_LOW;
   1300 			else
   1301 				optval = IP_PORTRANGE_DEFAULT;
   1302 			error = sockopt_setint(sopt, optval);
   1303 			break;
   1304 
   1305 		case IP_PORTALGO:
   1306 			optval = inp->inp_portalgo;
   1307 			error = sockopt_setint(sopt, optval);
   1308 			break;
   1309 
   1310 		default:
   1311 			error = ENOPROTOOPT;
   1312 			break;
   1313 		}
   1314 		break;
   1315 	}
   1316 
   1317 	if (!error) {
   1318 		inp->inp_flags = inpflags;
   1319 	}
   1320 	return error;
   1321 }
   1322 
   1323 /*
   1324  * Set up IP options in pcb for insertion in output packets.
   1325  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1326  * with destination address if source routed.
   1327  */
   1328 static int
   1329 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1330 {
   1331 	struct mbuf *m;
   1332 	const u_char *cp;
   1333 	u_char *dp;
   1334 	int cnt;
   1335 
   1336 	KASSERT(inp_locked(inp));
   1337 
   1338 	/* Turn off any old options. */
   1339 	if (inp->inp_options) {
   1340 		m_free(inp->inp_options);
   1341 	}
   1342 	inp->inp_options = NULL;
   1343 	if ((cnt = sopt->sopt_size) == 0) {
   1344 		/* Only turning off any previous options. */
   1345 		return 0;
   1346 	}
   1347 	cp = sopt->sopt_data;
   1348 
   1349 #ifndef	__vax__
   1350 	if (cnt % sizeof(int32_t))
   1351 		return (EINVAL);
   1352 #endif
   1353 
   1354 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1355 	if (m == NULL)
   1356 		return (ENOBUFS);
   1357 
   1358 	dp = mtod(m, u_char *);
   1359 	memset(dp, 0, sizeof(struct in_addr));
   1360 	dp += sizeof(struct in_addr);
   1361 	m->m_len = sizeof(struct in_addr);
   1362 
   1363 	/*
   1364 	 * IP option list according to RFC791. Each option is of the form
   1365 	 *
   1366 	 *	[optval] [olen] [(olen - 2) data bytes]
   1367 	 *
   1368 	 * We validate the list and copy options to an mbuf for prepending
   1369 	 * to data packets. The IP first-hop destination address will be
   1370 	 * stored before actual options and is zero if unset.
   1371 	 */
   1372 	while (cnt > 0) {
   1373 		uint8_t optval, olen, offset;
   1374 
   1375 		optval = cp[IPOPT_OPTVAL];
   1376 
   1377 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1378 			olen = 1;
   1379 		} else {
   1380 			if (cnt < IPOPT_OLEN + 1)
   1381 				goto bad;
   1382 
   1383 			olen = cp[IPOPT_OLEN];
   1384 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1385 				goto bad;
   1386 		}
   1387 
   1388 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1389 			/*
   1390 			 * user process specifies route as:
   1391 			 *	->A->B->C->D
   1392 			 * D must be our final destination (but we can't
   1393 			 * check that since we may not have connected yet).
   1394 			 * A is first hop destination, which doesn't appear in
   1395 			 * actual IP option, but is stored before the options.
   1396 			 */
   1397 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1398 				goto bad;
   1399 
   1400 			offset = cp[IPOPT_OFFSET];
   1401 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1402 			    sizeof(struct in_addr));
   1403 
   1404 			cp += sizeof(struct in_addr);
   1405 			cnt -= sizeof(struct in_addr);
   1406 			olen -= sizeof(struct in_addr);
   1407 
   1408 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1409 				goto bad;
   1410 
   1411 			memcpy(dp, cp, olen);
   1412 			dp[IPOPT_OPTVAL] = optval;
   1413 			dp[IPOPT_OLEN] = olen;
   1414 			dp[IPOPT_OFFSET] = offset;
   1415 			break;
   1416 		} else {
   1417 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1418 				goto bad;
   1419 
   1420 			memcpy(dp, cp, olen);
   1421 			break;
   1422 		}
   1423 
   1424 		dp += olen;
   1425 		m->m_len += olen;
   1426 
   1427 		if (optval == IPOPT_EOL)
   1428 			break;
   1429 
   1430 		cp += olen;
   1431 		cnt -= olen;
   1432 	}
   1433 
   1434 	inp->inp_options = m;
   1435 	return 0;
   1436 bad:
   1437 	(void)m_free(m);
   1438 	return EINVAL;
   1439 }
   1440 
   1441 /*
   1442  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1443  * Must be called in a pserialize critical section.
   1444  */
   1445 static struct ifnet *
   1446 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1447 {
   1448 	int ifindex;
   1449 	struct ifnet *ifp = NULL;
   1450 	struct in_ifaddr *ia;
   1451 
   1452 	if (ifindexp)
   1453 		*ifindexp = 0;
   1454 	if (ntohl(a->s_addr) >> 24 == 0) {
   1455 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1456 		ifp = if_byindex(ifindex);
   1457 		if (!ifp)
   1458 			return NULL;
   1459 		if (ifindexp)
   1460 			*ifindexp = ifindex;
   1461 	} else {
   1462 		IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
   1463 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1464 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1465 				ifp = ia->ia_ifp;
   1466 				if (if_is_deactivated(ifp))
   1467 					ifp = NULL;
   1468 				break;
   1469 			}
   1470 		}
   1471 	}
   1472 	return ifp;
   1473 }
   1474 
   1475 static int
   1476 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1477 {
   1478 	u_int tval;
   1479 	u_char cval;
   1480 	int error;
   1481 
   1482 	if (sopt == NULL)
   1483 		return EINVAL;
   1484 
   1485 	switch (sopt->sopt_size) {
   1486 	case sizeof(u_char):
   1487 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1488 		tval = cval;
   1489 		break;
   1490 
   1491 	case sizeof(u_int):
   1492 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1493 		break;
   1494 
   1495 	default:
   1496 		error = EINVAL;
   1497 	}
   1498 
   1499 	if (error)
   1500 		return error;
   1501 
   1502 	if (tval > maxval)
   1503 		return EINVAL;
   1504 
   1505 	*val = tval;
   1506 	return 0;
   1507 }
   1508 
   1509 static int
   1510 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1511     struct psref *psref, struct in_addr *ia, bool add)
   1512 {
   1513 	int error;
   1514 	struct ip_mreq mreq;
   1515 
   1516 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1517 	if (error)
   1518 		return error;
   1519 
   1520 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1521 		return EINVAL;
   1522 
   1523 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1524 
   1525 	if (in_nullhost(mreq.imr_interface)) {
   1526 		union {
   1527 			struct sockaddr		dst;
   1528 			struct sockaddr_in	dst4;
   1529 		} u;
   1530 		struct route ro;
   1531 
   1532 		if (!add) {
   1533 			*ifp = NULL;
   1534 			return 0;
   1535 		}
   1536 		/*
   1537 		 * If no interface address was provided, use the interface of
   1538 		 * the route to the given multicast address.
   1539 		 */
   1540 		struct rtentry *rt;
   1541 		memset(&ro, 0, sizeof(ro));
   1542 
   1543 		sockaddr_in_init(&u.dst4, ia, 0);
   1544 		error = rtcache_setdst(&ro, &u.dst);
   1545 		if (error != 0)
   1546 			return error;
   1547 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1548 		if (*ifp != NULL) {
   1549 			if (if_is_deactivated(*ifp))
   1550 				*ifp = NULL;
   1551 			else
   1552 				if_acquire(*ifp, psref);
   1553 		}
   1554 		rtcache_unref(rt, &ro);
   1555 		rtcache_free(&ro);
   1556 	} else {
   1557 		int s = pserialize_read_enter();
   1558 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1559 		if (!add && *ifp == NULL) {
   1560 			pserialize_read_exit(s);
   1561 			return EADDRNOTAVAIL;
   1562 		}
   1563 		if (*ifp != NULL) {
   1564 			if (if_is_deactivated(*ifp))
   1565 				*ifp = NULL;
   1566 			else
   1567 				if_acquire(*ifp, psref);
   1568 		}
   1569 		pserialize_read_exit(s);
   1570 	}
   1571 	return 0;
   1572 }
   1573 
   1574 /*
   1575  * Add a multicast group membership.
   1576  * Group must be a valid IP multicast address.
   1577  */
   1578 static int
   1579 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1580 {
   1581 	struct ifnet *ifp = NULL;	// XXX: gcc [ppc]
   1582 	struct in_addr ia;
   1583 	int i, error, bound;
   1584 	struct psref psref;
   1585 
   1586 	/* imo is protected by solock or referenced only by the caller */
   1587 
   1588 	bound = curlwp_bind();
   1589 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1590 		error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
   1591 	else
   1592 #ifdef INET6
   1593 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   1594 #else
   1595 		error = EINVAL;
   1596 		goto out;
   1597 #endif
   1598 
   1599 	if (error)
   1600 		goto out;
   1601 
   1602 	/*
   1603 	 * See if we found an interface, and confirm that it
   1604 	 * supports multicast.
   1605 	 */
   1606 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1607 		error = EADDRNOTAVAIL;
   1608 		goto out;
   1609 	}
   1610 
   1611 	/*
   1612 	 * See if the membership already exists or if all the
   1613 	 * membership slots are full.
   1614 	 */
   1615 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1616 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1617 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1618 			break;
   1619 	}
   1620 	if (i < imo->imo_num_memberships) {
   1621 		error = EADDRINUSE;
   1622 		goto out;
   1623 	}
   1624 
   1625 	if (i == IP_MAX_MEMBERSHIPS) {
   1626 		error = ETOOMANYREFS;
   1627 		goto out;
   1628 	}
   1629 
   1630 	/*
   1631 	 * Everything looks good; add a new record to the multicast
   1632 	 * address list for the given interface.
   1633 	 */
   1634 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL) {
   1635 		error = ENOBUFS;
   1636 		goto out;
   1637 	}
   1638 
   1639 	++imo->imo_num_memberships;
   1640 	error = 0;
   1641 out:
   1642 	if_put(ifp, &psref);
   1643 	curlwp_bindx(bound);
   1644 	return error;
   1645 }
   1646 
   1647 /*
   1648  * Drop a multicast group membership.
   1649  * Group must be a valid IP multicast address.
   1650  */
   1651 static int
   1652 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1653 {
   1654 	struct in_addr ia = { .s_addr = 0 };	// XXX: gcc [ppc]
   1655 	struct ifnet *ifp = NULL;		// XXX: gcc [ppc]
   1656 	int i, error, bound;
   1657 	struct psref psref;
   1658 
   1659 	/* imo is protected by solock or referenced only by the caller */
   1660 
   1661 	bound = curlwp_bind();
   1662 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1663 		error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
   1664 	else
   1665 #ifdef INET6
   1666 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   1667 #else
   1668 		error = EINVAL;
   1669 		goto out;
   1670 #endif
   1671 
   1672 	if (error)
   1673 		goto out;
   1674 
   1675 	/*
   1676 	 * Find the membership in the membership array.
   1677 	 */
   1678 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1679 		if ((ifp == NULL ||
   1680 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1681 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1682 			break;
   1683 	}
   1684 	if (i == imo->imo_num_memberships) {
   1685 		error = EADDRNOTAVAIL;
   1686 		goto out;
   1687 	}
   1688 
   1689 	/*
   1690 	 * Give up the multicast address record to which the
   1691 	 * membership points.
   1692 	 */
   1693 	in_delmulti(imo->imo_membership[i]);
   1694 
   1695 	/*
   1696 	 * Remove the gap in the membership array.
   1697 	 */
   1698 	for (++i; i < imo->imo_num_memberships; ++i)
   1699 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1700 	--imo->imo_num_memberships;
   1701 	error = 0;
   1702 out:
   1703 	if_put(ifp, &psref);
   1704 	curlwp_bindx(bound);
   1705 	return error;
   1706 }
   1707 
   1708 /*
   1709  * Set the IP multicast options in response to user setsockopt().
   1710  */
   1711 int
   1712 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1713 {
   1714 	struct ip_moptions *imo = *pimo;
   1715 	struct in_addr addr;
   1716 	struct ifnet *ifp;
   1717 	int ifindex, error = 0;
   1718 
   1719 	/* The passed imo isn't NULL, it should be protected by solock */
   1720 
   1721 	if (!imo) {
   1722 		/*
   1723 		 * No multicast option buffer attached to the pcb;
   1724 		 * allocate one and initialize to default values.
   1725 		 */
   1726 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1727 		if (imo == NULL)
   1728 			return ENOBUFS;
   1729 
   1730 		imo->imo_multicast_if_index = 0;
   1731 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1732 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1733 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1734 		imo->imo_num_memberships = 0;
   1735 		*pimo = imo;
   1736 	}
   1737 
   1738 	switch (sopt->sopt_name) {
   1739 	case IP_MULTICAST_IF: {
   1740 		int s;
   1741 		/*
   1742 		 * Select the interface for outgoing multicast packets.
   1743 		 */
   1744 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1745 		if (error)
   1746 			break;
   1747 
   1748 		/*
   1749 		 * INADDR_ANY is used to remove a previous selection.
   1750 		 * When no interface is selected, a default one is
   1751 		 * chosen every time a multicast packet is sent.
   1752 		 */
   1753 		if (in_nullhost(addr)) {
   1754 			imo->imo_multicast_if_index = 0;
   1755 			break;
   1756 		}
   1757 		/*
   1758 		 * The selected interface is identified by its local
   1759 		 * IP address.  Find the interface and confirm that
   1760 		 * it supports multicasting.
   1761 		 */
   1762 		s = pserialize_read_enter();
   1763 		ifp = ip_multicast_if(&addr, &ifindex);
   1764 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1765 			pserialize_read_exit(s);
   1766 			error = EADDRNOTAVAIL;
   1767 			break;
   1768 		}
   1769 		imo->imo_multicast_if_index = ifp->if_index;
   1770 		pserialize_read_exit(s);
   1771 		if (ifindex)
   1772 			imo->imo_multicast_addr = addr;
   1773 		else
   1774 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1775 		break;
   1776 	    }
   1777 
   1778 	case IP_MULTICAST_TTL:
   1779 		/*
   1780 		 * Set the IP time-to-live for outgoing multicast packets.
   1781 		 */
   1782 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1783 		break;
   1784 
   1785 	case IP_MULTICAST_LOOP:
   1786 		/*
   1787 		 * Set the loopback flag for outgoing multicast packets.
   1788 		 * Must be zero or one.
   1789 		 */
   1790 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1791 		break;
   1792 
   1793 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1794 		error = ip_add_membership(imo, sopt);
   1795 		break;
   1796 
   1797 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1798 		error = ip_drop_membership(imo, sopt);
   1799 		break;
   1800 
   1801 	default:
   1802 		error = EOPNOTSUPP;
   1803 		break;
   1804 	}
   1805 
   1806 	/*
   1807 	 * If all options have default values, no need to keep the mbuf.
   1808 	 */
   1809 	if (imo->imo_multicast_if_index == 0 &&
   1810 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1811 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1812 	    imo->imo_num_memberships == 0) {
   1813 		kmem_free(imo, sizeof(*imo));
   1814 		*pimo = NULL;
   1815 	}
   1816 
   1817 	return error;
   1818 }
   1819 
   1820 /*
   1821  * Return the IP multicast options in response to user getsockopt().
   1822  */
   1823 int
   1824 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1825 {
   1826 	struct in_addr addr;
   1827 	uint8_t optval;
   1828 	int error = 0;
   1829 
   1830 	/* imo is protected by solock or refereced only by the caller */
   1831 
   1832 	switch (sopt->sopt_name) {
   1833 	case IP_MULTICAST_IF:
   1834 		if (imo == NULL || imo->imo_multicast_if_index == 0)
   1835 			addr = zeroin_addr;
   1836 		else if (imo->imo_multicast_addr.s_addr) {
   1837 			/* return the value user has set */
   1838 			addr = imo->imo_multicast_addr;
   1839 		} else {
   1840 			struct ifnet *ifp;
   1841 			struct in_ifaddr *ia = NULL;
   1842 			int s = pserialize_read_enter();
   1843 
   1844 			ifp = if_byindex(imo->imo_multicast_if_index);
   1845 			if (ifp != NULL) {
   1846 				ia = in_get_ia_from_ifp(ifp);
   1847 			}
   1848 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1849 			pserialize_read_exit(s);
   1850 		}
   1851 		error = sockopt_set(sopt, &addr, sizeof(addr));
   1852 		break;
   1853 
   1854 	case IP_MULTICAST_TTL:
   1855 		optval = imo ? imo->imo_multicast_ttl
   1856 		    : IP_DEFAULT_MULTICAST_TTL;
   1857 
   1858 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1859 		break;
   1860 
   1861 	case IP_MULTICAST_LOOP:
   1862 		optval = imo ? imo->imo_multicast_loop
   1863 		    : IP_DEFAULT_MULTICAST_LOOP;
   1864 
   1865 		error = sockopt_set(sopt, &optval, sizeof(optval));
   1866 		break;
   1867 
   1868 	default:
   1869 		error = EOPNOTSUPP;
   1870 	}
   1871 
   1872 	return error;
   1873 }
   1874 
   1875 /*
   1876  * Discard the IP multicast options.
   1877  */
   1878 void
   1879 ip_freemoptions(struct ip_moptions *imo)
   1880 {
   1881 	int i;
   1882 
   1883 	/* The owner of imo (inp) should be protected by solock */
   1884 
   1885 	if (imo != NULL) {
   1886 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1887 			in_delmulti(imo->imo_membership[i]);
   1888 		kmem_free(imo, sizeof(*imo));
   1889 	}
   1890 }
   1891 
   1892 /*
   1893  * Routine called from ip_output() to loop back a copy of an IP multicast
   1894  * packet to the input queue of a specified interface.  Note that this
   1895  * calls the output routine of the loopback "driver", but with an interface
   1896  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1897  */
   1898 static void
   1899 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   1900 {
   1901 	struct ip *ip;
   1902 	struct mbuf *copym;
   1903 
   1904 	copym = m_copypacket(m, M_DONTWAIT);
   1905 	if (copym != NULL &&
   1906 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1907 		copym = m_pullup(copym, sizeof(struct ip));
   1908 	if (copym == NULL)
   1909 		return;
   1910 	/*
   1911 	 * We don't bother to fragment if the IP length is greater
   1912 	 * than the interface's MTU.  Can this possibly matter?
   1913 	 */
   1914 	ip = mtod(copym, struct ip *);
   1915 
   1916 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1917 		in_delayed_cksum(copym);
   1918 		copym->m_pkthdr.csum_flags &=
   1919 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1920 	}
   1921 
   1922 	ip->ip_sum = 0;
   1923 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1924 #ifndef NET_MPSAFE
   1925 	KERNEL_LOCK(1, NULL);
   1926 #endif
   1927 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   1928 #ifndef NET_MPSAFE
   1929 	KERNEL_UNLOCK_ONE(NULL);
   1930 #endif
   1931 }
   1932 
   1933 /*
   1934  * Ensure sending address is valid.
   1935  * Returns 0 on success, -1 if an error should be sent back or 1
   1936  * if the packet could be dropped without error (protocol dependent).
   1937  */
   1938 static int
   1939 ip_ifaddrvalid(const struct in_ifaddr *ia)
   1940 {
   1941 
   1942 	if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
   1943 		return 0;
   1944 
   1945 	if (ia->ia4_flags & IN_IFF_DUPLICATED)
   1946 		return -1;
   1947 	else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
   1948 		return 1;
   1949 
   1950 	return 0;
   1951 }
   1952