ip_output.c revision 1.305 1 /* $NetBSD: ip_output.c,v 1.305 2018/05/29 17:21:57 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.305 2018/05/29 17:21:57 maxv Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct inpcb *inp)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int len, hlen, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia = NULL;
239 struct ifaddr *ifa;
240 int isbroadcast;
241 int sw_csum;
242 u_long mtu;
243 bool natt_frag = false;
244 bool rtmtu_nolock;
245 union {
246 struct sockaddr sa;
247 struct sockaddr_in sin;
248 } udst, usrc;
249 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
250 * opposed to the nexthop
251 */
252 struct psref psref, psref_ia;
253 int bound;
254 bool bind_need_restore = false;
255
256 len = 0;
257
258 MCLAIM(m, &ip_tx_mowner);
259
260 KASSERT((m->m_flags & M_PKTHDR) != 0);
261 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
263 (M_CSUM_TCPv4|M_CSUM_UDPv4));
264 KASSERT(m->m_len >= sizeof(struct ip));
265
266 hlen = sizeof(struct ip);
267 if (opt) {
268 m = ip_insertoptions(m, opt, &len);
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 /* XXX must be before rtcache operations */
307 bound = curlwp_bind();
308 bind_need_restore = true;
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &udst.sin;
313 error = rtcache_setdst(ro, &udst.sa);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
323 if (ifa == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /* ia is already referenced by psref_ia */
329 ia = ifatoia(ifa);
330
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 isbroadcast = in_broadcast(dst->sin_addr, ifp);
335 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
336 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
337 (flags & IP_ROUTETOIFINDEX)) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 ip->ip_dst.s_addr == INADDR_BROADCAST) {
353 isbroadcast = 0;
354 } else {
355 /* IP_ROUTETOIFINDEX */
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 if ((isbroadcast == 0) && ((ifp->if_flags &
358 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
359 (in_direct(dst->sin_addr, ifp) == 0)) {
360 /* gateway address required */
361 if (rt == NULL)
362 rt = rtcache_init(ro);
363 if (rt == NULL || rt->rt_ifp != ifp) {
364 IP_STATINC(IP_STAT_NOROUTE);
365 error = EHOSTUNREACH;
366 goto bad;
367 }
368 rt->rt_use++;
369 if (rt->rt_flags & RTF_GATEWAY)
370 dst = satosin(rt->rt_gateway);
371 if (rt->rt_flags & RTF_HOST)
372 isbroadcast =
373 rt->rt_flags & RTF_BROADCAST;
374 }
375 }
376 } else {
377 if (rt == NULL)
378 rt = rtcache_init(ro);
379 if (rt == NULL) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = EHOSTUNREACH;
382 goto bad;
383 }
384 if (ifa_is_destroying(rt->rt_ifa)) {
385 rtcache_unref(rt, ro);
386 rt = NULL;
387 IP_STATINC(IP_STAT_NOROUTE);
388 error = EHOSTUNREACH;
389 goto bad;
390 }
391 ifa_acquire(rt->rt_ifa, &psref_ia);
392 ia = ifatoia(rt->rt_ifa);
393 ifp = rt->rt_ifp;
394 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
395 mtu = ifp->if_mtu;
396 rt->rt_use++;
397 if (rt->rt_flags & RTF_GATEWAY)
398 dst = satosin(rt->rt_gateway);
399 if (rt->rt_flags & RTF_HOST)
400 isbroadcast = rt->rt_flags & RTF_BROADCAST;
401 else
402 isbroadcast = in_broadcast(dst->sin_addr, ifp);
403 }
404 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
405
406 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
407 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
408 bool inmgroup;
409
410 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
411 M_BCAST : M_MCAST;
412 /*
413 * See if the caller provided any multicast options
414 */
415 if (imo != NULL)
416 ip->ip_ttl = imo->imo_multicast_ttl;
417 else
418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419
420 /*
421 * if we don't know the outgoing ifp yet, we can't generate
422 * output
423 */
424 if (!ifp) {
425 IP_STATINC(IP_STAT_NOROUTE);
426 error = ENETUNREACH;
427 goto bad;
428 }
429
430 /*
431 * If the packet is multicast or broadcast, confirm that
432 * the outgoing interface can transmit it.
433 */
434 if (((m->m_flags & M_MCAST) &&
435 (ifp->if_flags & IFF_MULTICAST) == 0) ||
436 ((m->m_flags & M_BCAST) &&
437 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 /*
443 * If source address not specified yet, use an address
444 * of outgoing interface.
445 */
446 if (in_nullhost(ip->ip_src)) {
447 struct in_ifaddr *xia;
448 struct ifaddr *xifa;
449 struct psref _psref;
450
451 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
452 if (!xia) {
453 error = EADDRNOTAVAIL;
454 goto bad;
455 }
456 xifa = &xia->ia_ifa;
457 if (xifa->ifa_getifa != NULL) {
458 ia4_release(xia, &_psref);
459 /* FIXME ifa_getifa is NOMPSAFE */
460 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
461 if (xia == NULL) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 ia4_acquire(xia, &_psref);
466 }
467 ip->ip_src = xia->ia_addr.sin_addr;
468 ia4_release(xia, &_psref);
469 }
470
471 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
472 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
473 /*
474 * If we belong to the destination multicast group
475 * on the outgoing interface, and the caller did not
476 * forbid loopback, loop back a copy.
477 */
478 ip_mloopback(ifp, m, &udst.sin);
479 }
480 #ifdef MROUTING
481 else {
482 /*
483 * If we are acting as a multicast router, perform
484 * multicast forwarding as if the packet had just
485 * arrived on the interface to which we are about
486 * to send. The multicast forwarding function
487 * recursively calls this function, using the
488 * IP_FORWARDING flag to prevent infinite recursion.
489 *
490 * Multicasts that are looped back by ip_mloopback(),
491 * above, will be forwarded by the ip_input() routine,
492 * if necessary.
493 */
494 extern struct socket *ip_mrouter;
495
496 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
497 if (ip_mforward(m, ifp) != 0) {
498 m_freem(m);
499 goto done;
500 }
501 }
502 }
503 #endif
504 /*
505 * Multicasts with a time-to-live of zero may be looped-
506 * back, above, but must not be transmitted on a network.
507 * Also, multicasts addressed to the loopback interface
508 * are not sent -- the above call to ip_mloopback() will
509 * loop back a copy if this host actually belongs to the
510 * destination group on the loopback interface.
511 */
512 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
513 m_freem(m);
514 goto done;
515 }
516 goto sendit;
517 }
518
519 /*
520 * If source address not specified yet, use address
521 * of outgoing interface.
522 */
523 if (in_nullhost(ip->ip_src)) {
524 struct ifaddr *xifa;
525
526 xifa = &ia->ia_ifa;
527 if (xifa->ifa_getifa != NULL) {
528 ia4_release(ia, &psref_ia);
529 /* FIXME ifa_getifa is NOMPSAFE */
530 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
531 if (ia == NULL) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 ia4_acquire(ia, &psref_ia);
536 }
537 ip->ip_src = ia->ia_addr.sin_addr;
538 }
539
540 /*
541 * Packets with Class-D address as source are not valid per
542 * RFC1112.
543 */
544 if (IN_MULTICAST(ip->ip_src.s_addr)) {
545 IP_STATINC(IP_STAT_ODROPPED);
546 error = EADDRNOTAVAIL;
547 goto bad;
548 }
549
550 /*
551 * Look for broadcast address and verify user is allowed to
552 * send such a packet.
553 */
554 if (isbroadcast) {
555 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
556 error = EADDRNOTAVAIL;
557 goto bad;
558 }
559 if ((flags & IP_ALLOWBROADCAST) == 0) {
560 error = EACCES;
561 goto bad;
562 }
563 /* don't allow broadcast messages to be fragmented */
564 if (ntohs(ip->ip_len) > ifp->if_mtu) {
565 error = EMSGSIZE;
566 goto bad;
567 }
568 m->m_flags |= M_BCAST;
569 } else
570 m->m_flags &= ~M_BCAST;
571
572 sendit:
573 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
574 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
575 ip->ip_id = 0;
576 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
577 ip->ip_id = ip_newid(ia);
578 } else {
579 /*
580 * TSO capable interfaces (typically?) increment
581 * ip_id for each segment.
582 * "allocate" enough ids here to increase the chance
583 * for them to be unique.
584 *
585 * note that the following calculation is not
586 * needed to be precise. wasting some ip_id is fine.
587 */
588
589 unsigned int segsz = m->m_pkthdr.segsz;
590 unsigned int datasz = ntohs(ip->ip_len) - hlen;
591 unsigned int num = howmany(datasz, segsz);
592
593 ip->ip_id = ip_newid_range(ia, num);
594 }
595 }
596 if (ia != NULL) {
597 ia4_release(ia, &psref_ia);
598 ia = NULL;
599 }
600
601 /*
602 * If we're doing Path MTU Discovery, we need to set DF unless
603 * the route's MTU is locked.
604 */
605 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
606 ip->ip_off |= htons(IP_DF);
607 }
608
609 #ifdef IPSEC
610 if (ipsec_used) {
611 bool ipsec_done = false;
612
613 /* Perform IPsec processing, if any. */
614 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
615 &ipsec_done);
616 if (error || ipsec_done)
617 goto done;
618 }
619 #endif
620
621 /*
622 * Run through list of hooks for output packets.
623 */
624 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
625 if (error)
626 goto done;
627 if (m == NULL)
628 goto done;
629
630 ip = mtod(m, struct ip *);
631 hlen = ip->ip_hl << 2;
632
633 m->m_pkthdr.csum_data |= hlen << 16;
634
635 /*
636 * search for the source address structure to
637 * maintain output statistics, and verify address
638 * validity
639 */
640 KASSERT(ia == NULL);
641 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
642 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
643 if (ifa != NULL)
644 ia = ifatoia(ifa);
645
646 /*
647 * Ensure we only send from a valid address.
648 * A NULL address is valid because the packet could be
649 * generated from a packet filter.
650 */
651 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
652 (error = ip_ifaddrvalid(ia)) != 0)
653 {
654 ARPLOG(LOG_ERR,
655 "refusing to send from invalid address %s (pid %d)\n",
656 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
657 IP_STATINC(IP_STAT_ODROPPED);
658 if (error == 1)
659 /*
660 * Address exists, but is tentative or detached.
661 * We can't send from it because it's invalid,
662 * so we drop the packet.
663 */
664 error = 0;
665 else
666 error = EADDRNOTAVAIL;
667 goto bad;
668 }
669
670 /* Maybe skip checksums on loopback interfaces. */
671 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
672 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
673 }
674 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
675
676 /*
677 * If small enough for mtu of path, or if using TCP segmentation
678 * offload, can just send directly.
679 */
680 if (ntohs(ip->ip_len) <= mtu ||
681 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
682 const struct sockaddr *sa;
683
684 #if IFA_STATS
685 if (ia)
686 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
687 #endif
688 /*
689 * Always initialize the sum to 0! Some HW assisted
690 * checksumming requires this.
691 */
692 ip->ip_sum = 0;
693
694 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
695 /*
696 * Perform any checksums that the hardware can't do
697 * for us.
698 *
699 * XXX Does any hardware require the {th,uh}_sum
700 * XXX fields to be 0?
701 */
702 if (sw_csum & M_CSUM_IPv4) {
703 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
704 ip->ip_sum = in_cksum(m, hlen);
705 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
706 }
707 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 if (IN_NEED_CHECKSUM(ifp,
709 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
710 in_delayed_cksum(m);
711 }
712 m->m_pkthdr.csum_flags &=
713 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 }
715 }
716
717 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
718 if (__predict_true(
719 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
720 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
721 error = ip_if_output(ifp, m, sa, rt);
722 } else {
723 error = ip_tso_output(ifp, m, sa, rt);
724 }
725 goto done;
726 }
727
728 /*
729 * We can't use HW checksumming if we're about to fragment the packet.
730 *
731 * XXX Some hardware can do this.
732 */
733 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
734 if (IN_NEED_CHECKSUM(ifp,
735 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
736 in_delayed_cksum(m);
737 }
738 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
739 }
740
741 /*
742 * Too large for interface; fragment if possible.
743 * Must be able to put at least 8 bytes per fragment.
744 */
745 if (ntohs(ip->ip_off) & IP_DF) {
746 if (flags & IP_RETURNMTU) {
747 KASSERT(inp != NULL);
748 inp->inp_errormtu = mtu;
749 }
750 error = EMSGSIZE;
751 IP_STATINC(IP_STAT_CANTFRAG);
752 goto bad;
753 }
754
755 error = ip_fragment(m, ifp, mtu);
756 if (error) {
757 m = NULL;
758 goto bad;
759 }
760
761 for (; m; m = m0) {
762 m0 = m->m_nextpkt;
763 m->m_nextpkt = NULL;
764 if (error) {
765 m_freem(m);
766 continue;
767 }
768 #if IFA_STATS
769 if (ia)
770 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
771 #endif
772 /*
773 * If we get there, the packet has not been handled by
774 * IPsec whereas it should have. Now that it has been
775 * fragmented, re-inject it in ip_output so that IPsec
776 * processing can occur.
777 */
778 if (natt_frag) {
779 error = ip_output(m, opt, ro,
780 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
781 imo, inp);
782 } else {
783 KASSERT((m->m_pkthdr.csum_flags &
784 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
785 error = ip_if_output(ifp, m,
786 (m->m_flags & M_MCAST) ?
787 sintocsa(rdst) : sintocsa(dst), rt);
788 }
789 }
790 if (error == 0) {
791 IP_STATINC(IP_STAT_FRAGMENTED);
792 }
793
794 done:
795 ia4_release(ia, &psref_ia);
796 rtcache_unref(rt, ro);
797 if (ro == &iproute) {
798 rtcache_free(&iproute);
799 }
800 if (mifp != NULL) {
801 if_put(mifp, &psref);
802 }
803 if (bind_need_restore)
804 curlwp_bindx(bound);
805 return error;
806
807 bad:
808 m_freem(m);
809 goto done;
810 }
811
812 int
813 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
814 {
815 struct ip *ip, *mhip;
816 struct mbuf *m0;
817 int len, hlen, off;
818 int mhlen, firstlen;
819 struct mbuf **mnext;
820 int sw_csum = m->m_pkthdr.csum_flags;
821 int fragments = 0;
822 int error = 0;
823 int ipoff, ipflg;
824
825 ip = mtod(m, struct ip *);
826 hlen = ip->ip_hl << 2;
827
828 /* Preserve the offset and flags. */
829 ipoff = ntohs(ip->ip_off) & IP_OFFMASK;
830 ipflg = ntohs(ip->ip_off) & (IP_RF|IP_DF|IP_MF);
831
832 if (ifp != NULL)
833 sw_csum &= ~ifp->if_csum_flags_tx;
834
835 len = (mtu - hlen) &~ 7;
836 if (len < 8) {
837 m_freem(m);
838 return EMSGSIZE;
839 }
840
841 firstlen = len;
842 mnext = &m->m_nextpkt;
843
844 /*
845 * Loop through length of segment after first fragment,
846 * make new header and copy data of each part and link onto chain.
847 */
848 m0 = m;
849 mhlen = sizeof(struct ip);
850 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
851 MGETHDR(m, M_DONTWAIT, MT_HEADER);
852 if (m == NULL) {
853 error = ENOBUFS;
854 IP_STATINC(IP_STAT_ODROPPED);
855 goto sendorfree;
856 }
857 MCLAIM(m, m0->m_owner);
858
859 *mnext = m;
860 mnext = &m->m_nextpkt;
861
862 m->m_data += max_linkhdr;
863 mhip = mtod(m, struct ip *);
864 *mhip = *ip;
865
866 /* we must inherit MCAST and BCAST flags */
867 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
868
869 if (hlen > sizeof(struct ip)) {
870 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
871 mhip->ip_hl = mhlen >> 2;
872 }
873 m->m_len = mhlen;
874
875 mhip->ip_off = ((off - hlen) >> 3) + ipoff;
876 mhip->ip_off |= ipflg;
877 if (off + len >= ntohs(ip->ip_len))
878 len = ntohs(ip->ip_len) - off;
879 else
880 mhip->ip_off |= IP_MF;
881 HTONS(mhip->ip_off);
882
883 mhip->ip_len = htons((u_int16_t)(len + mhlen));
884 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
885 if (m->m_next == NULL) {
886 error = ENOBUFS;
887 IP_STATINC(IP_STAT_ODROPPED);
888 goto sendorfree;
889 }
890
891 m->m_pkthdr.len = mhlen + len;
892 m_reset_rcvif(m);
893
894 mhip->ip_sum = 0;
895 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
896 if (sw_csum & M_CSUM_IPv4) {
897 mhip->ip_sum = in_cksum(m, mhlen);
898 } else {
899 /*
900 * checksum is hw-offloaded or not necessary.
901 */
902 m->m_pkthdr.csum_flags |=
903 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
904 m->m_pkthdr.csum_data |= mhlen << 16;
905 KASSERT(!(ifp != NULL &&
906 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
907 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
908 }
909 IP_STATINC(IP_STAT_OFRAGMENTS);
910 fragments++;
911 }
912
913 /*
914 * Update first fragment by trimming what's been copied out
915 * and updating header, then send each fragment (in order).
916 */
917 m = m0;
918 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
919 m->m_pkthdr.len = hlen + firstlen;
920 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
921 ip->ip_off |= htons(IP_MF);
922 ip->ip_sum = 0;
923 if (sw_csum & M_CSUM_IPv4) {
924 ip->ip_sum = in_cksum(m, hlen);
925 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
926 } else {
927 /*
928 * checksum is hw-offloaded or not necessary.
929 */
930 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
931 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
932 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
933 sizeof(struct ip));
934 }
935
936 sendorfree:
937 /*
938 * If there is no room for all the fragments, don't queue
939 * any of them.
940 */
941 if (ifp != NULL) {
942 IFQ_LOCK(&ifp->if_snd);
943 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
944 error == 0) {
945 error = ENOBUFS;
946 IP_STATINC(IP_STAT_ODROPPED);
947 IFQ_INC_DROPS(&ifp->if_snd);
948 }
949 IFQ_UNLOCK(&ifp->if_snd);
950 }
951 if (error) {
952 for (m = m0; m; m = m0) {
953 m0 = m->m_nextpkt;
954 m->m_nextpkt = NULL;
955 m_freem(m);
956 }
957 }
958
959 return error;
960 }
961
962 /*
963 * Process a delayed payload checksum calculation.
964 */
965 void
966 in_delayed_cksum(struct mbuf *m)
967 {
968 struct ip *ip;
969 u_int16_t csum, offset;
970
971 ip = mtod(m, struct ip *);
972 offset = ip->ip_hl << 2;
973 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
974 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
975 csum = 0xffff;
976
977 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
978
979 if ((offset + sizeof(u_int16_t)) > m->m_len) {
980 /* This happens when ip options were inserted */
981 m_copyback(m, offset, sizeof(csum), (void *)&csum);
982 } else {
983 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
984 }
985 }
986
987 /*
988 * Determine the maximum length of the options to be inserted;
989 * we would far rather allocate too much space rather than too little.
990 */
991 u_int
992 ip_optlen(struct inpcb *inp)
993 {
994 struct mbuf *m = inp->inp_options;
995
996 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
997 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
998 }
999 return 0;
1000 }
1001
1002 /*
1003 * Insert IP options into preformed packet.
1004 * Adjust IP destination as required for IP source routing,
1005 * as indicated by a non-zero in_addr at the start of the options.
1006 */
1007 static struct mbuf *
1008 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1009 {
1010 struct ipoption *p = mtod(opt, struct ipoption *);
1011 struct mbuf *n;
1012 struct ip *ip = mtod(m, struct ip *);
1013 unsigned optlen;
1014
1015 optlen = opt->m_len - sizeof(p->ipopt_dst);
1016 KASSERT(optlen % 4 == 0);
1017 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1018 return m; /* XXX should fail */
1019 if (!in_nullhost(p->ipopt_dst))
1020 ip->ip_dst = p->ipopt_dst;
1021 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1022 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1023 if (n == NULL)
1024 return m;
1025 MCLAIM(n, m->m_owner);
1026 M_MOVE_PKTHDR(n, m);
1027 m->m_len -= sizeof(struct ip);
1028 m->m_data += sizeof(struct ip);
1029 n->m_next = m;
1030 n->m_len = optlen + sizeof(struct ip);
1031 n->m_data += max_linkhdr;
1032 memcpy(mtod(n, void *), ip, sizeof(struct ip));
1033 m = n;
1034 } else {
1035 m->m_data -= optlen;
1036 m->m_len += optlen;
1037 memmove(mtod(m, void *), ip, sizeof(struct ip));
1038 }
1039 m->m_pkthdr.len += optlen;
1040 ip = mtod(m, struct ip *);
1041 memcpy(ip + 1, p->ipopt_list, optlen);
1042 *phlen = sizeof(struct ip) + optlen;
1043 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1044 return m;
1045 }
1046
1047 /*
1048 * Copy options from ipsrc to ipdst, omitting those not copied during
1049 * fragmentation.
1050 */
1051 int
1052 ip_optcopy(struct ip *ipsrc, struct ip *ipdst)
1053 {
1054 u_char *cp, *dp;
1055 int opt, optlen, cnt;
1056
1057 cp = (u_char *)(ipsrc + 1);
1058 dp = (u_char *)(ipdst + 1);
1059 cnt = (ipsrc->ip_hl << 2) - sizeof(struct ip);
1060 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1061 opt = cp[0];
1062 if (opt == IPOPT_EOL)
1063 break;
1064 if (opt == IPOPT_NOP) {
1065 /* Preserve for IP mcast tunnel's LSRR alignment. */
1066 *dp++ = IPOPT_NOP;
1067 optlen = 1;
1068 continue;
1069 }
1070
1071 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1072 optlen = cp[IPOPT_OLEN];
1073 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1074
1075 /* Invalid lengths should have been caught by ip_dooptions. */
1076 if (optlen > cnt)
1077 optlen = cnt;
1078 if (IPOPT_COPIED(opt)) {
1079 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1080 dp += optlen;
1081 }
1082 }
1083
1084 for (optlen = dp - (u_char *)(ipdst+1); optlen & 0x3; optlen++) {
1085 *dp++ = IPOPT_EOL;
1086 }
1087
1088 return optlen;
1089 }
1090
1091 /*
1092 * IP socket option processing.
1093 */
1094 int
1095 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1096 {
1097 struct inpcb *inp = sotoinpcb(so);
1098 struct ip *ip = &inp->inp_ip;
1099 int inpflags = inp->inp_flags;
1100 int optval = 0, error = 0;
1101 struct in_pktinfo pktinfo;
1102
1103 KASSERT(solocked(so));
1104
1105 if (sopt->sopt_level != IPPROTO_IP) {
1106 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1107 return 0;
1108 return ENOPROTOOPT;
1109 }
1110
1111 switch (op) {
1112 case PRCO_SETOPT:
1113 switch (sopt->sopt_name) {
1114 case IP_OPTIONS:
1115 #ifdef notyet
1116 case IP_RETOPTS:
1117 #endif
1118 error = ip_pcbopts(inp, sopt);
1119 break;
1120
1121 case IP_TOS:
1122 case IP_TTL:
1123 case IP_MINTTL:
1124 case IP_RECVOPTS:
1125 case IP_RECVRETOPTS:
1126 case IP_RECVDSTADDR:
1127 case IP_RECVIF:
1128 case IP_RECVPKTINFO:
1129 case IP_RECVTTL:
1130 error = sockopt_getint(sopt, &optval);
1131 if (error)
1132 break;
1133
1134 switch (sopt->sopt_name) {
1135 case IP_TOS:
1136 ip->ip_tos = optval;
1137 break;
1138
1139 case IP_TTL:
1140 ip->ip_ttl = optval;
1141 break;
1142
1143 case IP_MINTTL:
1144 if (optval > 0 && optval <= MAXTTL)
1145 inp->inp_ip_minttl = optval;
1146 else
1147 error = EINVAL;
1148 break;
1149 #define OPTSET(bit) \
1150 if (optval) \
1151 inpflags |= bit; \
1152 else \
1153 inpflags &= ~bit;
1154
1155 case IP_RECVOPTS:
1156 OPTSET(INP_RECVOPTS);
1157 break;
1158
1159 case IP_RECVPKTINFO:
1160 OPTSET(INP_RECVPKTINFO);
1161 break;
1162
1163 case IP_RECVRETOPTS:
1164 OPTSET(INP_RECVRETOPTS);
1165 break;
1166
1167 case IP_RECVDSTADDR:
1168 OPTSET(INP_RECVDSTADDR);
1169 break;
1170
1171 case IP_RECVIF:
1172 OPTSET(INP_RECVIF);
1173 break;
1174
1175 case IP_RECVTTL:
1176 OPTSET(INP_RECVTTL);
1177 break;
1178 }
1179 break;
1180 case IP_PKTINFO:
1181 error = sockopt_getint(sopt, &optval);
1182 if (!error) {
1183 /* Linux compatibility */
1184 OPTSET(INP_RECVPKTINFO);
1185 break;
1186 }
1187 error = sockopt_get(sopt, &pktinfo, sizeof(pktinfo));
1188 if (error)
1189 break;
1190
1191 if (pktinfo.ipi_ifindex == 0) {
1192 inp->inp_prefsrcip = pktinfo.ipi_addr;
1193 break;
1194 }
1195
1196 /* Solaris compatibility */
1197 struct ifnet *ifp;
1198 struct in_ifaddr *ia;
1199 int s;
1200
1201 /* pick up primary address */
1202 s = pserialize_read_enter();
1203 ifp = if_byindex(pktinfo.ipi_ifindex);
1204 if (ifp == NULL) {
1205 pserialize_read_exit(s);
1206 error = EADDRNOTAVAIL;
1207 break;
1208 }
1209 ia = in_get_ia_from_ifp(ifp);
1210 if (ia == NULL) {
1211 pserialize_read_exit(s);
1212 error = EADDRNOTAVAIL;
1213 break;
1214 }
1215 inp->inp_prefsrcip = IA_SIN(ia)->sin_addr;
1216 pserialize_read_exit(s);
1217 break;
1218 break;
1219 #undef OPTSET
1220
1221 case IP_MULTICAST_IF:
1222 case IP_MULTICAST_TTL:
1223 case IP_MULTICAST_LOOP:
1224 case IP_ADD_MEMBERSHIP:
1225 case IP_DROP_MEMBERSHIP:
1226 error = ip_setmoptions(&inp->inp_moptions, sopt);
1227 break;
1228
1229 case IP_PORTRANGE:
1230 error = sockopt_getint(sopt, &optval);
1231 if (error)
1232 break;
1233
1234 switch (optval) {
1235 case IP_PORTRANGE_DEFAULT:
1236 case IP_PORTRANGE_HIGH:
1237 inpflags &= ~(INP_LOWPORT);
1238 break;
1239
1240 case IP_PORTRANGE_LOW:
1241 inpflags |= INP_LOWPORT;
1242 break;
1243
1244 default:
1245 error = EINVAL;
1246 break;
1247 }
1248 break;
1249
1250 case IP_PORTALGO:
1251 error = sockopt_getint(sopt, &optval);
1252 if (error)
1253 break;
1254
1255 error = portalgo_algo_index_select(
1256 (struct inpcb_hdr *)inp, optval);
1257 break;
1258
1259 #if defined(IPSEC)
1260 case IP_IPSEC_POLICY:
1261 if (ipsec_enabled) {
1262 error = ipsec_set_policy(inp,
1263 sopt->sopt_data, sopt->sopt_size,
1264 curlwp->l_cred);
1265 break;
1266 }
1267 /*FALLTHROUGH*/
1268 #endif /* IPSEC */
1269
1270 default:
1271 error = ENOPROTOOPT;
1272 break;
1273 }
1274 break;
1275
1276 case PRCO_GETOPT:
1277 switch (sopt->sopt_name) {
1278 case IP_OPTIONS:
1279 case IP_RETOPTS: {
1280 struct mbuf *mopts = inp->inp_options;
1281
1282 if (mopts) {
1283 struct mbuf *m;
1284
1285 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1286 if (m == NULL) {
1287 error = ENOBUFS;
1288 break;
1289 }
1290 error = sockopt_setmbuf(sopt, m);
1291 }
1292 break;
1293 }
1294 case IP_TOS:
1295 case IP_TTL:
1296 case IP_MINTTL:
1297 case IP_RECVOPTS:
1298 case IP_RECVRETOPTS:
1299 case IP_RECVDSTADDR:
1300 case IP_RECVIF:
1301 case IP_RECVPKTINFO:
1302 case IP_RECVTTL:
1303 case IP_ERRORMTU:
1304 switch (sopt->sopt_name) {
1305 case IP_TOS:
1306 optval = ip->ip_tos;
1307 break;
1308
1309 case IP_TTL:
1310 optval = ip->ip_ttl;
1311 break;
1312
1313 case IP_MINTTL:
1314 optval = inp->inp_ip_minttl;
1315 break;
1316
1317 case IP_ERRORMTU:
1318 optval = inp->inp_errormtu;
1319 break;
1320
1321 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1322
1323 case IP_RECVOPTS:
1324 optval = OPTBIT(INP_RECVOPTS);
1325 break;
1326
1327 case IP_RECVPKTINFO:
1328 optval = OPTBIT(INP_RECVPKTINFO);
1329 break;
1330
1331 case IP_RECVRETOPTS:
1332 optval = OPTBIT(INP_RECVRETOPTS);
1333 break;
1334
1335 case IP_RECVDSTADDR:
1336 optval = OPTBIT(INP_RECVDSTADDR);
1337 break;
1338
1339 case IP_RECVIF:
1340 optval = OPTBIT(INP_RECVIF);
1341 break;
1342
1343 case IP_RECVTTL:
1344 optval = OPTBIT(INP_RECVTTL);
1345 break;
1346 }
1347 error = sockopt_setint(sopt, optval);
1348 break;
1349
1350 case IP_PKTINFO:
1351 switch (sopt->sopt_size) {
1352 case sizeof(int):
1353 /* Linux compatibility */
1354 optval = OPTBIT(INP_RECVPKTINFO);
1355 error = sockopt_setint(sopt, optval);
1356 break;
1357 case sizeof(struct in_pktinfo):
1358 /* Solaris compatibility */
1359 pktinfo.ipi_ifindex = 0;
1360 pktinfo.ipi_addr = inp->inp_prefsrcip;
1361 error = sockopt_set(sopt, &pktinfo,
1362 sizeof(pktinfo));
1363 break;
1364 default:
1365 /*
1366 * While size is stuck at 0, and, later, if
1367 * the caller doesn't use an exactly sized
1368 * recipient for the data, default to Linux
1369 * compatibility
1370 */
1371 optval = OPTBIT(INP_RECVPKTINFO);
1372 error = sockopt_setint(sopt, optval);
1373 break;
1374 }
1375 break;
1376
1377 #if 0 /* defined(IPSEC) */
1378 case IP_IPSEC_POLICY:
1379 {
1380 struct mbuf *m = NULL;
1381
1382 /* XXX this will return EINVAL as sopt is empty */
1383 error = ipsec_get_policy(inp, sopt->sopt_data,
1384 sopt->sopt_size, &m);
1385 if (error == 0)
1386 error = sockopt_setmbuf(sopt, m);
1387 break;
1388 }
1389 #endif /*IPSEC*/
1390
1391 case IP_MULTICAST_IF:
1392 case IP_MULTICAST_TTL:
1393 case IP_MULTICAST_LOOP:
1394 case IP_ADD_MEMBERSHIP:
1395 case IP_DROP_MEMBERSHIP:
1396 error = ip_getmoptions(inp->inp_moptions, sopt);
1397 break;
1398
1399 case IP_PORTRANGE:
1400 if (inpflags & INP_LOWPORT)
1401 optval = IP_PORTRANGE_LOW;
1402 else
1403 optval = IP_PORTRANGE_DEFAULT;
1404 error = sockopt_setint(sopt, optval);
1405 break;
1406
1407 case IP_PORTALGO:
1408 optval = inp->inp_portalgo;
1409 error = sockopt_setint(sopt, optval);
1410 break;
1411
1412 default:
1413 error = ENOPROTOOPT;
1414 break;
1415 }
1416 break;
1417 }
1418
1419 if (!error) {
1420 inp->inp_flags = inpflags;
1421 }
1422 return error;
1423 }
1424
1425 static int
1426 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
1427 int *flags, kauth_cred_t cred)
1428 {
1429 struct ip_moptions *imo;
1430 int error = 0;
1431 bool addrset = false;
1432
1433 if (!in_nullhost(pktinfo->ipi_addr)) {
1434 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1435 /* EADDRNOTAVAIL? */
1436 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
1437 if (error != 0)
1438 return error;
1439 addrset = true;
1440 }
1441
1442 if (pktinfo->ipi_ifindex != 0) {
1443 if (!addrset) {
1444 struct ifnet *ifp;
1445 struct in_ifaddr *ia;
1446 int s;
1447
1448 /* pick up primary address */
1449 s = pserialize_read_enter();
1450 ifp = if_byindex(pktinfo->ipi_ifindex);
1451 if (ifp == NULL) {
1452 pserialize_read_exit(s);
1453 return EADDRNOTAVAIL;
1454 }
1455 ia = in_get_ia_from_ifp(ifp);
1456 if (ia == NULL) {
1457 pserialize_read_exit(s);
1458 return EADDRNOTAVAIL;
1459 }
1460 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1461 pserialize_read_exit(s);
1462 }
1463
1464 /*
1465 * If specified ipi_ifindex,
1466 * use copied or locally initialized ip_moptions.
1467 * Original ip_moptions must not be modified.
1468 */
1469 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1470 if (pktopts->ippo_imo != NULL) {
1471 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1472 } else {
1473 memset(imo, 0, sizeof(*imo));
1474 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1475 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1476 }
1477 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1478 pktopts->ippo_imo = imo;
1479 *flags |= IP_ROUTETOIFINDEX;
1480 }
1481 return error;
1482 }
1483
1484 /*
1485 * Set up IP outgoing packet options. Even if control is NULL,
1486 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1487 */
1488 int
1489 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1490 struct inpcb *inp, kauth_cred_t cred)
1491 {
1492 struct cmsghdr *cm;
1493 struct in_pktinfo pktinfo;
1494 int error;
1495
1496 pktopts->ippo_imo = inp->inp_moptions;
1497
1498 struct in_addr *ia = in_nullhost(inp->inp_prefsrcip) ? &inp->inp_laddr :
1499 &inp->inp_prefsrcip;
1500 sockaddr_in_init(&pktopts->ippo_laddr, ia, 0);
1501
1502 if (control == NULL)
1503 return 0;
1504
1505 /*
1506 * XXX: Currently, we assume all the optional information is
1507 * stored in a single mbuf.
1508 */
1509 if (control->m_next)
1510 return EINVAL;
1511
1512 for (; control->m_len > 0;
1513 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1514 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1515 cm = mtod(control, struct cmsghdr *);
1516 if ((control->m_len < sizeof(*cm)) ||
1517 (cm->cmsg_len == 0) ||
1518 (cm->cmsg_len > control->m_len)) {
1519 return EINVAL;
1520 }
1521 if (cm->cmsg_level != IPPROTO_IP)
1522 continue;
1523
1524 switch (cm->cmsg_type) {
1525 case IP_PKTINFO:
1526 if (cm->cmsg_len != CMSG_LEN(sizeof(pktinfo)))
1527 return EINVAL;
1528 memcpy(&pktinfo, CMSG_DATA(cm), sizeof(pktinfo));
1529 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1530 cred);
1531 if (error)
1532 return error;
1533 break;
1534 case IP_SENDSRCADDR: /* FreeBSD compatibility */
1535 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr)))
1536 return EINVAL;
1537 pktinfo.ipi_ifindex = 0;
1538 pktinfo.ipi_addr =
1539 ((struct in_pktinfo *)CMSG_DATA(cm))->ipi_addr;
1540 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1541 cred);
1542 if (error)
1543 return error;
1544 break;
1545 default:
1546 return ENOPROTOOPT;
1547 }
1548 }
1549 return 0;
1550 }
1551
1552 /*
1553 * Set up IP options in pcb for insertion in output packets.
1554 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1555 * with destination address if source routed.
1556 */
1557 static int
1558 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1559 {
1560 struct mbuf *m;
1561 const u_char *cp;
1562 u_char *dp;
1563 int cnt;
1564
1565 KASSERT(inp_locked(inp));
1566
1567 /* Turn off any old options. */
1568 if (inp->inp_options) {
1569 m_free(inp->inp_options);
1570 }
1571 inp->inp_options = NULL;
1572 if ((cnt = sopt->sopt_size) == 0) {
1573 /* Only turning off any previous options. */
1574 return 0;
1575 }
1576 cp = sopt->sopt_data;
1577
1578 if (cnt % 4) {
1579 /* Must be 4-byte aligned, because there's no padding. */
1580 return EINVAL;
1581 }
1582
1583 m = m_get(M_DONTWAIT, MT_SOOPTS);
1584 if (m == NULL)
1585 return ENOBUFS;
1586
1587 dp = mtod(m, u_char *);
1588 memset(dp, 0, sizeof(struct in_addr));
1589 dp += sizeof(struct in_addr);
1590 m->m_len = sizeof(struct in_addr);
1591
1592 /*
1593 * IP option list according to RFC791. Each option is of the form
1594 *
1595 * [optval] [olen] [(olen - 2) data bytes]
1596 *
1597 * We validate the list and copy options to an mbuf for prepending
1598 * to data packets. The IP first-hop destination address will be
1599 * stored before actual options and is zero if unset.
1600 */
1601 while (cnt > 0) {
1602 uint8_t optval, olen, offset;
1603
1604 optval = cp[IPOPT_OPTVAL];
1605
1606 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1607 olen = 1;
1608 } else {
1609 if (cnt < IPOPT_OLEN + 1)
1610 goto bad;
1611
1612 olen = cp[IPOPT_OLEN];
1613 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1614 goto bad;
1615 }
1616
1617 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1618 /*
1619 * user process specifies route as:
1620 * ->A->B->C->D
1621 * D must be our final destination (but we can't
1622 * check that since we may not have connected yet).
1623 * A is first hop destination, which doesn't appear in
1624 * actual IP option, but is stored before the options.
1625 */
1626 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1627 goto bad;
1628
1629 offset = cp[IPOPT_OFFSET];
1630 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1631 sizeof(struct in_addr));
1632
1633 cp += sizeof(struct in_addr);
1634 cnt -= sizeof(struct in_addr);
1635 olen -= sizeof(struct in_addr);
1636
1637 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1638 goto bad;
1639
1640 memcpy(dp, cp, olen);
1641 dp[IPOPT_OPTVAL] = optval;
1642 dp[IPOPT_OLEN] = olen;
1643 dp[IPOPT_OFFSET] = offset;
1644 break;
1645 } else {
1646 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1647 goto bad;
1648
1649 memcpy(dp, cp, olen);
1650 break;
1651 }
1652
1653 dp += olen;
1654 m->m_len += olen;
1655
1656 if (optval == IPOPT_EOL)
1657 break;
1658
1659 cp += olen;
1660 cnt -= olen;
1661 }
1662
1663 inp->inp_options = m;
1664 return 0;
1665
1666 bad:
1667 (void)m_free(m);
1668 return EINVAL;
1669 }
1670
1671 /*
1672 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1673 * Must be called in a pserialize critical section.
1674 */
1675 static struct ifnet *
1676 ip_multicast_if(struct in_addr *a, int *ifindexp)
1677 {
1678 int ifindex;
1679 struct ifnet *ifp = NULL;
1680 struct in_ifaddr *ia;
1681
1682 if (ifindexp)
1683 *ifindexp = 0;
1684 if (ntohl(a->s_addr) >> 24 == 0) {
1685 ifindex = ntohl(a->s_addr) & 0xffffff;
1686 ifp = if_byindex(ifindex);
1687 if (!ifp)
1688 return NULL;
1689 if (ifindexp)
1690 *ifindexp = ifindex;
1691 } else {
1692 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1693 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1694 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1695 ifp = ia->ia_ifp;
1696 if (if_is_deactivated(ifp))
1697 ifp = NULL;
1698 break;
1699 }
1700 }
1701 }
1702 return ifp;
1703 }
1704
1705 static int
1706 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1707 {
1708 u_int tval;
1709 u_char cval;
1710 int error;
1711
1712 if (sopt == NULL)
1713 return EINVAL;
1714
1715 switch (sopt->sopt_size) {
1716 case sizeof(u_char):
1717 error = sockopt_get(sopt, &cval, sizeof(u_char));
1718 tval = cval;
1719 break;
1720
1721 case sizeof(u_int):
1722 error = sockopt_get(sopt, &tval, sizeof(u_int));
1723 break;
1724
1725 default:
1726 error = EINVAL;
1727 }
1728
1729 if (error)
1730 return error;
1731
1732 if (tval > maxval)
1733 return EINVAL;
1734
1735 *val = tval;
1736 return 0;
1737 }
1738
1739 static int
1740 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1741 struct psref *psref, struct in_addr *ia, bool add)
1742 {
1743 int error;
1744 struct ip_mreq mreq;
1745
1746 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1747 if (error)
1748 return error;
1749
1750 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1751 return EINVAL;
1752
1753 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1754
1755 if (in_nullhost(mreq.imr_interface)) {
1756 union {
1757 struct sockaddr dst;
1758 struct sockaddr_in dst4;
1759 } u;
1760 struct route ro;
1761
1762 if (!add) {
1763 *ifp = NULL;
1764 return 0;
1765 }
1766 /*
1767 * If no interface address was provided, use the interface of
1768 * the route to the given multicast address.
1769 */
1770 struct rtentry *rt;
1771 memset(&ro, 0, sizeof(ro));
1772
1773 sockaddr_in_init(&u.dst4, ia, 0);
1774 error = rtcache_setdst(&ro, &u.dst);
1775 if (error != 0)
1776 return error;
1777 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1778 if (*ifp != NULL) {
1779 if (if_is_deactivated(*ifp))
1780 *ifp = NULL;
1781 else
1782 if_acquire(*ifp, psref);
1783 }
1784 rtcache_unref(rt, &ro);
1785 rtcache_free(&ro);
1786 } else {
1787 int s = pserialize_read_enter();
1788 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1789 if (!add && *ifp == NULL) {
1790 pserialize_read_exit(s);
1791 return EADDRNOTAVAIL;
1792 }
1793 if (*ifp != NULL) {
1794 if (if_is_deactivated(*ifp))
1795 *ifp = NULL;
1796 else
1797 if_acquire(*ifp, psref);
1798 }
1799 pserialize_read_exit(s);
1800 }
1801 return 0;
1802 }
1803
1804 /*
1805 * Add a multicast group membership.
1806 * Group must be a valid IP multicast address.
1807 */
1808 static int
1809 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1810 {
1811 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1812 struct in_addr ia;
1813 int i, error, bound;
1814 struct psref psref;
1815
1816 /* imo is protected by solock or referenced only by the caller */
1817
1818 bound = curlwp_bind();
1819 if (sopt->sopt_size == sizeof(struct ip_mreq))
1820 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1821 else {
1822 #ifdef INET6
1823 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1824 #else
1825 error = EINVAL;
1826 #endif
1827 }
1828
1829 if (error)
1830 goto out;
1831
1832 /*
1833 * See if we found an interface, and confirm that it
1834 * supports multicast.
1835 */
1836 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1837 error = EADDRNOTAVAIL;
1838 goto out;
1839 }
1840
1841 /*
1842 * See if the membership already exists or if all the
1843 * membership slots are full.
1844 */
1845 for (i = 0; i < imo->imo_num_memberships; ++i) {
1846 if (imo->imo_membership[i]->inm_ifp == ifp &&
1847 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1848 break;
1849 }
1850 if (i < imo->imo_num_memberships) {
1851 error = EADDRINUSE;
1852 goto out;
1853 }
1854
1855 if (i == IP_MAX_MEMBERSHIPS) {
1856 error = ETOOMANYREFS;
1857 goto out;
1858 }
1859
1860 /*
1861 * Everything looks good; add a new record to the multicast
1862 * address list for the given interface.
1863 */
1864 IFNET_LOCK(ifp);
1865 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1866 IFNET_UNLOCK(ifp);
1867 if (imo->imo_membership[i] == NULL) {
1868 error = ENOBUFS;
1869 goto out;
1870 }
1871
1872 ++imo->imo_num_memberships;
1873 error = 0;
1874 out:
1875 if_put(ifp, &psref);
1876 curlwp_bindx(bound);
1877 return error;
1878 }
1879
1880 /*
1881 * Drop a multicast group membership.
1882 * Group must be a valid IP multicast address.
1883 */
1884 static int
1885 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1886 {
1887 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1888 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1889 int i, error, bound;
1890 struct psref psref;
1891
1892 /* imo is protected by solock or referenced only by the caller */
1893
1894 bound = curlwp_bind();
1895 if (sopt->sopt_size == sizeof(struct ip_mreq))
1896 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1897 else {
1898 #ifdef INET6
1899 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1900 #else
1901 error = EINVAL;
1902 #endif
1903 }
1904
1905 if (error)
1906 goto out;
1907
1908 /*
1909 * Find the membership in the membership array.
1910 */
1911 for (i = 0; i < imo->imo_num_memberships; ++i) {
1912 if ((ifp == NULL ||
1913 imo->imo_membership[i]->inm_ifp == ifp) &&
1914 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1915 break;
1916 }
1917 if (i == imo->imo_num_memberships) {
1918 error = EADDRNOTAVAIL;
1919 goto out;
1920 }
1921
1922 /*
1923 * Give up the multicast address record to which the
1924 * membership points.
1925 */
1926 struct ifnet *inm_ifp = imo->imo_membership[i]->inm_ifp;
1927 IFNET_LOCK(inm_ifp);
1928 in_delmulti(imo->imo_membership[i]);
1929 IFNET_UNLOCK(inm_ifp);
1930
1931 /*
1932 * Remove the gap in the membership array.
1933 */
1934 for (++i; i < imo->imo_num_memberships; ++i)
1935 imo->imo_membership[i-1] = imo->imo_membership[i];
1936 --imo->imo_num_memberships;
1937 error = 0;
1938 out:
1939 if_put(ifp, &psref);
1940 curlwp_bindx(bound);
1941 return error;
1942 }
1943
1944 /*
1945 * Set the IP multicast options in response to user setsockopt().
1946 */
1947 int
1948 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1949 {
1950 struct ip_moptions *imo = *pimo;
1951 struct in_addr addr;
1952 struct ifnet *ifp;
1953 int ifindex, error = 0;
1954
1955 /* The passed imo isn't NULL, it should be protected by solock */
1956
1957 if (!imo) {
1958 /*
1959 * No multicast option buffer attached to the pcb;
1960 * allocate one and initialize to default values.
1961 */
1962 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1963 if (imo == NULL)
1964 return ENOBUFS;
1965
1966 imo->imo_multicast_if_index = 0;
1967 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1968 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1969 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1970 imo->imo_num_memberships = 0;
1971 *pimo = imo;
1972 }
1973
1974 switch (sopt->sopt_name) {
1975 case IP_MULTICAST_IF: {
1976 int s;
1977 /*
1978 * Select the interface for outgoing multicast packets.
1979 */
1980 error = sockopt_get(sopt, &addr, sizeof(addr));
1981 if (error)
1982 break;
1983
1984 /*
1985 * INADDR_ANY is used to remove a previous selection.
1986 * When no interface is selected, a default one is
1987 * chosen every time a multicast packet is sent.
1988 */
1989 if (in_nullhost(addr)) {
1990 imo->imo_multicast_if_index = 0;
1991 break;
1992 }
1993 /*
1994 * The selected interface is identified by its local
1995 * IP address. Find the interface and confirm that
1996 * it supports multicasting.
1997 */
1998 s = pserialize_read_enter();
1999 ifp = ip_multicast_if(&addr, &ifindex);
2000 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2001 pserialize_read_exit(s);
2002 error = EADDRNOTAVAIL;
2003 break;
2004 }
2005 imo->imo_multicast_if_index = ifp->if_index;
2006 pserialize_read_exit(s);
2007 if (ifindex)
2008 imo->imo_multicast_addr = addr;
2009 else
2010 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2011 break;
2012 }
2013
2014 case IP_MULTICAST_TTL:
2015 /*
2016 * Set the IP time-to-live for outgoing multicast packets.
2017 */
2018 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
2019 break;
2020
2021 case IP_MULTICAST_LOOP:
2022 /*
2023 * Set the loopback flag for outgoing multicast packets.
2024 * Must be zero or one.
2025 */
2026 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
2027 break;
2028
2029 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
2030 error = ip_add_membership(imo, sopt);
2031 break;
2032
2033 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
2034 error = ip_drop_membership(imo, sopt);
2035 break;
2036
2037 default:
2038 error = EOPNOTSUPP;
2039 break;
2040 }
2041
2042 /*
2043 * If all options have default values, no need to keep the mbuf.
2044 */
2045 if (imo->imo_multicast_if_index == 0 &&
2046 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2047 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2048 imo->imo_num_memberships == 0) {
2049 kmem_intr_free(imo, sizeof(*imo));
2050 *pimo = NULL;
2051 }
2052
2053 return error;
2054 }
2055
2056 /*
2057 * Return the IP multicast options in response to user getsockopt().
2058 */
2059 int
2060 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
2061 {
2062 struct in_addr addr;
2063 uint8_t optval;
2064 int error = 0;
2065
2066 /* imo is protected by solock or refereced only by the caller */
2067
2068 switch (sopt->sopt_name) {
2069 case IP_MULTICAST_IF:
2070 if (imo == NULL || imo->imo_multicast_if_index == 0)
2071 addr = zeroin_addr;
2072 else if (imo->imo_multicast_addr.s_addr) {
2073 /* return the value user has set */
2074 addr = imo->imo_multicast_addr;
2075 } else {
2076 struct ifnet *ifp;
2077 struct in_ifaddr *ia = NULL;
2078 int s = pserialize_read_enter();
2079
2080 ifp = if_byindex(imo->imo_multicast_if_index);
2081 if (ifp != NULL) {
2082 ia = in_get_ia_from_ifp(ifp);
2083 }
2084 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
2085 pserialize_read_exit(s);
2086 }
2087 error = sockopt_set(sopt, &addr, sizeof(addr));
2088 break;
2089
2090 case IP_MULTICAST_TTL:
2091 optval = imo ? imo->imo_multicast_ttl
2092 : IP_DEFAULT_MULTICAST_TTL;
2093
2094 error = sockopt_set(sopt, &optval, sizeof(optval));
2095 break;
2096
2097 case IP_MULTICAST_LOOP:
2098 optval = imo ? imo->imo_multicast_loop
2099 : IP_DEFAULT_MULTICAST_LOOP;
2100
2101 error = sockopt_set(sopt, &optval, sizeof(optval));
2102 break;
2103
2104 default:
2105 error = EOPNOTSUPP;
2106 }
2107
2108 return error;
2109 }
2110
2111 /*
2112 * Discard the IP multicast options.
2113 */
2114 void
2115 ip_freemoptions(struct ip_moptions *imo)
2116 {
2117 int i;
2118
2119 /* The owner of imo (inp) should be protected by solock */
2120
2121 if (imo != NULL) {
2122 for (i = 0; i < imo->imo_num_memberships; ++i) {
2123 struct in_multi *inm = imo->imo_membership[i];
2124 struct ifnet *ifp = inm->inm_ifp;
2125 IFNET_LOCK(ifp);
2126 in_delmulti(inm);
2127 /* ifp should not leave thanks to solock */
2128 IFNET_UNLOCK(ifp);
2129 }
2130
2131 kmem_intr_free(imo, sizeof(*imo));
2132 }
2133 }
2134
2135 /*
2136 * Routine called from ip_output() to loop back a copy of an IP multicast
2137 * packet to the input queue of a specified interface. Note that this
2138 * calls the output routine of the loopback "driver", but with an interface
2139 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2140 */
2141 static void
2142 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2143 {
2144 struct ip *ip;
2145 struct mbuf *copym;
2146
2147 copym = m_copypacket(m, M_DONTWAIT);
2148 if (copym != NULL &&
2149 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2150 copym = m_pullup(copym, sizeof(struct ip));
2151 if (copym == NULL)
2152 return;
2153 /*
2154 * We don't bother to fragment if the IP length is greater
2155 * than the interface's MTU. Can this possibly matter?
2156 */
2157 ip = mtod(copym, struct ip *);
2158
2159 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2160 in_delayed_cksum(copym);
2161 copym->m_pkthdr.csum_flags &=
2162 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2163 }
2164
2165 ip->ip_sum = 0;
2166 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2167 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2168 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2169 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2170 }
2171
2172 /*
2173 * Ensure sending address is valid.
2174 * Returns 0 on success, -1 if an error should be sent back or 1
2175 * if the packet could be dropped without error (protocol dependent).
2176 */
2177 static int
2178 ip_ifaddrvalid(const struct in_ifaddr *ia)
2179 {
2180
2181 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2182 return 0;
2183
2184 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2185 return -1;
2186 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2187 return 1;
2188
2189 return 0;
2190 }
2191