ip_output.c revision 1.288 1 /* $NetBSD: ip_output.c,v 1.288 2017/12/22 11:22:37 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.288 2017/12/22 11:22:37 ozaki-r Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct inpcb *inp)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int hlen = sizeof (struct ip);
236 int len, error = 0;
237 struct route iproute;
238 const struct sockaddr_in *dst;
239 struct in_ifaddr *ia = NULL;
240 struct ifaddr *ifa;
241 int isbroadcast;
242 int sw_csum;
243 u_long mtu;
244 bool natt_frag = false;
245 bool rtmtu_nolock;
246 union {
247 struct sockaddr sa;
248 struct sockaddr_in sin;
249 } udst, usrc;
250 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
251 * opposed to the nexthop
252 */
253 struct psref psref, psref_ia;
254 int bound;
255 bool bind_need_restore = false;
256
257 len = 0;
258
259 MCLAIM(m, &ip_tx_mowner);
260
261 KASSERT((m->m_flags & M_PKTHDR) != 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
263 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
264 (M_CSUM_TCPv4|M_CSUM_UDPv4));
265
266 if (opt) {
267 m = ip_insertoptions(m, opt, &len);
268 if (len >= sizeof(struct ip))
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 /* XXX must be before rtcache operations */
307 bound = curlwp_bind();
308 bind_need_restore = true;
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &udst.sin;
313 error = rtcache_setdst(ro, &udst.sa);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
323 if (ifa == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /* ia is already referenced by psref_ia */
329 ia = ifatoia(ifa);
330
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 isbroadcast = in_broadcast(dst->sin_addr, ifp);
335 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
336 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
337 (flags & IP_ROUTETOIFINDEX)) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 ip->ip_dst.s_addr == INADDR_BROADCAST) {
353 isbroadcast = 0;
354 } else {
355 /* IP_ROUTETOIFINDEX */
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 if ((isbroadcast == 0) && ((ifp->if_flags &
358 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
359 (in_direct(dst->sin_addr, ifp) == 0)) {
360 /* gateway address required */
361 if (rt == NULL)
362 rt = rtcache_init(ro);
363 if (rt == NULL || rt->rt_ifp != ifp) {
364 IP_STATINC(IP_STAT_NOROUTE);
365 error = EHOSTUNREACH;
366 goto bad;
367 }
368 rt->rt_use++;
369 if (rt->rt_flags & RTF_GATEWAY)
370 dst = satosin(rt->rt_gateway);
371 if (rt->rt_flags & RTF_HOST)
372 isbroadcast =
373 rt->rt_flags & RTF_BROADCAST;
374 }
375 }
376 } else {
377 if (rt == NULL)
378 rt = rtcache_init(ro);
379 if (rt == NULL) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = EHOSTUNREACH;
382 goto bad;
383 }
384 if (ifa_is_destroying(rt->rt_ifa)) {
385 rtcache_unref(rt, ro);
386 rt = NULL;
387 IP_STATINC(IP_STAT_NOROUTE);
388 error = EHOSTUNREACH;
389 goto bad;
390 }
391 ifa_acquire(rt->rt_ifa, &psref_ia);
392 ia = ifatoia(rt->rt_ifa);
393 ifp = rt->rt_ifp;
394 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
395 mtu = ifp->if_mtu;
396 rt->rt_use++;
397 if (rt->rt_flags & RTF_GATEWAY)
398 dst = satosin(rt->rt_gateway);
399 if (rt->rt_flags & RTF_HOST)
400 isbroadcast = rt->rt_flags & RTF_BROADCAST;
401 else
402 isbroadcast = in_broadcast(dst->sin_addr, ifp);
403 }
404 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
405
406 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
407 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
408 bool inmgroup;
409
410 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
411 M_BCAST : M_MCAST;
412 /*
413 * See if the caller provided any multicast options
414 */
415 if (imo != NULL)
416 ip->ip_ttl = imo->imo_multicast_ttl;
417 else
418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419
420 /*
421 * if we don't know the outgoing ifp yet, we can't generate
422 * output
423 */
424 if (!ifp) {
425 IP_STATINC(IP_STAT_NOROUTE);
426 error = ENETUNREACH;
427 goto bad;
428 }
429
430 /*
431 * If the packet is multicast or broadcast, confirm that
432 * the outgoing interface can transmit it.
433 */
434 if (((m->m_flags & M_MCAST) &&
435 (ifp->if_flags & IFF_MULTICAST) == 0) ||
436 ((m->m_flags & M_BCAST) &&
437 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 /*
443 * If source address not specified yet, use an address
444 * of outgoing interface.
445 */
446 if (in_nullhost(ip->ip_src)) {
447 struct in_ifaddr *xia;
448 struct ifaddr *xifa;
449 struct psref _psref;
450
451 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
452 if (!xia) {
453 error = EADDRNOTAVAIL;
454 goto bad;
455 }
456 xifa = &xia->ia_ifa;
457 if (xifa->ifa_getifa != NULL) {
458 ia4_release(xia, &_psref);
459 /* FIXME ifa_getifa is NOMPSAFE */
460 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
461 if (xia == NULL) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 ia4_acquire(xia, &_psref);
466 }
467 ip->ip_src = xia->ia_addr.sin_addr;
468 ia4_release(xia, &_psref);
469 }
470
471 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
472 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
473 /*
474 * If we belong to the destination multicast group
475 * on the outgoing interface, and the caller did not
476 * forbid loopback, loop back a copy.
477 */
478 ip_mloopback(ifp, m, &udst.sin);
479 }
480 #ifdef MROUTING
481 else {
482 /*
483 * If we are acting as a multicast router, perform
484 * multicast forwarding as if the packet had just
485 * arrived on the interface to which we are about
486 * to send. The multicast forwarding function
487 * recursively calls this function, using the
488 * IP_FORWARDING flag to prevent infinite recursion.
489 *
490 * Multicasts that are looped back by ip_mloopback(),
491 * above, will be forwarded by the ip_input() routine,
492 * if necessary.
493 */
494 extern struct socket *ip_mrouter;
495
496 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
497 if (ip_mforward(m, ifp) != 0) {
498 m_freem(m);
499 goto done;
500 }
501 }
502 }
503 #endif
504 /*
505 * Multicasts with a time-to-live of zero may be looped-
506 * back, above, but must not be transmitted on a network.
507 * Also, multicasts addressed to the loopback interface
508 * are not sent -- the above call to ip_mloopback() will
509 * loop back a copy if this host actually belongs to the
510 * destination group on the loopback interface.
511 */
512 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
513 m_freem(m);
514 goto done;
515 }
516 goto sendit;
517 }
518
519 /*
520 * If source address not specified yet, use address
521 * of outgoing interface.
522 */
523 if (in_nullhost(ip->ip_src)) {
524 struct ifaddr *xifa;
525
526 xifa = &ia->ia_ifa;
527 if (xifa->ifa_getifa != NULL) {
528 ia4_release(ia, &psref_ia);
529 /* FIXME ifa_getifa is NOMPSAFE */
530 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
531 if (ia == NULL) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 ia4_acquire(ia, &psref_ia);
536 }
537 ip->ip_src = ia->ia_addr.sin_addr;
538 }
539
540 /*
541 * packets with Class-D address as source are not valid per
542 * RFC 1112
543 */
544 if (IN_MULTICAST(ip->ip_src.s_addr)) {
545 IP_STATINC(IP_STAT_ODROPPED);
546 error = EADDRNOTAVAIL;
547 goto bad;
548 }
549
550 /*
551 * Look for broadcast address and and verify user is allowed to
552 * send such a packet.
553 */
554 if (isbroadcast) {
555 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
556 error = EADDRNOTAVAIL;
557 goto bad;
558 }
559 if ((flags & IP_ALLOWBROADCAST) == 0) {
560 error = EACCES;
561 goto bad;
562 }
563 /* don't allow broadcast messages to be fragmented */
564 if (ntohs(ip->ip_len) > ifp->if_mtu) {
565 error = EMSGSIZE;
566 goto bad;
567 }
568 m->m_flags |= M_BCAST;
569 } else
570 m->m_flags &= ~M_BCAST;
571
572 sendit:
573 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
574 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
575 ip->ip_id = 0;
576 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
577 ip->ip_id = ip_newid(ia);
578 } else {
579
580 /*
581 * TSO capable interfaces (typically?) increment
582 * ip_id for each segment.
583 * "allocate" enough ids here to increase the chance
584 * for them to be unique.
585 *
586 * note that the following calculation is not
587 * needed to be precise. wasting some ip_id is fine.
588 */
589
590 unsigned int segsz = m->m_pkthdr.segsz;
591 unsigned int datasz = ntohs(ip->ip_len) - hlen;
592 unsigned int num = howmany(datasz, segsz);
593
594 ip->ip_id = ip_newid_range(ia, num);
595 }
596 }
597 if (ia != NULL) {
598 ia4_release(ia, &psref_ia);
599 ia = NULL;
600 }
601
602 /*
603 * If we're doing Path MTU Discovery, we need to set DF unless
604 * the route's MTU is locked.
605 */
606 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
607 ip->ip_off |= htons(IP_DF);
608 }
609
610 #ifdef IPSEC
611 if (ipsec_used) {
612 bool ipsec_done = false;
613
614 /* Perform IPsec processing, if any. */
615 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
616 &ipsec_done);
617 if (error || ipsec_done)
618 goto done;
619 }
620 #endif
621
622 /*
623 * Run through list of hooks for output packets.
624 */
625 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
626 if (error)
627 goto done;
628 if (m == NULL)
629 goto done;
630
631 ip = mtod(m, struct ip *);
632 hlen = ip->ip_hl << 2;
633
634 m->m_pkthdr.csum_data |= hlen << 16;
635
636 /*
637 * search for the source address structure to
638 * maintain output statistics, and verify address
639 * validity
640 */
641 KASSERT(ia == NULL);
642 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
643 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
644 if (ifa != NULL)
645 ia = ifatoia(ifa);
646
647 /*
648 * Ensure we only send from a valid address.
649 * A NULL address is valid because the packet could be
650 * generated from a packet filter.
651 */
652 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
653 (error = ip_ifaddrvalid(ia)) != 0)
654 {
655 ARPLOG(LOG_ERR,
656 "refusing to send from invalid address %s (pid %d)\n",
657 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
658 IP_STATINC(IP_STAT_ODROPPED);
659 if (error == 1)
660 /*
661 * Address exists, but is tentative or detached.
662 * We can't send from it because it's invalid,
663 * so we drop the packet.
664 */
665 error = 0;
666 else
667 error = EADDRNOTAVAIL;
668 goto bad;
669 }
670
671 /* Maybe skip checksums on loopback interfaces. */
672 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
673 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
674 }
675 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
676 /*
677 * If small enough for mtu of path, or if using TCP segmentation
678 * offload, can just send directly.
679 */
680 if (ntohs(ip->ip_len) <= mtu ||
681 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
682 const struct sockaddr *sa;
683
684 #if IFA_STATS
685 if (ia)
686 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
687 #endif
688 /*
689 * Always initialize the sum to 0! Some HW assisted
690 * checksumming requires this.
691 */
692 ip->ip_sum = 0;
693
694 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
695 /*
696 * Perform any checksums that the hardware can't do
697 * for us.
698 *
699 * XXX Does any hardware require the {th,uh}_sum
700 * XXX fields to be 0?
701 */
702 if (sw_csum & M_CSUM_IPv4) {
703 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
704 ip->ip_sum = in_cksum(m, hlen);
705 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
706 }
707 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 if (IN_NEED_CHECKSUM(ifp,
709 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
710 in_delayed_cksum(m);
711 }
712 m->m_pkthdr.csum_flags &=
713 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 }
715 }
716
717 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
718 if (__predict_true(
719 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
720 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
721 error = ip_if_output(ifp, m, sa, rt);
722 } else {
723 error = ip_tso_output(ifp, m, sa, rt);
724 }
725 goto done;
726 }
727
728 /*
729 * We can't use HW checksumming if we're about to
730 * fragment the packet.
731 *
732 * XXX Some hardware can do this.
733 */
734 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
735 if (IN_NEED_CHECKSUM(ifp,
736 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
737 in_delayed_cksum(m);
738 }
739 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
740 }
741
742 /*
743 * Too large for interface; fragment if possible.
744 * Must be able to put at least 8 bytes per fragment.
745 */
746 if (ntohs(ip->ip_off) & IP_DF) {
747 if (flags & IP_RETURNMTU) {
748 KASSERT(inp != NULL);
749 inp->inp_errormtu = mtu;
750 }
751 error = EMSGSIZE;
752 IP_STATINC(IP_STAT_CANTFRAG);
753 goto bad;
754 }
755
756 error = ip_fragment(m, ifp, mtu);
757 if (error) {
758 m = NULL;
759 goto bad;
760 }
761
762 for (; m; m = m0) {
763 m0 = m->m_nextpkt;
764 m->m_nextpkt = 0;
765 if (error) {
766 m_freem(m);
767 continue;
768 }
769 #if IFA_STATS
770 if (ia)
771 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
772 #endif
773 /*
774 * If we get there, the packet has not been handled by
775 * IPsec whereas it should have. Now that it has been
776 * fragmented, re-inject it in ip_output so that IPsec
777 * processing can occur.
778 */
779 if (natt_frag) {
780 error = ip_output(m, opt, ro,
781 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
782 imo, inp);
783 } else {
784 KASSERT((m->m_pkthdr.csum_flags &
785 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
786 error = ip_if_output(ifp, m,
787 (m->m_flags & M_MCAST) ?
788 sintocsa(rdst) : sintocsa(dst), rt);
789 }
790 }
791 if (error == 0) {
792 IP_STATINC(IP_STAT_FRAGMENTED);
793 }
794 done:
795 ia4_release(ia, &psref_ia);
796 rtcache_unref(rt, ro);
797 if (ro == &iproute) {
798 rtcache_free(&iproute);
799 }
800 if (mifp != NULL) {
801 if_put(mifp, &psref);
802 }
803 if (bind_need_restore)
804 curlwp_bindx(bound);
805 return error;
806 bad:
807 m_freem(m);
808 goto done;
809 }
810
811 int
812 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
813 {
814 struct ip *ip, *mhip;
815 struct mbuf *m0;
816 int len, hlen, off;
817 int mhlen, firstlen;
818 struct mbuf **mnext;
819 int sw_csum = m->m_pkthdr.csum_flags;
820 int fragments = 0;
821 int error = 0;
822
823 ip = mtod(m, struct ip *);
824 hlen = ip->ip_hl << 2;
825 if (ifp != NULL)
826 sw_csum &= ~ifp->if_csum_flags_tx;
827
828 len = (mtu - hlen) &~ 7;
829 if (len < 8) {
830 m_freem(m);
831 return (EMSGSIZE);
832 }
833
834 firstlen = len;
835 mnext = &m->m_nextpkt;
836
837 /*
838 * Loop through length of segment after first fragment,
839 * make new header and copy data of each part and link onto chain.
840 */
841 m0 = m;
842 mhlen = sizeof (struct ip);
843 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
844 MGETHDR(m, M_DONTWAIT, MT_HEADER);
845 if (m == 0) {
846 error = ENOBUFS;
847 IP_STATINC(IP_STAT_ODROPPED);
848 goto sendorfree;
849 }
850 MCLAIM(m, m0->m_owner);
851 *mnext = m;
852 mnext = &m->m_nextpkt;
853 m->m_data += max_linkhdr;
854 mhip = mtod(m, struct ip *);
855 *mhip = *ip;
856 /* we must inherit MCAST and BCAST flags */
857 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
858 if (hlen > sizeof (struct ip)) {
859 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
860 mhip->ip_hl = mhlen >> 2;
861 }
862 m->m_len = mhlen;
863 mhip->ip_off = ((off - hlen) >> 3) +
864 (ntohs(ip->ip_off) & ~IP_MF);
865 if (ip->ip_off & htons(IP_MF))
866 mhip->ip_off |= IP_MF;
867 if (off + len >= ntohs(ip->ip_len))
868 len = ntohs(ip->ip_len) - off;
869 else
870 mhip->ip_off |= IP_MF;
871 HTONS(mhip->ip_off);
872 mhip->ip_len = htons((u_int16_t)(len + mhlen));
873 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
874 if (m->m_next == 0) {
875 error = ENOBUFS; /* ??? */
876 IP_STATINC(IP_STAT_ODROPPED);
877 goto sendorfree;
878 }
879 m->m_pkthdr.len = mhlen + len;
880 m_reset_rcvif(m);
881 mhip->ip_sum = 0;
882 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
883 if (sw_csum & M_CSUM_IPv4) {
884 mhip->ip_sum = in_cksum(m, mhlen);
885 } else {
886 /*
887 * checksum is hw-offloaded or not necessary.
888 */
889 m->m_pkthdr.csum_flags |=
890 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
891 m->m_pkthdr.csum_data |= mhlen << 16;
892 KASSERT(!(ifp != NULL &&
893 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
894 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
895 }
896 IP_STATINC(IP_STAT_OFRAGMENTS);
897 fragments++;
898 }
899 /*
900 * Update first fragment by trimming what's been copied out
901 * and updating header, then send each fragment (in order).
902 */
903 m = m0;
904 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
905 m->m_pkthdr.len = hlen + firstlen;
906 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
907 ip->ip_off |= htons(IP_MF);
908 ip->ip_sum = 0;
909 if (sw_csum & M_CSUM_IPv4) {
910 ip->ip_sum = in_cksum(m, hlen);
911 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
912 } else {
913 /*
914 * checksum is hw-offloaded or not necessary.
915 */
916 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
917 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
918 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
919 sizeof(struct ip));
920 }
921 sendorfree:
922 /*
923 * If there is no room for all the fragments, don't queue
924 * any of them.
925 */
926 if (ifp != NULL) {
927 IFQ_LOCK(&ifp->if_snd);
928 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
929 error == 0) {
930 error = ENOBUFS;
931 IP_STATINC(IP_STAT_ODROPPED);
932 IFQ_INC_DROPS(&ifp->if_snd);
933 }
934 IFQ_UNLOCK(&ifp->if_snd);
935 }
936 if (error) {
937 for (m = m0; m; m = m0) {
938 m0 = m->m_nextpkt;
939 m->m_nextpkt = NULL;
940 m_freem(m);
941 }
942 }
943 return (error);
944 }
945
946 /*
947 * Process a delayed payload checksum calculation.
948 */
949 void
950 in_delayed_cksum(struct mbuf *m)
951 {
952 struct ip *ip;
953 u_int16_t csum, offset;
954
955 ip = mtod(m, struct ip *);
956 offset = ip->ip_hl << 2;
957 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
958 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
959 csum = 0xffff;
960
961 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
962
963 if ((offset + sizeof(u_int16_t)) > m->m_len) {
964 /* This happen when ip options were inserted
965 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
966 m->m_len, offset, ip->ip_p);
967 */
968 m_copyback(m, offset, sizeof(csum), (void *) &csum);
969 } else
970 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
971 }
972
973 /*
974 * Determine the maximum length of the options to be inserted;
975 * we would far rather allocate too much space rather than too little.
976 */
977
978 u_int
979 ip_optlen(struct inpcb *inp)
980 {
981 struct mbuf *m = inp->inp_options;
982
983 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
984 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
985 }
986 return 0;
987 }
988
989 /*
990 * Insert IP options into preformed packet.
991 * Adjust IP destination as required for IP source routing,
992 * as indicated by a non-zero in_addr at the start of the options.
993 */
994 static struct mbuf *
995 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
996 {
997 struct ipoption *p = mtod(opt, struct ipoption *);
998 struct mbuf *n;
999 struct ip *ip = mtod(m, struct ip *);
1000 unsigned optlen;
1001
1002 optlen = opt->m_len - sizeof(p->ipopt_dst);
1003 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1004 return (m); /* XXX should fail */
1005 if (!in_nullhost(p->ipopt_dst))
1006 ip->ip_dst = p->ipopt_dst;
1007 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1008 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1009 if (n == 0)
1010 return (m);
1011 MCLAIM(n, m->m_owner);
1012 M_MOVE_PKTHDR(n, m);
1013 m->m_len -= sizeof(struct ip);
1014 m->m_data += sizeof(struct ip);
1015 n->m_next = m;
1016 m = n;
1017 m->m_len = optlen + sizeof(struct ip);
1018 m->m_data += max_linkhdr;
1019 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1020 } else {
1021 m->m_data -= optlen;
1022 m->m_len += optlen;
1023 memmove(mtod(m, void *), ip, sizeof(struct ip));
1024 }
1025 m->m_pkthdr.len += optlen;
1026 ip = mtod(m, struct ip *);
1027 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1028 *phlen = sizeof(struct ip) + optlen;
1029 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1030 return (m);
1031 }
1032
1033 /*
1034 * Copy options from ip to jp,
1035 * omitting those not copied during fragmentation.
1036 */
1037 int
1038 ip_optcopy(struct ip *ip, struct ip *jp)
1039 {
1040 u_char *cp, *dp;
1041 int opt, optlen, cnt;
1042
1043 cp = (u_char *)(ip + 1);
1044 dp = (u_char *)(jp + 1);
1045 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1046 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1047 opt = cp[0];
1048 if (opt == IPOPT_EOL)
1049 break;
1050 if (opt == IPOPT_NOP) {
1051 /* Preserve for IP mcast tunnel's LSRR alignment. */
1052 *dp++ = IPOPT_NOP;
1053 optlen = 1;
1054 continue;
1055 }
1056
1057 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1058 optlen = cp[IPOPT_OLEN];
1059 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1060
1061 /* Invalid lengths should have been caught by ip_dooptions. */
1062 if (optlen > cnt)
1063 optlen = cnt;
1064 if (IPOPT_COPIED(opt)) {
1065 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1066 dp += optlen;
1067 }
1068 }
1069 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1070 *dp++ = IPOPT_EOL;
1071 return (optlen);
1072 }
1073
1074 /*
1075 * IP socket option processing.
1076 */
1077 int
1078 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1079 {
1080 struct inpcb *inp = sotoinpcb(so);
1081 struct ip *ip = &inp->inp_ip;
1082 int inpflags = inp->inp_flags;
1083 int optval = 0, error = 0;
1084
1085 KASSERT(solocked(so));
1086
1087 if (sopt->sopt_level != IPPROTO_IP) {
1088 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1089 return 0;
1090 return ENOPROTOOPT;
1091 }
1092
1093 switch (op) {
1094 case PRCO_SETOPT:
1095 switch (sopt->sopt_name) {
1096 case IP_OPTIONS:
1097 #ifdef notyet
1098 case IP_RETOPTS:
1099 #endif
1100 error = ip_pcbopts(inp, sopt);
1101 break;
1102
1103 case IP_TOS:
1104 case IP_TTL:
1105 case IP_MINTTL:
1106 case IP_PKTINFO:
1107 case IP_RECVOPTS:
1108 case IP_RECVRETOPTS:
1109 case IP_RECVDSTADDR:
1110 case IP_RECVIF:
1111 case IP_RECVPKTINFO:
1112 case IP_RECVTTL:
1113 error = sockopt_getint(sopt, &optval);
1114 if (error)
1115 break;
1116
1117 switch (sopt->sopt_name) {
1118 case IP_TOS:
1119 ip->ip_tos = optval;
1120 break;
1121
1122 case IP_TTL:
1123 ip->ip_ttl = optval;
1124 break;
1125
1126 case IP_MINTTL:
1127 if (optval > 0 && optval <= MAXTTL)
1128 inp->inp_ip_minttl = optval;
1129 else
1130 error = EINVAL;
1131 break;
1132 #define OPTSET(bit) \
1133 if (optval) \
1134 inpflags |= bit; \
1135 else \
1136 inpflags &= ~bit;
1137
1138 case IP_PKTINFO:
1139 OPTSET(INP_PKTINFO);
1140 break;
1141
1142 case IP_RECVOPTS:
1143 OPTSET(INP_RECVOPTS);
1144 break;
1145
1146 case IP_RECVPKTINFO:
1147 OPTSET(INP_RECVPKTINFO);
1148 break;
1149
1150 case IP_RECVRETOPTS:
1151 OPTSET(INP_RECVRETOPTS);
1152 break;
1153
1154 case IP_RECVDSTADDR:
1155 OPTSET(INP_RECVDSTADDR);
1156 break;
1157
1158 case IP_RECVIF:
1159 OPTSET(INP_RECVIF);
1160 break;
1161
1162 case IP_RECVTTL:
1163 OPTSET(INP_RECVTTL);
1164 break;
1165 }
1166 break;
1167 #undef OPTSET
1168
1169 case IP_MULTICAST_IF:
1170 case IP_MULTICAST_TTL:
1171 case IP_MULTICAST_LOOP:
1172 case IP_ADD_MEMBERSHIP:
1173 case IP_DROP_MEMBERSHIP:
1174 error = ip_setmoptions(&inp->inp_moptions, sopt);
1175 break;
1176
1177 case IP_PORTRANGE:
1178 error = sockopt_getint(sopt, &optval);
1179 if (error)
1180 break;
1181
1182 switch (optval) {
1183 case IP_PORTRANGE_DEFAULT:
1184 case IP_PORTRANGE_HIGH:
1185 inpflags &= ~(INP_LOWPORT);
1186 break;
1187
1188 case IP_PORTRANGE_LOW:
1189 inpflags |= INP_LOWPORT;
1190 break;
1191
1192 default:
1193 error = EINVAL;
1194 break;
1195 }
1196 break;
1197
1198 case IP_PORTALGO:
1199 error = sockopt_getint(sopt, &optval);
1200 if (error)
1201 break;
1202
1203 error = portalgo_algo_index_select(
1204 (struct inpcb_hdr *)inp, optval);
1205 break;
1206
1207 #if defined(IPSEC)
1208 case IP_IPSEC_POLICY:
1209 if (ipsec_enabled) {
1210 error = ipsec4_set_policy(inp, sopt->sopt_name,
1211 sopt->sopt_data, sopt->sopt_size,
1212 curlwp->l_cred);
1213 break;
1214 }
1215 /*FALLTHROUGH*/
1216 #endif /* IPSEC */
1217
1218 default:
1219 error = ENOPROTOOPT;
1220 break;
1221 }
1222 break;
1223
1224 case PRCO_GETOPT:
1225 switch (sopt->sopt_name) {
1226 case IP_OPTIONS:
1227 case IP_RETOPTS: {
1228 struct mbuf *mopts = inp->inp_options;
1229
1230 if (mopts) {
1231 struct mbuf *m;
1232
1233 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1234 if (m == NULL) {
1235 error = ENOBUFS;
1236 break;
1237 }
1238 error = sockopt_setmbuf(sopt, m);
1239 }
1240 break;
1241 }
1242 case IP_PKTINFO:
1243 case IP_TOS:
1244 case IP_TTL:
1245 case IP_MINTTL:
1246 case IP_RECVOPTS:
1247 case IP_RECVRETOPTS:
1248 case IP_RECVDSTADDR:
1249 case IP_RECVIF:
1250 case IP_RECVPKTINFO:
1251 case IP_RECVTTL:
1252 case IP_ERRORMTU:
1253 switch (sopt->sopt_name) {
1254 case IP_TOS:
1255 optval = ip->ip_tos;
1256 break;
1257
1258 case IP_TTL:
1259 optval = ip->ip_ttl;
1260 break;
1261
1262 case IP_MINTTL:
1263 optval = inp->inp_ip_minttl;
1264 break;
1265
1266 case IP_ERRORMTU:
1267 optval = inp->inp_errormtu;
1268 break;
1269
1270 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1271
1272 case IP_PKTINFO:
1273 optval = OPTBIT(INP_PKTINFO);
1274 break;
1275
1276 case IP_RECVOPTS:
1277 optval = OPTBIT(INP_RECVOPTS);
1278 break;
1279
1280 case IP_RECVPKTINFO:
1281 optval = OPTBIT(INP_RECVPKTINFO);
1282 break;
1283
1284 case IP_RECVRETOPTS:
1285 optval = OPTBIT(INP_RECVRETOPTS);
1286 break;
1287
1288 case IP_RECVDSTADDR:
1289 optval = OPTBIT(INP_RECVDSTADDR);
1290 break;
1291
1292 case IP_RECVIF:
1293 optval = OPTBIT(INP_RECVIF);
1294 break;
1295
1296 case IP_RECVTTL:
1297 optval = OPTBIT(INP_RECVTTL);
1298 break;
1299 }
1300 error = sockopt_setint(sopt, optval);
1301 break;
1302
1303 #if 0 /* defined(IPSEC) */
1304 case IP_IPSEC_POLICY:
1305 {
1306 struct mbuf *m = NULL;
1307
1308 /* XXX this will return EINVAL as sopt is empty */
1309 error = ipsec4_get_policy(inp, sopt->sopt_data,
1310 sopt->sopt_size, &m);
1311 if (error == 0)
1312 error = sockopt_setmbuf(sopt, m);
1313 break;
1314 }
1315 #endif /*IPSEC*/
1316
1317 case IP_MULTICAST_IF:
1318 case IP_MULTICAST_TTL:
1319 case IP_MULTICAST_LOOP:
1320 case IP_ADD_MEMBERSHIP:
1321 case IP_DROP_MEMBERSHIP:
1322 error = ip_getmoptions(inp->inp_moptions, sopt);
1323 break;
1324
1325 case IP_PORTRANGE:
1326 if (inpflags & INP_LOWPORT)
1327 optval = IP_PORTRANGE_LOW;
1328 else
1329 optval = IP_PORTRANGE_DEFAULT;
1330 error = sockopt_setint(sopt, optval);
1331 break;
1332
1333 case IP_PORTALGO:
1334 optval = inp->inp_portalgo;
1335 error = sockopt_setint(sopt, optval);
1336 break;
1337
1338 default:
1339 error = ENOPROTOOPT;
1340 break;
1341 }
1342 break;
1343 }
1344
1345 if (!error) {
1346 inp->inp_flags = inpflags;
1347 }
1348 return error;
1349 }
1350
1351 static int
1352 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
1353 int *flags, kauth_cred_t cred)
1354 {
1355 struct ip_moptions *imo;
1356 int error = 0;
1357 bool addrset = false;
1358
1359 if (!in_nullhost(pktinfo->ipi_addr)) {
1360 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1361 /* EADDRNOTAVAIL? */
1362 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
1363 if (error != 0)
1364 return error;
1365 addrset = true;
1366 }
1367
1368 if (pktinfo->ipi_ifindex != 0) {
1369 if (!addrset) {
1370 struct ifnet *ifp;
1371 struct in_ifaddr *ia;
1372 int s;
1373
1374 /* pick up primary address */
1375 s = pserialize_read_enter();
1376 ifp = if_byindex(pktinfo->ipi_ifindex);
1377 if (ifp == NULL) {
1378 pserialize_read_exit(s);
1379 return EADDRNOTAVAIL;
1380 }
1381 ia = in_get_ia_from_ifp(ifp);
1382 if (ia == NULL) {
1383 pserialize_read_exit(s);
1384 return EADDRNOTAVAIL;
1385 }
1386 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1387 pserialize_read_exit(s);
1388 }
1389
1390 /*
1391 * If specified ipi_ifindex,
1392 * use copied or locally initialized ip_moptions.
1393 * Original ip_moptions must not be modified.
1394 */
1395 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1396 if (pktopts->ippo_imo != NULL) {
1397 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1398 } else {
1399 memset(imo, 0, sizeof(*imo));
1400 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1401 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1402 }
1403 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1404 pktopts->ippo_imo = imo;
1405 *flags |= IP_ROUTETOIFINDEX;
1406 }
1407 return error;
1408 }
1409
1410 /*
1411 * Set up IP outgoing packet options. Even if control is NULL,
1412 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1413 */
1414 int
1415 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1416 struct inpcb *inp, kauth_cred_t cred)
1417 {
1418 struct cmsghdr *cm;
1419 struct in_pktinfo *pktinfo;
1420 int error;
1421
1422 pktopts->ippo_imo = inp->inp_moptions;
1423 sockaddr_in_init(&pktopts->ippo_laddr, &inp->inp_laddr, 0);
1424
1425 if (control == NULL)
1426 return 0;
1427
1428 /*
1429 * XXX: Currently, we assume all the optional information is
1430 * stored in a single mbuf.
1431 */
1432 if (control->m_next)
1433 return EINVAL;
1434
1435 for (; control->m_len > 0;
1436 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1437 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1438 cm = mtod(control, struct cmsghdr *);
1439 if ((control->m_len < sizeof(*cm)) ||
1440 (cm->cmsg_len == 0) ||
1441 (cm->cmsg_len > control->m_len)) {
1442 return EINVAL;
1443 }
1444 if (cm->cmsg_level != IPPROTO_IP)
1445 continue;
1446
1447 switch (cm->cmsg_type) {
1448 case IP_PKTINFO:
1449 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo)))
1450 return EINVAL;
1451
1452 pktinfo = (struct in_pktinfo *)CMSG_DATA(cm);
1453 error = ip_pktinfo_prepare(pktinfo, pktopts, flags,
1454 cred);
1455 if (error != 0)
1456 return error;
1457 break;
1458 default:
1459 return ENOPROTOOPT;
1460 }
1461 }
1462 return 0;
1463 }
1464
1465 /*
1466 * Set up IP options in pcb for insertion in output packets.
1467 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1468 * with destination address if source routed.
1469 */
1470 static int
1471 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1472 {
1473 struct mbuf *m;
1474 const u_char *cp;
1475 u_char *dp;
1476 int cnt;
1477
1478 KASSERT(inp_locked(inp));
1479
1480 /* Turn off any old options. */
1481 if (inp->inp_options) {
1482 m_free(inp->inp_options);
1483 }
1484 inp->inp_options = NULL;
1485 if ((cnt = sopt->sopt_size) == 0) {
1486 /* Only turning off any previous options. */
1487 return 0;
1488 }
1489 cp = sopt->sopt_data;
1490
1491 #ifndef __vax__
1492 if (cnt % sizeof(int32_t))
1493 return (EINVAL);
1494 #endif
1495
1496 m = m_get(M_DONTWAIT, MT_SOOPTS);
1497 if (m == NULL)
1498 return (ENOBUFS);
1499
1500 dp = mtod(m, u_char *);
1501 memset(dp, 0, sizeof(struct in_addr));
1502 dp += sizeof(struct in_addr);
1503 m->m_len = sizeof(struct in_addr);
1504
1505 /*
1506 * IP option list according to RFC791. Each option is of the form
1507 *
1508 * [optval] [olen] [(olen - 2) data bytes]
1509 *
1510 * We validate the list and copy options to an mbuf for prepending
1511 * to data packets. The IP first-hop destination address will be
1512 * stored before actual options and is zero if unset.
1513 */
1514 while (cnt > 0) {
1515 uint8_t optval, olen, offset;
1516
1517 optval = cp[IPOPT_OPTVAL];
1518
1519 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1520 olen = 1;
1521 } else {
1522 if (cnt < IPOPT_OLEN + 1)
1523 goto bad;
1524
1525 olen = cp[IPOPT_OLEN];
1526 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1527 goto bad;
1528 }
1529
1530 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1531 /*
1532 * user process specifies route as:
1533 * ->A->B->C->D
1534 * D must be our final destination (but we can't
1535 * check that since we may not have connected yet).
1536 * A is first hop destination, which doesn't appear in
1537 * actual IP option, but is stored before the options.
1538 */
1539 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1540 goto bad;
1541
1542 offset = cp[IPOPT_OFFSET];
1543 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1544 sizeof(struct in_addr));
1545
1546 cp += sizeof(struct in_addr);
1547 cnt -= sizeof(struct in_addr);
1548 olen -= sizeof(struct in_addr);
1549
1550 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1551 goto bad;
1552
1553 memcpy(dp, cp, olen);
1554 dp[IPOPT_OPTVAL] = optval;
1555 dp[IPOPT_OLEN] = olen;
1556 dp[IPOPT_OFFSET] = offset;
1557 break;
1558 } else {
1559 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1560 goto bad;
1561
1562 memcpy(dp, cp, olen);
1563 break;
1564 }
1565
1566 dp += olen;
1567 m->m_len += olen;
1568
1569 if (optval == IPOPT_EOL)
1570 break;
1571
1572 cp += olen;
1573 cnt -= olen;
1574 }
1575
1576 inp->inp_options = m;
1577 return 0;
1578 bad:
1579 (void)m_free(m);
1580 return EINVAL;
1581 }
1582
1583 /*
1584 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1585 * Must be called in a pserialize critical section.
1586 */
1587 static struct ifnet *
1588 ip_multicast_if(struct in_addr *a, int *ifindexp)
1589 {
1590 int ifindex;
1591 struct ifnet *ifp = NULL;
1592 struct in_ifaddr *ia;
1593
1594 if (ifindexp)
1595 *ifindexp = 0;
1596 if (ntohl(a->s_addr) >> 24 == 0) {
1597 ifindex = ntohl(a->s_addr) & 0xffffff;
1598 ifp = if_byindex(ifindex);
1599 if (!ifp)
1600 return NULL;
1601 if (ifindexp)
1602 *ifindexp = ifindex;
1603 } else {
1604 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1605 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1606 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1607 ifp = ia->ia_ifp;
1608 if (if_is_deactivated(ifp))
1609 ifp = NULL;
1610 break;
1611 }
1612 }
1613 }
1614 return ifp;
1615 }
1616
1617 static int
1618 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1619 {
1620 u_int tval;
1621 u_char cval;
1622 int error;
1623
1624 if (sopt == NULL)
1625 return EINVAL;
1626
1627 switch (sopt->sopt_size) {
1628 case sizeof(u_char):
1629 error = sockopt_get(sopt, &cval, sizeof(u_char));
1630 tval = cval;
1631 break;
1632
1633 case sizeof(u_int):
1634 error = sockopt_get(sopt, &tval, sizeof(u_int));
1635 break;
1636
1637 default:
1638 error = EINVAL;
1639 }
1640
1641 if (error)
1642 return error;
1643
1644 if (tval > maxval)
1645 return EINVAL;
1646
1647 *val = tval;
1648 return 0;
1649 }
1650
1651 static int
1652 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1653 struct psref *psref, struct in_addr *ia, bool add)
1654 {
1655 int error;
1656 struct ip_mreq mreq;
1657
1658 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1659 if (error)
1660 return error;
1661
1662 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1663 return EINVAL;
1664
1665 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1666
1667 if (in_nullhost(mreq.imr_interface)) {
1668 union {
1669 struct sockaddr dst;
1670 struct sockaddr_in dst4;
1671 } u;
1672 struct route ro;
1673
1674 if (!add) {
1675 *ifp = NULL;
1676 return 0;
1677 }
1678 /*
1679 * If no interface address was provided, use the interface of
1680 * the route to the given multicast address.
1681 */
1682 struct rtentry *rt;
1683 memset(&ro, 0, sizeof(ro));
1684
1685 sockaddr_in_init(&u.dst4, ia, 0);
1686 error = rtcache_setdst(&ro, &u.dst);
1687 if (error != 0)
1688 return error;
1689 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1690 if (*ifp != NULL) {
1691 if (if_is_deactivated(*ifp))
1692 *ifp = NULL;
1693 else
1694 if_acquire(*ifp, psref);
1695 }
1696 rtcache_unref(rt, &ro);
1697 rtcache_free(&ro);
1698 } else {
1699 int s = pserialize_read_enter();
1700 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1701 if (!add && *ifp == NULL) {
1702 pserialize_read_exit(s);
1703 return EADDRNOTAVAIL;
1704 }
1705 if (*ifp != NULL) {
1706 if (if_is_deactivated(*ifp))
1707 *ifp = NULL;
1708 else
1709 if_acquire(*ifp, psref);
1710 }
1711 pserialize_read_exit(s);
1712 }
1713 return 0;
1714 }
1715
1716 /*
1717 * Add a multicast group membership.
1718 * Group must be a valid IP multicast address.
1719 */
1720 static int
1721 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1722 {
1723 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1724 struct in_addr ia;
1725 int i, error, bound;
1726 struct psref psref;
1727
1728 /* imo is protected by solock or referenced only by the caller */
1729
1730 bound = curlwp_bind();
1731 if (sopt->sopt_size == sizeof(struct ip_mreq))
1732 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1733 else
1734 #ifdef INET6
1735 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1736 #else
1737 error = EINVAL;
1738 goto out;
1739 #endif
1740
1741 if (error)
1742 goto out;
1743
1744 /*
1745 * See if we found an interface, and confirm that it
1746 * supports multicast.
1747 */
1748 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1749 error = EADDRNOTAVAIL;
1750 goto out;
1751 }
1752
1753 /*
1754 * See if the membership already exists or if all the
1755 * membership slots are full.
1756 */
1757 for (i = 0; i < imo->imo_num_memberships; ++i) {
1758 if (imo->imo_membership[i]->inm_ifp == ifp &&
1759 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1760 break;
1761 }
1762 if (i < imo->imo_num_memberships) {
1763 error = EADDRINUSE;
1764 goto out;
1765 }
1766
1767 if (i == IP_MAX_MEMBERSHIPS) {
1768 error = ETOOMANYREFS;
1769 goto out;
1770 }
1771
1772 /*
1773 * Everything looks good; add a new record to the multicast
1774 * address list for the given interface.
1775 */
1776 IFNET_LOCK(ifp);
1777 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1778 IFNET_UNLOCK(ifp);
1779 if (imo->imo_membership[i] == NULL) {
1780 error = ENOBUFS;
1781 goto out;
1782 }
1783
1784 ++imo->imo_num_memberships;
1785 error = 0;
1786 out:
1787 if_put(ifp, &psref);
1788 curlwp_bindx(bound);
1789 return error;
1790 }
1791
1792 /*
1793 * Drop a multicast group membership.
1794 * Group must be a valid IP multicast address.
1795 */
1796 static int
1797 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1798 {
1799 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1800 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1801 int i, error, bound;
1802 struct psref psref;
1803
1804 /* imo is protected by solock or referenced only by the caller */
1805
1806 bound = curlwp_bind();
1807 if (sopt->sopt_size == sizeof(struct ip_mreq))
1808 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1809 else
1810 #ifdef INET6
1811 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1812 #else
1813 error = EINVAL;
1814 goto out;
1815 #endif
1816
1817 if (error)
1818 goto out;
1819
1820 /*
1821 * Find the membership in the membership array.
1822 */
1823 for (i = 0; i < imo->imo_num_memberships; ++i) {
1824 if ((ifp == NULL ||
1825 imo->imo_membership[i]->inm_ifp == ifp) &&
1826 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1827 break;
1828 }
1829 if (i == imo->imo_num_memberships) {
1830 error = EADDRNOTAVAIL;
1831 goto out;
1832 }
1833
1834 /*
1835 * Give up the multicast address record to which the
1836 * membership points.
1837 */
1838 IFNET_LOCK(ifp);
1839 in_delmulti(imo->imo_membership[i]);
1840 IFNET_UNLOCK(ifp);
1841
1842 /*
1843 * Remove the gap in the membership array.
1844 */
1845 for (++i; i < imo->imo_num_memberships; ++i)
1846 imo->imo_membership[i-1] = imo->imo_membership[i];
1847 --imo->imo_num_memberships;
1848 error = 0;
1849 out:
1850 if_put(ifp, &psref);
1851 curlwp_bindx(bound);
1852 return error;
1853 }
1854
1855 /*
1856 * Set the IP multicast options in response to user setsockopt().
1857 */
1858 int
1859 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1860 {
1861 struct ip_moptions *imo = *pimo;
1862 struct in_addr addr;
1863 struct ifnet *ifp;
1864 int ifindex, error = 0;
1865
1866 /* The passed imo isn't NULL, it should be protected by solock */
1867
1868 if (!imo) {
1869 /*
1870 * No multicast option buffer attached to the pcb;
1871 * allocate one and initialize to default values.
1872 */
1873 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1874 if (imo == NULL)
1875 return ENOBUFS;
1876
1877 imo->imo_multicast_if_index = 0;
1878 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1879 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1880 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1881 imo->imo_num_memberships = 0;
1882 *pimo = imo;
1883 }
1884
1885 switch (sopt->sopt_name) {
1886 case IP_MULTICAST_IF: {
1887 int s;
1888 /*
1889 * Select the interface for outgoing multicast packets.
1890 */
1891 error = sockopt_get(sopt, &addr, sizeof(addr));
1892 if (error)
1893 break;
1894
1895 /*
1896 * INADDR_ANY is used to remove a previous selection.
1897 * When no interface is selected, a default one is
1898 * chosen every time a multicast packet is sent.
1899 */
1900 if (in_nullhost(addr)) {
1901 imo->imo_multicast_if_index = 0;
1902 break;
1903 }
1904 /*
1905 * The selected interface is identified by its local
1906 * IP address. Find the interface and confirm that
1907 * it supports multicasting.
1908 */
1909 s = pserialize_read_enter();
1910 ifp = ip_multicast_if(&addr, &ifindex);
1911 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1912 pserialize_read_exit(s);
1913 error = EADDRNOTAVAIL;
1914 break;
1915 }
1916 imo->imo_multicast_if_index = ifp->if_index;
1917 pserialize_read_exit(s);
1918 if (ifindex)
1919 imo->imo_multicast_addr = addr;
1920 else
1921 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1922 break;
1923 }
1924
1925 case IP_MULTICAST_TTL:
1926 /*
1927 * Set the IP time-to-live for outgoing multicast packets.
1928 */
1929 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1930 break;
1931
1932 case IP_MULTICAST_LOOP:
1933 /*
1934 * Set the loopback flag for outgoing multicast packets.
1935 * Must be zero or one.
1936 */
1937 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1938 break;
1939
1940 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1941 error = ip_add_membership(imo, sopt);
1942 break;
1943
1944 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1945 error = ip_drop_membership(imo, sopt);
1946 break;
1947
1948 default:
1949 error = EOPNOTSUPP;
1950 break;
1951 }
1952
1953 /*
1954 * If all options have default values, no need to keep the mbuf.
1955 */
1956 if (imo->imo_multicast_if_index == 0 &&
1957 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1958 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1959 imo->imo_num_memberships == 0) {
1960 kmem_intr_free(imo, sizeof(*imo));
1961 *pimo = NULL;
1962 }
1963
1964 return error;
1965 }
1966
1967 /*
1968 * Return the IP multicast options in response to user getsockopt().
1969 */
1970 int
1971 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1972 {
1973 struct in_addr addr;
1974 uint8_t optval;
1975 int error = 0;
1976
1977 /* imo is protected by solock or refereced only by the caller */
1978
1979 switch (sopt->sopt_name) {
1980 case IP_MULTICAST_IF:
1981 if (imo == NULL || imo->imo_multicast_if_index == 0)
1982 addr = zeroin_addr;
1983 else if (imo->imo_multicast_addr.s_addr) {
1984 /* return the value user has set */
1985 addr = imo->imo_multicast_addr;
1986 } else {
1987 struct ifnet *ifp;
1988 struct in_ifaddr *ia = NULL;
1989 int s = pserialize_read_enter();
1990
1991 ifp = if_byindex(imo->imo_multicast_if_index);
1992 if (ifp != NULL) {
1993 ia = in_get_ia_from_ifp(ifp);
1994 }
1995 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1996 pserialize_read_exit(s);
1997 }
1998 error = sockopt_set(sopt, &addr, sizeof(addr));
1999 break;
2000
2001 case IP_MULTICAST_TTL:
2002 optval = imo ? imo->imo_multicast_ttl
2003 : IP_DEFAULT_MULTICAST_TTL;
2004
2005 error = sockopt_set(sopt, &optval, sizeof(optval));
2006 break;
2007
2008 case IP_MULTICAST_LOOP:
2009 optval = imo ? imo->imo_multicast_loop
2010 : IP_DEFAULT_MULTICAST_LOOP;
2011
2012 error = sockopt_set(sopt, &optval, sizeof(optval));
2013 break;
2014
2015 default:
2016 error = EOPNOTSUPP;
2017 }
2018
2019 return error;
2020 }
2021
2022 /*
2023 * Discard the IP multicast options.
2024 */
2025 void
2026 ip_freemoptions(struct ip_moptions *imo)
2027 {
2028 int i;
2029
2030 /* The owner of imo (inp) should be protected by solock */
2031
2032 if (imo != NULL) {
2033 for (i = 0; i < imo->imo_num_memberships; ++i) {
2034 struct in_multi *inm = imo->imo_membership[i];
2035 struct ifnet *ifp = inm->inm_ifp;
2036 IFNET_LOCK(ifp);
2037 in_delmulti(inm);
2038 /* ifp should not leave thanks to solock */
2039 IFNET_UNLOCK(ifp);
2040 }
2041
2042 kmem_intr_free(imo, sizeof(*imo));
2043 }
2044 }
2045
2046 /*
2047 * Routine called from ip_output() to loop back a copy of an IP multicast
2048 * packet to the input queue of a specified interface. Note that this
2049 * calls the output routine of the loopback "driver", but with an interface
2050 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2051 */
2052 static void
2053 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2054 {
2055 struct ip *ip;
2056 struct mbuf *copym;
2057
2058 copym = m_copypacket(m, M_DONTWAIT);
2059 if (copym != NULL &&
2060 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2061 copym = m_pullup(copym, sizeof(struct ip));
2062 if (copym == NULL)
2063 return;
2064 /*
2065 * We don't bother to fragment if the IP length is greater
2066 * than the interface's MTU. Can this possibly matter?
2067 */
2068 ip = mtod(copym, struct ip *);
2069
2070 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2071 in_delayed_cksum(copym);
2072 copym->m_pkthdr.csum_flags &=
2073 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2074 }
2075
2076 ip->ip_sum = 0;
2077 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2078 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2079 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2080 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2081 }
2082
2083 /*
2084 * Ensure sending address is valid.
2085 * Returns 0 on success, -1 if an error should be sent back or 1
2086 * if the packet could be dropped without error (protocol dependent).
2087 */
2088 static int
2089 ip_ifaddrvalid(const struct in_ifaddr *ia)
2090 {
2091
2092 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2093 return 0;
2094
2095 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2096 return -1;
2097 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2098 return 1;
2099
2100 return 0;
2101 }
2102