Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.285
      1 /*	$NetBSD: ip_output.c,v 1.285 2017/11/17 07:37:12 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.285 2017/11/17 07:37:12 ozaki-r Exp $");
     95 
     96 #ifdef _KERNEL_OPT
     97 #include "opt_inet.h"
     98 #include "opt_ipsec.h"
     99 #include "opt_mrouting.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mpls.h"
    102 #endif
    103 
    104 #include "arp.h"
    105 
    106 #include <sys/param.h>
    107 #include <sys/kmem.h>
    108 #include <sys/mbuf.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/kauth.h>
    112 #include <sys/systm.h>
    113 #include <sys/syslog.h>
    114 
    115 #include <net/if.h>
    116 #include <net/if_types.h>
    117 #include <net/route.h>
    118 #include <net/pfil.h>
    119 
    120 #include <netinet/in.h>
    121 #include <netinet/in_systm.h>
    122 #include <netinet/ip.h>
    123 #include <netinet/in_pcb.h>
    124 #include <netinet/in_var.h>
    125 #include <netinet/ip_var.h>
    126 #include <netinet/ip_private.h>
    127 #include <netinet/in_offload.h>
    128 #include <netinet/portalgo.h>
    129 #include <netinet/udp.h>
    130 #include <netinet/udp_var.h>
    131 
    132 #ifdef INET6
    133 #include <netinet6/ip6_var.h>
    134 #endif
    135 
    136 #ifdef MROUTING
    137 #include <netinet/ip_mroute.h>
    138 #endif
    139 
    140 #ifdef IPSEC
    141 #include <netipsec/ipsec.h>
    142 #include <netipsec/key.h>
    143 #endif
    144 
    145 #ifdef MPLS
    146 #include <netmpls/mpls.h>
    147 #include <netmpls/mpls_var.h>
    148 #endif
    149 
    150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
    151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    153 static void ip_mloopback(struct ifnet *, struct mbuf *,
    154     const struct sockaddr_in *);
    155 static int ip_ifaddrvalid(const struct in_ifaddr *);
    156 
    157 extern pfil_head_t *inet_pfil_hook;			/* XXX */
    158 
    159 int	ip_do_loopback_cksum = 0;
    160 
    161 static int
    162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
    163     const struct rtentry *rt)
    164 {
    165 	int error = 0;
    166 #ifdef MPLS
    167 	union mpls_shim msh;
    168 
    169 	if (rt == NULL || rt_gettag(rt) == NULL ||
    170 	    rt_gettag(rt)->sa_family != AF_MPLS ||
    171 	    (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
    172 	    ifp->if_type != IFT_ETHER)
    173 		return 0;
    174 
    175 	msh.s_addr = MPLS_GETSADDR(rt);
    176 	if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
    177 		struct m_tag *mtag;
    178 		/*
    179 		 * XXX tentative solution to tell ether_output
    180 		 * it's MPLS. Need some more efficient solution.
    181 		 */
    182 		mtag = m_tag_get(PACKET_TAG_MPLS,
    183 		    sizeof(int) /* dummy */,
    184 		    M_NOWAIT);
    185 		if (mtag == NULL)
    186 			return ENOMEM;
    187 		m_tag_prepend(m, mtag);
    188 	}
    189 #endif
    190 	return error;
    191 }
    192 
    193 /*
    194  * Send an IP packet to a host.
    195  */
    196 int
    197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
    198     const struct sockaddr * const dst, const struct rtentry *rt)
    199 {
    200 	int error = 0;
    201 
    202 	if (rt != NULL) {
    203 		error = rt_check_reject_route(rt, ifp);
    204 		if (error != 0) {
    205 			m_freem(m);
    206 			return error;
    207 		}
    208 	}
    209 
    210 	error = ip_mark_mpls(ifp, m, rt);
    211 	if (error != 0) {
    212 		m_freem(m);
    213 		return error;
    214 	}
    215 
    216 	error = if_output_lock(ifp, ifp, m, dst, rt);
    217 
    218 	return error;
    219 }
    220 
    221 /*
    222  * IP output.  The packet in mbuf chain m contains a skeletal IP
    223  * header (with len, off, ttl, proto, tos, src, dst).
    224  * The mbuf chain containing the packet will be freed.
    225  * The mbuf opt, if present, will not be freed.
    226  */
    227 int
    228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
    229     struct ip_moptions *imo, struct inpcb *inp)
    230 {
    231 	struct rtentry *rt;
    232 	struct ip *ip;
    233 	struct ifnet *ifp, *mifp = NULL;
    234 	struct mbuf *m = m0;
    235 	int hlen = sizeof (struct ip);
    236 	int len, error = 0;
    237 	struct route iproute;
    238 	const struct sockaddr_in *dst;
    239 	struct in_ifaddr *ia = NULL;
    240 	struct ifaddr *ifa;
    241 	int isbroadcast;
    242 	int sw_csum;
    243 	u_long mtu;
    244 	bool natt_frag = false;
    245 	bool rtmtu_nolock;
    246 	union {
    247 		struct sockaddr		sa;
    248 		struct sockaddr_in	sin;
    249 	} udst, usrc;
    250 	struct sockaddr *rdst = &udst.sa;	/* real IP destination, as
    251 						 * opposed to the nexthop
    252 						 */
    253 	struct psref psref, psref_ia;
    254 	int bound;
    255 	bool bind_need_restore = false;
    256 
    257 	len = 0;
    258 
    259 	MCLAIM(m, &ip_tx_mowner);
    260 
    261 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    262 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
    263 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
    264 	    (M_CSUM_TCPv4|M_CSUM_UDPv4));
    265 
    266 	if (opt) {
    267 		m = ip_insertoptions(m, opt, &len);
    268 		if (len >= sizeof(struct ip))
    269 			hlen = len;
    270 	}
    271 	ip = mtod(m, struct ip *);
    272 
    273 	/*
    274 	 * Fill in IP header.
    275 	 */
    276 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    277 		ip->ip_v = IPVERSION;
    278 		ip->ip_off = htons(0);
    279 		/* ip->ip_id filled in after we find out source ia */
    280 		ip->ip_hl = hlen >> 2;
    281 		IP_STATINC(IP_STAT_LOCALOUT);
    282 	} else {
    283 		hlen = ip->ip_hl << 2;
    284 	}
    285 
    286 	/*
    287 	 * Route packet.
    288 	 */
    289 	if (ro == NULL) {
    290 		memset(&iproute, 0, sizeof(iproute));
    291 		ro = &iproute;
    292 	}
    293 	sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
    294 	dst = satocsin(rtcache_getdst(ro));
    295 
    296 	/*
    297 	 * If there is a cached route, check that it is to the same
    298 	 * destination and is still up.  If not, free it and try again.
    299 	 * The address family should also be checked in case of sharing
    300 	 * the cache with IPv6.
    301 	 */
    302 	if (dst && (dst->sin_family != AF_INET ||
    303 	    !in_hosteq(dst->sin_addr, ip->ip_dst)))
    304 		rtcache_free(ro);
    305 
    306 	if ((rt = rtcache_validate(ro)) == NULL &&
    307 	    (rt = rtcache_update(ro, 1)) == NULL) {
    308 		dst = &udst.sin;
    309 		error = rtcache_setdst(ro, &udst.sa);
    310 		if (error != 0)
    311 			goto bad;
    312 	}
    313 
    314 	bound = curlwp_bind();
    315 	bind_need_restore = true;
    316 	/*
    317 	 * If routing to interface only, short circuit routing lookup.
    318 	 */
    319 	if (flags & IP_ROUTETOIF) {
    320 		ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
    321 		if (ifa == NULL) {
    322 			IP_STATINC(IP_STAT_NOROUTE);
    323 			error = ENETUNREACH;
    324 			goto bad;
    325 		}
    326 		/* ia is already referenced by psref_ia */
    327 		ia = ifatoia(ifa);
    328 
    329 		ifp = ia->ia_ifp;
    330 		mtu = ifp->if_mtu;
    331 		ip->ip_ttl = 1;
    332 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
    333 	} else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
    334 	    ip->ip_dst.s_addr == INADDR_BROADCAST) ||
    335 	    (flags & IP_ROUTETOIFINDEX)) &&
    336 	    imo != NULL && imo->imo_multicast_if_index != 0) {
    337 		ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
    338 		if (ifp == NULL) {
    339 			IP_STATINC(IP_STAT_NOROUTE);
    340 			error = ENETUNREACH;
    341 			goto bad;
    342 		}
    343 		mtu = ifp->if_mtu;
    344 		ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
    345 		if (ia == NULL) {
    346 			error = EADDRNOTAVAIL;
    347 			goto bad;
    348 		}
    349 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    350 		    ip->ip_dst.s_addr == INADDR_BROADCAST) {
    351 			isbroadcast = 0;
    352 		} else {
    353 			/* IP_ROUTETOIFINDEX */
    354 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    355 			if ((isbroadcast == 0) && ((ifp->if_flags &
    356 			    (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
    357 			    (in_direct(dst->sin_addr, ifp) == 0)) {
    358 				/* gateway address required */
    359 				if (rt == NULL)
    360 					rt = rtcache_init(ro);
    361 				if (rt == NULL || rt->rt_ifp != ifp) {
    362 					IP_STATINC(IP_STAT_NOROUTE);
    363 					error = EHOSTUNREACH;
    364 					goto bad;
    365 				}
    366 				rt->rt_use++;
    367 				if (rt->rt_flags & RTF_GATEWAY)
    368 					dst = satosin(rt->rt_gateway);
    369 				if (rt->rt_flags & RTF_HOST)
    370 					isbroadcast =
    371 					    rt->rt_flags & RTF_BROADCAST;
    372 			}
    373 		}
    374 	} else {
    375 		if (rt == NULL)
    376 			rt = rtcache_init(ro);
    377 		if (rt == NULL) {
    378 			IP_STATINC(IP_STAT_NOROUTE);
    379 			error = EHOSTUNREACH;
    380 			goto bad;
    381 		}
    382 		if (ifa_is_destroying(rt->rt_ifa)) {
    383 			rtcache_unref(rt, ro);
    384 			rt = NULL;
    385 			IP_STATINC(IP_STAT_NOROUTE);
    386 			error = EHOSTUNREACH;
    387 			goto bad;
    388 		}
    389 		ifa_acquire(rt->rt_ifa, &psref_ia);
    390 		ia = ifatoia(rt->rt_ifa);
    391 		ifp = rt->rt_ifp;
    392 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
    393 			mtu = ifp->if_mtu;
    394 		rt->rt_use++;
    395 		if (rt->rt_flags & RTF_GATEWAY)
    396 			dst = satosin(rt->rt_gateway);
    397 		if (rt->rt_flags & RTF_HOST)
    398 			isbroadcast = rt->rt_flags & RTF_BROADCAST;
    399 		else
    400 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
    401 	}
    402 	rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
    403 
    404 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    405 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    406 		bool inmgroup;
    407 
    408 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    409 		    M_BCAST : M_MCAST;
    410 		/*
    411 		 * See if the caller provided any multicast options
    412 		 */
    413 		if (imo != NULL)
    414 			ip->ip_ttl = imo->imo_multicast_ttl;
    415 		else
    416 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    417 
    418 		/*
    419 		 * if we don't know the outgoing ifp yet, we can't generate
    420 		 * output
    421 		 */
    422 		if (!ifp) {
    423 			IP_STATINC(IP_STAT_NOROUTE);
    424 			error = ENETUNREACH;
    425 			goto bad;
    426 		}
    427 
    428 		/*
    429 		 * If the packet is multicast or broadcast, confirm that
    430 		 * the outgoing interface can transmit it.
    431 		 */
    432 		if (((m->m_flags & M_MCAST) &&
    433 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    434 		    ((m->m_flags & M_BCAST) &&
    435 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    436 			IP_STATINC(IP_STAT_NOROUTE);
    437 			error = ENETUNREACH;
    438 			goto bad;
    439 		}
    440 		/*
    441 		 * If source address not specified yet, use an address
    442 		 * of outgoing interface.
    443 		 */
    444 		if (in_nullhost(ip->ip_src)) {
    445 			struct in_ifaddr *xia;
    446 			struct ifaddr *xifa;
    447 			struct psref _psref;
    448 
    449 			xia = in_get_ia_from_ifp_psref(ifp, &_psref);
    450 			if (!xia) {
    451 				error = EADDRNOTAVAIL;
    452 				goto bad;
    453 			}
    454 			xifa = &xia->ia_ifa;
    455 			if (xifa->ifa_getifa != NULL) {
    456 				ia4_release(xia, &_psref);
    457 				/* FIXME ifa_getifa is NOMPSAFE */
    458 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    459 				if (xia == NULL) {
    460 					error = EADDRNOTAVAIL;
    461 					goto bad;
    462 				}
    463 				ia4_acquire(xia, &_psref);
    464 			}
    465 			ip->ip_src = xia->ia_addr.sin_addr;
    466 			ia4_release(xia, &_psref);
    467 		}
    468 
    469 		inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
    470 		if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
    471 			/*
    472 			 * If we belong to the destination multicast group
    473 			 * on the outgoing interface, and the caller did not
    474 			 * forbid loopback, loop back a copy.
    475 			 */
    476 			ip_mloopback(ifp, m, &udst.sin);
    477 		}
    478 #ifdef MROUTING
    479 		else {
    480 			/*
    481 			 * If we are acting as a multicast router, perform
    482 			 * multicast forwarding as if the packet had just
    483 			 * arrived on the interface to which we are about
    484 			 * to send.  The multicast forwarding function
    485 			 * recursively calls this function, using the
    486 			 * IP_FORWARDING flag to prevent infinite recursion.
    487 			 *
    488 			 * Multicasts that are looped back by ip_mloopback(),
    489 			 * above, will be forwarded by the ip_input() routine,
    490 			 * if necessary.
    491 			 */
    492 			extern struct socket *ip_mrouter;
    493 
    494 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    495 				if (ip_mforward(m, ifp) != 0) {
    496 					m_freem(m);
    497 					goto done;
    498 				}
    499 			}
    500 		}
    501 #endif
    502 		/*
    503 		 * Multicasts with a time-to-live of zero may be looped-
    504 		 * back, above, but must not be transmitted on a network.
    505 		 * Also, multicasts addressed to the loopback interface
    506 		 * are not sent -- the above call to ip_mloopback() will
    507 		 * loop back a copy if this host actually belongs to the
    508 		 * destination group on the loopback interface.
    509 		 */
    510 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    511 			m_freem(m);
    512 			goto done;
    513 		}
    514 		goto sendit;
    515 	}
    516 
    517 	/*
    518 	 * If source address not specified yet, use address
    519 	 * of outgoing interface.
    520 	 */
    521 	if (in_nullhost(ip->ip_src)) {
    522 		struct ifaddr *xifa;
    523 
    524 		xifa = &ia->ia_ifa;
    525 		if (xifa->ifa_getifa != NULL) {
    526 			ia4_release(ia, &psref_ia);
    527 			/* FIXME ifa_getifa is NOMPSAFE */
    528 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
    529 			if (ia == NULL) {
    530 				error = EADDRNOTAVAIL;
    531 				goto bad;
    532 			}
    533 			ia4_acquire(ia, &psref_ia);
    534 		}
    535 		ip->ip_src = ia->ia_addr.sin_addr;
    536 	}
    537 
    538 	/*
    539 	 * packets with Class-D address as source are not valid per
    540 	 * RFC 1112
    541 	 */
    542 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    543 		IP_STATINC(IP_STAT_ODROPPED);
    544 		error = EADDRNOTAVAIL;
    545 		goto bad;
    546 	}
    547 
    548 	/*
    549 	 * Look for broadcast address and and verify user is allowed to
    550 	 * send such a packet.
    551 	 */
    552 	if (isbroadcast) {
    553 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    554 			error = EADDRNOTAVAIL;
    555 			goto bad;
    556 		}
    557 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    558 			error = EACCES;
    559 			goto bad;
    560 		}
    561 		/* don't allow broadcast messages to be fragmented */
    562 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    563 			error = EMSGSIZE;
    564 			goto bad;
    565 		}
    566 		m->m_flags |= M_BCAST;
    567 	} else
    568 		m->m_flags &= ~M_BCAST;
    569 
    570 sendit:
    571 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
    572 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
    573 			ip->ip_id = 0;
    574 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    575 			ip->ip_id = ip_newid(ia);
    576 		} else {
    577 
    578 			/*
    579 			 * TSO capable interfaces (typically?) increment
    580 			 * ip_id for each segment.
    581 			 * "allocate" enough ids here to increase the chance
    582 			 * for them to be unique.
    583 			 *
    584 			 * note that the following calculation is not
    585 			 * needed to be precise.  wasting some ip_id is fine.
    586 			 */
    587 
    588 			unsigned int segsz = m->m_pkthdr.segsz;
    589 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    590 			unsigned int num = howmany(datasz, segsz);
    591 
    592 			ip->ip_id = ip_newid_range(ia, num);
    593 		}
    594 	}
    595 	if (ia != NULL) {
    596 		ia4_release(ia, &psref_ia);
    597 		ia = NULL;
    598 	}
    599 
    600 	/*
    601 	 * If we're doing Path MTU Discovery, we need to set DF unless
    602 	 * the route's MTU is locked.
    603 	 */
    604 	if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
    605 		ip->ip_off |= htons(IP_DF);
    606 	}
    607 
    608 #ifdef IPSEC
    609 	if (ipsec_used) {
    610 		bool ipsec_done = false;
    611 
    612 		/* Perform IPsec processing, if any. */
    613 		error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
    614 		    &ipsec_done);
    615 		if (error || ipsec_done)
    616 			goto done;
    617 	}
    618 #endif
    619 
    620 	/*
    621 	 * Run through list of hooks for output packets.
    622 	 */
    623 	error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
    624 	if (error)
    625 		goto done;
    626 	if (m == NULL)
    627 		goto done;
    628 
    629 	ip = mtod(m, struct ip *);
    630 	hlen = ip->ip_hl << 2;
    631 
    632 	m->m_pkthdr.csum_data |= hlen << 16;
    633 
    634 	/*
    635 	 * search for the source address structure to
    636 	 * maintain output statistics, and verify address
    637 	 * validity
    638 	 */
    639 	KASSERT(ia == NULL);
    640 	sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
    641 	ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
    642 	if (ifa != NULL)
    643 		ia = ifatoia(ifa);
    644 
    645 	/*
    646 	 * Ensure we only send from a valid address.
    647 	 * A NULL address is valid because the packet could be
    648 	 * generated from a packet filter.
    649 	 */
    650 	if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
    651 	    (error = ip_ifaddrvalid(ia)) != 0)
    652 	{
    653 		ARPLOG(LOG_ERR,
    654 		    "refusing to send from invalid address %s (pid %d)\n",
    655 		    ARPLOGADDR(&ip->ip_src), curproc->p_pid);
    656 		IP_STATINC(IP_STAT_ODROPPED);
    657 		if (error == 1)
    658 			/*
    659 			 * Address exists, but is tentative or detached.
    660 			 * We can't send from it because it's invalid,
    661 			 * so we drop the packet.
    662 			 */
    663 			error = 0;
    664 		else
    665 			error = EADDRNOTAVAIL;
    666 		goto bad;
    667 	}
    668 
    669 	/* Maybe skip checksums on loopback interfaces. */
    670 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    671 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    672 	}
    673 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    674 	/*
    675 	 * If small enough for mtu of path, or if using TCP segmentation
    676 	 * offload, can just send directly.
    677 	 */
    678 	if (ntohs(ip->ip_len) <= mtu ||
    679 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    680 		const struct sockaddr *sa;
    681 
    682 #if IFA_STATS
    683 		if (ia)
    684 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    685 #endif
    686 		/*
    687 		 * Always initialize the sum to 0!  Some HW assisted
    688 		 * checksumming requires this.
    689 		 */
    690 		ip->ip_sum = 0;
    691 
    692 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    693 			/*
    694 			 * Perform any checksums that the hardware can't do
    695 			 * for us.
    696 			 *
    697 			 * XXX Does any hardware require the {th,uh}_sum
    698 			 * XXX fields to be 0?
    699 			 */
    700 			if (sw_csum & M_CSUM_IPv4) {
    701 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    702 				ip->ip_sum = in_cksum(m, hlen);
    703 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    704 			}
    705 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    706 				if (IN_NEED_CHECKSUM(ifp,
    707 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    708 					in_delayed_cksum(m);
    709 				}
    710 				m->m_pkthdr.csum_flags &=
    711 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    712 			}
    713 		}
    714 
    715 		sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
    716 		if (__predict_true(
    717 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    718 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    719 			error = ip_if_output(ifp, m, sa, rt);
    720 		} else {
    721 			error = ip_tso_output(ifp, m, sa, rt);
    722 		}
    723 		goto done;
    724 	}
    725 
    726 	/*
    727 	 * We can't use HW checksumming if we're about to
    728 	 * fragment the packet.
    729 	 *
    730 	 * XXX Some hardware can do this.
    731 	 */
    732 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    733 		if (IN_NEED_CHECKSUM(ifp,
    734 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    735 			in_delayed_cksum(m);
    736 		}
    737 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    738 	}
    739 
    740 	/*
    741 	 * Too large for interface; fragment if possible.
    742 	 * Must be able to put at least 8 bytes per fragment.
    743 	 */
    744 	if (ntohs(ip->ip_off) & IP_DF) {
    745 		if (flags & IP_RETURNMTU) {
    746 			KASSERT(inp != NULL);
    747 			inp->inp_errormtu = mtu;
    748 		}
    749 		error = EMSGSIZE;
    750 		IP_STATINC(IP_STAT_CANTFRAG);
    751 		goto bad;
    752 	}
    753 
    754 	error = ip_fragment(m, ifp, mtu);
    755 	if (error) {
    756 		m = NULL;
    757 		goto bad;
    758 	}
    759 
    760 	for (; m; m = m0) {
    761 		m0 = m->m_nextpkt;
    762 		m->m_nextpkt = 0;
    763 		if (error) {
    764 			m_freem(m);
    765 			continue;
    766 		}
    767 #if IFA_STATS
    768 		if (ia)
    769 			ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
    770 #endif
    771 		/*
    772 		 * If we get there, the packet has not been handled by
    773 		 * IPsec whereas it should have. Now that it has been
    774 		 * fragmented, re-inject it in ip_output so that IPsec
    775 		 * processing can occur.
    776 		 */
    777 		if (natt_frag) {
    778 			error = ip_output(m, opt, ro,
    779 			    flags | IP_RAWOUTPUT | IP_NOIPNEWID,
    780 			    imo, inp);
    781 		} else {
    782 			KASSERT((m->m_pkthdr.csum_flags &
    783 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    784 			error = ip_if_output(ifp, m,
    785 			    (m->m_flags & M_MCAST) ?
    786 			    sintocsa(rdst) : sintocsa(dst), rt);
    787 		}
    788 	}
    789 	if (error == 0) {
    790 		IP_STATINC(IP_STAT_FRAGMENTED);
    791 	}
    792 done:
    793 	ia4_release(ia, &psref_ia);
    794 	rtcache_unref(rt, ro);
    795 	if (ro == &iproute) {
    796 		rtcache_free(&iproute);
    797 	}
    798 	if (mifp != NULL) {
    799 		if_put(mifp, &psref);
    800 	}
    801 	if (bind_need_restore)
    802 		curlwp_bindx(bound);
    803 	return error;
    804 bad:
    805 	m_freem(m);
    806 	goto done;
    807 }
    808 
    809 int
    810 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    811 {
    812 	struct ip *ip, *mhip;
    813 	struct mbuf *m0;
    814 	int len, hlen, off;
    815 	int mhlen, firstlen;
    816 	struct mbuf **mnext;
    817 	int sw_csum = m->m_pkthdr.csum_flags;
    818 	int fragments = 0;
    819 	int error = 0;
    820 
    821 	ip = mtod(m, struct ip *);
    822 	hlen = ip->ip_hl << 2;
    823 	if (ifp != NULL)
    824 		sw_csum &= ~ifp->if_csum_flags_tx;
    825 
    826 	len = (mtu - hlen) &~ 7;
    827 	if (len < 8) {
    828 		m_freem(m);
    829 		return (EMSGSIZE);
    830 	}
    831 
    832 	firstlen = len;
    833 	mnext = &m->m_nextpkt;
    834 
    835 	/*
    836 	 * Loop through length of segment after first fragment,
    837 	 * make new header and copy data of each part and link onto chain.
    838 	 */
    839 	m0 = m;
    840 	mhlen = sizeof (struct ip);
    841 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    842 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    843 		if (m == 0) {
    844 			error = ENOBUFS;
    845 			IP_STATINC(IP_STAT_ODROPPED);
    846 			goto sendorfree;
    847 		}
    848 		MCLAIM(m, m0->m_owner);
    849 		*mnext = m;
    850 		mnext = &m->m_nextpkt;
    851 		m->m_data += max_linkhdr;
    852 		mhip = mtod(m, struct ip *);
    853 		*mhip = *ip;
    854 		/* we must inherit MCAST and BCAST flags */
    855 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    856 		if (hlen > sizeof (struct ip)) {
    857 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    858 			mhip->ip_hl = mhlen >> 2;
    859 		}
    860 		m->m_len = mhlen;
    861 		mhip->ip_off = ((off - hlen) >> 3) +
    862 		    (ntohs(ip->ip_off) & ~IP_MF);
    863 		if (ip->ip_off & htons(IP_MF))
    864 			mhip->ip_off |= IP_MF;
    865 		if (off + len >= ntohs(ip->ip_len))
    866 			len = ntohs(ip->ip_len) - off;
    867 		else
    868 			mhip->ip_off |= IP_MF;
    869 		HTONS(mhip->ip_off);
    870 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    871 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
    872 		if (m->m_next == 0) {
    873 			error = ENOBUFS;	/* ??? */
    874 			IP_STATINC(IP_STAT_ODROPPED);
    875 			goto sendorfree;
    876 		}
    877 		m->m_pkthdr.len = mhlen + len;
    878 		m_reset_rcvif(m);
    879 		mhip->ip_sum = 0;
    880 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    881 		if (sw_csum & M_CSUM_IPv4) {
    882 			mhip->ip_sum = in_cksum(m, mhlen);
    883 		} else {
    884 			/*
    885 			 * checksum is hw-offloaded or not necessary.
    886 			 */
    887 			m->m_pkthdr.csum_flags |=
    888 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
    889 			m->m_pkthdr.csum_data |= mhlen << 16;
    890 			KASSERT(!(ifp != NULL &&
    891 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    892 			    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    893 		}
    894 		IP_STATINC(IP_STAT_OFRAGMENTS);
    895 		fragments++;
    896 	}
    897 	/*
    898 	 * Update first fragment by trimming what's been copied out
    899 	 * and updating header, then send each fragment (in order).
    900 	 */
    901 	m = m0;
    902 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    903 	m->m_pkthdr.len = hlen + firstlen;
    904 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    905 	ip->ip_off |= htons(IP_MF);
    906 	ip->ip_sum = 0;
    907 	if (sw_csum & M_CSUM_IPv4) {
    908 		ip->ip_sum = in_cksum(m, hlen);
    909 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    910 	} else {
    911 		/*
    912 		 * checksum is hw-offloaded or not necessary.
    913 		 */
    914 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
    915 		    (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
    916 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
    917 		    sizeof(struct ip));
    918 	}
    919 sendorfree:
    920 	/*
    921 	 * If there is no room for all the fragments, don't queue
    922 	 * any of them.
    923 	 */
    924 	if (ifp != NULL) {
    925 		IFQ_LOCK(&ifp->if_snd);
    926 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    927 		    error == 0) {
    928 			error = ENOBUFS;
    929 			IP_STATINC(IP_STAT_ODROPPED);
    930 			IFQ_INC_DROPS(&ifp->if_snd);
    931 		}
    932 		IFQ_UNLOCK(&ifp->if_snd);
    933 	}
    934 	if (error) {
    935 		for (m = m0; m; m = m0) {
    936 			m0 = m->m_nextpkt;
    937 			m->m_nextpkt = NULL;
    938 			m_freem(m);
    939 		}
    940 	}
    941 	return (error);
    942 }
    943 
    944 /*
    945  * Process a delayed payload checksum calculation.
    946  */
    947 void
    948 in_delayed_cksum(struct mbuf *m)
    949 {
    950 	struct ip *ip;
    951 	u_int16_t csum, offset;
    952 
    953 	ip = mtod(m, struct ip *);
    954 	offset = ip->ip_hl << 2;
    955 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    956 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    957 		csum = 0xffff;
    958 
    959 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
    960 
    961 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    962 		/* This happen when ip options were inserted
    963 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    964 		    m->m_len, offset, ip->ip_p);
    965 		 */
    966 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
    967 	} else
    968 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
    969 }
    970 
    971 /*
    972  * Determine the maximum length of the options to be inserted;
    973  * we would far rather allocate too much space rather than too little.
    974  */
    975 
    976 u_int
    977 ip_optlen(struct inpcb *inp)
    978 {
    979 	struct mbuf *m = inp->inp_options;
    980 
    981 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
    982 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
    983 	}
    984 	return 0;
    985 }
    986 
    987 /*
    988  * Insert IP options into preformed packet.
    989  * Adjust IP destination as required for IP source routing,
    990  * as indicated by a non-zero in_addr at the start of the options.
    991  */
    992 static struct mbuf *
    993 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
    994 {
    995 	struct ipoption *p = mtod(opt, struct ipoption *);
    996 	struct mbuf *n;
    997 	struct ip *ip = mtod(m, struct ip *);
    998 	unsigned optlen;
    999 
   1000 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1001 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1002 		return (m);		/* XXX should fail */
   1003 	if (!in_nullhost(p->ipopt_dst))
   1004 		ip->ip_dst = p->ipopt_dst;
   1005 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1006 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1007 		if (n == 0)
   1008 			return (m);
   1009 		MCLAIM(n, m->m_owner);
   1010 		M_MOVE_PKTHDR(n, m);
   1011 		m->m_len -= sizeof(struct ip);
   1012 		m->m_data += sizeof(struct ip);
   1013 		n->m_next = m;
   1014 		m = n;
   1015 		m->m_len = optlen + sizeof(struct ip);
   1016 		m->m_data += max_linkhdr;
   1017 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
   1018 	} else {
   1019 		m->m_data -= optlen;
   1020 		m->m_len += optlen;
   1021 		memmove(mtod(m, void *), ip, sizeof(struct ip));
   1022 	}
   1023 	m->m_pkthdr.len += optlen;
   1024 	ip = mtod(m, struct ip *);
   1025 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
   1026 	*phlen = sizeof(struct ip) + optlen;
   1027 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1028 	return (m);
   1029 }
   1030 
   1031 /*
   1032  * Copy options from ip to jp,
   1033  * omitting those not copied during fragmentation.
   1034  */
   1035 int
   1036 ip_optcopy(struct ip *ip, struct ip *jp)
   1037 {
   1038 	u_char *cp, *dp;
   1039 	int opt, optlen, cnt;
   1040 
   1041 	cp = (u_char *)(ip + 1);
   1042 	dp = (u_char *)(jp + 1);
   1043 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1044 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1045 		opt = cp[0];
   1046 		if (opt == IPOPT_EOL)
   1047 			break;
   1048 		if (opt == IPOPT_NOP) {
   1049 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1050 			*dp++ = IPOPT_NOP;
   1051 			optlen = 1;
   1052 			continue;
   1053 		}
   1054 
   1055 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
   1056 		optlen = cp[IPOPT_OLEN];
   1057 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
   1058 
   1059 		/* Invalid lengths should have been caught by ip_dooptions. */
   1060 		if (optlen > cnt)
   1061 			optlen = cnt;
   1062 		if (IPOPT_COPIED(opt)) {
   1063 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
   1064 			dp += optlen;
   1065 		}
   1066 	}
   1067 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1068 		*dp++ = IPOPT_EOL;
   1069 	return (optlen);
   1070 }
   1071 
   1072 /*
   1073  * IP socket option processing.
   1074  */
   1075 int
   1076 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1077 {
   1078 	struct inpcb *inp = sotoinpcb(so);
   1079 	struct ip *ip = &inp->inp_ip;
   1080 	int inpflags = inp->inp_flags;
   1081 	int optval = 0, error = 0;
   1082 
   1083 	KASSERT(solocked(so));
   1084 
   1085 	if (sopt->sopt_level != IPPROTO_IP) {
   1086 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
   1087 			return 0;
   1088 		return ENOPROTOOPT;
   1089 	}
   1090 
   1091 	switch (op) {
   1092 	case PRCO_SETOPT:
   1093 		switch (sopt->sopt_name) {
   1094 		case IP_OPTIONS:
   1095 #ifdef notyet
   1096 		case IP_RETOPTS:
   1097 #endif
   1098 			error = ip_pcbopts(inp, sopt);
   1099 			break;
   1100 
   1101 		case IP_TOS:
   1102 		case IP_TTL:
   1103 		case IP_MINTTL:
   1104 		case IP_PKTINFO:
   1105 		case IP_RECVOPTS:
   1106 		case IP_RECVRETOPTS:
   1107 		case IP_RECVDSTADDR:
   1108 		case IP_RECVIF:
   1109 		case IP_RECVPKTINFO:
   1110 		case IP_RECVTTL:
   1111 			error = sockopt_getint(sopt, &optval);
   1112 			if (error)
   1113 				break;
   1114 
   1115 			switch (sopt->sopt_name) {
   1116 			case IP_TOS:
   1117 				ip->ip_tos = optval;
   1118 				break;
   1119 
   1120 			case IP_TTL:
   1121 				ip->ip_ttl = optval;
   1122 				break;
   1123 
   1124 			case IP_MINTTL:
   1125 				if (optval > 0 && optval <= MAXTTL)
   1126 					inp->inp_ip_minttl = optval;
   1127 				else
   1128 					error = EINVAL;
   1129 				break;
   1130 #define	OPTSET(bit) \
   1131 	if (optval) \
   1132 		inpflags |= bit; \
   1133 	else \
   1134 		inpflags &= ~bit;
   1135 
   1136 			case IP_PKTINFO:
   1137 				OPTSET(INP_PKTINFO);
   1138 				break;
   1139 
   1140 			case IP_RECVOPTS:
   1141 				OPTSET(INP_RECVOPTS);
   1142 				break;
   1143 
   1144 			case IP_RECVPKTINFO:
   1145 				OPTSET(INP_RECVPKTINFO);
   1146 				break;
   1147 
   1148 			case IP_RECVRETOPTS:
   1149 				OPTSET(INP_RECVRETOPTS);
   1150 				break;
   1151 
   1152 			case IP_RECVDSTADDR:
   1153 				OPTSET(INP_RECVDSTADDR);
   1154 				break;
   1155 
   1156 			case IP_RECVIF:
   1157 				OPTSET(INP_RECVIF);
   1158 				break;
   1159 
   1160 			case IP_RECVTTL:
   1161 				OPTSET(INP_RECVTTL);
   1162 				break;
   1163 			}
   1164 		break;
   1165 #undef OPTSET
   1166 
   1167 		case IP_MULTICAST_IF:
   1168 		case IP_MULTICAST_TTL:
   1169 		case IP_MULTICAST_LOOP:
   1170 		case IP_ADD_MEMBERSHIP:
   1171 		case IP_DROP_MEMBERSHIP:
   1172 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   1173 			break;
   1174 
   1175 		case IP_PORTRANGE:
   1176 			error = sockopt_getint(sopt, &optval);
   1177 			if (error)
   1178 				break;
   1179 
   1180 			switch (optval) {
   1181 			case IP_PORTRANGE_DEFAULT:
   1182 			case IP_PORTRANGE_HIGH:
   1183 				inpflags &= ~(INP_LOWPORT);
   1184 				break;
   1185 
   1186 			case IP_PORTRANGE_LOW:
   1187 				inpflags |= INP_LOWPORT;
   1188 				break;
   1189 
   1190 			default:
   1191 				error = EINVAL;
   1192 				break;
   1193 			}
   1194 			break;
   1195 
   1196 		case IP_PORTALGO:
   1197 			error = sockopt_getint(sopt, &optval);
   1198 			if (error)
   1199 				break;
   1200 
   1201 			error = portalgo_algo_index_select(
   1202 			    (struct inpcb_hdr *)inp, optval);
   1203 			break;
   1204 
   1205 #if defined(IPSEC)
   1206 		case IP_IPSEC_POLICY:
   1207 			if (ipsec_enabled) {
   1208 				error = ipsec4_set_policy(inp, sopt->sopt_name,
   1209 				    sopt->sopt_data, sopt->sopt_size,
   1210 				    curlwp->l_cred);
   1211 				break;
   1212 			}
   1213 			/*FALLTHROUGH*/
   1214 #endif /* IPSEC */
   1215 
   1216 		default:
   1217 			error = ENOPROTOOPT;
   1218 			break;
   1219 		}
   1220 		break;
   1221 
   1222 	case PRCO_GETOPT:
   1223 		switch (sopt->sopt_name) {
   1224 		case IP_OPTIONS:
   1225 		case IP_RETOPTS: {
   1226 			struct mbuf *mopts = inp->inp_options;
   1227 
   1228 			if (mopts) {
   1229 				struct mbuf *m;
   1230 
   1231 				m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
   1232 				if (m == NULL) {
   1233 					error = ENOBUFS;
   1234 					break;
   1235 				}
   1236 				error = sockopt_setmbuf(sopt, m);
   1237 			}
   1238 			break;
   1239 		}
   1240 		case IP_PKTINFO:
   1241 		case IP_TOS:
   1242 		case IP_TTL:
   1243 		case IP_MINTTL:
   1244 		case IP_RECVOPTS:
   1245 		case IP_RECVRETOPTS:
   1246 		case IP_RECVDSTADDR:
   1247 		case IP_RECVIF:
   1248 		case IP_RECVPKTINFO:
   1249 		case IP_RECVTTL:
   1250 		case IP_ERRORMTU:
   1251 			switch (sopt->sopt_name) {
   1252 			case IP_TOS:
   1253 				optval = ip->ip_tos;
   1254 				break;
   1255 
   1256 			case IP_TTL:
   1257 				optval = ip->ip_ttl;
   1258 				break;
   1259 
   1260 			case IP_MINTTL:
   1261 				optval = inp->inp_ip_minttl;
   1262 				break;
   1263 
   1264 			case IP_ERRORMTU:
   1265 				optval = inp->inp_errormtu;
   1266 				break;
   1267 
   1268 #define	OPTBIT(bit)	(inpflags & bit ? 1 : 0)
   1269 
   1270 			case IP_PKTINFO:
   1271 				optval = OPTBIT(INP_PKTINFO);
   1272 				break;
   1273 
   1274 			case IP_RECVOPTS:
   1275 				optval = OPTBIT(INP_RECVOPTS);
   1276 				break;
   1277 
   1278 			case IP_RECVPKTINFO:
   1279 				optval = OPTBIT(INP_RECVPKTINFO);
   1280 				break;
   1281 
   1282 			case IP_RECVRETOPTS:
   1283 				optval = OPTBIT(INP_RECVRETOPTS);
   1284 				break;
   1285 
   1286 			case IP_RECVDSTADDR:
   1287 				optval = OPTBIT(INP_RECVDSTADDR);
   1288 				break;
   1289 
   1290 			case IP_RECVIF:
   1291 				optval = OPTBIT(INP_RECVIF);
   1292 				break;
   1293 
   1294 			case IP_RECVTTL:
   1295 				optval = OPTBIT(INP_RECVTTL);
   1296 				break;
   1297 			}
   1298 			error = sockopt_setint(sopt, optval);
   1299 			break;
   1300 
   1301 #if 0	/* defined(IPSEC) */
   1302 		case IP_IPSEC_POLICY:
   1303 		{
   1304 			struct mbuf *m = NULL;
   1305 
   1306 			/* XXX this will return EINVAL as sopt is empty */
   1307 			error = ipsec4_get_policy(inp, sopt->sopt_data,
   1308 			    sopt->sopt_size, &m);
   1309 			if (error == 0)
   1310 				error = sockopt_setmbuf(sopt, m);
   1311 			break;
   1312 		}
   1313 #endif /*IPSEC*/
   1314 
   1315 		case IP_MULTICAST_IF:
   1316 		case IP_MULTICAST_TTL:
   1317 		case IP_MULTICAST_LOOP:
   1318 		case IP_ADD_MEMBERSHIP:
   1319 		case IP_DROP_MEMBERSHIP:
   1320 			error = ip_getmoptions(inp->inp_moptions, sopt);
   1321 			break;
   1322 
   1323 		case IP_PORTRANGE:
   1324 			if (inpflags & INP_LOWPORT)
   1325 				optval = IP_PORTRANGE_LOW;
   1326 			else
   1327 				optval = IP_PORTRANGE_DEFAULT;
   1328 			error = sockopt_setint(sopt, optval);
   1329 			break;
   1330 
   1331 		case IP_PORTALGO:
   1332 			optval = inp->inp_portalgo;
   1333 			error = sockopt_setint(sopt, optval);
   1334 			break;
   1335 
   1336 		default:
   1337 			error = ENOPROTOOPT;
   1338 			break;
   1339 		}
   1340 		break;
   1341 	}
   1342 
   1343 	if (!error) {
   1344 		inp->inp_flags = inpflags;
   1345 	}
   1346 	return error;
   1347 }
   1348 
   1349 static int
   1350 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
   1351     int *flags, kauth_cred_t cred)
   1352 {
   1353 	struct ip_moptions *imo;
   1354 	int error = 0;
   1355 	bool addrset = false;
   1356 
   1357 	if (!in_nullhost(pktinfo->ipi_addr)) {
   1358 		pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
   1359 		/* EADDRNOTAVAIL? */
   1360 		error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
   1361 		if (error != 0)
   1362 			return error;
   1363 		addrset = true;
   1364 	}
   1365 
   1366 	if (pktinfo->ipi_ifindex != 0) {
   1367 		if (!addrset) {
   1368 			struct ifnet *ifp;
   1369 			struct in_ifaddr *ia;
   1370 			int s;
   1371 
   1372 			/* pick up primary address */
   1373 			s = pserialize_read_enter();
   1374 			ifp = if_byindex(pktinfo->ipi_ifindex);
   1375 			if (ifp == NULL) {
   1376 				pserialize_read_exit(s);
   1377 				return EADDRNOTAVAIL;
   1378 			}
   1379 			ia = in_get_ia_from_ifp(ifp);
   1380 			if (ia == NULL) {
   1381 				pserialize_read_exit(s);
   1382 				return EADDRNOTAVAIL;
   1383 			}
   1384 			pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
   1385 			pserialize_read_exit(s);
   1386 		}
   1387 
   1388 		/*
   1389 		 * If specified ipi_ifindex,
   1390 		 * use copied or locally initialized ip_moptions.
   1391 		 * Original ip_moptions must not be modified.
   1392 		 */
   1393 		imo = &pktopts->ippo_imobuf;	/* local buf in pktopts */
   1394 		if (pktopts->ippo_imo != NULL) {
   1395 			memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
   1396 		} else {
   1397 			memset(imo, 0, sizeof(*imo));
   1398 			imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1399 			imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1400 		}
   1401 		imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
   1402 		pktopts->ippo_imo = imo;
   1403 		*flags |= IP_ROUTETOIFINDEX;
   1404 	}
   1405 	return error;
   1406 }
   1407 
   1408 /*
   1409  * Set up IP outgoing packet options. Even if control is NULL,
   1410  * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
   1411  */
   1412 int
   1413 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
   1414     struct inpcb *inp, kauth_cred_t cred, int uproto)
   1415 {
   1416 	struct inpcb *xinp;
   1417 	struct cmsghdr *cm;
   1418 	struct in_pktinfo *pktinfo;
   1419 	int error;
   1420 
   1421 	pktopts->ippo_imo = inp->inp_moptions;
   1422 	sockaddr_in_init(&pktopts->ippo_laddr, &inp->inp_laddr, 0);
   1423 
   1424 	if (control == NULL)
   1425 		return 0;
   1426 
   1427 	/*
   1428 	 * XXX: Currently, we assume all the optional information is
   1429 	 * stored in a single mbuf.
   1430 	 */
   1431 	if (control->m_next)
   1432 		return EINVAL;
   1433 
   1434 	for (; control->m_len > 0;
   1435 	    control->m_data += CMSG_ALIGN(cm->cmsg_len),
   1436 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   1437 		cm = mtod(control, struct cmsghdr *);
   1438 		if ((control->m_len < sizeof(*cm)) ||
   1439 		    (cm->cmsg_len == 0) ||
   1440 		    (cm->cmsg_len > control->m_len)) {
   1441 			return EINVAL;
   1442 		}
   1443 		if (cm->cmsg_level != IPPROTO_IP)
   1444 			continue;
   1445 
   1446 		switch (cm->cmsg_type) {
   1447 		case IP_PKTINFO:
   1448 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo)))
   1449 				return EINVAL;
   1450 
   1451 			pktinfo = (struct in_pktinfo *)CMSG_DATA(cm);
   1452 			error = ip_pktinfo_prepare(pktinfo, pktopts, flags,
   1453 			    cred);
   1454 			if (error != 0)
   1455 				return error;
   1456 
   1457 			if ((uproto == IPPROTO_UDP) &&
   1458 			    !in_nullhost(pktopts->ippo_laddr.sin_addr)) {
   1459 				/* Checking laddr:port already in use? */
   1460 				xinp = in_pcblookup_bind(&udbtable,
   1461 				    pktopts->ippo_laddr.sin_addr,
   1462 				    inp->inp_lport);
   1463 				if ((xinp != NULL) && (xinp != inp))
   1464 					return EADDRINUSE;
   1465 			}
   1466 			break;
   1467 		default:
   1468 			return ENOPROTOOPT;
   1469 		}
   1470 	}
   1471 	return 0;
   1472 }
   1473 
   1474 /*
   1475  * Set up IP options in pcb for insertion in output packets.
   1476  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1477  * with destination address if source routed.
   1478  */
   1479 static int
   1480 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
   1481 {
   1482 	struct mbuf *m;
   1483 	const u_char *cp;
   1484 	u_char *dp;
   1485 	int cnt;
   1486 
   1487 	KASSERT(inp_locked(inp));
   1488 
   1489 	/* Turn off any old options. */
   1490 	if (inp->inp_options) {
   1491 		m_free(inp->inp_options);
   1492 	}
   1493 	inp->inp_options = NULL;
   1494 	if ((cnt = sopt->sopt_size) == 0) {
   1495 		/* Only turning off any previous options. */
   1496 		return 0;
   1497 	}
   1498 	cp = sopt->sopt_data;
   1499 
   1500 #ifndef	__vax__
   1501 	if (cnt % sizeof(int32_t))
   1502 		return (EINVAL);
   1503 #endif
   1504 
   1505 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   1506 	if (m == NULL)
   1507 		return (ENOBUFS);
   1508 
   1509 	dp = mtod(m, u_char *);
   1510 	memset(dp, 0, sizeof(struct in_addr));
   1511 	dp += sizeof(struct in_addr);
   1512 	m->m_len = sizeof(struct in_addr);
   1513 
   1514 	/*
   1515 	 * IP option list according to RFC791. Each option is of the form
   1516 	 *
   1517 	 *	[optval] [olen] [(olen - 2) data bytes]
   1518 	 *
   1519 	 * We validate the list and copy options to an mbuf for prepending
   1520 	 * to data packets. The IP first-hop destination address will be
   1521 	 * stored before actual options and is zero if unset.
   1522 	 */
   1523 	while (cnt > 0) {
   1524 		uint8_t optval, olen, offset;
   1525 
   1526 		optval = cp[IPOPT_OPTVAL];
   1527 
   1528 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
   1529 			olen = 1;
   1530 		} else {
   1531 			if (cnt < IPOPT_OLEN + 1)
   1532 				goto bad;
   1533 
   1534 			olen = cp[IPOPT_OLEN];
   1535 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
   1536 				goto bad;
   1537 		}
   1538 
   1539 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
   1540 			/*
   1541 			 * user process specifies route as:
   1542 			 *	->A->B->C->D
   1543 			 * D must be our final destination (but we can't
   1544 			 * check that since we may not have connected yet).
   1545 			 * A is first hop destination, which doesn't appear in
   1546 			 * actual IP option, but is stored before the options.
   1547 			 */
   1548 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
   1549 				goto bad;
   1550 
   1551 			offset = cp[IPOPT_OFFSET];
   1552 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
   1553 			    sizeof(struct in_addr));
   1554 
   1555 			cp += sizeof(struct in_addr);
   1556 			cnt -= sizeof(struct in_addr);
   1557 			olen -= sizeof(struct in_addr);
   1558 
   1559 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1560 				goto bad;
   1561 
   1562 			memcpy(dp, cp, olen);
   1563 			dp[IPOPT_OPTVAL] = optval;
   1564 			dp[IPOPT_OLEN] = olen;
   1565 			dp[IPOPT_OFFSET] = offset;
   1566 			break;
   1567 		} else {
   1568 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
   1569 				goto bad;
   1570 
   1571 			memcpy(dp, cp, olen);
   1572 			break;
   1573 		}
   1574 
   1575 		dp += olen;
   1576 		m->m_len += olen;
   1577 
   1578 		if (optval == IPOPT_EOL)
   1579 			break;
   1580 
   1581 		cp += olen;
   1582 		cnt -= olen;
   1583 	}
   1584 
   1585 	inp->inp_options = m;
   1586 	return 0;
   1587 bad:
   1588 	(void)m_free(m);
   1589 	return EINVAL;
   1590 }
   1591 
   1592 /*
   1593  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1594  * Must be called in a pserialize critical section.
   1595  */
   1596 static struct ifnet *
   1597 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1598 {
   1599 	int ifindex;
   1600 	struct ifnet *ifp = NULL;
   1601 	struct in_ifaddr *ia;
   1602 
   1603 	if (ifindexp)
   1604 		*ifindexp = 0;
   1605 	if (ntohl(a->s_addr) >> 24 == 0) {
   1606 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1607 		ifp = if_byindex(ifindex);
   1608 		if (!ifp)
   1609 			return NULL;
   1610 		if (ifindexp)
   1611 			*ifindexp = ifindex;
   1612 	} else {
   1613 		IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
   1614 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1615 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1616 				ifp = ia->ia_ifp;
   1617 				if (if_is_deactivated(ifp))
   1618 					ifp = NULL;
   1619 				break;
   1620 			}
   1621 		}
   1622 	}
   1623 	return ifp;
   1624 }
   1625 
   1626 static int
   1627 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
   1628 {
   1629 	u_int tval;
   1630 	u_char cval;
   1631 	int error;
   1632 
   1633 	if (sopt == NULL)
   1634 		return EINVAL;
   1635 
   1636 	switch (sopt->sopt_size) {
   1637 	case sizeof(u_char):
   1638 		error = sockopt_get(sopt, &cval, sizeof(u_char));
   1639 		tval = cval;
   1640 		break;
   1641 
   1642 	case sizeof(u_int):
   1643 		error = sockopt_get(sopt, &tval, sizeof(u_int));
   1644 		break;
   1645 
   1646 	default:
   1647 		error = EINVAL;
   1648 	}
   1649 
   1650 	if (error)
   1651 		return error;
   1652 
   1653 	if (tval > maxval)
   1654 		return EINVAL;
   1655 
   1656 	*val = tval;
   1657 	return 0;
   1658 }
   1659 
   1660 static int
   1661 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   1662     struct psref *psref, struct in_addr *ia, bool add)
   1663 {
   1664 	int error;
   1665 	struct ip_mreq mreq;
   1666 
   1667 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   1668 	if (error)
   1669 		return error;
   1670 
   1671 	if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
   1672 		return EINVAL;
   1673 
   1674 	memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
   1675 
   1676 	if (in_nullhost(mreq.imr_interface)) {
   1677 		union {
   1678 			struct sockaddr		dst;
   1679 			struct sockaddr_in	dst4;
   1680 		} u;
   1681 		struct route ro;
   1682 
   1683 		if (!add) {
   1684 			*ifp = NULL;
   1685 			return 0;
   1686 		}
   1687 		/*
   1688 		 * If no interface address was provided, use the interface of
   1689 		 * the route to the given multicast address.
   1690 		 */
   1691 		struct rtentry *rt;
   1692 		memset(&ro, 0, sizeof(ro));
   1693 
   1694 		sockaddr_in_init(&u.dst4, ia, 0);
   1695 		error = rtcache_setdst(&ro, &u.dst);
   1696 		if (error != 0)
   1697 			return error;
   1698 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
   1699 		if (*ifp != NULL) {
   1700 			if (if_is_deactivated(*ifp))
   1701 				*ifp = NULL;
   1702 			else
   1703 				if_acquire(*ifp, psref);
   1704 		}
   1705 		rtcache_unref(rt, &ro);
   1706 		rtcache_free(&ro);
   1707 	} else {
   1708 		int s = pserialize_read_enter();
   1709 		*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
   1710 		if (!add && *ifp == NULL) {
   1711 			pserialize_read_exit(s);
   1712 			return EADDRNOTAVAIL;
   1713 		}
   1714 		if (*ifp != NULL) {
   1715 			if (if_is_deactivated(*ifp))
   1716 				*ifp = NULL;
   1717 			else
   1718 				if_acquire(*ifp, psref);
   1719 		}
   1720 		pserialize_read_exit(s);
   1721 	}
   1722 	return 0;
   1723 }
   1724 
   1725 /*
   1726  * Add a multicast group membership.
   1727  * Group must be a valid IP multicast address.
   1728  */
   1729 static int
   1730 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1731 {
   1732 	struct ifnet *ifp = NULL;	// XXX: gcc [ppc]
   1733 	struct in_addr ia;
   1734 	int i, error, bound;
   1735 	struct psref psref;
   1736 
   1737 	/* imo is protected by solock or referenced only by the caller */
   1738 
   1739 	bound = curlwp_bind();
   1740 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1741 		error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
   1742 	else
   1743 #ifdef INET6
   1744 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   1745 #else
   1746 		error = EINVAL;
   1747 		goto out;
   1748 #endif
   1749 
   1750 	if (error)
   1751 		goto out;
   1752 
   1753 	/*
   1754 	 * See if we found an interface, and confirm that it
   1755 	 * supports multicast.
   1756 	 */
   1757 	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1758 		error = EADDRNOTAVAIL;
   1759 		goto out;
   1760 	}
   1761 
   1762 	/*
   1763 	 * See if the membership already exists or if all the
   1764 	 * membership slots are full.
   1765 	 */
   1766 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1767 		if (imo->imo_membership[i]->inm_ifp == ifp &&
   1768 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1769 			break;
   1770 	}
   1771 	if (i < imo->imo_num_memberships) {
   1772 		error = EADDRINUSE;
   1773 		goto out;
   1774 	}
   1775 
   1776 	if (i == IP_MAX_MEMBERSHIPS) {
   1777 		error = ETOOMANYREFS;
   1778 		goto out;
   1779 	}
   1780 
   1781 	/*
   1782 	 * Everything looks good; add a new record to the multicast
   1783 	 * address list for the given interface.
   1784 	 */
   1785 	if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL) {
   1786 		error = ENOBUFS;
   1787 		goto out;
   1788 	}
   1789 
   1790 	++imo->imo_num_memberships;
   1791 	error = 0;
   1792 out:
   1793 	if_put(ifp, &psref);
   1794 	curlwp_bindx(bound);
   1795 	return error;
   1796 }
   1797 
   1798 /*
   1799  * Drop a multicast group membership.
   1800  * Group must be a valid IP multicast address.
   1801  */
   1802 static int
   1803 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
   1804 {
   1805 	struct in_addr ia = { .s_addr = 0 };	// XXX: gcc [ppc]
   1806 	struct ifnet *ifp = NULL;		// XXX: gcc [ppc]
   1807 	int i, error, bound;
   1808 	struct psref psref;
   1809 
   1810 	/* imo is protected by solock or referenced only by the caller */
   1811 
   1812 	bound = curlwp_bind();
   1813 	if (sopt->sopt_size == sizeof(struct ip_mreq))
   1814 		error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
   1815 	else
   1816 #ifdef INET6
   1817 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   1818 #else
   1819 		error = EINVAL;
   1820 		goto out;
   1821 #endif
   1822 
   1823 	if (error)
   1824 		goto out;
   1825 
   1826 	/*
   1827 	 * Find the membership in the membership array.
   1828 	 */
   1829 	for (i = 0; i < imo->imo_num_memberships; ++i) {
   1830 		if ((ifp == NULL ||
   1831 		     imo->imo_membership[i]->inm_ifp == ifp) &&
   1832 		    in_hosteq(imo->imo_membership[i]->inm_addr, ia))
   1833 			break;
   1834 	}
   1835 	if (i == imo->imo_num_memberships) {
   1836 		error = EADDRNOTAVAIL;
   1837 		goto out;
   1838 	}
   1839 
   1840 	/*
   1841 	 * Give up the multicast address record to which the
   1842 	 * membership points.
   1843 	 */
   1844 	in_delmulti(imo->imo_membership[i]);
   1845 
   1846 	/*
   1847 	 * Remove the gap in the membership array.
   1848 	 */
   1849 	for (++i; i < imo->imo_num_memberships; ++i)
   1850 		imo->imo_membership[i-1] = imo->imo_membership[i];
   1851 	--imo->imo_num_memberships;
   1852 	error = 0;
   1853 out:
   1854 	if_put(ifp, &psref);
   1855 	curlwp_bindx(bound);
   1856 	return error;
   1857 }
   1858 
   1859 /*
   1860  * Set the IP multicast options in response to user setsockopt().
   1861  */
   1862 int
   1863 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
   1864 {
   1865 	struct ip_moptions *imo = *pimo;
   1866 	struct in_addr addr;
   1867 	struct ifnet *ifp;
   1868 	int ifindex, error = 0;
   1869 
   1870 	/* The passed imo isn't NULL, it should be protected by solock */
   1871 
   1872 	if (!imo) {
   1873 		/*
   1874 		 * No multicast option buffer attached to the pcb;
   1875 		 * allocate one and initialize to default values.
   1876 		 */
   1877 		imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
   1878 		if (imo == NULL)
   1879 			return ENOBUFS;
   1880 
   1881 		imo->imo_multicast_if_index = 0;
   1882 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1883 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1884 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1885 		imo->imo_num_memberships = 0;
   1886 		*pimo = imo;
   1887 	}
   1888 
   1889 	switch (sopt->sopt_name) {
   1890 	case IP_MULTICAST_IF: {
   1891 		int s;
   1892 		/*
   1893 		 * Select the interface for outgoing multicast packets.
   1894 		 */
   1895 		error = sockopt_get(sopt, &addr, sizeof(addr));
   1896 		if (error)
   1897 			break;
   1898 
   1899 		/*
   1900 		 * INADDR_ANY is used to remove a previous selection.
   1901 		 * When no interface is selected, a default one is
   1902 		 * chosen every time a multicast packet is sent.
   1903 		 */
   1904 		if (in_nullhost(addr)) {
   1905 			imo->imo_multicast_if_index = 0;
   1906 			break;
   1907 		}
   1908 		/*
   1909 		 * The selected interface is identified by its local
   1910 		 * IP address.  Find the interface and confirm that
   1911 		 * it supports multicasting.
   1912 		 */
   1913 		s = pserialize_read_enter();
   1914 		ifp = ip_multicast_if(&addr, &ifindex);
   1915 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1916 			pserialize_read_exit(s);
   1917 			error = EADDRNOTAVAIL;
   1918 			break;
   1919 		}
   1920 		imo->imo_multicast_if_index = ifp->if_index;
   1921 		pserialize_read_exit(s);
   1922 		if (ifindex)
   1923 			imo->imo_multicast_addr = addr;
   1924 		else
   1925 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1926 		break;
   1927 	    }
   1928 
   1929 	case IP_MULTICAST_TTL:
   1930 		/*
   1931 		 * Set the IP time-to-live for outgoing multicast packets.
   1932 		 */
   1933 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
   1934 		break;
   1935 
   1936 	case IP_MULTICAST_LOOP:
   1937 		/*
   1938 		 * Set the loopback flag for outgoing multicast packets.
   1939 		 * Must be zero or one.
   1940 		 */
   1941 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
   1942 		break;
   1943 
   1944 	case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
   1945 		error = ip_add_membership(imo, sopt);
   1946 		break;
   1947 
   1948 	case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
   1949 		error = ip_drop_membership(imo, sopt);
   1950 		break;
   1951 
   1952 	default:
   1953 		error = EOPNOTSUPP;
   1954 		break;
   1955 	}
   1956 
   1957 	/*
   1958 	 * If all options have default values, no need to keep the mbuf.
   1959 	 */
   1960 	if (imo->imo_multicast_if_index == 0 &&
   1961 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1962 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1963 	    imo->imo_num_memberships == 0) {
   1964 		kmem_intr_free(imo, sizeof(*imo));
   1965 		*pimo = NULL;
   1966 	}
   1967 
   1968 	return error;
   1969 }
   1970 
   1971 /*
   1972  * Return the IP multicast options in response to user getsockopt().
   1973  */
   1974 int
   1975 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
   1976 {
   1977 	struct in_addr addr;
   1978 	uint8_t optval;
   1979 	int error = 0;
   1980 
   1981 	/* imo is protected by solock or refereced only by the caller */
   1982 
   1983 	switch (sopt->sopt_name) {
   1984 	case IP_MULTICAST_IF:
   1985 		if (imo == NULL || imo->imo_multicast_if_index == 0)
   1986 			addr = zeroin_addr;
   1987 		else if (imo->imo_multicast_addr.s_addr) {
   1988 			/* return the value user has set */
   1989 			addr = imo->imo_multicast_addr;
   1990 		} else {
   1991 			struct ifnet *ifp;
   1992 			struct in_ifaddr *ia = NULL;
   1993 			int s = pserialize_read_enter();
   1994 
   1995 			ifp = if_byindex(imo->imo_multicast_if_index);
   1996 			if (ifp != NULL) {
   1997 				ia = in_get_ia_from_ifp(ifp);
   1998 			}
   1999 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   2000 			pserialize_read_exit(s);
   2001 		}
   2002 		error = sockopt_set(sopt, &addr, sizeof(addr));
   2003 		break;
   2004 
   2005 	case IP_MULTICAST_TTL:
   2006 		optval = imo ? imo->imo_multicast_ttl
   2007 		    : IP_DEFAULT_MULTICAST_TTL;
   2008 
   2009 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2010 		break;
   2011 
   2012 	case IP_MULTICAST_LOOP:
   2013 		optval = imo ? imo->imo_multicast_loop
   2014 		    : IP_DEFAULT_MULTICAST_LOOP;
   2015 
   2016 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2017 		break;
   2018 
   2019 	default:
   2020 		error = EOPNOTSUPP;
   2021 	}
   2022 
   2023 	return error;
   2024 }
   2025 
   2026 /*
   2027  * Discard the IP multicast options.
   2028  */
   2029 void
   2030 ip_freemoptions(struct ip_moptions *imo)
   2031 {
   2032 	int i;
   2033 
   2034 	/* The owner of imo (inp) should be protected by solock */
   2035 
   2036 	if (imo != NULL) {
   2037 		for (i = 0; i < imo->imo_num_memberships; ++i)
   2038 			in_delmulti(imo->imo_membership[i]);
   2039 		kmem_intr_free(imo, sizeof(*imo));
   2040 	}
   2041 }
   2042 
   2043 /*
   2044  * Routine called from ip_output() to loop back a copy of an IP multicast
   2045  * packet to the input queue of a specified interface.  Note that this
   2046  * calls the output routine of the loopback "driver", but with an interface
   2047  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   2048  */
   2049 static void
   2050 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
   2051 {
   2052 	struct ip *ip;
   2053 	struct mbuf *copym;
   2054 
   2055 	copym = m_copypacket(m, M_DONTWAIT);
   2056 	if (copym != NULL &&
   2057 	    (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   2058 		copym = m_pullup(copym, sizeof(struct ip));
   2059 	if (copym == NULL)
   2060 		return;
   2061 	/*
   2062 	 * We don't bother to fragment if the IP length is greater
   2063 	 * than the interface's MTU.  Can this possibly matter?
   2064 	 */
   2065 	ip = mtod(copym, struct ip *);
   2066 
   2067 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   2068 		in_delayed_cksum(copym);
   2069 		copym->m_pkthdr.csum_flags &=
   2070 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   2071 	}
   2072 
   2073 	ip->ip_sum = 0;
   2074 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   2075 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2076 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
   2077 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2078 }
   2079 
   2080 /*
   2081  * Ensure sending address is valid.
   2082  * Returns 0 on success, -1 if an error should be sent back or 1
   2083  * if the packet could be dropped without error (protocol dependent).
   2084  */
   2085 static int
   2086 ip_ifaddrvalid(const struct in_ifaddr *ia)
   2087 {
   2088 
   2089 	if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
   2090 		return 0;
   2091 
   2092 	if (ia->ia4_flags & IN_IFF_DUPLICATED)
   2093 		return -1;
   2094 	else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
   2095 		return 1;
   2096 
   2097 	return 0;
   2098 }
   2099