ip_output.c revision 1.291 1 /* $NetBSD: ip_output.c,v 1.291 2018/01/10 17:36:06 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.291 2018/01/10 17:36:06 christos Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct inpcb *inp)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int hlen = sizeof (struct ip);
236 int len, error = 0;
237 struct route iproute;
238 const struct sockaddr_in *dst;
239 struct in_ifaddr *ia = NULL;
240 struct ifaddr *ifa;
241 int isbroadcast;
242 int sw_csum;
243 u_long mtu;
244 bool natt_frag = false;
245 bool rtmtu_nolock;
246 union {
247 struct sockaddr sa;
248 struct sockaddr_in sin;
249 } udst, usrc;
250 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
251 * opposed to the nexthop
252 */
253 struct psref psref, psref_ia;
254 int bound;
255 bool bind_need_restore = false;
256
257 len = 0;
258
259 MCLAIM(m, &ip_tx_mowner);
260
261 KASSERT((m->m_flags & M_PKTHDR) != 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
263 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
264 (M_CSUM_TCPv4|M_CSUM_UDPv4));
265
266 if (opt) {
267 m = ip_insertoptions(m, opt, &len);
268 if (len >= sizeof(struct ip))
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 /* XXX must be before rtcache operations */
307 bound = curlwp_bind();
308 bind_need_restore = true;
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &udst.sin;
313 error = rtcache_setdst(ro, &udst.sa);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
323 if (ifa == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /* ia is already referenced by psref_ia */
329 ia = ifatoia(ifa);
330
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 isbroadcast = in_broadcast(dst->sin_addr, ifp);
335 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
336 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
337 (flags & IP_ROUTETOIFINDEX)) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 ip->ip_dst.s_addr == INADDR_BROADCAST) {
353 isbroadcast = 0;
354 } else {
355 /* IP_ROUTETOIFINDEX */
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 if ((isbroadcast == 0) && ((ifp->if_flags &
358 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
359 (in_direct(dst->sin_addr, ifp) == 0)) {
360 /* gateway address required */
361 if (rt == NULL)
362 rt = rtcache_init(ro);
363 if (rt == NULL || rt->rt_ifp != ifp) {
364 IP_STATINC(IP_STAT_NOROUTE);
365 error = EHOSTUNREACH;
366 goto bad;
367 }
368 rt->rt_use++;
369 if (rt->rt_flags & RTF_GATEWAY)
370 dst = satosin(rt->rt_gateway);
371 if (rt->rt_flags & RTF_HOST)
372 isbroadcast =
373 rt->rt_flags & RTF_BROADCAST;
374 }
375 }
376 } else {
377 if (rt == NULL)
378 rt = rtcache_init(ro);
379 if (rt == NULL) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = EHOSTUNREACH;
382 goto bad;
383 }
384 if (ifa_is_destroying(rt->rt_ifa)) {
385 rtcache_unref(rt, ro);
386 rt = NULL;
387 IP_STATINC(IP_STAT_NOROUTE);
388 error = EHOSTUNREACH;
389 goto bad;
390 }
391 ifa_acquire(rt->rt_ifa, &psref_ia);
392 ia = ifatoia(rt->rt_ifa);
393 ifp = rt->rt_ifp;
394 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
395 mtu = ifp->if_mtu;
396 rt->rt_use++;
397 if (rt->rt_flags & RTF_GATEWAY)
398 dst = satosin(rt->rt_gateway);
399 if (rt->rt_flags & RTF_HOST)
400 isbroadcast = rt->rt_flags & RTF_BROADCAST;
401 else
402 isbroadcast = in_broadcast(dst->sin_addr, ifp);
403 }
404 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
405
406 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
407 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
408 bool inmgroup;
409
410 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
411 M_BCAST : M_MCAST;
412 /*
413 * See if the caller provided any multicast options
414 */
415 if (imo != NULL)
416 ip->ip_ttl = imo->imo_multicast_ttl;
417 else
418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419
420 /*
421 * if we don't know the outgoing ifp yet, we can't generate
422 * output
423 */
424 if (!ifp) {
425 IP_STATINC(IP_STAT_NOROUTE);
426 error = ENETUNREACH;
427 goto bad;
428 }
429
430 /*
431 * If the packet is multicast or broadcast, confirm that
432 * the outgoing interface can transmit it.
433 */
434 if (((m->m_flags & M_MCAST) &&
435 (ifp->if_flags & IFF_MULTICAST) == 0) ||
436 ((m->m_flags & M_BCAST) &&
437 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 /*
443 * If source address not specified yet, use an address
444 * of outgoing interface.
445 */
446 if (in_nullhost(ip->ip_src)) {
447 struct in_ifaddr *xia;
448 struct ifaddr *xifa;
449 struct psref _psref;
450
451 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
452 if (!xia) {
453 error = EADDRNOTAVAIL;
454 goto bad;
455 }
456 xifa = &xia->ia_ifa;
457 if (xifa->ifa_getifa != NULL) {
458 ia4_release(xia, &_psref);
459 /* FIXME ifa_getifa is NOMPSAFE */
460 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
461 if (xia == NULL) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 ia4_acquire(xia, &_psref);
466 }
467 ip->ip_src = xia->ia_addr.sin_addr;
468 ia4_release(xia, &_psref);
469 }
470
471 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
472 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
473 /*
474 * If we belong to the destination multicast group
475 * on the outgoing interface, and the caller did not
476 * forbid loopback, loop back a copy.
477 */
478 ip_mloopback(ifp, m, &udst.sin);
479 }
480 #ifdef MROUTING
481 else {
482 /*
483 * If we are acting as a multicast router, perform
484 * multicast forwarding as if the packet had just
485 * arrived on the interface to which we are about
486 * to send. The multicast forwarding function
487 * recursively calls this function, using the
488 * IP_FORWARDING flag to prevent infinite recursion.
489 *
490 * Multicasts that are looped back by ip_mloopback(),
491 * above, will be forwarded by the ip_input() routine,
492 * if necessary.
493 */
494 extern struct socket *ip_mrouter;
495
496 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
497 if (ip_mforward(m, ifp) != 0) {
498 m_freem(m);
499 goto done;
500 }
501 }
502 }
503 #endif
504 /*
505 * Multicasts with a time-to-live of zero may be looped-
506 * back, above, but must not be transmitted on a network.
507 * Also, multicasts addressed to the loopback interface
508 * are not sent -- the above call to ip_mloopback() will
509 * loop back a copy if this host actually belongs to the
510 * destination group on the loopback interface.
511 */
512 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
513 m_freem(m);
514 goto done;
515 }
516 goto sendit;
517 }
518
519 /*
520 * If source address not specified yet, use address
521 * of outgoing interface.
522 */
523 if (in_nullhost(ip->ip_src)) {
524 struct ifaddr *xifa;
525
526 xifa = &ia->ia_ifa;
527 if (xifa->ifa_getifa != NULL) {
528 ia4_release(ia, &psref_ia);
529 /* FIXME ifa_getifa is NOMPSAFE */
530 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
531 if (ia == NULL) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 ia4_acquire(ia, &psref_ia);
536 }
537 ip->ip_src = ia->ia_addr.sin_addr;
538 }
539
540 /*
541 * packets with Class-D address as source are not valid per
542 * RFC 1112
543 */
544 if (IN_MULTICAST(ip->ip_src.s_addr)) {
545 IP_STATINC(IP_STAT_ODROPPED);
546 error = EADDRNOTAVAIL;
547 goto bad;
548 }
549
550 /*
551 * Look for broadcast address and and verify user is allowed to
552 * send such a packet.
553 */
554 if (isbroadcast) {
555 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
556 error = EADDRNOTAVAIL;
557 goto bad;
558 }
559 if ((flags & IP_ALLOWBROADCAST) == 0) {
560 error = EACCES;
561 goto bad;
562 }
563 /* don't allow broadcast messages to be fragmented */
564 if (ntohs(ip->ip_len) > ifp->if_mtu) {
565 error = EMSGSIZE;
566 goto bad;
567 }
568 m->m_flags |= M_BCAST;
569 } else
570 m->m_flags &= ~M_BCAST;
571
572 sendit:
573 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
574 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
575 ip->ip_id = 0;
576 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
577 ip->ip_id = ip_newid(ia);
578 } else {
579
580 /*
581 * TSO capable interfaces (typically?) increment
582 * ip_id for each segment.
583 * "allocate" enough ids here to increase the chance
584 * for them to be unique.
585 *
586 * note that the following calculation is not
587 * needed to be precise. wasting some ip_id is fine.
588 */
589
590 unsigned int segsz = m->m_pkthdr.segsz;
591 unsigned int datasz = ntohs(ip->ip_len) - hlen;
592 unsigned int num = howmany(datasz, segsz);
593
594 ip->ip_id = ip_newid_range(ia, num);
595 }
596 }
597 if (ia != NULL) {
598 ia4_release(ia, &psref_ia);
599 ia = NULL;
600 }
601
602 /*
603 * If we're doing Path MTU Discovery, we need to set DF unless
604 * the route's MTU is locked.
605 */
606 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
607 ip->ip_off |= htons(IP_DF);
608 }
609
610 #ifdef IPSEC
611 if (ipsec_used) {
612 bool ipsec_done = false;
613
614 /* Perform IPsec processing, if any. */
615 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
616 &ipsec_done);
617 if (error || ipsec_done)
618 goto done;
619 }
620 #endif
621
622 /*
623 * Run through list of hooks for output packets.
624 */
625 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
626 if (error)
627 goto done;
628 if (m == NULL)
629 goto done;
630
631 ip = mtod(m, struct ip *);
632 hlen = ip->ip_hl << 2;
633
634 m->m_pkthdr.csum_data |= hlen << 16;
635
636 /*
637 * search for the source address structure to
638 * maintain output statistics, and verify address
639 * validity
640 */
641 KASSERT(ia == NULL);
642 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
643 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
644 if (ifa != NULL)
645 ia = ifatoia(ifa);
646
647 /*
648 * Ensure we only send from a valid address.
649 * A NULL address is valid because the packet could be
650 * generated from a packet filter.
651 */
652 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
653 (error = ip_ifaddrvalid(ia)) != 0)
654 {
655 ARPLOG(LOG_ERR,
656 "refusing to send from invalid address %s (pid %d)\n",
657 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
658 IP_STATINC(IP_STAT_ODROPPED);
659 if (error == 1)
660 /*
661 * Address exists, but is tentative or detached.
662 * We can't send from it because it's invalid,
663 * so we drop the packet.
664 */
665 error = 0;
666 else
667 error = EADDRNOTAVAIL;
668 goto bad;
669 }
670
671 /* Maybe skip checksums on loopback interfaces. */
672 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
673 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
674 }
675 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
676 /*
677 * If small enough for mtu of path, or if using TCP segmentation
678 * offload, can just send directly.
679 */
680 if (ntohs(ip->ip_len) <= mtu ||
681 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
682 const struct sockaddr *sa;
683
684 #if IFA_STATS
685 if (ia)
686 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
687 #endif
688 /*
689 * Always initialize the sum to 0! Some HW assisted
690 * checksumming requires this.
691 */
692 ip->ip_sum = 0;
693
694 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
695 /*
696 * Perform any checksums that the hardware can't do
697 * for us.
698 *
699 * XXX Does any hardware require the {th,uh}_sum
700 * XXX fields to be 0?
701 */
702 if (sw_csum & M_CSUM_IPv4) {
703 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
704 ip->ip_sum = in_cksum(m, hlen);
705 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
706 }
707 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 if (IN_NEED_CHECKSUM(ifp,
709 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
710 in_delayed_cksum(m);
711 }
712 m->m_pkthdr.csum_flags &=
713 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 }
715 }
716
717 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
718 if (__predict_true(
719 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
720 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
721 error = ip_if_output(ifp, m, sa, rt);
722 } else {
723 error = ip_tso_output(ifp, m, sa, rt);
724 }
725 goto done;
726 }
727
728 /*
729 * We can't use HW checksumming if we're about to
730 * fragment the packet.
731 *
732 * XXX Some hardware can do this.
733 */
734 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
735 if (IN_NEED_CHECKSUM(ifp,
736 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
737 in_delayed_cksum(m);
738 }
739 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
740 }
741
742 /*
743 * Too large for interface; fragment if possible.
744 * Must be able to put at least 8 bytes per fragment.
745 */
746 if (ntohs(ip->ip_off) & IP_DF) {
747 if (flags & IP_RETURNMTU) {
748 KASSERT(inp != NULL);
749 inp->inp_errormtu = mtu;
750 }
751 error = EMSGSIZE;
752 IP_STATINC(IP_STAT_CANTFRAG);
753 goto bad;
754 }
755
756 error = ip_fragment(m, ifp, mtu);
757 if (error) {
758 m = NULL;
759 goto bad;
760 }
761
762 for (; m; m = m0) {
763 m0 = m->m_nextpkt;
764 m->m_nextpkt = 0;
765 if (error) {
766 m_freem(m);
767 continue;
768 }
769 #if IFA_STATS
770 if (ia)
771 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
772 #endif
773 /*
774 * If we get there, the packet has not been handled by
775 * IPsec whereas it should have. Now that it has been
776 * fragmented, re-inject it in ip_output so that IPsec
777 * processing can occur.
778 */
779 if (natt_frag) {
780 error = ip_output(m, opt, ro,
781 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
782 imo, inp);
783 } else {
784 KASSERT((m->m_pkthdr.csum_flags &
785 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
786 error = ip_if_output(ifp, m,
787 (m->m_flags & M_MCAST) ?
788 sintocsa(rdst) : sintocsa(dst), rt);
789 }
790 }
791 if (error == 0) {
792 IP_STATINC(IP_STAT_FRAGMENTED);
793 }
794 done:
795 ia4_release(ia, &psref_ia);
796 rtcache_unref(rt, ro);
797 if (ro == &iproute) {
798 rtcache_free(&iproute);
799 }
800 if (mifp != NULL) {
801 if_put(mifp, &psref);
802 }
803 if (bind_need_restore)
804 curlwp_bindx(bound);
805 return error;
806 bad:
807 m_freem(m);
808 goto done;
809 }
810
811 int
812 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
813 {
814 struct ip *ip, *mhip;
815 struct mbuf *m0;
816 int len, hlen, off;
817 int mhlen, firstlen;
818 struct mbuf **mnext;
819 int sw_csum = m->m_pkthdr.csum_flags;
820 int fragments = 0;
821 int error = 0;
822
823 ip = mtod(m, struct ip *);
824 hlen = ip->ip_hl << 2;
825 if (ifp != NULL)
826 sw_csum &= ~ifp->if_csum_flags_tx;
827
828 len = (mtu - hlen) &~ 7;
829 if (len < 8) {
830 m_freem(m);
831 return (EMSGSIZE);
832 }
833
834 firstlen = len;
835 mnext = &m->m_nextpkt;
836
837 /*
838 * Loop through length of segment after first fragment,
839 * make new header and copy data of each part and link onto chain.
840 */
841 m0 = m;
842 mhlen = sizeof (struct ip);
843 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
844 MGETHDR(m, M_DONTWAIT, MT_HEADER);
845 if (m == 0) {
846 error = ENOBUFS;
847 IP_STATINC(IP_STAT_ODROPPED);
848 goto sendorfree;
849 }
850 MCLAIM(m, m0->m_owner);
851 *mnext = m;
852 mnext = &m->m_nextpkt;
853 m->m_data += max_linkhdr;
854 mhip = mtod(m, struct ip *);
855 *mhip = *ip;
856 /* we must inherit MCAST and BCAST flags */
857 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
858 if (hlen > sizeof (struct ip)) {
859 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
860 mhip->ip_hl = mhlen >> 2;
861 }
862 m->m_len = mhlen;
863 mhip->ip_off = ((off - hlen) >> 3) +
864 (ntohs(ip->ip_off) & ~IP_MF);
865 if (ip->ip_off & htons(IP_MF))
866 mhip->ip_off |= IP_MF;
867 if (off + len >= ntohs(ip->ip_len))
868 len = ntohs(ip->ip_len) - off;
869 else
870 mhip->ip_off |= IP_MF;
871 HTONS(mhip->ip_off);
872 mhip->ip_len = htons((u_int16_t)(len + mhlen));
873 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
874 if (m->m_next == 0) {
875 error = ENOBUFS; /* ??? */
876 IP_STATINC(IP_STAT_ODROPPED);
877 goto sendorfree;
878 }
879 m->m_pkthdr.len = mhlen + len;
880 m_reset_rcvif(m);
881 mhip->ip_sum = 0;
882 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
883 if (sw_csum & M_CSUM_IPv4) {
884 mhip->ip_sum = in_cksum(m, mhlen);
885 } else {
886 /*
887 * checksum is hw-offloaded or not necessary.
888 */
889 m->m_pkthdr.csum_flags |=
890 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
891 m->m_pkthdr.csum_data |= mhlen << 16;
892 KASSERT(!(ifp != NULL &&
893 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
894 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
895 }
896 IP_STATINC(IP_STAT_OFRAGMENTS);
897 fragments++;
898 }
899 /*
900 * Update first fragment by trimming what's been copied out
901 * and updating header, then send each fragment (in order).
902 */
903 m = m0;
904 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
905 m->m_pkthdr.len = hlen + firstlen;
906 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
907 ip->ip_off |= htons(IP_MF);
908 ip->ip_sum = 0;
909 if (sw_csum & M_CSUM_IPv4) {
910 ip->ip_sum = in_cksum(m, hlen);
911 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
912 } else {
913 /*
914 * checksum is hw-offloaded or not necessary.
915 */
916 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
917 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
918 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
919 sizeof(struct ip));
920 }
921 sendorfree:
922 /*
923 * If there is no room for all the fragments, don't queue
924 * any of them.
925 */
926 if (ifp != NULL) {
927 IFQ_LOCK(&ifp->if_snd);
928 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
929 error == 0) {
930 error = ENOBUFS;
931 IP_STATINC(IP_STAT_ODROPPED);
932 IFQ_INC_DROPS(&ifp->if_snd);
933 }
934 IFQ_UNLOCK(&ifp->if_snd);
935 }
936 if (error) {
937 for (m = m0; m; m = m0) {
938 m0 = m->m_nextpkt;
939 m->m_nextpkt = NULL;
940 m_freem(m);
941 }
942 }
943 return (error);
944 }
945
946 /*
947 * Process a delayed payload checksum calculation.
948 */
949 void
950 in_delayed_cksum(struct mbuf *m)
951 {
952 struct ip *ip;
953 u_int16_t csum, offset;
954
955 ip = mtod(m, struct ip *);
956 offset = ip->ip_hl << 2;
957 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
958 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
959 csum = 0xffff;
960
961 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
962
963 if ((offset + sizeof(u_int16_t)) > m->m_len) {
964 /* This happen when ip options were inserted
965 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
966 m->m_len, offset, ip->ip_p);
967 */
968 m_copyback(m, offset, sizeof(csum), (void *) &csum);
969 } else
970 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
971 }
972
973 /*
974 * Determine the maximum length of the options to be inserted;
975 * we would far rather allocate too much space rather than too little.
976 */
977
978 u_int
979 ip_optlen(struct inpcb *inp)
980 {
981 struct mbuf *m = inp->inp_options;
982
983 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
984 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
985 }
986 return 0;
987 }
988
989 /*
990 * Insert IP options into preformed packet.
991 * Adjust IP destination as required for IP source routing,
992 * as indicated by a non-zero in_addr at the start of the options.
993 */
994 static struct mbuf *
995 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
996 {
997 struct ipoption *p = mtod(opt, struct ipoption *);
998 struct mbuf *n;
999 struct ip *ip = mtod(m, struct ip *);
1000 unsigned optlen;
1001
1002 optlen = opt->m_len - sizeof(p->ipopt_dst);
1003 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1004 return (m); /* XXX should fail */
1005 if (!in_nullhost(p->ipopt_dst))
1006 ip->ip_dst = p->ipopt_dst;
1007 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1008 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1009 if (n == 0)
1010 return (m);
1011 MCLAIM(n, m->m_owner);
1012 M_MOVE_PKTHDR(n, m);
1013 m->m_len -= sizeof(struct ip);
1014 m->m_data += sizeof(struct ip);
1015 n->m_next = m;
1016 m = n;
1017 m->m_len = optlen + sizeof(struct ip);
1018 m->m_data += max_linkhdr;
1019 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1020 } else {
1021 m->m_data -= optlen;
1022 m->m_len += optlen;
1023 memmove(mtod(m, void *), ip, sizeof(struct ip));
1024 }
1025 m->m_pkthdr.len += optlen;
1026 ip = mtod(m, struct ip *);
1027 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1028 *phlen = sizeof(struct ip) + optlen;
1029 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1030 return (m);
1031 }
1032
1033 /*
1034 * Copy options from ip to jp,
1035 * omitting those not copied during fragmentation.
1036 */
1037 int
1038 ip_optcopy(struct ip *ip, struct ip *jp)
1039 {
1040 u_char *cp, *dp;
1041 int opt, optlen, cnt;
1042
1043 cp = (u_char *)(ip + 1);
1044 dp = (u_char *)(jp + 1);
1045 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1046 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1047 opt = cp[0];
1048 if (opt == IPOPT_EOL)
1049 break;
1050 if (opt == IPOPT_NOP) {
1051 /* Preserve for IP mcast tunnel's LSRR alignment. */
1052 *dp++ = IPOPT_NOP;
1053 optlen = 1;
1054 continue;
1055 }
1056
1057 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1058 optlen = cp[IPOPT_OLEN];
1059 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1060
1061 /* Invalid lengths should have been caught by ip_dooptions. */
1062 if (optlen > cnt)
1063 optlen = cnt;
1064 if (IPOPT_COPIED(opt)) {
1065 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1066 dp += optlen;
1067 }
1068 }
1069 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1070 *dp++ = IPOPT_EOL;
1071 return (optlen);
1072 }
1073
1074 /*
1075 * IP socket option processing.
1076 */
1077 int
1078 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1079 {
1080 struct inpcb *inp = sotoinpcb(so);
1081 struct ip *ip = &inp->inp_ip;
1082 int inpflags = inp->inp_flags;
1083 int optval = 0, error = 0;
1084 struct in_pktinfo pktinfo;
1085
1086 KASSERT(solocked(so));
1087
1088 if (sopt->sopt_level != IPPROTO_IP) {
1089 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1090 return 0;
1091 return ENOPROTOOPT;
1092 }
1093
1094 switch (op) {
1095 case PRCO_SETOPT:
1096 switch (sopt->sopt_name) {
1097 case IP_OPTIONS:
1098 #ifdef notyet
1099 case IP_RETOPTS:
1100 #endif
1101 error = ip_pcbopts(inp, sopt);
1102 break;
1103
1104 case IP_TOS:
1105 case IP_TTL:
1106 case IP_MINTTL:
1107 case IP_RECVOPTS:
1108 case IP_RECVRETOPTS:
1109 case IP_RECVDSTADDR:
1110 case IP_RECVIF:
1111 case IP_RECVPKTINFO:
1112 case IP_RECVTTL:
1113 error = sockopt_getint(sopt, &optval);
1114 if (error)
1115 break;
1116
1117 switch (sopt->sopt_name) {
1118 case IP_TOS:
1119 ip->ip_tos = optval;
1120 break;
1121
1122 case IP_TTL:
1123 ip->ip_ttl = optval;
1124 break;
1125
1126 case IP_MINTTL:
1127 if (optval > 0 && optval <= MAXTTL)
1128 inp->inp_ip_minttl = optval;
1129 else
1130 error = EINVAL;
1131 break;
1132 #define OPTSET(bit) \
1133 if (optval) \
1134 inpflags |= bit; \
1135 else \
1136 inpflags &= ~bit;
1137
1138 case IP_RECVOPTS:
1139 OPTSET(INP_RECVOPTS);
1140 break;
1141
1142 case IP_RECVPKTINFO:
1143 OPTSET(INP_RECVPKTINFO);
1144 break;
1145
1146 case IP_RECVRETOPTS:
1147 OPTSET(INP_RECVRETOPTS);
1148 break;
1149
1150 case IP_RECVDSTADDR:
1151 OPTSET(INP_RECVDSTADDR);
1152 break;
1153
1154 case IP_RECVIF:
1155 OPTSET(INP_RECVIF);
1156 break;
1157
1158 case IP_RECVTTL:
1159 OPTSET(INP_RECVTTL);
1160 break;
1161 }
1162 break;
1163 case IP_PKTINFO:
1164 error = sockopt_getint(sopt, &optval);
1165 if (!error) {
1166 /* Linux compatibility */
1167 OPTSET(INP_RECVPKTINFO);
1168 break;
1169 }
1170 error = sockopt_get(sopt, &pktinfo, sizeof(pktinfo));
1171 if (error)
1172 break;
1173
1174 if (pktinfo.ipi_ifindex == 0) {
1175 inp->inp_prefsrcip = pktinfo.ipi_addr;
1176 break;
1177 }
1178
1179 /* Solaris compatibility */
1180 struct ifnet *ifp;
1181 struct in_ifaddr *ia;
1182 int s;
1183
1184 /* pick up primary address */
1185 s = pserialize_read_enter();
1186 ifp = if_byindex(pktinfo.ipi_ifindex);
1187 if (ifp == NULL) {
1188 pserialize_read_exit(s);
1189 error = EADDRNOTAVAIL;
1190 break;
1191 }
1192 ia = in_get_ia_from_ifp(ifp);
1193 if (ia == NULL) {
1194 pserialize_read_exit(s);
1195 error = EADDRNOTAVAIL;
1196 break;
1197 }
1198 inp->inp_prefsrcip = IA_SIN(ia)->sin_addr;
1199 pserialize_read_exit(s);
1200 break;
1201 break;
1202 #undef OPTSET
1203
1204 case IP_MULTICAST_IF:
1205 case IP_MULTICAST_TTL:
1206 case IP_MULTICAST_LOOP:
1207 case IP_ADD_MEMBERSHIP:
1208 case IP_DROP_MEMBERSHIP:
1209 error = ip_setmoptions(&inp->inp_moptions, sopt);
1210 break;
1211
1212 case IP_PORTRANGE:
1213 error = sockopt_getint(sopt, &optval);
1214 if (error)
1215 break;
1216
1217 switch (optval) {
1218 case IP_PORTRANGE_DEFAULT:
1219 case IP_PORTRANGE_HIGH:
1220 inpflags &= ~(INP_LOWPORT);
1221 break;
1222
1223 case IP_PORTRANGE_LOW:
1224 inpflags |= INP_LOWPORT;
1225 break;
1226
1227 default:
1228 error = EINVAL;
1229 break;
1230 }
1231 break;
1232
1233 case IP_PORTALGO:
1234 error = sockopt_getint(sopt, &optval);
1235 if (error)
1236 break;
1237
1238 error = portalgo_algo_index_select(
1239 (struct inpcb_hdr *)inp, optval);
1240 break;
1241
1242 #if defined(IPSEC)
1243 case IP_IPSEC_POLICY:
1244 if (ipsec_enabled) {
1245 error = ipsec4_set_policy(inp, sopt->sopt_name,
1246 sopt->sopt_data, sopt->sopt_size,
1247 curlwp->l_cred);
1248 break;
1249 }
1250 /*FALLTHROUGH*/
1251 #endif /* IPSEC */
1252
1253 default:
1254 error = ENOPROTOOPT;
1255 break;
1256 }
1257 break;
1258
1259 case PRCO_GETOPT:
1260 switch (sopt->sopt_name) {
1261 case IP_OPTIONS:
1262 case IP_RETOPTS: {
1263 struct mbuf *mopts = inp->inp_options;
1264
1265 if (mopts) {
1266 struct mbuf *m;
1267
1268 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1269 if (m == NULL) {
1270 error = ENOBUFS;
1271 break;
1272 }
1273 error = sockopt_setmbuf(sopt, m);
1274 }
1275 break;
1276 }
1277 case IP_TOS:
1278 case IP_TTL:
1279 case IP_MINTTL:
1280 case IP_RECVOPTS:
1281 case IP_RECVRETOPTS:
1282 case IP_RECVDSTADDR:
1283 case IP_RECVIF:
1284 case IP_RECVPKTINFO:
1285 case IP_RECVTTL:
1286 case IP_ERRORMTU:
1287 switch (sopt->sopt_name) {
1288 case IP_TOS:
1289 optval = ip->ip_tos;
1290 break;
1291
1292 case IP_TTL:
1293 optval = ip->ip_ttl;
1294 break;
1295
1296 case IP_MINTTL:
1297 optval = inp->inp_ip_minttl;
1298 break;
1299
1300 case IP_ERRORMTU:
1301 optval = inp->inp_errormtu;
1302 break;
1303
1304 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1305
1306 case IP_RECVOPTS:
1307 optval = OPTBIT(INP_RECVOPTS);
1308 break;
1309
1310 case IP_RECVPKTINFO:
1311 optval = OPTBIT(INP_RECVPKTINFO);
1312 break;
1313
1314 case IP_RECVRETOPTS:
1315 optval = OPTBIT(INP_RECVRETOPTS);
1316 break;
1317
1318 case IP_RECVDSTADDR:
1319 optval = OPTBIT(INP_RECVDSTADDR);
1320 break;
1321
1322 case IP_RECVIF:
1323 optval = OPTBIT(INP_RECVIF);
1324 break;
1325
1326 case IP_RECVTTL:
1327 optval = OPTBIT(INP_RECVTTL);
1328 break;
1329 }
1330 error = sockopt_setint(sopt, optval);
1331 break;
1332
1333 case IP_PKTINFO:
1334 switch (sopt->sopt_size) {
1335 case sizeof(int):
1336 /* Linux compatibility */
1337 optval = OPTBIT(INP_RECVPKTINFO);
1338 error = sockopt_setint(sopt, optval);
1339 break;
1340 case sizeof(struct in_pktinfo):
1341 /* Solaris compatibility */
1342 pktinfo.ipi_ifindex = 0;
1343 pktinfo.ipi_addr = inp->inp_prefsrcip;
1344 error = sockopt_set(sopt, &pktinfo,
1345 sizeof(pktinfo));
1346 break;
1347 default:
1348 /*
1349 * While size is stuck at 0, and, later, if
1350 * the caller doesn't use an exactly sized
1351 * recipient for the data, default to Linux
1352 * compatibility
1353 */
1354 optval = OPTBIT(INP_RECVPKTINFO);
1355 error = sockopt_setint(sopt, optval);
1356 break;
1357 }
1358 break;
1359
1360 #if 0 /* defined(IPSEC) */
1361 case IP_IPSEC_POLICY:
1362 {
1363 struct mbuf *m = NULL;
1364
1365 /* XXX this will return EINVAL as sopt is empty */
1366 error = ipsec4_get_policy(inp, sopt->sopt_data,
1367 sopt->sopt_size, &m);
1368 if (error == 0)
1369 error = sockopt_setmbuf(sopt, m);
1370 break;
1371 }
1372 #endif /*IPSEC*/
1373
1374 case IP_MULTICAST_IF:
1375 case IP_MULTICAST_TTL:
1376 case IP_MULTICAST_LOOP:
1377 case IP_ADD_MEMBERSHIP:
1378 case IP_DROP_MEMBERSHIP:
1379 error = ip_getmoptions(inp->inp_moptions, sopt);
1380 break;
1381
1382 case IP_PORTRANGE:
1383 if (inpflags & INP_LOWPORT)
1384 optval = IP_PORTRANGE_LOW;
1385 else
1386 optval = IP_PORTRANGE_DEFAULT;
1387 error = sockopt_setint(sopt, optval);
1388 break;
1389
1390 case IP_PORTALGO:
1391 optval = inp->inp_portalgo;
1392 error = sockopt_setint(sopt, optval);
1393 break;
1394
1395 default:
1396 error = ENOPROTOOPT;
1397 break;
1398 }
1399 break;
1400 }
1401
1402 if (!error) {
1403 inp->inp_flags = inpflags;
1404 }
1405 return error;
1406 }
1407
1408 static int
1409 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
1410 int *flags, kauth_cred_t cred)
1411 {
1412 struct ip_moptions *imo;
1413 int error = 0;
1414 bool addrset = false;
1415
1416 if (!in_nullhost(pktinfo->ipi_addr)) {
1417 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1418 /* EADDRNOTAVAIL? */
1419 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
1420 if (error != 0)
1421 return error;
1422 addrset = true;
1423 }
1424
1425 if (pktinfo->ipi_ifindex != 0) {
1426 if (!addrset) {
1427 struct ifnet *ifp;
1428 struct in_ifaddr *ia;
1429 int s;
1430
1431 /* pick up primary address */
1432 s = pserialize_read_enter();
1433 ifp = if_byindex(pktinfo->ipi_ifindex);
1434 if (ifp == NULL) {
1435 pserialize_read_exit(s);
1436 return EADDRNOTAVAIL;
1437 }
1438 ia = in_get_ia_from_ifp(ifp);
1439 if (ia == NULL) {
1440 pserialize_read_exit(s);
1441 return EADDRNOTAVAIL;
1442 }
1443 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1444 pserialize_read_exit(s);
1445 }
1446
1447 /*
1448 * If specified ipi_ifindex,
1449 * use copied or locally initialized ip_moptions.
1450 * Original ip_moptions must not be modified.
1451 */
1452 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1453 if (pktopts->ippo_imo != NULL) {
1454 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1455 } else {
1456 memset(imo, 0, sizeof(*imo));
1457 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1458 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1459 }
1460 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1461 pktopts->ippo_imo = imo;
1462 *flags |= IP_ROUTETOIFINDEX;
1463 }
1464 return error;
1465 }
1466
1467 /*
1468 * Set up IP outgoing packet options. Even if control is NULL,
1469 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1470 */
1471 int
1472 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1473 struct inpcb *inp, kauth_cred_t cred)
1474 {
1475 struct cmsghdr *cm;
1476 struct in_pktinfo pktinfo;
1477 int error;
1478
1479 pktopts->ippo_imo = inp->inp_moptions;
1480
1481 struct in_addr *ia = in_nullhost(inp->inp_prefsrcip) ? &inp->inp_laddr :
1482 &inp->inp_prefsrcip;
1483 sockaddr_in_init(&pktopts->ippo_laddr, ia, 0);
1484
1485 if (control == NULL)
1486 return 0;
1487
1488 /*
1489 * XXX: Currently, we assume all the optional information is
1490 * stored in a single mbuf.
1491 */
1492 if (control->m_next)
1493 return EINVAL;
1494
1495 for (; control->m_len > 0;
1496 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1497 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1498 cm = mtod(control, struct cmsghdr *);
1499 if ((control->m_len < sizeof(*cm)) ||
1500 (cm->cmsg_len == 0) ||
1501 (cm->cmsg_len > control->m_len)) {
1502 return EINVAL;
1503 }
1504 if (cm->cmsg_level != IPPROTO_IP)
1505 continue;
1506
1507 switch (cm->cmsg_type) {
1508 case IP_PKTINFO:
1509 if (cm->cmsg_len != CMSG_LEN(sizeof(pktinfo)))
1510 return EINVAL;
1511 memcpy(&pktinfo, CMSG_DATA(cm), sizeof(pktinfo));
1512 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1513 cred);
1514 if (error)
1515 return error;
1516 break;
1517 case IP_SENDSRCADDR: /* FreeBSD compatibility */
1518 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr)))
1519 return EINVAL;
1520 pktinfo.ipi_ifindex = 0;
1521 pktinfo.ipi_addr =
1522 ((struct in_pktinfo *)CMSG_DATA(cm))->ipi_addr;
1523 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1524 cred);
1525 if (error)
1526 return error;
1527 break;
1528 default:
1529 return ENOPROTOOPT;
1530 }
1531 }
1532 return 0;
1533 }
1534
1535 /*
1536 * Set up IP options in pcb for insertion in output packets.
1537 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1538 * with destination address if source routed.
1539 */
1540 static int
1541 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1542 {
1543 struct mbuf *m;
1544 const u_char *cp;
1545 u_char *dp;
1546 int cnt;
1547
1548 KASSERT(inp_locked(inp));
1549
1550 /* Turn off any old options. */
1551 if (inp->inp_options) {
1552 m_free(inp->inp_options);
1553 }
1554 inp->inp_options = NULL;
1555 if ((cnt = sopt->sopt_size) == 0) {
1556 /* Only turning off any previous options. */
1557 return 0;
1558 }
1559 cp = sopt->sopt_data;
1560
1561 #ifndef __vax__
1562 if (cnt % sizeof(int32_t))
1563 return (EINVAL);
1564 #endif
1565
1566 m = m_get(M_DONTWAIT, MT_SOOPTS);
1567 if (m == NULL)
1568 return (ENOBUFS);
1569
1570 dp = mtod(m, u_char *);
1571 memset(dp, 0, sizeof(struct in_addr));
1572 dp += sizeof(struct in_addr);
1573 m->m_len = sizeof(struct in_addr);
1574
1575 /*
1576 * IP option list according to RFC791. Each option is of the form
1577 *
1578 * [optval] [olen] [(olen - 2) data bytes]
1579 *
1580 * We validate the list and copy options to an mbuf for prepending
1581 * to data packets. The IP first-hop destination address will be
1582 * stored before actual options and is zero if unset.
1583 */
1584 while (cnt > 0) {
1585 uint8_t optval, olen, offset;
1586
1587 optval = cp[IPOPT_OPTVAL];
1588
1589 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1590 olen = 1;
1591 } else {
1592 if (cnt < IPOPT_OLEN + 1)
1593 goto bad;
1594
1595 olen = cp[IPOPT_OLEN];
1596 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1597 goto bad;
1598 }
1599
1600 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1601 /*
1602 * user process specifies route as:
1603 * ->A->B->C->D
1604 * D must be our final destination (but we can't
1605 * check that since we may not have connected yet).
1606 * A is first hop destination, which doesn't appear in
1607 * actual IP option, but is stored before the options.
1608 */
1609 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1610 goto bad;
1611
1612 offset = cp[IPOPT_OFFSET];
1613 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1614 sizeof(struct in_addr));
1615
1616 cp += sizeof(struct in_addr);
1617 cnt -= sizeof(struct in_addr);
1618 olen -= sizeof(struct in_addr);
1619
1620 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1621 goto bad;
1622
1623 memcpy(dp, cp, olen);
1624 dp[IPOPT_OPTVAL] = optval;
1625 dp[IPOPT_OLEN] = olen;
1626 dp[IPOPT_OFFSET] = offset;
1627 break;
1628 } else {
1629 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1630 goto bad;
1631
1632 memcpy(dp, cp, olen);
1633 break;
1634 }
1635
1636 dp += olen;
1637 m->m_len += olen;
1638
1639 if (optval == IPOPT_EOL)
1640 break;
1641
1642 cp += olen;
1643 cnt -= olen;
1644 }
1645
1646 inp->inp_options = m;
1647 return 0;
1648 bad:
1649 (void)m_free(m);
1650 return EINVAL;
1651 }
1652
1653 /*
1654 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1655 * Must be called in a pserialize critical section.
1656 */
1657 static struct ifnet *
1658 ip_multicast_if(struct in_addr *a, int *ifindexp)
1659 {
1660 int ifindex;
1661 struct ifnet *ifp = NULL;
1662 struct in_ifaddr *ia;
1663
1664 if (ifindexp)
1665 *ifindexp = 0;
1666 if (ntohl(a->s_addr) >> 24 == 0) {
1667 ifindex = ntohl(a->s_addr) & 0xffffff;
1668 ifp = if_byindex(ifindex);
1669 if (!ifp)
1670 return NULL;
1671 if (ifindexp)
1672 *ifindexp = ifindex;
1673 } else {
1674 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1675 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1676 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1677 ifp = ia->ia_ifp;
1678 if (if_is_deactivated(ifp))
1679 ifp = NULL;
1680 break;
1681 }
1682 }
1683 }
1684 return ifp;
1685 }
1686
1687 static int
1688 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1689 {
1690 u_int tval;
1691 u_char cval;
1692 int error;
1693
1694 if (sopt == NULL)
1695 return EINVAL;
1696
1697 switch (sopt->sopt_size) {
1698 case sizeof(u_char):
1699 error = sockopt_get(sopt, &cval, sizeof(u_char));
1700 tval = cval;
1701 break;
1702
1703 case sizeof(u_int):
1704 error = sockopt_get(sopt, &tval, sizeof(u_int));
1705 break;
1706
1707 default:
1708 error = EINVAL;
1709 }
1710
1711 if (error)
1712 return error;
1713
1714 if (tval > maxval)
1715 return EINVAL;
1716
1717 *val = tval;
1718 return 0;
1719 }
1720
1721 static int
1722 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1723 struct psref *psref, struct in_addr *ia, bool add)
1724 {
1725 int error;
1726 struct ip_mreq mreq;
1727
1728 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1729 if (error)
1730 return error;
1731
1732 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1733 return EINVAL;
1734
1735 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1736
1737 if (in_nullhost(mreq.imr_interface)) {
1738 union {
1739 struct sockaddr dst;
1740 struct sockaddr_in dst4;
1741 } u;
1742 struct route ro;
1743
1744 if (!add) {
1745 *ifp = NULL;
1746 return 0;
1747 }
1748 /*
1749 * If no interface address was provided, use the interface of
1750 * the route to the given multicast address.
1751 */
1752 struct rtentry *rt;
1753 memset(&ro, 0, sizeof(ro));
1754
1755 sockaddr_in_init(&u.dst4, ia, 0);
1756 error = rtcache_setdst(&ro, &u.dst);
1757 if (error != 0)
1758 return error;
1759 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1760 if (*ifp != NULL) {
1761 if (if_is_deactivated(*ifp))
1762 *ifp = NULL;
1763 else
1764 if_acquire(*ifp, psref);
1765 }
1766 rtcache_unref(rt, &ro);
1767 rtcache_free(&ro);
1768 } else {
1769 int s = pserialize_read_enter();
1770 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1771 if (!add && *ifp == NULL) {
1772 pserialize_read_exit(s);
1773 return EADDRNOTAVAIL;
1774 }
1775 if (*ifp != NULL) {
1776 if (if_is_deactivated(*ifp))
1777 *ifp = NULL;
1778 else
1779 if_acquire(*ifp, psref);
1780 }
1781 pserialize_read_exit(s);
1782 }
1783 return 0;
1784 }
1785
1786 /*
1787 * Add a multicast group membership.
1788 * Group must be a valid IP multicast address.
1789 */
1790 static int
1791 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1792 {
1793 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1794 struct in_addr ia;
1795 int i, error, bound;
1796 struct psref psref;
1797
1798 /* imo is protected by solock or referenced only by the caller */
1799
1800 bound = curlwp_bind();
1801 if (sopt->sopt_size == sizeof(struct ip_mreq))
1802 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1803 else
1804 #ifdef INET6
1805 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1806 #else
1807 error = EINVAL;
1808 goto out;
1809 #endif
1810
1811 if (error)
1812 goto out;
1813
1814 /*
1815 * See if we found an interface, and confirm that it
1816 * supports multicast.
1817 */
1818 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1819 error = EADDRNOTAVAIL;
1820 goto out;
1821 }
1822
1823 /*
1824 * See if the membership already exists or if all the
1825 * membership slots are full.
1826 */
1827 for (i = 0; i < imo->imo_num_memberships; ++i) {
1828 if (imo->imo_membership[i]->inm_ifp == ifp &&
1829 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1830 break;
1831 }
1832 if (i < imo->imo_num_memberships) {
1833 error = EADDRINUSE;
1834 goto out;
1835 }
1836
1837 if (i == IP_MAX_MEMBERSHIPS) {
1838 error = ETOOMANYREFS;
1839 goto out;
1840 }
1841
1842 /*
1843 * Everything looks good; add a new record to the multicast
1844 * address list for the given interface.
1845 */
1846 IFNET_LOCK(ifp);
1847 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1848 IFNET_UNLOCK(ifp);
1849 if (imo->imo_membership[i] == NULL) {
1850 error = ENOBUFS;
1851 goto out;
1852 }
1853
1854 ++imo->imo_num_memberships;
1855 error = 0;
1856 out:
1857 if_put(ifp, &psref);
1858 curlwp_bindx(bound);
1859 return error;
1860 }
1861
1862 /*
1863 * Drop a multicast group membership.
1864 * Group must be a valid IP multicast address.
1865 */
1866 static int
1867 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1868 {
1869 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1870 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1871 int i, error, bound;
1872 struct psref psref;
1873
1874 /* imo is protected by solock or referenced only by the caller */
1875
1876 bound = curlwp_bind();
1877 if (sopt->sopt_size == sizeof(struct ip_mreq))
1878 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1879 else {
1880 #ifdef INET6
1881 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1882 #else
1883 error = EINVAL;
1884 goto out;
1885 #endif
1886 }
1887
1888 if (error)
1889 goto out;
1890
1891 /*
1892 * Find the membership in the membership array.
1893 */
1894 for (i = 0; i < imo->imo_num_memberships; ++i) {
1895 if ((ifp == NULL ||
1896 imo->imo_membership[i]->inm_ifp == ifp) &&
1897 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1898 break;
1899 }
1900 if (i == imo->imo_num_memberships) {
1901 error = EADDRNOTAVAIL;
1902 goto out;
1903 }
1904
1905 /*
1906 * Give up the multicast address record to which the
1907 * membership points.
1908 */
1909 if (ifp)
1910 IFNET_LOCK(ifp);
1911 in_delmulti(imo->imo_membership[i]);
1912 if (ifp)
1913 IFNET_UNLOCK(ifp);
1914
1915 /*
1916 * Remove the gap in the membership array.
1917 */
1918 for (++i; i < imo->imo_num_memberships; ++i)
1919 imo->imo_membership[i-1] = imo->imo_membership[i];
1920 --imo->imo_num_memberships;
1921 error = 0;
1922 out:
1923 if_put(ifp, &psref);
1924 curlwp_bindx(bound);
1925 return error;
1926 }
1927
1928 /*
1929 * Set the IP multicast options in response to user setsockopt().
1930 */
1931 int
1932 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1933 {
1934 struct ip_moptions *imo = *pimo;
1935 struct in_addr addr;
1936 struct ifnet *ifp;
1937 int ifindex, error = 0;
1938
1939 /* The passed imo isn't NULL, it should be protected by solock */
1940
1941 if (!imo) {
1942 /*
1943 * No multicast option buffer attached to the pcb;
1944 * allocate one and initialize to default values.
1945 */
1946 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1947 if (imo == NULL)
1948 return ENOBUFS;
1949
1950 imo->imo_multicast_if_index = 0;
1951 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1952 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1953 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1954 imo->imo_num_memberships = 0;
1955 *pimo = imo;
1956 }
1957
1958 switch (sopt->sopt_name) {
1959 case IP_MULTICAST_IF: {
1960 int s;
1961 /*
1962 * Select the interface for outgoing multicast packets.
1963 */
1964 error = sockopt_get(sopt, &addr, sizeof(addr));
1965 if (error)
1966 break;
1967
1968 /*
1969 * INADDR_ANY is used to remove a previous selection.
1970 * When no interface is selected, a default one is
1971 * chosen every time a multicast packet is sent.
1972 */
1973 if (in_nullhost(addr)) {
1974 imo->imo_multicast_if_index = 0;
1975 break;
1976 }
1977 /*
1978 * The selected interface is identified by its local
1979 * IP address. Find the interface and confirm that
1980 * it supports multicasting.
1981 */
1982 s = pserialize_read_enter();
1983 ifp = ip_multicast_if(&addr, &ifindex);
1984 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1985 pserialize_read_exit(s);
1986 error = EADDRNOTAVAIL;
1987 break;
1988 }
1989 imo->imo_multicast_if_index = ifp->if_index;
1990 pserialize_read_exit(s);
1991 if (ifindex)
1992 imo->imo_multicast_addr = addr;
1993 else
1994 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1995 break;
1996 }
1997
1998 case IP_MULTICAST_TTL:
1999 /*
2000 * Set the IP time-to-live for outgoing multicast packets.
2001 */
2002 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
2003 break;
2004
2005 case IP_MULTICAST_LOOP:
2006 /*
2007 * Set the loopback flag for outgoing multicast packets.
2008 * Must be zero or one.
2009 */
2010 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
2011 break;
2012
2013 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
2014 error = ip_add_membership(imo, sopt);
2015 break;
2016
2017 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
2018 error = ip_drop_membership(imo, sopt);
2019 break;
2020
2021 default:
2022 error = EOPNOTSUPP;
2023 break;
2024 }
2025
2026 /*
2027 * If all options have default values, no need to keep the mbuf.
2028 */
2029 if (imo->imo_multicast_if_index == 0 &&
2030 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2031 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2032 imo->imo_num_memberships == 0) {
2033 kmem_intr_free(imo, sizeof(*imo));
2034 *pimo = NULL;
2035 }
2036
2037 return error;
2038 }
2039
2040 /*
2041 * Return the IP multicast options in response to user getsockopt().
2042 */
2043 int
2044 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
2045 {
2046 struct in_addr addr;
2047 uint8_t optval;
2048 int error = 0;
2049
2050 /* imo is protected by solock or refereced only by the caller */
2051
2052 switch (sopt->sopt_name) {
2053 case IP_MULTICAST_IF:
2054 if (imo == NULL || imo->imo_multicast_if_index == 0)
2055 addr = zeroin_addr;
2056 else if (imo->imo_multicast_addr.s_addr) {
2057 /* return the value user has set */
2058 addr = imo->imo_multicast_addr;
2059 } else {
2060 struct ifnet *ifp;
2061 struct in_ifaddr *ia = NULL;
2062 int s = pserialize_read_enter();
2063
2064 ifp = if_byindex(imo->imo_multicast_if_index);
2065 if (ifp != NULL) {
2066 ia = in_get_ia_from_ifp(ifp);
2067 }
2068 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
2069 pserialize_read_exit(s);
2070 }
2071 error = sockopt_set(sopt, &addr, sizeof(addr));
2072 break;
2073
2074 case IP_MULTICAST_TTL:
2075 optval = imo ? imo->imo_multicast_ttl
2076 : IP_DEFAULT_MULTICAST_TTL;
2077
2078 error = sockopt_set(sopt, &optval, sizeof(optval));
2079 break;
2080
2081 case IP_MULTICAST_LOOP:
2082 optval = imo ? imo->imo_multicast_loop
2083 : IP_DEFAULT_MULTICAST_LOOP;
2084
2085 error = sockopt_set(sopt, &optval, sizeof(optval));
2086 break;
2087
2088 default:
2089 error = EOPNOTSUPP;
2090 }
2091
2092 return error;
2093 }
2094
2095 /*
2096 * Discard the IP multicast options.
2097 */
2098 void
2099 ip_freemoptions(struct ip_moptions *imo)
2100 {
2101 int i;
2102
2103 /* The owner of imo (inp) should be protected by solock */
2104
2105 if (imo != NULL) {
2106 for (i = 0; i < imo->imo_num_memberships; ++i) {
2107 struct in_multi *inm = imo->imo_membership[i];
2108 struct ifnet *ifp = inm->inm_ifp;
2109 IFNET_LOCK(ifp);
2110 in_delmulti(inm);
2111 /* ifp should not leave thanks to solock */
2112 IFNET_UNLOCK(ifp);
2113 }
2114
2115 kmem_intr_free(imo, sizeof(*imo));
2116 }
2117 }
2118
2119 /*
2120 * Routine called from ip_output() to loop back a copy of an IP multicast
2121 * packet to the input queue of a specified interface. Note that this
2122 * calls the output routine of the loopback "driver", but with an interface
2123 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2124 */
2125 static void
2126 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2127 {
2128 struct ip *ip;
2129 struct mbuf *copym;
2130
2131 copym = m_copypacket(m, M_DONTWAIT);
2132 if (copym != NULL &&
2133 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2134 copym = m_pullup(copym, sizeof(struct ip));
2135 if (copym == NULL)
2136 return;
2137 /*
2138 * We don't bother to fragment if the IP length is greater
2139 * than the interface's MTU. Can this possibly matter?
2140 */
2141 ip = mtod(copym, struct ip *);
2142
2143 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2144 in_delayed_cksum(copym);
2145 copym->m_pkthdr.csum_flags &=
2146 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2147 }
2148
2149 ip->ip_sum = 0;
2150 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2151 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2152 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2153 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2154 }
2155
2156 /*
2157 * Ensure sending address is valid.
2158 * Returns 0 on success, -1 if an error should be sent back or 1
2159 * if the packet could be dropped without error (protocol dependent).
2160 */
2161 static int
2162 ip_ifaddrvalid(const struct in_ifaddr *ia)
2163 {
2164
2165 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2166 return 0;
2167
2168 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2169 return -1;
2170 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2171 return 1;
2172
2173 return 0;
2174 }
2175