ip_output.c revision 1.302 1 /* $NetBSD: ip_output.c,v 1.302 2018/04/13 09:00:29 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.302 2018/04/13 09:00:29 maxv Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct inpcb *inp)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int len, hlen, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia = NULL;
239 struct ifaddr *ifa;
240 int isbroadcast;
241 int sw_csum;
242 u_long mtu;
243 bool natt_frag = false;
244 bool rtmtu_nolock;
245 union {
246 struct sockaddr sa;
247 struct sockaddr_in sin;
248 } udst, usrc;
249 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
250 * opposed to the nexthop
251 */
252 struct psref psref, psref_ia;
253 int bound;
254 bool bind_need_restore = false;
255
256 len = 0;
257
258 MCLAIM(m, &ip_tx_mowner);
259
260 KASSERT((m->m_flags & M_PKTHDR) != 0);
261 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
263 (M_CSUM_TCPv4|M_CSUM_UDPv4));
264 KASSERT(m->m_len >= sizeof(struct ip));
265
266 hlen = sizeof(struct ip);
267 if (opt) {
268 m = ip_insertoptions(m, opt, &len);
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 /* XXX must be before rtcache operations */
307 bound = curlwp_bind();
308 bind_need_restore = true;
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &udst.sin;
313 error = rtcache_setdst(ro, &udst.sa);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
323 if (ifa == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /* ia is already referenced by psref_ia */
329 ia = ifatoia(ifa);
330
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 isbroadcast = in_broadcast(dst->sin_addr, ifp);
335 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
336 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
337 (flags & IP_ROUTETOIFINDEX)) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 ip->ip_dst.s_addr == INADDR_BROADCAST) {
353 isbroadcast = 0;
354 } else {
355 /* IP_ROUTETOIFINDEX */
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 if ((isbroadcast == 0) && ((ifp->if_flags &
358 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
359 (in_direct(dst->sin_addr, ifp) == 0)) {
360 /* gateway address required */
361 if (rt == NULL)
362 rt = rtcache_init(ro);
363 if (rt == NULL || rt->rt_ifp != ifp) {
364 IP_STATINC(IP_STAT_NOROUTE);
365 error = EHOSTUNREACH;
366 goto bad;
367 }
368 rt->rt_use++;
369 if (rt->rt_flags & RTF_GATEWAY)
370 dst = satosin(rt->rt_gateway);
371 if (rt->rt_flags & RTF_HOST)
372 isbroadcast =
373 rt->rt_flags & RTF_BROADCAST;
374 }
375 }
376 } else {
377 if (rt == NULL)
378 rt = rtcache_init(ro);
379 if (rt == NULL) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = EHOSTUNREACH;
382 goto bad;
383 }
384 if (ifa_is_destroying(rt->rt_ifa)) {
385 rtcache_unref(rt, ro);
386 rt = NULL;
387 IP_STATINC(IP_STAT_NOROUTE);
388 error = EHOSTUNREACH;
389 goto bad;
390 }
391 ifa_acquire(rt->rt_ifa, &psref_ia);
392 ia = ifatoia(rt->rt_ifa);
393 ifp = rt->rt_ifp;
394 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
395 mtu = ifp->if_mtu;
396 rt->rt_use++;
397 if (rt->rt_flags & RTF_GATEWAY)
398 dst = satosin(rt->rt_gateway);
399 if (rt->rt_flags & RTF_HOST)
400 isbroadcast = rt->rt_flags & RTF_BROADCAST;
401 else
402 isbroadcast = in_broadcast(dst->sin_addr, ifp);
403 }
404 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
405
406 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
407 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
408 bool inmgroup;
409
410 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
411 M_BCAST : M_MCAST;
412 /*
413 * See if the caller provided any multicast options
414 */
415 if (imo != NULL)
416 ip->ip_ttl = imo->imo_multicast_ttl;
417 else
418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419
420 /*
421 * if we don't know the outgoing ifp yet, we can't generate
422 * output
423 */
424 if (!ifp) {
425 IP_STATINC(IP_STAT_NOROUTE);
426 error = ENETUNREACH;
427 goto bad;
428 }
429
430 /*
431 * If the packet is multicast or broadcast, confirm that
432 * the outgoing interface can transmit it.
433 */
434 if (((m->m_flags & M_MCAST) &&
435 (ifp->if_flags & IFF_MULTICAST) == 0) ||
436 ((m->m_flags & M_BCAST) &&
437 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 /*
443 * If source address not specified yet, use an address
444 * of outgoing interface.
445 */
446 if (in_nullhost(ip->ip_src)) {
447 struct in_ifaddr *xia;
448 struct ifaddr *xifa;
449 struct psref _psref;
450
451 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
452 if (!xia) {
453 error = EADDRNOTAVAIL;
454 goto bad;
455 }
456 xifa = &xia->ia_ifa;
457 if (xifa->ifa_getifa != NULL) {
458 ia4_release(xia, &_psref);
459 /* FIXME ifa_getifa is NOMPSAFE */
460 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
461 if (xia == NULL) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 ia4_acquire(xia, &_psref);
466 }
467 ip->ip_src = xia->ia_addr.sin_addr;
468 ia4_release(xia, &_psref);
469 }
470
471 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
472 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
473 /*
474 * If we belong to the destination multicast group
475 * on the outgoing interface, and the caller did not
476 * forbid loopback, loop back a copy.
477 */
478 ip_mloopback(ifp, m, &udst.sin);
479 }
480 #ifdef MROUTING
481 else {
482 /*
483 * If we are acting as a multicast router, perform
484 * multicast forwarding as if the packet had just
485 * arrived on the interface to which we are about
486 * to send. The multicast forwarding function
487 * recursively calls this function, using the
488 * IP_FORWARDING flag to prevent infinite recursion.
489 *
490 * Multicasts that are looped back by ip_mloopback(),
491 * above, will be forwarded by the ip_input() routine,
492 * if necessary.
493 */
494 extern struct socket *ip_mrouter;
495
496 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
497 if (ip_mforward(m, ifp) != 0) {
498 m_freem(m);
499 goto done;
500 }
501 }
502 }
503 #endif
504 /*
505 * Multicasts with a time-to-live of zero may be looped-
506 * back, above, but must not be transmitted on a network.
507 * Also, multicasts addressed to the loopback interface
508 * are not sent -- the above call to ip_mloopback() will
509 * loop back a copy if this host actually belongs to the
510 * destination group on the loopback interface.
511 */
512 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
513 m_freem(m);
514 goto done;
515 }
516 goto sendit;
517 }
518
519 /*
520 * If source address not specified yet, use address
521 * of outgoing interface.
522 */
523 if (in_nullhost(ip->ip_src)) {
524 struct ifaddr *xifa;
525
526 xifa = &ia->ia_ifa;
527 if (xifa->ifa_getifa != NULL) {
528 ia4_release(ia, &psref_ia);
529 /* FIXME ifa_getifa is NOMPSAFE */
530 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
531 if (ia == NULL) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 ia4_acquire(ia, &psref_ia);
536 }
537 ip->ip_src = ia->ia_addr.sin_addr;
538 }
539
540 /*
541 * Packets with Class-D address as source are not valid per
542 * RFC1112.
543 */
544 if (IN_MULTICAST(ip->ip_src.s_addr)) {
545 IP_STATINC(IP_STAT_ODROPPED);
546 error = EADDRNOTAVAIL;
547 goto bad;
548 }
549
550 /*
551 * Look for broadcast address and verify user is allowed to
552 * send such a packet.
553 */
554 if (isbroadcast) {
555 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
556 error = EADDRNOTAVAIL;
557 goto bad;
558 }
559 if ((flags & IP_ALLOWBROADCAST) == 0) {
560 error = EACCES;
561 goto bad;
562 }
563 /* don't allow broadcast messages to be fragmented */
564 if (ntohs(ip->ip_len) > ifp->if_mtu) {
565 error = EMSGSIZE;
566 goto bad;
567 }
568 m->m_flags |= M_BCAST;
569 } else
570 m->m_flags &= ~M_BCAST;
571
572 sendit:
573 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
574 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
575 ip->ip_id = 0;
576 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
577 ip->ip_id = ip_newid(ia);
578 } else {
579 /*
580 * TSO capable interfaces (typically?) increment
581 * ip_id for each segment.
582 * "allocate" enough ids here to increase the chance
583 * for them to be unique.
584 *
585 * note that the following calculation is not
586 * needed to be precise. wasting some ip_id is fine.
587 */
588
589 unsigned int segsz = m->m_pkthdr.segsz;
590 unsigned int datasz = ntohs(ip->ip_len) - hlen;
591 unsigned int num = howmany(datasz, segsz);
592
593 ip->ip_id = ip_newid_range(ia, num);
594 }
595 }
596 if (ia != NULL) {
597 ia4_release(ia, &psref_ia);
598 ia = NULL;
599 }
600
601 /*
602 * If we're doing Path MTU Discovery, we need to set DF unless
603 * the route's MTU is locked.
604 */
605 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
606 ip->ip_off |= htons(IP_DF);
607 }
608
609 #ifdef IPSEC
610 if (ipsec_used) {
611 bool ipsec_done = false;
612
613 /* Perform IPsec processing, if any. */
614 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
615 &ipsec_done);
616 if (error || ipsec_done)
617 goto done;
618 }
619 #endif
620
621 /*
622 * Run through list of hooks for output packets.
623 */
624 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
625 if (error)
626 goto done;
627 if (m == NULL)
628 goto done;
629
630 ip = mtod(m, struct ip *);
631 hlen = ip->ip_hl << 2;
632
633 m->m_pkthdr.csum_data |= hlen << 16;
634
635 /*
636 * search for the source address structure to
637 * maintain output statistics, and verify address
638 * validity
639 */
640 KASSERT(ia == NULL);
641 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
642 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
643 if (ifa != NULL)
644 ia = ifatoia(ifa);
645
646 /*
647 * Ensure we only send from a valid address.
648 * A NULL address is valid because the packet could be
649 * generated from a packet filter.
650 */
651 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
652 (error = ip_ifaddrvalid(ia)) != 0)
653 {
654 ARPLOG(LOG_ERR,
655 "refusing to send from invalid address %s (pid %d)\n",
656 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
657 IP_STATINC(IP_STAT_ODROPPED);
658 if (error == 1)
659 /*
660 * Address exists, but is tentative or detached.
661 * We can't send from it because it's invalid,
662 * so we drop the packet.
663 */
664 error = 0;
665 else
666 error = EADDRNOTAVAIL;
667 goto bad;
668 }
669
670 /* Maybe skip checksums on loopback interfaces. */
671 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
672 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
673 }
674 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
675
676 /*
677 * If small enough for mtu of path, or if using TCP segmentation
678 * offload, can just send directly.
679 */
680 if (ntohs(ip->ip_len) <= mtu ||
681 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
682 const struct sockaddr *sa;
683
684 #if IFA_STATS
685 if (ia)
686 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
687 #endif
688 /*
689 * Always initialize the sum to 0! Some HW assisted
690 * checksumming requires this.
691 */
692 ip->ip_sum = 0;
693
694 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
695 /*
696 * Perform any checksums that the hardware can't do
697 * for us.
698 *
699 * XXX Does any hardware require the {th,uh}_sum
700 * XXX fields to be 0?
701 */
702 if (sw_csum & M_CSUM_IPv4) {
703 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
704 ip->ip_sum = in_cksum(m, hlen);
705 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
706 }
707 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 if (IN_NEED_CHECKSUM(ifp,
709 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
710 in_delayed_cksum(m);
711 }
712 m->m_pkthdr.csum_flags &=
713 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 }
715 }
716
717 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
718 if (__predict_true(
719 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
720 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
721 error = ip_if_output(ifp, m, sa, rt);
722 } else {
723 error = ip_tso_output(ifp, m, sa, rt);
724 }
725 goto done;
726 }
727
728 /*
729 * We can't use HW checksumming if we're about to fragment the packet.
730 *
731 * XXX Some hardware can do this.
732 */
733 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
734 if (IN_NEED_CHECKSUM(ifp,
735 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
736 in_delayed_cksum(m);
737 }
738 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
739 }
740
741 /*
742 * Too large for interface; fragment if possible.
743 * Must be able to put at least 8 bytes per fragment.
744 */
745 if (ntohs(ip->ip_off) & IP_DF) {
746 if (flags & IP_RETURNMTU) {
747 KASSERT(inp != NULL);
748 inp->inp_errormtu = mtu;
749 }
750 error = EMSGSIZE;
751 IP_STATINC(IP_STAT_CANTFRAG);
752 goto bad;
753 }
754
755 error = ip_fragment(m, ifp, mtu);
756 if (error) {
757 m = NULL;
758 goto bad;
759 }
760
761 for (; m; m = m0) {
762 m0 = m->m_nextpkt;
763 m->m_nextpkt = NULL;
764 if (error) {
765 m_freem(m);
766 continue;
767 }
768 #if IFA_STATS
769 if (ia)
770 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
771 #endif
772 /*
773 * If we get there, the packet has not been handled by
774 * IPsec whereas it should have. Now that it has been
775 * fragmented, re-inject it in ip_output so that IPsec
776 * processing can occur.
777 */
778 if (natt_frag) {
779 error = ip_output(m, opt, ro,
780 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
781 imo, inp);
782 } else {
783 KASSERT((m->m_pkthdr.csum_flags &
784 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
785 error = ip_if_output(ifp, m,
786 (m->m_flags & M_MCAST) ?
787 sintocsa(rdst) : sintocsa(dst), rt);
788 }
789 }
790 if (error == 0) {
791 IP_STATINC(IP_STAT_FRAGMENTED);
792 }
793
794 done:
795 ia4_release(ia, &psref_ia);
796 rtcache_unref(rt, ro);
797 if (ro == &iproute) {
798 rtcache_free(&iproute);
799 }
800 if (mifp != NULL) {
801 if_put(mifp, &psref);
802 }
803 if (bind_need_restore)
804 curlwp_bindx(bound);
805 return error;
806
807 bad:
808 m_freem(m);
809 goto done;
810 }
811
812 int
813 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
814 {
815 struct ip *ip, *mhip;
816 struct mbuf *m0;
817 int len, hlen, off;
818 int mhlen, firstlen;
819 struct mbuf **mnext;
820 int sw_csum = m->m_pkthdr.csum_flags;
821 int fragments = 0;
822 int error = 0;
823 int ipoff;
824 bool mff;
825
826 ip = mtod(m, struct ip *);
827 hlen = ip->ip_hl << 2;
828
829 /* XXX: Why don't we remove IP_RF? */
830 ipoff = ntohs(ip->ip_off) & ~IP_MF;
831
832 mff = (ip->ip_off & htons(IP_MF)) != 0;
833
834 if (ifp != NULL)
835 sw_csum &= ~ifp->if_csum_flags_tx;
836
837 len = (mtu - hlen) &~ 7;
838 if (len < 8) {
839 m_freem(m);
840 return EMSGSIZE;
841 }
842
843 firstlen = len;
844 mnext = &m->m_nextpkt;
845
846 /*
847 * Loop through length of segment after first fragment,
848 * make new header and copy data of each part and link onto chain.
849 */
850 m0 = m;
851 mhlen = sizeof(struct ip);
852 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
853 MGETHDR(m, M_DONTWAIT, MT_HEADER);
854 if (m == NULL) {
855 error = ENOBUFS;
856 IP_STATINC(IP_STAT_ODROPPED);
857 goto sendorfree;
858 }
859 MCLAIM(m, m0->m_owner);
860
861 *mnext = m;
862 mnext = &m->m_nextpkt;
863
864 m->m_data += max_linkhdr;
865 mhip = mtod(m, struct ip *);
866 *mhip = *ip;
867
868 /* we must inherit MCAST and BCAST flags */
869 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
870
871 if (hlen > sizeof(struct ip)) {
872 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
873 mhip->ip_hl = mhlen >> 2;
874 }
875 m->m_len = mhlen;
876
877 mhip->ip_off = ((off - hlen) >> 3) + ipoff;
878 if (mff)
879 mhip->ip_off |= IP_MF;
880 if (off + len >= ntohs(ip->ip_len))
881 len = ntohs(ip->ip_len) - off;
882 else
883 mhip->ip_off |= IP_MF;
884 HTONS(mhip->ip_off);
885
886 mhip->ip_len = htons((u_int16_t)(len + mhlen));
887 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
888 if (m->m_next == NULL) {
889 error = ENOBUFS;
890 IP_STATINC(IP_STAT_ODROPPED);
891 goto sendorfree;
892 }
893
894 m->m_pkthdr.len = mhlen + len;
895 m_reset_rcvif(m);
896
897 mhip->ip_sum = 0;
898 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
899 if (sw_csum & M_CSUM_IPv4) {
900 mhip->ip_sum = in_cksum(m, mhlen);
901 } else {
902 /*
903 * checksum is hw-offloaded or not necessary.
904 */
905 m->m_pkthdr.csum_flags |=
906 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
907 m->m_pkthdr.csum_data |= mhlen << 16;
908 KASSERT(!(ifp != NULL &&
909 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
910 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
911 }
912 IP_STATINC(IP_STAT_OFRAGMENTS);
913 fragments++;
914 }
915
916 /*
917 * Update first fragment by trimming what's been copied out
918 * and updating header, then send each fragment (in order).
919 */
920 m = m0;
921 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
922 m->m_pkthdr.len = hlen + firstlen;
923 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
924 ip->ip_off |= htons(IP_MF);
925 ip->ip_sum = 0;
926 if (sw_csum & M_CSUM_IPv4) {
927 ip->ip_sum = in_cksum(m, hlen);
928 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
929 } else {
930 /*
931 * checksum is hw-offloaded or not necessary.
932 */
933 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
934 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
935 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
936 sizeof(struct ip));
937 }
938
939 sendorfree:
940 /*
941 * If there is no room for all the fragments, don't queue
942 * any of them.
943 */
944 if (ifp != NULL) {
945 IFQ_LOCK(&ifp->if_snd);
946 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
947 error == 0) {
948 error = ENOBUFS;
949 IP_STATINC(IP_STAT_ODROPPED);
950 IFQ_INC_DROPS(&ifp->if_snd);
951 }
952 IFQ_UNLOCK(&ifp->if_snd);
953 }
954 if (error) {
955 for (m = m0; m; m = m0) {
956 m0 = m->m_nextpkt;
957 m->m_nextpkt = NULL;
958 m_freem(m);
959 }
960 }
961
962 return error;
963 }
964
965 /*
966 * Process a delayed payload checksum calculation.
967 */
968 void
969 in_delayed_cksum(struct mbuf *m)
970 {
971 struct ip *ip;
972 u_int16_t csum, offset;
973
974 ip = mtod(m, struct ip *);
975 offset = ip->ip_hl << 2;
976 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
977 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
978 csum = 0xffff;
979
980 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
981
982 if ((offset + sizeof(u_int16_t)) > m->m_len) {
983 /* This happens when ip options were inserted */
984 m_copyback(m, offset, sizeof(csum), (void *)&csum);
985 } else {
986 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
987 }
988 }
989
990 /*
991 * Determine the maximum length of the options to be inserted;
992 * we would far rather allocate too much space rather than too little.
993 */
994 u_int
995 ip_optlen(struct inpcb *inp)
996 {
997 struct mbuf *m = inp->inp_options;
998
999 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
1000 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1001 }
1002 return 0;
1003 }
1004
1005 /*
1006 * Insert IP options into preformed packet.
1007 * Adjust IP destination as required for IP source routing,
1008 * as indicated by a non-zero in_addr at the start of the options.
1009 */
1010 static struct mbuf *
1011 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1012 {
1013 struct ipoption *p = mtod(opt, struct ipoption *);
1014 struct mbuf *n;
1015 struct ip *ip = mtod(m, struct ip *);
1016 unsigned optlen;
1017
1018 optlen = opt->m_len - sizeof(p->ipopt_dst);
1019 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1020 return m; /* XXX should fail */
1021 if (!in_nullhost(p->ipopt_dst))
1022 ip->ip_dst = p->ipopt_dst;
1023 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1024 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1025 if (n == NULL)
1026 return m;
1027 MCLAIM(n, m->m_owner);
1028 M_MOVE_PKTHDR(n, m);
1029 m->m_len -= sizeof(struct ip);
1030 m->m_data += sizeof(struct ip);
1031 n->m_next = m;
1032 n->m_len = optlen + sizeof(struct ip);
1033 n->m_data += max_linkhdr;
1034 memcpy(mtod(n, void *), ip, sizeof(struct ip));
1035 m = n;
1036 } else {
1037 m->m_data -= optlen;
1038 m->m_len += optlen;
1039 memmove(mtod(m, void *), ip, sizeof(struct ip));
1040 }
1041 m->m_pkthdr.len += optlen;
1042 ip = mtod(m, struct ip *);
1043 memcpy(ip + 1, p->ipopt_list, optlen);
1044 *phlen = sizeof(struct ip) + optlen;
1045 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1046 return m;
1047 }
1048
1049 /*
1050 * Copy options from ipsrc to ipdst, omitting those not copied during
1051 * fragmentation.
1052 */
1053 int
1054 ip_optcopy(struct ip *ipsrc, struct ip *ipdst)
1055 {
1056 u_char *cp, *dp;
1057 int opt, optlen, cnt;
1058
1059 cp = (u_char *)(ipsrc + 1);
1060 dp = (u_char *)(ipdst + 1);
1061 cnt = (ipsrc->ip_hl << 2) - sizeof(struct ip);
1062 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1063 opt = cp[0];
1064 if (opt == IPOPT_EOL)
1065 break;
1066 if (opt == IPOPT_NOP) {
1067 /* Preserve for IP mcast tunnel's LSRR alignment. */
1068 *dp++ = IPOPT_NOP;
1069 optlen = 1;
1070 continue;
1071 }
1072
1073 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1074 optlen = cp[IPOPT_OLEN];
1075 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1076
1077 /* Invalid lengths should have been caught by ip_dooptions. */
1078 if (optlen > cnt)
1079 optlen = cnt;
1080 if (IPOPT_COPIED(opt)) {
1081 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1082 dp += optlen;
1083 }
1084 }
1085
1086 for (optlen = dp - (u_char *)(ipdst+1); optlen & 0x3; optlen++) {
1087 *dp++ = IPOPT_EOL;
1088 }
1089
1090 return optlen;
1091 }
1092
1093 /*
1094 * IP socket option processing.
1095 */
1096 int
1097 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1098 {
1099 struct inpcb *inp = sotoinpcb(so);
1100 struct ip *ip = &inp->inp_ip;
1101 int inpflags = inp->inp_flags;
1102 int optval = 0, error = 0;
1103 struct in_pktinfo pktinfo;
1104
1105 KASSERT(solocked(so));
1106
1107 if (sopt->sopt_level != IPPROTO_IP) {
1108 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1109 return 0;
1110 return ENOPROTOOPT;
1111 }
1112
1113 switch (op) {
1114 case PRCO_SETOPT:
1115 switch (sopt->sopt_name) {
1116 case IP_OPTIONS:
1117 #ifdef notyet
1118 case IP_RETOPTS:
1119 #endif
1120 error = ip_pcbopts(inp, sopt);
1121 break;
1122
1123 case IP_TOS:
1124 case IP_TTL:
1125 case IP_MINTTL:
1126 case IP_RECVOPTS:
1127 case IP_RECVRETOPTS:
1128 case IP_RECVDSTADDR:
1129 case IP_RECVIF:
1130 case IP_RECVPKTINFO:
1131 case IP_RECVTTL:
1132 error = sockopt_getint(sopt, &optval);
1133 if (error)
1134 break;
1135
1136 switch (sopt->sopt_name) {
1137 case IP_TOS:
1138 ip->ip_tos = optval;
1139 break;
1140
1141 case IP_TTL:
1142 ip->ip_ttl = optval;
1143 break;
1144
1145 case IP_MINTTL:
1146 if (optval > 0 && optval <= MAXTTL)
1147 inp->inp_ip_minttl = optval;
1148 else
1149 error = EINVAL;
1150 break;
1151 #define OPTSET(bit) \
1152 if (optval) \
1153 inpflags |= bit; \
1154 else \
1155 inpflags &= ~bit;
1156
1157 case IP_RECVOPTS:
1158 OPTSET(INP_RECVOPTS);
1159 break;
1160
1161 case IP_RECVPKTINFO:
1162 OPTSET(INP_RECVPKTINFO);
1163 break;
1164
1165 case IP_RECVRETOPTS:
1166 OPTSET(INP_RECVRETOPTS);
1167 break;
1168
1169 case IP_RECVDSTADDR:
1170 OPTSET(INP_RECVDSTADDR);
1171 break;
1172
1173 case IP_RECVIF:
1174 OPTSET(INP_RECVIF);
1175 break;
1176
1177 case IP_RECVTTL:
1178 OPTSET(INP_RECVTTL);
1179 break;
1180 }
1181 break;
1182 case IP_PKTINFO:
1183 error = sockopt_getint(sopt, &optval);
1184 if (!error) {
1185 /* Linux compatibility */
1186 OPTSET(INP_RECVPKTINFO);
1187 break;
1188 }
1189 error = sockopt_get(sopt, &pktinfo, sizeof(pktinfo));
1190 if (error)
1191 break;
1192
1193 if (pktinfo.ipi_ifindex == 0) {
1194 inp->inp_prefsrcip = pktinfo.ipi_addr;
1195 break;
1196 }
1197
1198 /* Solaris compatibility */
1199 struct ifnet *ifp;
1200 struct in_ifaddr *ia;
1201 int s;
1202
1203 /* pick up primary address */
1204 s = pserialize_read_enter();
1205 ifp = if_byindex(pktinfo.ipi_ifindex);
1206 if (ifp == NULL) {
1207 pserialize_read_exit(s);
1208 error = EADDRNOTAVAIL;
1209 break;
1210 }
1211 ia = in_get_ia_from_ifp(ifp);
1212 if (ia == NULL) {
1213 pserialize_read_exit(s);
1214 error = EADDRNOTAVAIL;
1215 break;
1216 }
1217 inp->inp_prefsrcip = IA_SIN(ia)->sin_addr;
1218 pserialize_read_exit(s);
1219 break;
1220 break;
1221 #undef OPTSET
1222
1223 case IP_MULTICAST_IF:
1224 case IP_MULTICAST_TTL:
1225 case IP_MULTICAST_LOOP:
1226 case IP_ADD_MEMBERSHIP:
1227 case IP_DROP_MEMBERSHIP:
1228 error = ip_setmoptions(&inp->inp_moptions, sopt);
1229 break;
1230
1231 case IP_PORTRANGE:
1232 error = sockopt_getint(sopt, &optval);
1233 if (error)
1234 break;
1235
1236 switch (optval) {
1237 case IP_PORTRANGE_DEFAULT:
1238 case IP_PORTRANGE_HIGH:
1239 inpflags &= ~(INP_LOWPORT);
1240 break;
1241
1242 case IP_PORTRANGE_LOW:
1243 inpflags |= INP_LOWPORT;
1244 break;
1245
1246 default:
1247 error = EINVAL;
1248 break;
1249 }
1250 break;
1251
1252 case IP_PORTALGO:
1253 error = sockopt_getint(sopt, &optval);
1254 if (error)
1255 break;
1256
1257 error = portalgo_algo_index_select(
1258 (struct inpcb_hdr *)inp, optval);
1259 break;
1260
1261 #if defined(IPSEC)
1262 case IP_IPSEC_POLICY:
1263 if (ipsec_enabled) {
1264 error = ipsec_set_policy(inp, sopt->sopt_name,
1265 sopt->sopt_data, sopt->sopt_size,
1266 curlwp->l_cred);
1267 break;
1268 }
1269 /*FALLTHROUGH*/
1270 #endif /* IPSEC */
1271
1272 default:
1273 error = ENOPROTOOPT;
1274 break;
1275 }
1276 break;
1277
1278 case PRCO_GETOPT:
1279 switch (sopt->sopt_name) {
1280 case IP_OPTIONS:
1281 case IP_RETOPTS: {
1282 struct mbuf *mopts = inp->inp_options;
1283
1284 if (mopts) {
1285 struct mbuf *m;
1286
1287 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1288 if (m == NULL) {
1289 error = ENOBUFS;
1290 break;
1291 }
1292 error = sockopt_setmbuf(sopt, m);
1293 }
1294 break;
1295 }
1296 case IP_TOS:
1297 case IP_TTL:
1298 case IP_MINTTL:
1299 case IP_RECVOPTS:
1300 case IP_RECVRETOPTS:
1301 case IP_RECVDSTADDR:
1302 case IP_RECVIF:
1303 case IP_RECVPKTINFO:
1304 case IP_RECVTTL:
1305 case IP_ERRORMTU:
1306 switch (sopt->sopt_name) {
1307 case IP_TOS:
1308 optval = ip->ip_tos;
1309 break;
1310
1311 case IP_TTL:
1312 optval = ip->ip_ttl;
1313 break;
1314
1315 case IP_MINTTL:
1316 optval = inp->inp_ip_minttl;
1317 break;
1318
1319 case IP_ERRORMTU:
1320 optval = inp->inp_errormtu;
1321 break;
1322
1323 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1324
1325 case IP_RECVOPTS:
1326 optval = OPTBIT(INP_RECVOPTS);
1327 break;
1328
1329 case IP_RECVPKTINFO:
1330 optval = OPTBIT(INP_RECVPKTINFO);
1331 break;
1332
1333 case IP_RECVRETOPTS:
1334 optval = OPTBIT(INP_RECVRETOPTS);
1335 break;
1336
1337 case IP_RECVDSTADDR:
1338 optval = OPTBIT(INP_RECVDSTADDR);
1339 break;
1340
1341 case IP_RECVIF:
1342 optval = OPTBIT(INP_RECVIF);
1343 break;
1344
1345 case IP_RECVTTL:
1346 optval = OPTBIT(INP_RECVTTL);
1347 break;
1348 }
1349 error = sockopt_setint(sopt, optval);
1350 break;
1351
1352 case IP_PKTINFO:
1353 switch (sopt->sopt_size) {
1354 case sizeof(int):
1355 /* Linux compatibility */
1356 optval = OPTBIT(INP_RECVPKTINFO);
1357 error = sockopt_setint(sopt, optval);
1358 break;
1359 case sizeof(struct in_pktinfo):
1360 /* Solaris compatibility */
1361 pktinfo.ipi_ifindex = 0;
1362 pktinfo.ipi_addr = inp->inp_prefsrcip;
1363 error = sockopt_set(sopt, &pktinfo,
1364 sizeof(pktinfo));
1365 break;
1366 default:
1367 /*
1368 * While size is stuck at 0, and, later, if
1369 * the caller doesn't use an exactly sized
1370 * recipient for the data, default to Linux
1371 * compatibility
1372 */
1373 optval = OPTBIT(INP_RECVPKTINFO);
1374 error = sockopt_setint(sopt, optval);
1375 break;
1376 }
1377 break;
1378
1379 #if 0 /* defined(IPSEC) */
1380 case IP_IPSEC_POLICY:
1381 {
1382 struct mbuf *m = NULL;
1383
1384 /* XXX this will return EINVAL as sopt is empty */
1385 error = ipsec_get_policy(inp, sopt->sopt_data,
1386 sopt->sopt_size, &m);
1387 if (error == 0)
1388 error = sockopt_setmbuf(sopt, m);
1389 break;
1390 }
1391 #endif /*IPSEC*/
1392
1393 case IP_MULTICAST_IF:
1394 case IP_MULTICAST_TTL:
1395 case IP_MULTICAST_LOOP:
1396 case IP_ADD_MEMBERSHIP:
1397 case IP_DROP_MEMBERSHIP:
1398 error = ip_getmoptions(inp->inp_moptions, sopt);
1399 break;
1400
1401 case IP_PORTRANGE:
1402 if (inpflags & INP_LOWPORT)
1403 optval = IP_PORTRANGE_LOW;
1404 else
1405 optval = IP_PORTRANGE_DEFAULT;
1406 error = sockopt_setint(sopt, optval);
1407 break;
1408
1409 case IP_PORTALGO:
1410 optval = inp->inp_portalgo;
1411 error = sockopt_setint(sopt, optval);
1412 break;
1413
1414 default:
1415 error = ENOPROTOOPT;
1416 break;
1417 }
1418 break;
1419 }
1420
1421 if (!error) {
1422 inp->inp_flags = inpflags;
1423 }
1424 return error;
1425 }
1426
1427 static int
1428 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
1429 int *flags, kauth_cred_t cred)
1430 {
1431 struct ip_moptions *imo;
1432 int error = 0;
1433 bool addrset = false;
1434
1435 if (!in_nullhost(pktinfo->ipi_addr)) {
1436 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1437 /* EADDRNOTAVAIL? */
1438 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
1439 if (error != 0)
1440 return error;
1441 addrset = true;
1442 }
1443
1444 if (pktinfo->ipi_ifindex != 0) {
1445 if (!addrset) {
1446 struct ifnet *ifp;
1447 struct in_ifaddr *ia;
1448 int s;
1449
1450 /* pick up primary address */
1451 s = pserialize_read_enter();
1452 ifp = if_byindex(pktinfo->ipi_ifindex);
1453 if (ifp == NULL) {
1454 pserialize_read_exit(s);
1455 return EADDRNOTAVAIL;
1456 }
1457 ia = in_get_ia_from_ifp(ifp);
1458 if (ia == NULL) {
1459 pserialize_read_exit(s);
1460 return EADDRNOTAVAIL;
1461 }
1462 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1463 pserialize_read_exit(s);
1464 }
1465
1466 /*
1467 * If specified ipi_ifindex,
1468 * use copied or locally initialized ip_moptions.
1469 * Original ip_moptions must not be modified.
1470 */
1471 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1472 if (pktopts->ippo_imo != NULL) {
1473 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1474 } else {
1475 memset(imo, 0, sizeof(*imo));
1476 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1477 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1478 }
1479 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1480 pktopts->ippo_imo = imo;
1481 *flags |= IP_ROUTETOIFINDEX;
1482 }
1483 return error;
1484 }
1485
1486 /*
1487 * Set up IP outgoing packet options. Even if control is NULL,
1488 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1489 */
1490 int
1491 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1492 struct inpcb *inp, kauth_cred_t cred)
1493 {
1494 struct cmsghdr *cm;
1495 struct in_pktinfo pktinfo;
1496 int error;
1497
1498 pktopts->ippo_imo = inp->inp_moptions;
1499
1500 struct in_addr *ia = in_nullhost(inp->inp_prefsrcip) ? &inp->inp_laddr :
1501 &inp->inp_prefsrcip;
1502 sockaddr_in_init(&pktopts->ippo_laddr, ia, 0);
1503
1504 if (control == NULL)
1505 return 0;
1506
1507 /*
1508 * XXX: Currently, we assume all the optional information is
1509 * stored in a single mbuf.
1510 */
1511 if (control->m_next)
1512 return EINVAL;
1513
1514 for (; control->m_len > 0;
1515 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1516 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1517 cm = mtod(control, struct cmsghdr *);
1518 if ((control->m_len < sizeof(*cm)) ||
1519 (cm->cmsg_len == 0) ||
1520 (cm->cmsg_len > control->m_len)) {
1521 return EINVAL;
1522 }
1523 if (cm->cmsg_level != IPPROTO_IP)
1524 continue;
1525
1526 switch (cm->cmsg_type) {
1527 case IP_PKTINFO:
1528 if (cm->cmsg_len != CMSG_LEN(sizeof(pktinfo)))
1529 return EINVAL;
1530 memcpy(&pktinfo, CMSG_DATA(cm), sizeof(pktinfo));
1531 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1532 cred);
1533 if (error)
1534 return error;
1535 break;
1536 case IP_SENDSRCADDR: /* FreeBSD compatibility */
1537 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr)))
1538 return EINVAL;
1539 pktinfo.ipi_ifindex = 0;
1540 pktinfo.ipi_addr =
1541 ((struct in_pktinfo *)CMSG_DATA(cm))->ipi_addr;
1542 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1543 cred);
1544 if (error)
1545 return error;
1546 break;
1547 default:
1548 return ENOPROTOOPT;
1549 }
1550 }
1551 return 0;
1552 }
1553
1554 /*
1555 * Set up IP options in pcb for insertion in output packets.
1556 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1557 * with destination address if source routed.
1558 */
1559 static int
1560 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1561 {
1562 struct mbuf *m;
1563 const u_char *cp;
1564 u_char *dp;
1565 int cnt;
1566
1567 KASSERT(inp_locked(inp));
1568
1569 /* Turn off any old options. */
1570 if (inp->inp_options) {
1571 m_free(inp->inp_options);
1572 }
1573 inp->inp_options = NULL;
1574 if ((cnt = sopt->sopt_size) == 0) {
1575 /* Only turning off any previous options. */
1576 return 0;
1577 }
1578 cp = sopt->sopt_data;
1579
1580 #ifndef __vax__
1581 if (cnt % sizeof(int32_t))
1582 return EINVAL;
1583 #endif
1584
1585 m = m_get(M_DONTWAIT, MT_SOOPTS);
1586 if (m == NULL)
1587 return ENOBUFS;
1588
1589 dp = mtod(m, u_char *);
1590 memset(dp, 0, sizeof(struct in_addr));
1591 dp += sizeof(struct in_addr);
1592 m->m_len = sizeof(struct in_addr);
1593
1594 /*
1595 * IP option list according to RFC791. Each option is of the form
1596 *
1597 * [optval] [olen] [(olen - 2) data bytes]
1598 *
1599 * We validate the list and copy options to an mbuf for prepending
1600 * to data packets. The IP first-hop destination address will be
1601 * stored before actual options and is zero if unset.
1602 */
1603 while (cnt > 0) {
1604 uint8_t optval, olen, offset;
1605
1606 optval = cp[IPOPT_OPTVAL];
1607
1608 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1609 olen = 1;
1610 } else {
1611 if (cnt < IPOPT_OLEN + 1)
1612 goto bad;
1613
1614 olen = cp[IPOPT_OLEN];
1615 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1616 goto bad;
1617 }
1618
1619 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1620 /*
1621 * user process specifies route as:
1622 * ->A->B->C->D
1623 * D must be our final destination (but we can't
1624 * check that since we may not have connected yet).
1625 * A is first hop destination, which doesn't appear in
1626 * actual IP option, but is stored before the options.
1627 */
1628 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1629 goto bad;
1630
1631 offset = cp[IPOPT_OFFSET];
1632 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1633 sizeof(struct in_addr));
1634
1635 cp += sizeof(struct in_addr);
1636 cnt -= sizeof(struct in_addr);
1637 olen -= sizeof(struct in_addr);
1638
1639 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1640 goto bad;
1641
1642 memcpy(dp, cp, olen);
1643 dp[IPOPT_OPTVAL] = optval;
1644 dp[IPOPT_OLEN] = olen;
1645 dp[IPOPT_OFFSET] = offset;
1646 break;
1647 } else {
1648 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1649 goto bad;
1650
1651 memcpy(dp, cp, olen);
1652 break;
1653 }
1654
1655 dp += olen;
1656 m->m_len += olen;
1657
1658 if (optval == IPOPT_EOL)
1659 break;
1660
1661 cp += olen;
1662 cnt -= olen;
1663 }
1664
1665 inp->inp_options = m;
1666 return 0;
1667
1668 bad:
1669 (void)m_free(m);
1670 return EINVAL;
1671 }
1672
1673 /*
1674 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1675 * Must be called in a pserialize critical section.
1676 */
1677 static struct ifnet *
1678 ip_multicast_if(struct in_addr *a, int *ifindexp)
1679 {
1680 int ifindex;
1681 struct ifnet *ifp = NULL;
1682 struct in_ifaddr *ia;
1683
1684 if (ifindexp)
1685 *ifindexp = 0;
1686 if (ntohl(a->s_addr) >> 24 == 0) {
1687 ifindex = ntohl(a->s_addr) & 0xffffff;
1688 ifp = if_byindex(ifindex);
1689 if (!ifp)
1690 return NULL;
1691 if (ifindexp)
1692 *ifindexp = ifindex;
1693 } else {
1694 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1695 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1696 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1697 ifp = ia->ia_ifp;
1698 if (if_is_deactivated(ifp))
1699 ifp = NULL;
1700 break;
1701 }
1702 }
1703 }
1704 return ifp;
1705 }
1706
1707 static int
1708 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1709 {
1710 u_int tval;
1711 u_char cval;
1712 int error;
1713
1714 if (sopt == NULL)
1715 return EINVAL;
1716
1717 switch (sopt->sopt_size) {
1718 case sizeof(u_char):
1719 error = sockopt_get(sopt, &cval, sizeof(u_char));
1720 tval = cval;
1721 break;
1722
1723 case sizeof(u_int):
1724 error = sockopt_get(sopt, &tval, sizeof(u_int));
1725 break;
1726
1727 default:
1728 error = EINVAL;
1729 }
1730
1731 if (error)
1732 return error;
1733
1734 if (tval > maxval)
1735 return EINVAL;
1736
1737 *val = tval;
1738 return 0;
1739 }
1740
1741 static int
1742 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1743 struct psref *psref, struct in_addr *ia, bool add)
1744 {
1745 int error;
1746 struct ip_mreq mreq;
1747
1748 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1749 if (error)
1750 return error;
1751
1752 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1753 return EINVAL;
1754
1755 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1756
1757 if (in_nullhost(mreq.imr_interface)) {
1758 union {
1759 struct sockaddr dst;
1760 struct sockaddr_in dst4;
1761 } u;
1762 struct route ro;
1763
1764 if (!add) {
1765 *ifp = NULL;
1766 return 0;
1767 }
1768 /*
1769 * If no interface address was provided, use the interface of
1770 * the route to the given multicast address.
1771 */
1772 struct rtentry *rt;
1773 memset(&ro, 0, sizeof(ro));
1774
1775 sockaddr_in_init(&u.dst4, ia, 0);
1776 error = rtcache_setdst(&ro, &u.dst);
1777 if (error != 0)
1778 return error;
1779 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1780 if (*ifp != NULL) {
1781 if (if_is_deactivated(*ifp))
1782 *ifp = NULL;
1783 else
1784 if_acquire(*ifp, psref);
1785 }
1786 rtcache_unref(rt, &ro);
1787 rtcache_free(&ro);
1788 } else {
1789 int s = pserialize_read_enter();
1790 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1791 if (!add && *ifp == NULL) {
1792 pserialize_read_exit(s);
1793 return EADDRNOTAVAIL;
1794 }
1795 if (*ifp != NULL) {
1796 if (if_is_deactivated(*ifp))
1797 *ifp = NULL;
1798 else
1799 if_acquire(*ifp, psref);
1800 }
1801 pserialize_read_exit(s);
1802 }
1803 return 0;
1804 }
1805
1806 /*
1807 * Add a multicast group membership.
1808 * Group must be a valid IP multicast address.
1809 */
1810 static int
1811 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1812 {
1813 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1814 struct in_addr ia;
1815 int i, error, bound;
1816 struct psref psref;
1817
1818 /* imo is protected by solock or referenced only by the caller */
1819
1820 bound = curlwp_bind();
1821 if (sopt->sopt_size == sizeof(struct ip_mreq))
1822 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1823 else {
1824 #ifdef INET6
1825 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1826 #else
1827 error = EINVAL;
1828 #endif
1829 }
1830
1831 if (error)
1832 goto out;
1833
1834 /*
1835 * See if we found an interface, and confirm that it
1836 * supports multicast.
1837 */
1838 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1839 error = EADDRNOTAVAIL;
1840 goto out;
1841 }
1842
1843 /*
1844 * See if the membership already exists or if all the
1845 * membership slots are full.
1846 */
1847 for (i = 0; i < imo->imo_num_memberships; ++i) {
1848 if (imo->imo_membership[i]->inm_ifp == ifp &&
1849 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1850 break;
1851 }
1852 if (i < imo->imo_num_memberships) {
1853 error = EADDRINUSE;
1854 goto out;
1855 }
1856
1857 if (i == IP_MAX_MEMBERSHIPS) {
1858 error = ETOOMANYREFS;
1859 goto out;
1860 }
1861
1862 /*
1863 * Everything looks good; add a new record to the multicast
1864 * address list for the given interface.
1865 */
1866 IFNET_LOCK(ifp);
1867 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1868 IFNET_UNLOCK(ifp);
1869 if (imo->imo_membership[i] == NULL) {
1870 error = ENOBUFS;
1871 goto out;
1872 }
1873
1874 ++imo->imo_num_memberships;
1875 error = 0;
1876 out:
1877 if_put(ifp, &psref);
1878 curlwp_bindx(bound);
1879 return error;
1880 }
1881
1882 /*
1883 * Drop a multicast group membership.
1884 * Group must be a valid IP multicast address.
1885 */
1886 static int
1887 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1888 {
1889 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1890 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1891 int i, error, bound;
1892 struct psref psref;
1893
1894 /* imo is protected by solock or referenced only by the caller */
1895
1896 bound = curlwp_bind();
1897 if (sopt->sopt_size == sizeof(struct ip_mreq))
1898 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1899 else {
1900 #ifdef INET6
1901 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1902 #else
1903 error = EINVAL;
1904 #endif
1905 }
1906
1907 if (error)
1908 goto out;
1909
1910 /*
1911 * Find the membership in the membership array.
1912 */
1913 for (i = 0; i < imo->imo_num_memberships; ++i) {
1914 if ((ifp == NULL ||
1915 imo->imo_membership[i]->inm_ifp == ifp) &&
1916 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1917 break;
1918 }
1919 if (i == imo->imo_num_memberships) {
1920 error = EADDRNOTAVAIL;
1921 goto out;
1922 }
1923
1924 /*
1925 * Give up the multicast address record to which the
1926 * membership points.
1927 */
1928 struct ifnet *inm_ifp = imo->imo_membership[i]->inm_ifp;
1929 IFNET_LOCK(inm_ifp);
1930 in_delmulti(imo->imo_membership[i]);
1931 IFNET_UNLOCK(inm_ifp);
1932
1933 /*
1934 * Remove the gap in the membership array.
1935 */
1936 for (++i; i < imo->imo_num_memberships; ++i)
1937 imo->imo_membership[i-1] = imo->imo_membership[i];
1938 --imo->imo_num_memberships;
1939 error = 0;
1940 out:
1941 if_put(ifp, &psref);
1942 curlwp_bindx(bound);
1943 return error;
1944 }
1945
1946 /*
1947 * Set the IP multicast options in response to user setsockopt().
1948 */
1949 int
1950 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1951 {
1952 struct ip_moptions *imo = *pimo;
1953 struct in_addr addr;
1954 struct ifnet *ifp;
1955 int ifindex, error = 0;
1956
1957 /* The passed imo isn't NULL, it should be protected by solock */
1958
1959 if (!imo) {
1960 /*
1961 * No multicast option buffer attached to the pcb;
1962 * allocate one and initialize to default values.
1963 */
1964 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1965 if (imo == NULL)
1966 return ENOBUFS;
1967
1968 imo->imo_multicast_if_index = 0;
1969 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1970 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1971 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1972 imo->imo_num_memberships = 0;
1973 *pimo = imo;
1974 }
1975
1976 switch (sopt->sopt_name) {
1977 case IP_MULTICAST_IF: {
1978 int s;
1979 /*
1980 * Select the interface for outgoing multicast packets.
1981 */
1982 error = sockopt_get(sopt, &addr, sizeof(addr));
1983 if (error)
1984 break;
1985
1986 /*
1987 * INADDR_ANY is used to remove a previous selection.
1988 * When no interface is selected, a default one is
1989 * chosen every time a multicast packet is sent.
1990 */
1991 if (in_nullhost(addr)) {
1992 imo->imo_multicast_if_index = 0;
1993 break;
1994 }
1995 /*
1996 * The selected interface is identified by its local
1997 * IP address. Find the interface and confirm that
1998 * it supports multicasting.
1999 */
2000 s = pserialize_read_enter();
2001 ifp = ip_multicast_if(&addr, &ifindex);
2002 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2003 pserialize_read_exit(s);
2004 error = EADDRNOTAVAIL;
2005 break;
2006 }
2007 imo->imo_multicast_if_index = ifp->if_index;
2008 pserialize_read_exit(s);
2009 if (ifindex)
2010 imo->imo_multicast_addr = addr;
2011 else
2012 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2013 break;
2014 }
2015
2016 case IP_MULTICAST_TTL:
2017 /*
2018 * Set the IP time-to-live for outgoing multicast packets.
2019 */
2020 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
2021 break;
2022
2023 case IP_MULTICAST_LOOP:
2024 /*
2025 * Set the loopback flag for outgoing multicast packets.
2026 * Must be zero or one.
2027 */
2028 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
2029 break;
2030
2031 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
2032 error = ip_add_membership(imo, sopt);
2033 break;
2034
2035 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
2036 error = ip_drop_membership(imo, sopt);
2037 break;
2038
2039 default:
2040 error = EOPNOTSUPP;
2041 break;
2042 }
2043
2044 /*
2045 * If all options have default values, no need to keep the mbuf.
2046 */
2047 if (imo->imo_multicast_if_index == 0 &&
2048 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2049 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2050 imo->imo_num_memberships == 0) {
2051 kmem_intr_free(imo, sizeof(*imo));
2052 *pimo = NULL;
2053 }
2054
2055 return error;
2056 }
2057
2058 /*
2059 * Return the IP multicast options in response to user getsockopt().
2060 */
2061 int
2062 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
2063 {
2064 struct in_addr addr;
2065 uint8_t optval;
2066 int error = 0;
2067
2068 /* imo is protected by solock or refereced only by the caller */
2069
2070 switch (sopt->sopt_name) {
2071 case IP_MULTICAST_IF:
2072 if (imo == NULL || imo->imo_multicast_if_index == 0)
2073 addr = zeroin_addr;
2074 else if (imo->imo_multicast_addr.s_addr) {
2075 /* return the value user has set */
2076 addr = imo->imo_multicast_addr;
2077 } else {
2078 struct ifnet *ifp;
2079 struct in_ifaddr *ia = NULL;
2080 int s = pserialize_read_enter();
2081
2082 ifp = if_byindex(imo->imo_multicast_if_index);
2083 if (ifp != NULL) {
2084 ia = in_get_ia_from_ifp(ifp);
2085 }
2086 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
2087 pserialize_read_exit(s);
2088 }
2089 error = sockopt_set(sopt, &addr, sizeof(addr));
2090 break;
2091
2092 case IP_MULTICAST_TTL:
2093 optval = imo ? imo->imo_multicast_ttl
2094 : IP_DEFAULT_MULTICAST_TTL;
2095
2096 error = sockopt_set(sopt, &optval, sizeof(optval));
2097 break;
2098
2099 case IP_MULTICAST_LOOP:
2100 optval = imo ? imo->imo_multicast_loop
2101 : IP_DEFAULT_MULTICAST_LOOP;
2102
2103 error = sockopt_set(sopt, &optval, sizeof(optval));
2104 break;
2105
2106 default:
2107 error = EOPNOTSUPP;
2108 }
2109
2110 return error;
2111 }
2112
2113 /*
2114 * Discard the IP multicast options.
2115 */
2116 void
2117 ip_freemoptions(struct ip_moptions *imo)
2118 {
2119 int i;
2120
2121 /* The owner of imo (inp) should be protected by solock */
2122
2123 if (imo != NULL) {
2124 for (i = 0; i < imo->imo_num_memberships; ++i) {
2125 struct in_multi *inm = imo->imo_membership[i];
2126 struct ifnet *ifp = inm->inm_ifp;
2127 IFNET_LOCK(ifp);
2128 in_delmulti(inm);
2129 /* ifp should not leave thanks to solock */
2130 IFNET_UNLOCK(ifp);
2131 }
2132
2133 kmem_intr_free(imo, sizeof(*imo));
2134 }
2135 }
2136
2137 /*
2138 * Routine called from ip_output() to loop back a copy of an IP multicast
2139 * packet to the input queue of a specified interface. Note that this
2140 * calls the output routine of the loopback "driver", but with an interface
2141 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2142 */
2143 static void
2144 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2145 {
2146 struct ip *ip;
2147 struct mbuf *copym;
2148
2149 copym = m_copypacket(m, M_DONTWAIT);
2150 if (copym != NULL &&
2151 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2152 copym = m_pullup(copym, sizeof(struct ip));
2153 if (copym == NULL)
2154 return;
2155 /*
2156 * We don't bother to fragment if the IP length is greater
2157 * than the interface's MTU. Can this possibly matter?
2158 */
2159 ip = mtod(copym, struct ip *);
2160
2161 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2162 in_delayed_cksum(copym);
2163 copym->m_pkthdr.csum_flags &=
2164 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2165 }
2166
2167 ip->ip_sum = 0;
2168 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2169 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2170 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2171 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2172 }
2173
2174 /*
2175 * Ensure sending address is valid.
2176 * Returns 0 on success, -1 if an error should be sent back or 1
2177 * if the packet could be dropped without error (protocol dependent).
2178 */
2179 static int
2180 ip_ifaddrvalid(const struct in_ifaddr *ia)
2181 {
2182
2183 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2184 return 0;
2185
2186 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2187 return -1;
2188 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2189 return 1;
2190
2191 return 0;
2192 }
2193