ip_output.c revision 1.298.2.6 1 /* $NetBSD: ip_output.c,v 1.298.2.6 2018/07/28 04:38:10 pgoyette Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.298.2.6 2018/07/28 04:38:10 pgoyette Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct inpcb *inp)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int len, hlen, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia = NULL;
239 struct ifaddr *ifa;
240 int isbroadcast;
241 int sw_csum;
242 u_long mtu;
243 bool natt_frag = false;
244 bool rtmtu_nolock;
245 union {
246 struct sockaddr sa;
247 struct sockaddr_in sin;
248 } udst, usrc;
249 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
250 * opposed to the nexthop
251 */
252 struct psref psref, psref_ia;
253 int bound;
254 bool bind_need_restore = false;
255
256 len = 0;
257
258 MCLAIM(m, &ip_tx_mowner);
259
260 KASSERT((m->m_flags & M_PKTHDR) != 0);
261 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
263 (M_CSUM_TCPv4|M_CSUM_UDPv4));
264 KASSERT(m->m_len >= sizeof(struct ip));
265
266 hlen = sizeof(struct ip);
267 if (opt) {
268 m = ip_insertoptions(m, opt, &len);
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 /* XXX must be before rtcache operations */
307 bound = curlwp_bind();
308 bind_need_restore = true;
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &udst.sin;
313 error = rtcache_setdst(ro, &udst.sa);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
323 if (ifa == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /* ia is already referenced by psref_ia */
329 ia = ifatoia(ifa);
330
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 isbroadcast = in_broadcast(dst->sin_addr, ifp);
335 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
336 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
337 (flags & IP_ROUTETOIFINDEX)) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 ip->ip_dst.s_addr == INADDR_BROADCAST) {
353 isbroadcast = 0;
354 } else {
355 /* IP_ROUTETOIFINDEX */
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 if ((isbroadcast == 0) && ((ifp->if_flags &
358 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
359 (in_direct(dst->sin_addr, ifp) == 0)) {
360 /* gateway address required */
361 if (rt == NULL)
362 rt = rtcache_init(ro);
363 if (rt == NULL || rt->rt_ifp != ifp) {
364 IP_STATINC(IP_STAT_NOROUTE);
365 error = EHOSTUNREACH;
366 goto bad;
367 }
368 rt->rt_use++;
369 if (rt->rt_flags & RTF_GATEWAY)
370 dst = satosin(rt->rt_gateway);
371 if (rt->rt_flags & RTF_HOST)
372 isbroadcast =
373 rt->rt_flags & RTF_BROADCAST;
374 }
375 }
376 } else {
377 if (rt == NULL)
378 rt = rtcache_init(ro);
379 if (rt == NULL) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = EHOSTUNREACH;
382 goto bad;
383 }
384 if (ifa_is_destroying(rt->rt_ifa)) {
385 rtcache_unref(rt, ro);
386 rt = NULL;
387 IP_STATINC(IP_STAT_NOROUTE);
388 error = EHOSTUNREACH;
389 goto bad;
390 }
391 ifa_acquire(rt->rt_ifa, &psref_ia);
392 ia = ifatoia(rt->rt_ifa);
393 ifp = rt->rt_ifp;
394 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
395 mtu = ifp->if_mtu;
396 rt->rt_use++;
397 if (rt->rt_flags & RTF_GATEWAY)
398 dst = satosin(rt->rt_gateway);
399 if (rt->rt_flags & RTF_HOST)
400 isbroadcast = rt->rt_flags & RTF_BROADCAST;
401 else
402 isbroadcast = in_broadcast(dst->sin_addr, ifp);
403 }
404 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
405
406 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
407 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
408 bool inmgroup;
409
410 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
411 M_BCAST : M_MCAST;
412 /*
413 * See if the caller provided any multicast options
414 */
415 if (imo != NULL)
416 ip->ip_ttl = imo->imo_multicast_ttl;
417 else
418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419
420 /*
421 * if we don't know the outgoing ifp yet, we can't generate
422 * output
423 */
424 if (!ifp) {
425 IP_STATINC(IP_STAT_NOROUTE);
426 error = ENETUNREACH;
427 goto bad;
428 }
429
430 /*
431 * If the packet is multicast or broadcast, confirm that
432 * the outgoing interface can transmit it.
433 */
434 if (((m->m_flags & M_MCAST) &&
435 (ifp->if_flags & IFF_MULTICAST) == 0) ||
436 ((m->m_flags & M_BCAST) &&
437 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 /*
443 * If source address not specified yet, use an address
444 * of outgoing interface.
445 */
446 if (in_nullhost(ip->ip_src)) {
447 struct in_ifaddr *xia;
448 struct ifaddr *xifa;
449 struct psref _psref;
450
451 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
452 if (!xia) {
453 error = EADDRNOTAVAIL;
454 goto bad;
455 }
456 xifa = &xia->ia_ifa;
457 if (xifa->ifa_getifa != NULL) {
458 ia4_release(xia, &_psref);
459 /* FIXME ifa_getifa is NOMPSAFE */
460 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
461 if (xia == NULL) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 ia4_acquire(xia, &_psref);
466 }
467 ip->ip_src = xia->ia_addr.sin_addr;
468 ia4_release(xia, &_psref);
469 }
470
471 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
472 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
473 /*
474 * If we belong to the destination multicast group
475 * on the outgoing interface, and the caller did not
476 * forbid loopback, loop back a copy.
477 */
478 ip_mloopback(ifp, m, &udst.sin);
479 }
480 #ifdef MROUTING
481 else {
482 /*
483 * If we are acting as a multicast router, perform
484 * multicast forwarding as if the packet had just
485 * arrived on the interface to which we are about
486 * to send. The multicast forwarding function
487 * recursively calls this function, using the
488 * IP_FORWARDING flag to prevent infinite recursion.
489 *
490 * Multicasts that are looped back by ip_mloopback(),
491 * above, will be forwarded by the ip_input() routine,
492 * if necessary.
493 */
494 extern struct socket *ip_mrouter;
495
496 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
497 if (ip_mforward(m, ifp) != 0) {
498 m_freem(m);
499 goto done;
500 }
501 }
502 }
503 #endif
504 /*
505 * Multicasts with a time-to-live of zero may be looped-
506 * back, above, but must not be transmitted on a network.
507 * Also, multicasts addressed to the loopback interface
508 * are not sent -- the above call to ip_mloopback() will
509 * loop back a copy if this host actually belongs to the
510 * destination group on the loopback interface.
511 */
512 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
513 m_freem(m);
514 goto done;
515 }
516 goto sendit;
517 }
518
519 /*
520 * If source address not specified yet, use address
521 * of outgoing interface.
522 */
523 if (in_nullhost(ip->ip_src)) {
524 struct ifaddr *xifa;
525
526 xifa = &ia->ia_ifa;
527 if (xifa->ifa_getifa != NULL) {
528 ia4_release(ia, &psref_ia);
529 /* FIXME ifa_getifa is NOMPSAFE */
530 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
531 if (ia == NULL) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 ia4_acquire(ia, &psref_ia);
536 }
537 ip->ip_src = ia->ia_addr.sin_addr;
538 }
539
540 /*
541 * Packets with Class-D address as source are not valid per
542 * RFC1112.
543 */
544 if (IN_MULTICAST(ip->ip_src.s_addr)) {
545 IP_STATINC(IP_STAT_ODROPPED);
546 error = EADDRNOTAVAIL;
547 goto bad;
548 }
549
550 /*
551 * Look for broadcast address and verify user is allowed to
552 * send such a packet.
553 */
554 if (isbroadcast) {
555 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
556 error = EADDRNOTAVAIL;
557 goto bad;
558 }
559 if ((flags & IP_ALLOWBROADCAST) == 0) {
560 error = EACCES;
561 goto bad;
562 }
563 /* don't allow broadcast messages to be fragmented */
564 if (ntohs(ip->ip_len) > ifp->if_mtu) {
565 error = EMSGSIZE;
566 goto bad;
567 }
568 m->m_flags |= M_BCAST;
569 } else
570 m->m_flags &= ~M_BCAST;
571
572 sendit:
573 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
574 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
575 ip->ip_id = 0;
576 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
577 ip->ip_id = ip_newid(ia);
578 } else {
579 /*
580 * TSO capable interfaces (typically?) increment
581 * ip_id for each segment.
582 * "allocate" enough ids here to increase the chance
583 * for them to be unique.
584 *
585 * note that the following calculation is not
586 * needed to be precise. wasting some ip_id is fine.
587 */
588
589 unsigned int segsz = m->m_pkthdr.segsz;
590 unsigned int datasz = ntohs(ip->ip_len) - hlen;
591 unsigned int num = howmany(datasz, segsz);
592
593 ip->ip_id = ip_newid_range(ia, num);
594 }
595 }
596 if (ia != NULL) {
597 ia4_release(ia, &psref_ia);
598 ia = NULL;
599 }
600
601 /*
602 * If we're doing Path MTU Discovery, we need to set DF unless
603 * the route's MTU is locked.
604 */
605 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
606 ip->ip_off |= htons(IP_DF);
607 }
608
609 #ifdef IPSEC
610 if (ipsec_used) {
611 bool ipsec_done = false;
612
613 /* Perform IPsec processing, if any. */
614 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
615 &ipsec_done);
616 if (error || ipsec_done)
617 goto done;
618 }
619 #endif
620
621 /*
622 * Run through list of hooks for output packets.
623 */
624 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
625 if (error)
626 goto done;
627 if (m == NULL)
628 goto done;
629
630 ip = mtod(m, struct ip *);
631 hlen = ip->ip_hl << 2;
632
633 m->m_pkthdr.csum_data |= hlen << 16;
634
635 /*
636 * search for the source address structure to
637 * maintain output statistics, and verify address
638 * validity
639 */
640 KASSERT(ia == NULL);
641 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
642 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
643 if (ifa != NULL)
644 ia = ifatoia(ifa);
645
646 /*
647 * Ensure we only send from a valid address.
648 * A NULL address is valid because the packet could be
649 * generated from a packet filter.
650 */
651 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
652 (error = ip_ifaddrvalid(ia)) != 0)
653 {
654 ARPLOG(LOG_ERR,
655 "refusing to send from invalid address %s (pid %d)\n",
656 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
657 IP_STATINC(IP_STAT_ODROPPED);
658 if (error == 1)
659 /*
660 * Address exists, but is tentative or detached.
661 * We can't send from it because it's invalid,
662 * so we drop the packet.
663 */
664 error = 0;
665 else
666 error = EADDRNOTAVAIL;
667 goto bad;
668 }
669
670 /* Maybe skip checksums on loopback interfaces. */
671 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
672 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
673 }
674 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
675
676 /*
677 * If small enough for mtu of path, or if using TCP segmentation
678 * offload, can just send directly.
679 */
680 if (ntohs(ip->ip_len) <= mtu ||
681 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
682 const struct sockaddr *sa;
683
684 #if IFA_STATS
685 if (ia)
686 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
687 #endif
688 /*
689 * Always initialize the sum to 0! Some HW assisted
690 * checksumming requires this.
691 */
692 ip->ip_sum = 0;
693
694 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
695 /*
696 * Perform any checksums that the hardware can't do
697 * for us.
698 *
699 * XXX Does any hardware require the {th,uh}_sum
700 * XXX fields to be 0?
701 */
702 if (sw_csum & M_CSUM_IPv4) {
703 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
704 ip->ip_sum = in_cksum(m, hlen);
705 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
706 }
707 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 if (IN_NEED_CHECKSUM(ifp,
709 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
710 in_undefer_cksum_tcpudp(m);
711 }
712 m->m_pkthdr.csum_flags &=
713 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 }
715 }
716
717 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
718 if (__predict_true(
719 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
720 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
721 error = ip_if_output(ifp, m, sa, rt);
722 } else {
723 error = ip_tso_output(ifp, m, sa, rt);
724 }
725 goto done;
726 }
727
728 /*
729 * We can't use HW checksumming if we're about to fragment the packet.
730 *
731 * XXX Some hardware can do this.
732 */
733 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
734 if (IN_NEED_CHECKSUM(ifp,
735 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
736 in_undefer_cksum_tcpudp(m);
737 }
738 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
739 }
740
741 /*
742 * Too large for interface; fragment if possible.
743 * Must be able to put at least 8 bytes per fragment.
744 */
745 if (ntohs(ip->ip_off) & IP_DF) {
746 if (flags & IP_RETURNMTU) {
747 KASSERT(inp != NULL);
748 inp->inp_errormtu = mtu;
749 }
750 error = EMSGSIZE;
751 IP_STATINC(IP_STAT_CANTFRAG);
752 goto bad;
753 }
754
755 error = ip_fragment(m, ifp, mtu);
756 if (error) {
757 m = NULL;
758 goto bad;
759 }
760
761 for (; m; m = m0) {
762 m0 = m->m_nextpkt;
763 m->m_nextpkt = NULL;
764 if (error) {
765 m_freem(m);
766 continue;
767 }
768 #if IFA_STATS
769 if (ia)
770 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
771 #endif
772 /*
773 * If we get there, the packet has not been handled by
774 * IPsec whereas it should have. Now that it has been
775 * fragmented, re-inject it in ip_output so that IPsec
776 * processing can occur.
777 */
778 if (natt_frag) {
779 error = ip_output(m, opt, ro,
780 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
781 imo, inp);
782 } else {
783 KASSERT((m->m_pkthdr.csum_flags &
784 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
785 error = ip_if_output(ifp, m,
786 (m->m_flags & M_MCAST) ?
787 sintocsa(rdst) : sintocsa(dst), rt);
788 }
789 }
790 if (error == 0) {
791 IP_STATINC(IP_STAT_FRAGMENTED);
792 }
793
794 done:
795 ia4_release(ia, &psref_ia);
796 rtcache_unref(rt, ro);
797 if (ro == &iproute) {
798 rtcache_free(&iproute);
799 }
800 if (mifp != NULL) {
801 if_put(mifp, &psref);
802 }
803 if (bind_need_restore)
804 curlwp_bindx(bound);
805 return error;
806
807 bad:
808 m_freem(m);
809 goto done;
810 }
811
812 int
813 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
814 {
815 struct ip *ip, *mhip;
816 struct mbuf *m0;
817 int len, hlen, off;
818 int mhlen, firstlen;
819 struct mbuf **mnext;
820 int sw_csum = m->m_pkthdr.csum_flags;
821 int fragments = 0;
822 int error = 0;
823 int ipoff, ipflg;
824
825 ip = mtod(m, struct ip *);
826 hlen = ip->ip_hl << 2;
827
828 /* Preserve the offset and flags. */
829 ipoff = ntohs(ip->ip_off) & IP_OFFMASK;
830 ipflg = ntohs(ip->ip_off) & (IP_RF|IP_DF|IP_MF);
831
832 if (ifp != NULL)
833 sw_csum &= ~ifp->if_csum_flags_tx;
834
835 len = (mtu - hlen) &~ 7;
836 if (len < 8) {
837 m_freem(m);
838 return EMSGSIZE;
839 }
840
841 firstlen = len;
842 mnext = &m->m_nextpkt;
843
844 /*
845 * Loop through length of segment after first fragment,
846 * make new header and copy data of each part and link onto chain.
847 */
848 m0 = m;
849 mhlen = sizeof(struct ip);
850 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
851 MGETHDR(m, M_DONTWAIT, MT_HEADER);
852 if (m == NULL) {
853 error = ENOBUFS;
854 IP_STATINC(IP_STAT_ODROPPED);
855 goto sendorfree;
856 }
857 MCLAIM(m, m0->m_owner);
858
859 *mnext = m;
860 mnext = &m->m_nextpkt;
861
862 m->m_data += max_linkhdr;
863 mhip = mtod(m, struct ip *);
864 *mhip = *ip;
865
866 /* we must inherit the flags */
867 m->m_flags |= m0->m_flags & M_COPYFLAGS;
868
869 if (hlen > sizeof(struct ip)) {
870 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
871 mhip->ip_hl = mhlen >> 2;
872 }
873 m->m_len = mhlen;
874
875 mhip->ip_off = ((off - hlen) >> 3) + ipoff;
876 mhip->ip_off |= ipflg;
877 if (off + len >= ntohs(ip->ip_len))
878 len = ntohs(ip->ip_len) - off;
879 else
880 mhip->ip_off |= IP_MF;
881 HTONS(mhip->ip_off);
882
883 mhip->ip_len = htons((u_int16_t)(len + mhlen));
884 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
885 if (m->m_next == NULL) {
886 error = ENOBUFS;
887 IP_STATINC(IP_STAT_ODROPPED);
888 goto sendorfree;
889 }
890
891 m->m_pkthdr.len = mhlen + len;
892 m_reset_rcvif(m);
893
894 mhip->ip_sum = 0;
895 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
896 if (sw_csum & M_CSUM_IPv4) {
897 mhip->ip_sum = in_cksum(m, mhlen);
898 } else {
899 /*
900 * checksum is hw-offloaded or not necessary.
901 */
902 m->m_pkthdr.csum_flags |=
903 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
904 m->m_pkthdr.csum_data |= mhlen << 16;
905 KASSERT(!(ifp != NULL &&
906 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
907 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
908 }
909 IP_STATINC(IP_STAT_OFRAGMENTS);
910 fragments++;
911 }
912
913 /*
914 * Update first fragment by trimming what's been copied out
915 * and updating header, then send each fragment (in order).
916 */
917 m = m0;
918 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
919 m->m_pkthdr.len = hlen + firstlen;
920 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
921 ip->ip_off |= htons(IP_MF);
922 ip->ip_sum = 0;
923 if (sw_csum & M_CSUM_IPv4) {
924 ip->ip_sum = in_cksum(m, hlen);
925 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
926 } else {
927 /*
928 * checksum is hw-offloaded or not necessary.
929 */
930 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
931 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
932 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
933 sizeof(struct ip));
934 }
935
936 sendorfree:
937 /*
938 * If there is no room for all the fragments, don't queue
939 * any of them.
940 */
941 if (ifp != NULL) {
942 IFQ_LOCK(&ifp->if_snd);
943 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
944 error == 0) {
945 error = ENOBUFS;
946 IP_STATINC(IP_STAT_ODROPPED);
947 IFQ_INC_DROPS(&ifp->if_snd);
948 }
949 IFQ_UNLOCK(&ifp->if_snd);
950 }
951 if (error) {
952 for (m = m0; m; m = m0) {
953 m0 = m->m_nextpkt;
954 m->m_nextpkt = NULL;
955 m_freem(m);
956 }
957 }
958
959 return error;
960 }
961
962 /*
963 * Determine the maximum length of the options to be inserted;
964 * we would far rather allocate too much space rather than too little.
965 */
966 u_int
967 ip_optlen(struct inpcb *inp)
968 {
969 struct mbuf *m = inp->inp_options;
970
971 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
972 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
973 }
974 return 0;
975 }
976
977 /*
978 * Insert IP options into preformed packet.
979 * Adjust IP destination as required for IP source routing,
980 * as indicated by a non-zero in_addr at the start of the options.
981 */
982 static struct mbuf *
983 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
984 {
985 struct ipoption *p = mtod(opt, struct ipoption *);
986 struct mbuf *n;
987 struct ip *ip = mtod(m, struct ip *);
988 unsigned optlen;
989
990 optlen = opt->m_len - sizeof(p->ipopt_dst);
991 KASSERT(optlen % 4 == 0);
992 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
993 return m; /* XXX should fail */
994 if (!in_nullhost(p->ipopt_dst))
995 ip->ip_dst = p->ipopt_dst;
996 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
997 MGETHDR(n, M_DONTWAIT, MT_HEADER);
998 if (n == NULL)
999 return m;
1000 MCLAIM(n, m->m_owner);
1001 M_MOVE_PKTHDR(n, m);
1002 m->m_len -= sizeof(struct ip);
1003 m->m_data += sizeof(struct ip);
1004 n->m_next = m;
1005 n->m_len = optlen + sizeof(struct ip);
1006 n->m_data += max_linkhdr;
1007 memcpy(mtod(n, void *), ip, sizeof(struct ip));
1008 m = n;
1009 } else {
1010 m->m_data -= optlen;
1011 m->m_len += optlen;
1012 memmove(mtod(m, void *), ip, sizeof(struct ip));
1013 }
1014 m->m_pkthdr.len += optlen;
1015 ip = mtod(m, struct ip *);
1016 memcpy(ip + 1, p->ipopt_list, optlen);
1017 *phlen = sizeof(struct ip) + optlen;
1018 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1019 return m;
1020 }
1021
1022 /*
1023 * Copy options from ipsrc to ipdst, omitting those not copied during
1024 * fragmentation.
1025 */
1026 int
1027 ip_optcopy(struct ip *ipsrc, struct ip *ipdst)
1028 {
1029 u_char *cp, *dp;
1030 int opt, optlen, cnt;
1031
1032 cp = (u_char *)(ipsrc + 1);
1033 dp = (u_char *)(ipdst + 1);
1034 cnt = (ipsrc->ip_hl << 2) - sizeof(struct ip);
1035 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1036 opt = cp[0];
1037 if (opt == IPOPT_EOL)
1038 break;
1039 if (opt == IPOPT_NOP) {
1040 /* Preserve for IP mcast tunnel's LSRR alignment. */
1041 *dp++ = IPOPT_NOP;
1042 optlen = 1;
1043 continue;
1044 }
1045
1046 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1047 optlen = cp[IPOPT_OLEN];
1048 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1049
1050 /* Invalid lengths should have been caught by ip_dooptions. */
1051 if (optlen > cnt)
1052 optlen = cnt;
1053 if (IPOPT_COPIED(opt)) {
1054 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1055 dp += optlen;
1056 }
1057 }
1058
1059 for (optlen = dp - (u_char *)(ipdst+1); optlen & 0x3; optlen++) {
1060 *dp++ = IPOPT_EOL;
1061 }
1062
1063 return optlen;
1064 }
1065
1066 /*
1067 * IP socket option processing.
1068 */
1069 int
1070 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1071 {
1072 struct inpcb *inp = sotoinpcb(so);
1073 struct ip *ip = &inp->inp_ip;
1074 int inpflags = inp->inp_flags;
1075 int optval = 0, error = 0;
1076 struct in_pktinfo pktinfo;
1077
1078 KASSERT(solocked(so));
1079
1080 if (sopt->sopt_level != IPPROTO_IP) {
1081 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1082 return 0;
1083 return ENOPROTOOPT;
1084 }
1085
1086 switch (op) {
1087 case PRCO_SETOPT:
1088 switch (sopt->sopt_name) {
1089 case IP_OPTIONS:
1090 #ifdef notyet
1091 case IP_RETOPTS:
1092 #endif
1093 error = ip_pcbopts(inp, sopt);
1094 break;
1095
1096 case IP_TOS:
1097 case IP_TTL:
1098 case IP_MINTTL:
1099 case IP_RECVOPTS:
1100 case IP_RECVRETOPTS:
1101 case IP_RECVDSTADDR:
1102 case IP_RECVIF:
1103 case IP_RECVPKTINFO:
1104 case IP_RECVTTL:
1105 error = sockopt_getint(sopt, &optval);
1106 if (error)
1107 break;
1108
1109 switch (sopt->sopt_name) {
1110 case IP_TOS:
1111 ip->ip_tos = optval;
1112 break;
1113
1114 case IP_TTL:
1115 ip->ip_ttl = optval;
1116 break;
1117
1118 case IP_MINTTL:
1119 if (optval > 0 && optval <= MAXTTL)
1120 inp->inp_ip_minttl = optval;
1121 else
1122 error = EINVAL;
1123 break;
1124 #define OPTSET(bit) \
1125 if (optval) \
1126 inpflags |= bit; \
1127 else \
1128 inpflags &= ~bit;
1129
1130 case IP_RECVOPTS:
1131 OPTSET(INP_RECVOPTS);
1132 break;
1133
1134 case IP_RECVPKTINFO:
1135 OPTSET(INP_RECVPKTINFO);
1136 break;
1137
1138 case IP_RECVRETOPTS:
1139 OPTSET(INP_RECVRETOPTS);
1140 break;
1141
1142 case IP_RECVDSTADDR:
1143 OPTSET(INP_RECVDSTADDR);
1144 break;
1145
1146 case IP_RECVIF:
1147 OPTSET(INP_RECVIF);
1148 break;
1149
1150 case IP_RECVTTL:
1151 OPTSET(INP_RECVTTL);
1152 break;
1153 }
1154 break;
1155 case IP_PKTINFO:
1156 error = sockopt_getint(sopt, &optval);
1157 if (!error) {
1158 /* Linux compatibility */
1159 OPTSET(INP_RECVPKTINFO);
1160 break;
1161 }
1162 error = sockopt_get(sopt, &pktinfo, sizeof(pktinfo));
1163 if (error)
1164 break;
1165
1166 if (pktinfo.ipi_ifindex == 0) {
1167 inp->inp_prefsrcip = pktinfo.ipi_addr;
1168 break;
1169 }
1170
1171 /* Solaris compatibility */
1172 struct ifnet *ifp;
1173 struct in_ifaddr *ia;
1174 int s;
1175
1176 /* pick up primary address */
1177 s = pserialize_read_enter();
1178 ifp = if_byindex(pktinfo.ipi_ifindex);
1179 if (ifp == NULL) {
1180 pserialize_read_exit(s);
1181 error = EADDRNOTAVAIL;
1182 break;
1183 }
1184 ia = in_get_ia_from_ifp(ifp);
1185 if (ia == NULL) {
1186 pserialize_read_exit(s);
1187 error = EADDRNOTAVAIL;
1188 break;
1189 }
1190 inp->inp_prefsrcip = IA_SIN(ia)->sin_addr;
1191 pserialize_read_exit(s);
1192 break;
1193 break;
1194 #undef OPTSET
1195
1196 case IP_MULTICAST_IF:
1197 case IP_MULTICAST_TTL:
1198 case IP_MULTICAST_LOOP:
1199 case IP_ADD_MEMBERSHIP:
1200 case IP_DROP_MEMBERSHIP:
1201 error = ip_setmoptions(&inp->inp_moptions, sopt);
1202 break;
1203
1204 case IP_PORTRANGE:
1205 error = sockopt_getint(sopt, &optval);
1206 if (error)
1207 break;
1208
1209 switch (optval) {
1210 case IP_PORTRANGE_DEFAULT:
1211 case IP_PORTRANGE_HIGH:
1212 inpflags &= ~(INP_LOWPORT);
1213 break;
1214
1215 case IP_PORTRANGE_LOW:
1216 inpflags |= INP_LOWPORT;
1217 break;
1218
1219 default:
1220 error = EINVAL;
1221 break;
1222 }
1223 break;
1224
1225 case IP_PORTALGO:
1226 error = sockopt_getint(sopt, &optval);
1227 if (error)
1228 break;
1229
1230 error = portalgo_algo_index_select(
1231 (struct inpcb_hdr *)inp, optval);
1232 break;
1233
1234 #if defined(IPSEC)
1235 case IP_IPSEC_POLICY:
1236 if (ipsec_enabled) {
1237 error = ipsec_set_policy(inp,
1238 sopt->sopt_data, sopt->sopt_size,
1239 curlwp->l_cred);
1240 break;
1241 }
1242 /*FALLTHROUGH*/
1243 #endif /* IPSEC */
1244
1245 default:
1246 error = ENOPROTOOPT;
1247 break;
1248 }
1249 break;
1250
1251 case PRCO_GETOPT:
1252 switch (sopt->sopt_name) {
1253 case IP_OPTIONS:
1254 case IP_RETOPTS: {
1255 struct mbuf *mopts = inp->inp_options;
1256
1257 if (mopts) {
1258 struct mbuf *m;
1259
1260 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1261 if (m == NULL) {
1262 error = ENOBUFS;
1263 break;
1264 }
1265 error = sockopt_setmbuf(sopt, m);
1266 }
1267 break;
1268 }
1269 case IP_TOS:
1270 case IP_TTL:
1271 case IP_MINTTL:
1272 case IP_RECVOPTS:
1273 case IP_RECVRETOPTS:
1274 case IP_RECVDSTADDR:
1275 case IP_RECVIF:
1276 case IP_RECVPKTINFO:
1277 case IP_RECVTTL:
1278 case IP_ERRORMTU:
1279 switch (sopt->sopt_name) {
1280 case IP_TOS:
1281 optval = ip->ip_tos;
1282 break;
1283
1284 case IP_TTL:
1285 optval = ip->ip_ttl;
1286 break;
1287
1288 case IP_MINTTL:
1289 optval = inp->inp_ip_minttl;
1290 break;
1291
1292 case IP_ERRORMTU:
1293 optval = inp->inp_errormtu;
1294 break;
1295
1296 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1297
1298 case IP_RECVOPTS:
1299 optval = OPTBIT(INP_RECVOPTS);
1300 break;
1301
1302 case IP_RECVPKTINFO:
1303 optval = OPTBIT(INP_RECVPKTINFO);
1304 break;
1305
1306 case IP_RECVRETOPTS:
1307 optval = OPTBIT(INP_RECVRETOPTS);
1308 break;
1309
1310 case IP_RECVDSTADDR:
1311 optval = OPTBIT(INP_RECVDSTADDR);
1312 break;
1313
1314 case IP_RECVIF:
1315 optval = OPTBIT(INP_RECVIF);
1316 break;
1317
1318 case IP_RECVTTL:
1319 optval = OPTBIT(INP_RECVTTL);
1320 break;
1321 }
1322 error = sockopt_setint(sopt, optval);
1323 break;
1324
1325 case IP_PKTINFO:
1326 switch (sopt->sopt_size) {
1327 case sizeof(int):
1328 /* Linux compatibility */
1329 optval = OPTBIT(INP_RECVPKTINFO);
1330 error = sockopt_setint(sopt, optval);
1331 break;
1332 case sizeof(struct in_pktinfo):
1333 /* Solaris compatibility */
1334 pktinfo.ipi_ifindex = 0;
1335 pktinfo.ipi_addr = inp->inp_prefsrcip;
1336 error = sockopt_set(sopt, &pktinfo,
1337 sizeof(pktinfo));
1338 break;
1339 default:
1340 /*
1341 * While size is stuck at 0, and, later, if
1342 * the caller doesn't use an exactly sized
1343 * recipient for the data, default to Linux
1344 * compatibility
1345 */
1346 optval = OPTBIT(INP_RECVPKTINFO);
1347 error = sockopt_setint(sopt, optval);
1348 break;
1349 }
1350 break;
1351
1352 #if 0 /* defined(IPSEC) */
1353 case IP_IPSEC_POLICY:
1354 {
1355 struct mbuf *m = NULL;
1356
1357 /* XXX this will return EINVAL as sopt is empty */
1358 error = ipsec_get_policy(inp, sopt->sopt_data,
1359 sopt->sopt_size, &m);
1360 if (error == 0)
1361 error = sockopt_setmbuf(sopt, m);
1362 break;
1363 }
1364 #endif /*IPSEC*/
1365
1366 case IP_MULTICAST_IF:
1367 case IP_MULTICAST_TTL:
1368 case IP_MULTICAST_LOOP:
1369 case IP_ADD_MEMBERSHIP:
1370 case IP_DROP_MEMBERSHIP:
1371 error = ip_getmoptions(inp->inp_moptions, sopt);
1372 break;
1373
1374 case IP_PORTRANGE:
1375 if (inpflags & INP_LOWPORT)
1376 optval = IP_PORTRANGE_LOW;
1377 else
1378 optval = IP_PORTRANGE_DEFAULT;
1379 error = sockopt_setint(sopt, optval);
1380 break;
1381
1382 case IP_PORTALGO:
1383 optval = inp->inp_portalgo;
1384 error = sockopt_setint(sopt, optval);
1385 break;
1386
1387 default:
1388 error = ENOPROTOOPT;
1389 break;
1390 }
1391 break;
1392 }
1393
1394 if (!error) {
1395 inp->inp_flags = inpflags;
1396 }
1397 return error;
1398 }
1399
1400 static int
1401 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
1402 int *flags, kauth_cred_t cred)
1403 {
1404 struct ip_moptions *imo;
1405 int error = 0;
1406 bool addrset = false;
1407
1408 if (!in_nullhost(pktinfo->ipi_addr)) {
1409 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1410 /* EADDRNOTAVAIL? */
1411 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
1412 if (error != 0)
1413 return error;
1414 addrset = true;
1415 }
1416
1417 if (pktinfo->ipi_ifindex != 0) {
1418 if (!addrset) {
1419 struct ifnet *ifp;
1420 struct in_ifaddr *ia;
1421 int s;
1422
1423 /* pick up primary address */
1424 s = pserialize_read_enter();
1425 ifp = if_byindex(pktinfo->ipi_ifindex);
1426 if (ifp == NULL) {
1427 pserialize_read_exit(s);
1428 return EADDRNOTAVAIL;
1429 }
1430 ia = in_get_ia_from_ifp(ifp);
1431 if (ia == NULL) {
1432 pserialize_read_exit(s);
1433 return EADDRNOTAVAIL;
1434 }
1435 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1436 pserialize_read_exit(s);
1437 }
1438
1439 /*
1440 * If specified ipi_ifindex,
1441 * use copied or locally initialized ip_moptions.
1442 * Original ip_moptions must not be modified.
1443 */
1444 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1445 if (pktopts->ippo_imo != NULL) {
1446 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1447 } else {
1448 memset(imo, 0, sizeof(*imo));
1449 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1450 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1451 }
1452 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1453 pktopts->ippo_imo = imo;
1454 *flags |= IP_ROUTETOIFINDEX;
1455 }
1456 return error;
1457 }
1458
1459 /*
1460 * Set up IP outgoing packet options. Even if control is NULL,
1461 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1462 */
1463 int
1464 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1465 struct inpcb *inp, kauth_cred_t cred)
1466 {
1467 struct cmsghdr *cm;
1468 struct in_pktinfo pktinfo;
1469 int error;
1470
1471 pktopts->ippo_imo = inp->inp_moptions;
1472
1473 struct in_addr *ia = in_nullhost(inp->inp_prefsrcip) ? &inp->inp_laddr :
1474 &inp->inp_prefsrcip;
1475 sockaddr_in_init(&pktopts->ippo_laddr, ia, 0);
1476
1477 if (control == NULL)
1478 return 0;
1479
1480 /*
1481 * XXX: Currently, we assume all the optional information is
1482 * stored in a single mbuf.
1483 */
1484 if (control->m_next)
1485 return EINVAL;
1486
1487 for (; control->m_len > 0;
1488 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1489 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1490 cm = mtod(control, struct cmsghdr *);
1491 if ((control->m_len < sizeof(*cm)) ||
1492 (cm->cmsg_len == 0) ||
1493 (cm->cmsg_len > control->m_len)) {
1494 return EINVAL;
1495 }
1496 if (cm->cmsg_level != IPPROTO_IP)
1497 continue;
1498
1499 switch (cm->cmsg_type) {
1500 case IP_PKTINFO:
1501 if (cm->cmsg_len != CMSG_LEN(sizeof(pktinfo)))
1502 return EINVAL;
1503 memcpy(&pktinfo, CMSG_DATA(cm), sizeof(pktinfo));
1504 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1505 cred);
1506 if (error)
1507 return error;
1508 break;
1509 case IP_SENDSRCADDR: /* FreeBSD compatibility */
1510 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr)))
1511 return EINVAL;
1512 pktinfo.ipi_ifindex = 0;
1513 pktinfo.ipi_addr =
1514 ((struct in_pktinfo *)CMSG_DATA(cm))->ipi_addr;
1515 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1516 cred);
1517 if (error)
1518 return error;
1519 break;
1520 default:
1521 return ENOPROTOOPT;
1522 }
1523 }
1524 return 0;
1525 }
1526
1527 /*
1528 * Set up IP options in pcb for insertion in output packets.
1529 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1530 * with destination address if source routed.
1531 */
1532 static int
1533 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1534 {
1535 struct mbuf *m;
1536 const u_char *cp;
1537 u_char *dp;
1538 int cnt;
1539
1540 KASSERT(inp_locked(inp));
1541
1542 /* Turn off any old options. */
1543 if (inp->inp_options) {
1544 m_free(inp->inp_options);
1545 }
1546 inp->inp_options = NULL;
1547 if ((cnt = sopt->sopt_size) == 0) {
1548 /* Only turning off any previous options. */
1549 return 0;
1550 }
1551 cp = sopt->sopt_data;
1552
1553 if (cnt % 4) {
1554 /* Must be 4-byte aligned, because there's no padding. */
1555 return EINVAL;
1556 }
1557
1558 m = m_get(M_DONTWAIT, MT_SOOPTS);
1559 if (m == NULL)
1560 return ENOBUFS;
1561
1562 dp = mtod(m, u_char *);
1563 memset(dp, 0, sizeof(struct in_addr));
1564 dp += sizeof(struct in_addr);
1565 m->m_len = sizeof(struct in_addr);
1566
1567 /*
1568 * IP option list according to RFC791. Each option is of the form
1569 *
1570 * [optval] [olen] [(olen - 2) data bytes]
1571 *
1572 * We validate the list and copy options to an mbuf for prepending
1573 * to data packets. The IP first-hop destination address will be
1574 * stored before actual options and is zero if unset.
1575 */
1576 while (cnt > 0) {
1577 uint8_t optval, olen, offset;
1578
1579 optval = cp[IPOPT_OPTVAL];
1580
1581 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1582 olen = 1;
1583 } else {
1584 if (cnt < IPOPT_OLEN + 1)
1585 goto bad;
1586
1587 olen = cp[IPOPT_OLEN];
1588 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1589 goto bad;
1590 }
1591
1592 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1593 /*
1594 * user process specifies route as:
1595 * ->A->B->C->D
1596 * D must be our final destination (but we can't
1597 * check that since we may not have connected yet).
1598 * A is first hop destination, which doesn't appear in
1599 * actual IP option, but is stored before the options.
1600 */
1601 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1602 goto bad;
1603
1604 offset = cp[IPOPT_OFFSET];
1605 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1606 sizeof(struct in_addr));
1607
1608 cp += sizeof(struct in_addr);
1609 cnt -= sizeof(struct in_addr);
1610 olen -= sizeof(struct in_addr);
1611
1612 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1613 goto bad;
1614
1615 memcpy(dp, cp, olen);
1616 dp[IPOPT_OPTVAL] = optval;
1617 dp[IPOPT_OLEN] = olen;
1618 dp[IPOPT_OFFSET] = offset;
1619 break;
1620 } else {
1621 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1622 goto bad;
1623
1624 memcpy(dp, cp, olen);
1625 break;
1626 }
1627
1628 dp += olen;
1629 m->m_len += olen;
1630
1631 if (optval == IPOPT_EOL)
1632 break;
1633
1634 cp += olen;
1635 cnt -= olen;
1636 }
1637
1638 inp->inp_options = m;
1639 return 0;
1640
1641 bad:
1642 (void)m_free(m);
1643 return EINVAL;
1644 }
1645
1646 /*
1647 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1648 * Must be called in a pserialize critical section.
1649 */
1650 static struct ifnet *
1651 ip_multicast_if(struct in_addr *a, int *ifindexp)
1652 {
1653 int ifindex;
1654 struct ifnet *ifp = NULL;
1655 struct in_ifaddr *ia;
1656
1657 if (ifindexp)
1658 *ifindexp = 0;
1659 if (ntohl(a->s_addr) >> 24 == 0) {
1660 ifindex = ntohl(a->s_addr) & 0xffffff;
1661 ifp = if_byindex(ifindex);
1662 if (!ifp)
1663 return NULL;
1664 if (ifindexp)
1665 *ifindexp = ifindex;
1666 } else {
1667 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1668 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1669 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1670 ifp = ia->ia_ifp;
1671 if (if_is_deactivated(ifp))
1672 ifp = NULL;
1673 break;
1674 }
1675 }
1676 }
1677 return ifp;
1678 }
1679
1680 static int
1681 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1682 {
1683 u_int tval;
1684 u_char cval;
1685 int error;
1686
1687 if (sopt == NULL)
1688 return EINVAL;
1689
1690 switch (sopt->sopt_size) {
1691 case sizeof(u_char):
1692 error = sockopt_get(sopt, &cval, sizeof(u_char));
1693 tval = cval;
1694 break;
1695
1696 case sizeof(u_int):
1697 error = sockopt_get(sopt, &tval, sizeof(u_int));
1698 break;
1699
1700 default:
1701 error = EINVAL;
1702 }
1703
1704 if (error)
1705 return error;
1706
1707 if (tval > maxval)
1708 return EINVAL;
1709
1710 *val = tval;
1711 return 0;
1712 }
1713
1714 static int
1715 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1716 struct psref *psref, struct in_addr *ia, bool add)
1717 {
1718 int error;
1719 struct ip_mreq mreq;
1720
1721 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1722 if (error)
1723 return error;
1724
1725 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1726 return EINVAL;
1727
1728 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1729
1730 if (in_nullhost(mreq.imr_interface)) {
1731 union {
1732 struct sockaddr dst;
1733 struct sockaddr_in dst4;
1734 } u;
1735 struct route ro;
1736
1737 if (!add) {
1738 *ifp = NULL;
1739 return 0;
1740 }
1741 /*
1742 * If no interface address was provided, use the interface of
1743 * the route to the given multicast address.
1744 */
1745 struct rtentry *rt;
1746 memset(&ro, 0, sizeof(ro));
1747
1748 sockaddr_in_init(&u.dst4, ia, 0);
1749 error = rtcache_setdst(&ro, &u.dst);
1750 if (error != 0)
1751 return error;
1752 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1753 if (*ifp != NULL) {
1754 if (if_is_deactivated(*ifp))
1755 *ifp = NULL;
1756 else
1757 if_acquire(*ifp, psref);
1758 }
1759 rtcache_unref(rt, &ro);
1760 rtcache_free(&ro);
1761 } else {
1762 int s = pserialize_read_enter();
1763 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1764 if (!add && *ifp == NULL) {
1765 pserialize_read_exit(s);
1766 return EADDRNOTAVAIL;
1767 }
1768 if (*ifp != NULL) {
1769 if (if_is_deactivated(*ifp))
1770 *ifp = NULL;
1771 else
1772 if_acquire(*ifp, psref);
1773 }
1774 pserialize_read_exit(s);
1775 }
1776 return 0;
1777 }
1778
1779 /*
1780 * Add a multicast group membership.
1781 * Group must be a valid IP multicast address.
1782 */
1783 static int
1784 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1785 {
1786 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1787 struct in_addr ia;
1788 int i, error, bound;
1789 struct psref psref;
1790
1791 /* imo is protected by solock or referenced only by the caller */
1792
1793 bound = curlwp_bind();
1794 if (sopt->sopt_size == sizeof(struct ip_mreq))
1795 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1796 else {
1797 #ifdef INET6
1798 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1799 #else
1800 error = EINVAL;
1801 #endif
1802 }
1803
1804 if (error)
1805 goto out;
1806
1807 /*
1808 * See if we found an interface, and confirm that it
1809 * supports multicast.
1810 */
1811 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1812 error = EADDRNOTAVAIL;
1813 goto out;
1814 }
1815
1816 /*
1817 * See if the membership already exists or if all the
1818 * membership slots are full.
1819 */
1820 for (i = 0; i < imo->imo_num_memberships; ++i) {
1821 if (imo->imo_membership[i]->inm_ifp == ifp &&
1822 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1823 break;
1824 }
1825 if (i < imo->imo_num_memberships) {
1826 error = EADDRINUSE;
1827 goto out;
1828 }
1829
1830 if (i == IP_MAX_MEMBERSHIPS) {
1831 error = ETOOMANYREFS;
1832 goto out;
1833 }
1834
1835 /*
1836 * Everything looks good; add a new record to the multicast
1837 * address list for the given interface.
1838 */
1839 IFNET_LOCK(ifp);
1840 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1841 IFNET_UNLOCK(ifp);
1842 if (imo->imo_membership[i] == NULL) {
1843 error = ENOBUFS;
1844 goto out;
1845 }
1846
1847 ++imo->imo_num_memberships;
1848 error = 0;
1849 out:
1850 if_put(ifp, &psref);
1851 curlwp_bindx(bound);
1852 return error;
1853 }
1854
1855 /*
1856 * Drop a multicast group membership.
1857 * Group must be a valid IP multicast address.
1858 */
1859 static int
1860 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1861 {
1862 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1863 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1864 int i, error, bound;
1865 struct psref psref;
1866
1867 /* imo is protected by solock or referenced only by the caller */
1868
1869 bound = curlwp_bind();
1870 if (sopt->sopt_size == sizeof(struct ip_mreq))
1871 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1872 else {
1873 #ifdef INET6
1874 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1875 #else
1876 error = EINVAL;
1877 #endif
1878 }
1879
1880 if (error)
1881 goto out;
1882
1883 /*
1884 * Find the membership in the membership array.
1885 */
1886 for (i = 0; i < imo->imo_num_memberships; ++i) {
1887 if ((ifp == NULL ||
1888 imo->imo_membership[i]->inm_ifp == ifp) &&
1889 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1890 break;
1891 }
1892 if (i == imo->imo_num_memberships) {
1893 error = EADDRNOTAVAIL;
1894 goto out;
1895 }
1896
1897 /*
1898 * Give up the multicast address record to which the
1899 * membership points.
1900 */
1901 struct ifnet *inm_ifp = imo->imo_membership[i]->inm_ifp;
1902 IFNET_LOCK(inm_ifp);
1903 in_delmulti(imo->imo_membership[i]);
1904 IFNET_UNLOCK(inm_ifp);
1905
1906 /*
1907 * Remove the gap in the membership array.
1908 */
1909 for (++i; i < imo->imo_num_memberships; ++i)
1910 imo->imo_membership[i-1] = imo->imo_membership[i];
1911 --imo->imo_num_memberships;
1912 error = 0;
1913 out:
1914 if_put(ifp, &psref);
1915 curlwp_bindx(bound);
1916 return error;
1917 }
1918
1919 /*
1920 * Set the IP multicast options in response to user setsockopt().
1921 */
1922 int
1923 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1924 {
1925 struct ip_moptions *imo = *pimo;
1926 struct in_addr addr;
1927 struct ifnet *ifp;
1928 int ifindex, error = 0;
1929
1930 /* The passed imo isn't NULL, it should be protected by solock */
1931
1932 if (!imo) {
1933 /*
1934 * No multicast option buffer attached to the pcb;
1935 * allocate one and initialize to default values.
1936 */
1937 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1938 if (imo == NULL)
1939 return ENOBUFS;
1940
1941 imo->imo_multicast_if_index = 0;
1942 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1943 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1944 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1945 imo->imo_num_memberships = 0;
1946 *pimo = imo;
1947 }
1948
1949 switch (sopt->sopt_name) {
1950 case IP_MULTICAST_IF: {
1951 int s;
1952 /*
1953 * Select the interface for outgoing multicast packets.
1954 */
1955 error = sockopt_get(sopt, &addr, sizeof(addr));
1956 if (error)
1957 break;
1958
1959 /*
1960 * INADDR_ANY is used to remove a previous selection.
1961 * When no interface is selected, a default one is
1962 * chosen every time a multicast packet is sent.
1963 */
1964 if (in_nullhost(addr)) {
1965 imo->imo_multicast_if_index = 0;
1966 break;
1967 }
1968 /*
1969 * The selected interface is identified by its local
1970 * IP address. Find the interface and confirm that
1971 * it supports multicasting.
1972 */
1973 s = pserialize_read_enter();
1974 ifp = ip_multicast_if(&addr, &ifindex);
1975 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1976 pserialize_read_exit(s);
1977 error = EADDRNOTAVAIL;
1978 break;
1979 }
1980 imo->imo_multicast_if_index = ifp->if_index;
1981 pserialize_read_exit(s);
1982 if (ifindex)
1983 imo->imo_multicast_addr = addr;
1984 else
1985 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1986 break;
1987 }
1988
1989 case IP_MULTICAST_TTL:
1990 /*
1991 * Set the IP time-to-live for outgoing multicast packets.
1992 */
1993 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1994 break;
1995
1996 case IP_MULTICAST_LOOP:
1997 /*
1998 * Set the loopback flag for outgoing multicast packets.
1999 * Must be zero or one.
2000 */
2001 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
2002 break;
2003
2004 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
2005 error = ip_add_membership(imo, sopt);
2006 break;
2007
2008 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
2009 error = ip_drop_membership(imo, sopt);
2010 break;
2011
2012 default:
2013 error = EOPNOTSUPP;
2014 break;
2015 }
2016
2017 /*
2018 * If all options have default values, no need to keep the mbuf.
2019 */
2020 if (imo->imo_multicast_if_index == 0 &&
2021 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2022 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2023 imo->imo_num_memberships == 0) {
2024 kmem_intr_free(imo, sizeof(*imo));
2025 *pimo = NULL;
2026 }
2027
2028 return error;
2029 }
2030
2031 /*
2032 * Return the IP multicast options in response to user getsockopt().
2033 */
2034 int
2035 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
2036 {
2037 struct in_addr addr;
2038 uint8_t optval;
2039 int error = 0;
2040
2041 /* imo is protected by solock or refereced only by the caller */
2042
2043 switch (sopt->sopt_name) {
2044 case IP_MULTICAST_IF:
2045 if (imo == NULL || imo->imo_multicast_if_index == 0)
2046 addr = zeroin_addr;
2047 else if (imo->imo_multicast_addr.s_addr) {
2048 /* return the value user has set */
2049 addr = imo->imo_multicast_addr;
2050 } else {
2051 struct ifnet *ifp;
2052 struct in_ifaddr *ia = NULL;
2053 int s = pserialize_read_enter();
2054
2055 ifp = if_byindex(imo->imo_multicast_if_index);
2056 if (ifp != NULL) {
2057 ia = in_get_ia_from_ifp(ifp);
2058 }
2059 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
2060 pserialize_read_exit(s);
2061 }
2062 error = sockopt_set(sopt, &addr, sizeof(addr));
2063 break;
2064
2065 case IP_MULTICAST_TTL:
2066 optval = imo ? imo->imo_multicast_ttl
2067 : IP_DEFAULT_MULTICAST_TTL;
2068
2069 error = sockopt_set(sopt, &optval, sizeof(optval));
2070 break;
2071
2072 case IP_MULTICAST_LOOP:
2073 optval = imo ? imo->imo_multicast_loop
2074 : IP_DEFAULT_MULTICAST_LOOP;
2075
2076 error = sockopt_set(sopt, &optval, sizeof(optval));
2077 break;
2078
2079 default:
2080 error = EOPNOTSUPP;
2081 }
2082
2083 return error;
2084 }
2085
2086 /*
2087 * Discard the IP multicast options.
2088 */
2089 void
2090 ip_freemoptions(struct ip_moptions *imo)
2091 {
2092 int i;
2093
2094 /* The owner of imo (inp) should be protected by solock */
2095
2096 if (imo != NULL) {
2097 for (i = 0; i < imo->imo_num_memberships; ++i) {
2098 struct in_multi *inm = imo->imo_membership[i];
2099 struct ifnet *ifp = inm->inm_ifp;
2100 IFNET_LOCK(ifp);
2101 in_delmulti(inm);
2102 /* ifp should not leave thanks to solock */
2103 IFNET_UNLOCK(ifp);
2104 }
2105
2106 kmem_intr_free(imo, sizeof(*imo));
2107 }
2108 }
2109
2110 /*
2111 * Routine called from ip_output() to loop back a copy of an IP multicast
2112 * packet to the input queue of a specified interface. Note that this
2113 * calls the output routine of the loopback "driver", but with an interface
2114 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2115 */
2116 static void
2117 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2118 {
2119 struct ip *ip;
2120 struct mbuf *copym;
2121
2122 copym = m_copypacket(m, M_DONTWAIT);
2123 if (copym != NULL &&
2124 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2125 copym = m_pullup(copym, sizeof(struct ip));
2126 if (copym == NULL)
2127 return;
2128 /*
2129 * We don't bother to fragment if the IP length is greater
2130 * than the interface's MTU. Can this possibly matter?
2131 */
2132 ip = mtod(copym, struct ip *);
2133
2134 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2135 in_undefer_cksum_tcpudp(copym);
2136 copym->m_pkthdr.csum_flags &=
2137 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2138 }
2139
2140 ip->ip_sum = 0;
2141 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2142 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2143 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2144 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2145 }
2146
2147 /*
2148 * Ensure sending address is valid.
2149 * Returns 0 on success, -1 if an error should be sent back or 1
2150 * if the packet could be dropped without error (protocol dependent).
2151 */
2152 static int
2153 ip_ifaddrvalid(const struct in_ifaddr *ia)
2154 {
2155
2156 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2157 return 0;
2158
2159 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2160 return -1;
2161 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2162 return 1;
2163
2164 return 0;
2165 }
2166