ip_output.c revision 1.313 1 /* $NetBSD: ip_output.c,v 1.313 2019/06/05 01:27:20 knakahara Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.313 2019/06/05 01:27:20 knakahara Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct inpcb *inp)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int len, hlen, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia = NULL;
239 struct ifaddr *ifa;
240 int isbroadcast;
241 int sw_csum;
242 u_long mtu;
243 bool natt_frag = false;
244 bool rtmtu_nolock;
245 union {
246 struct sockaddr sa;
247 struct sockaddr_in sin;
248 } udst, usrc;
249 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
250 * opposed to the nexthop
251 */
252 struct psref psref, psref_ia;
253 int bound;
254 bool bind_need_restore = false;
255
256 len = 0;
257
258 MCLAIM(m, &ip_tx_mowner);
259
260 KASSERT((m->m_flags & M_PKTHDR) != 0);
261 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
263 (M_CSUM_TCPv4|M_CSUM_UDPv4));
264 KASSERT(m->m_len >= sizeof(struct ip));
265
266 hlen = sizeof(struct ip);
267 if (opt) {
268 m = ip_insertoptions(m, opt, &len);
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 /* XXX must be before rtcache operations */
307 bound = curlwp_bind();
308 bind_need_restore = true;
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &udst.sin;
313 error = rtcache_setdst(ro, &udst.sa);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
323 if (ifa == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /* ia is already referenced by psref_ia */
329 ia = ifatoia(ifa);
330
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 isbroadcast = in_broadcast(dst->sin_addr, ifp);
335 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
336 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
337 (flags & IP_ROUTETOIFINDEX)) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 ip->ip_dst.s_addr == INADDR_BROADCAST) {
353 isbroadcast = 0;
354 } else {
355 /* IP_ROUTETOIFINDEX */
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 if ((isbroadcast == 0) && ((ifp->if_flags &
358 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
359 (in_direct(dst->sin_addr, ifp) == 0)) {
360 /* gateway address required */
361 if (rt == NULL)
362 rt = rtcache_init(ro);
363 if (rt == NULL || rt->rt_ifp != ifp) {
364 IP_STATINC(IP_STAT_NOROUTE);
365 error = EHOSTUNREACH;
366 goto bad;
367 }
368 rt->rt_use++;
369 if (rt->rt_flags & RTF_GATEWAY)
370 dst = satosin(rt->rt_gateway);
371 if (rt->rt_flags & RTF_HOST)
372 isbroadcast =
373 rt->rt_flags & RTF_BROADCAST;
374 }
375 }
376 } else {
377 if (rt == NULL)
378 rt = rtcache_init(ro);
379 if (rt == NULL) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = EHOSTUNREACH;
382 goto bad;
383 }
384 if (ifa_is_destroying(rt->rt_ifa)) {
385 rtcache_unref(rt, ro);
386 rt = NULL;
387 IP_STATINC(IP_STAT_NOROUTE);
388 error = EHOSTUNREACH;
389 goto bad;
390 }
391 ifa_acquire(rt->rt_ifa, &psref_ia);
392 ia = ifatoia(rt->rt_ifa);
393 ifp = rt->rt_ifp;
394 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
395 mtu = ifp->if_mtu;
396 rt->rt_use++;
397 if (rt->rt_flags & RTF_GATEWAY)
398 dst = satosin(rt->rt_gateway);
399 if (rt->rt_flags & RTF_HOST)
400 isbroadcast = rt->rt_flags & RTF_BROADCAST;
401 else
402 isbroadcast = in_broadcast(dst->sin_addr, ifp);
403 }
404 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
405
406 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
407 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
408 bool inmgroup;
409
410 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
411 M_BCAST : M_MCAST;
412 /*
413 * See if the caller provided any multicast options
414 */
415 if (imo != NULL)
416 ip->ip_ttl = imo->imo_multicast_ttl;
417 else
418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419
420 /*
421 * if we don't know the outgoing ifp yet, we can't generate
422 * output
423 */
424 if (!ifp) {
425 IP_STATINC(IP_STAT_NOROUTE);
426 error = ENETUNREACH;
427 goto bad;
428 }
429
430 /*
431 * If the packet is multicast or broadcast, confirm that
432 * the outgoing interface can transmit it.
433 */
434 if (((m->m_flags & M_MCAST) &&
435 (ifp->if_flags & IFF_MULTICAST) == 0) ||
436 ((m->m_flags & M_BCAST) &&
437 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 /*
443 * If source address not specified yet, use an address
444 * of outgoing interface.
445 */
446 if (in_nullhost(ip->ip_src)) {
447 struct in_ifaddr *xia;
448 struct ifaddr *xifa;
449 struct psref _psref;
450
451 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
452 if (!xia) {
453 error = EADDRNOTAVAIL;
454 goto bad;
455 }
456 xifa = &xia->ia_ifa;
457 if (xifa->ifa_getifa != NULL) {
458 ia4_release(xia, &_psref);
459 /* FIXME ifa_getifa is NOMPSAFE */
460 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
461 if (xia == NULL) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 ia4_acquire(xia, &_psref);
466 }
467 ip->ip_src = xia->ia_addr.sin_addr;
468 ia4_release(xia, &_psref);
469 }
470
471 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
472 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
473 /*
474 * If we belong to the destination multicast group
475 * on the outgoing interface, and the caller did not
476 * forbid loopback, loop back a copy.
477 */
478 ip_mloopback(ifp, m, &udst.sin);
479 }
480 #ifdef MROUTING
481 else {
482 /*
483 * If we are acting as a multicast router, perform
484 * multicast forwarding as if the packet had just
485 * arrived on the interface to which we are about
486 * to send. The multicast forwarding function
487 * recursively calls this function, using the
488 * IP_FORWARDING flag to prevent infinite recursion.
489 *
490 * Multicasts that are looped back by ip_mloopback(),
491 * above, will be forwarded by the ip_input() routine,
492 * if necessary.
493 */
494 extern struct socket *ip_mrouter;
495
496 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
497 if (ip_mforward(m, ifp) != 0) {
498 m_freem(m);
499 goto done;
500 }
501 }
502 }
503 #endif
504 /*
505 * Multicasts with a time-to-live of zero may be looped-
506 * back, above, but must not be transmitted on a network.
507 * Also, multicasts addressed to the loopback interface
508 * are not sent -- the above call to ip_mloopback() will
509 * loop back a copy if this host actually belongs to the
510 * destination group on the loopback interface.
511 */
512 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
513 m_freem(m);
514 goto done;
515 }
516 goto sendit;
517 }
518
519 /*
520 * If source address not specified yet, use address
521 * of outgoing interface.
522 */
523 if (in_nullhost(ip->ip_src)) {
524 struct ifaddr *xifa;
525
526 xifa = &ia->ia_ifa;
527 if (xifa->ifa_getifa != NULL) {
528 ia4_release(ia, &psref_ia);
529 /* FIXME ifa_getifa is NOMPSAFE */
530 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
531 if (ia == NULL) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 ia4_acquire(ia, &psref_ia);
536 }
537 ip->ip_src = ia->ia_addr.sin_addr;
538 }
539
540 /*
541 * Packets with Class-D address as source are not valid per
542 * RFC1112.
543 */
544 if (IN_MULTICAST(ip->ip_src.s_addr)) {
545 IP_STATINC(IP_STAT_ODROPPED);
546 error = EADDRNOTAVAIL;
547 goto bad;
548 }
549
550 /*
551 * Look for broadcast address and verify user is allowed to
552 * send such a packet.
553 */
554 if (isbroadcast) {
555 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
556 error = EADDRNOTAVAIL;
557 goto bad;
558 }
559 if ((flags & IP_ALLOWBROADCAST) == 0) {
560 error = EACCES;
561 goto bad;
562 }
563 /* don't allow broadcast messages to be fragmented */
564 if (ntohs(ip->ip_len) > ifp->if_mtu) {
565 error = EMSGSIZE;
566 goto bad;
567 }
568 m->m_flags |= M_BCAST;
569 } else
570 m->m_flags &= ~M_BCAST;
571
572 sendit:
573 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
574 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
575 ip->ip_id = 0;
576 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
577 ip->ip_id = ip_newid(ia);
578 } else {
579 /*
580 * TSO capable interfaces (typically?) increment
581 * ip_id for each segment.
582 * "allocate" enough ids here to increase the chance
583 * for them to be unique.
584 *
585 * note that the following calculation is not
586 * needed to be precise. wasting some ip_id is fine.
587 */
588
589 unsigned int segsz = m->m_pkthdr.segsz;
590 unsigned int datasz = ntohs(ip->ip_len) - hlen;
591 unsigned int num = howmany(datasz, segsz);
592
593 ip->ip_id = ip_newid_range(ia, num);
594 }
595 }
596 if (ia != NULL) {
597 ia4_release(ia, &psref_ia);
598 ia = NULL;
599 }
600
601 /*
602 * If we're doing Path MTU Discovery, we need to set DF unless
603 * the route's MTU is locked.
604 */
605 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
606 ip->ip_off |= htons(IP_DF);
607 }
608
609 #ifdef IPSEC
610 if (ipsec_used) {
611 bool ipsec_done = false;
612
613 /* Perform IPsec processing, if any. */
614 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
615 &ipsec_done);
616 if (error || ipsec_done)
617 goto done;
618 }
619 #endif
620
621 /*
622 * Run through list of hooks for output packets.
623 */
624 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
625 if (error || m == NULL) {
626 IP_STATINC(IP_STAT_PFILDROP_OUT);
627 goto done;
628 }
629
630 ip = mtod(m, struct ip *);
631 hlen = ip->ip_hl << 2;
632
633 m->m_pkthdr.csum_data |= hlen << 16;
634
635 /*
636 * search for the source address structure to
637 * maintain output statistics, and verify address
638 * validity
639 */
640 KASSERT(ia == NULL);
641 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
642 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
643 if (ifa != NULL)
644 ia = ifatoia(ifa);
645
646 /*
647 * Ensure we only send from a valid address.
648 * A NULL address is valid because the packet could be
649 * generated from a packet filter.
650 */
651 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
652 (error = ip_ifaddrvalid(ia)) != 0)
653 {
654 ARPLOG(LOG_ERR,
655 "refusing to send from invalid address %s (pid %d)\n",
656 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
657 IP_STATINC(IP_STAT_ODROPPED);
658 if (error == 1)
659 /*
660 * Address exists, but is tentative or detached.
661 * We can't send from it because it's invalid,
662 * so we drop the packet.
663 */
664 error = 0;
665 else
666 error = EADDRNOTAVAIL;
667 goto bad;
668 }
669
670 /* Maybe skip checksums on loopback interfaces. */
671 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
672 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
673 }
674 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
675
676 /*
677 * If small enough for mtu of path, or if using TCP segmentation
678 * offload, can just send directly.
679 */
680 if (ntohs(ip->ip_len) <= mtu ||
681 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
682 const struct sockaddr *sa;
683
684 #if IFA_STATS
685 if (ia)
686 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
687 #endif
688 /*
689 * Always initialize the sum to 0! Some HW assisted
690 * checksumming requires this.
691 */
692 ip->ip_sum = 0;
693
694 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
695 /*
696 * Perform any checksums that the hardware can't do
697 * for us.
698 *
699 * XXX Does any hardware require the {th,uh}_sum
700 * XXX fields to be 0?
701 */
702 if (sw_csum & M_CSUM_IPv4) {
703 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
704 ip->ip_sum = in_cksum(m, hlen);
705 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
706 }
707 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 if (IN_NEED_CHECKSUM(ifp,
709 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
710 in_undefer_cksum_tcpudp(m);
711 }
712 m->m_pkthdr.csum_flags &=
713 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 }
715 }
716
717 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
718 if (__predict_false(sw_csum & M_CSUM_TSOv4)) {
719 /*
720 * TSO4 is required by a packet, but disabled for
721 * the interface.
722 */
723 error = ip_tso_output(ifp, m, sa, rt);
724 } else
725 error = ip_if_output(ifp, m, sa, rt);
726 goto done;
727 }
728
729 /*
730 * We can't use HW checksumming if we're about to fragment the packet.
731 *
732 * XXX Some hardware can do this.
733 */
734 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
735 if (IN_NEED_CHECKSUM(ifp,
736 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
737 in_undefer_cksum_tcpudp(m);
738 }
739 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
740 }
741
742 /*
743 * Too large for interface; fragment if possible.
744 * Must be able to put at least 8 bytes per fragment.
745 */
746 if (ntohs(ip->ip_off) & IP_DF) {
747 if (flags & IP_RETURNMTU) {
748 KASSERT(inp != NULL);
749 inp->inp_errormtu = mtu;
750 }
751 error = EMSGSIZE;
752 IP_STATINC(IP_STAT_CANTFRAG);
753 goto bad;
754 }
755
756 error = ip_fragment(m, ifp, mtu);
757 if (error) {
758 m = NULL;
759 goto bad;
760 }
761
762 for (; m; m = m0) {
763 m0 = m->m_nextpkt;
764 m->m_nextpkt = NULL;
765 if (error) {
766 m_freem(m);
767 continue;
768 }
769 #if IFA_STATS
770 if (ia)
771 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
772 #endif
773 /*
774 * If we get there, the packet has not been handled by
775 * IPsec whereas it should have. Now that it has been
776 * fragmented, re-inject it in ip_output so that IPsec
777 * processing can occur.
778 */
779 if (natt_frag) {
780 error = ip_output(m, opt, NULL,
781 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
782 imo, inp);
783 } else {
784 KASSERT((m->m_pkthdr.csum_flags &
785 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
786 error = ip_if_output(ifp, m,
787 (m->m_flags & M_MCAST) ?
788 sintocsa(rdst) : sintocsa(dst), rt);
789 }
790 }
791 if (error == 0) {
792 IP_STATINC(IP_STAT_FRAGMENTED);
793 }
794
795 done:
796 ia4_release(ia, &psref_ia);
797 rtcache_unref(rt, ro);
798 if (ro == &iproute) {
799 rtcache_free(&iproute);
800 }
801 if (mifp != NULL) {
802 if_put(mifp, &psref);
803 }
804 if (bind_need_restore)
805 curlwp_bindx(bound);
806 return error;
807
808 bad:
809 m_freem(m);
810 goto done;
811 }
812
813 int
814 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
815 {
816 struct ip *ip, *mhip;
817 struct mbuf *m0;
818 int len, hlen, off;
819 int mhlen, firstlen;
820 struct mbuf **mnext;
821 int sw_csum = m->m_pkthdr.csum_flags;
822 int fragments = 0;
823 int error = 0;
824 int ipoff, ipflg;
825
826 ip = mtod(m, struct ip *);
827 hlen = ip->ip_hl << 2;
828
829 /* Preserve the offset and flags. */
830 ipoff = ntohs(ip->ip_off) & IP_OFFMASK;
831 ipflg = ntohs(ip->ip_off) & (IP_RF|IP_DF|IP_MF);
832
833 if (ifp != NULL)
834 sw_csum &= ~ifp->if_csum_flags_tx;
835
836 len = (mtu - hlen) &~ 7;
837 if (len < 8) {
838 m_freem(m);
839 return EMSGSIZE;
840 }
841
842 firstlen = len;
843 mnext = &m->m_nextpkt;
844
845 /*
846 * Loop through length of segment after first fragment,
847 * make new header and copy data of each part and link onto chain.
848 */
849 m0 = m;
850 mhlen = sizeof(struct ip);
851 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
852 MGETHDR(m, M_DONTWAIT, MT_HEADER);
853 if (m == NULL) {
854 error = ENOBUFS;
855 IP_STATINC(IP_STAT_ODROPPED);
856 goto sendorfree;
857 }
858 MCLAIM(m, m0->m_owner);
859
860 *mnext = m;
861 mnext = &m->m_nextpkt;
862
863 m->m_data += max_linkhdr;
864 mhip = mtod(m, struct ip *);
865 *mhip = *ip;
866
867 /* we must inherit the flags */
868 m->m_flags |= m0->m_flags & M_COPYFLAGS;
869
870 if (hlen > sizeof(struct ip)) {
871 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
872 mhip->ip_hl = mhlen >> 2;
873 }
874 m->m_len = mhlen;
875
876 mhip->ip_off = ((off - hlen) >> 3) + ipoff;
877 mhip->ip_off |= ipflg;
878 if (off + len >= ntohs(ip->ip_len))
879 len = ntohs(ip->ip_len) - off;
880 else
881 mhip->ip_off |= IP_MF;
882 HTONS(mhip->ip_off);
883
884 mhip->ip_len = htons((u_int16_t)(len + mhlen));
885 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
886 if (m->m_next == NULL) {
887 error = ENOBUFS;
888 IP_STATINC(IP_STAT_ODROPPED);
889 goto sendorfree;
890 }
891
892 m->m_pkthdr.len = mhlen + len;
893 m_reset_rcvif(m);
894
895 mhip->ip_sum = 0;
896 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
897 if (sw_csum & M_CSUM_IPv4) {
898 mhip->ip_sum = in_cksum(m, mhlen);
899 } else {
900 /*
901 * checksum is hw-offloaded or not necessary.
902 */
903 m->m_pkthdr.csum_flags |=
904 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
905 m->m_pkthdr.csum_data |= mhlen << 16;
906 KASSERT(!(ifp != NULL &&
907 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
908 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
909 }
910 IP_STATINC(IP_STAT_OFRAGMENTS);
911 fragments++;
912 }
913
914 /*
915 * Update first fragment by trimming what's been copied out
916 * and updating header, then send each fragment (in order).
917 */
918 m = m0;
919 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
920 m->m_pkthdr.len = hlen + firstlen;
921 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
922 ip->ip_off |= htons(IP_MF);
923 ip->ip_sum = 0;
924 if (sw_csum & M_CSUM_IPv4) {
925 ip->ip_sum = in_cksum(m, hlen);
926 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
927 } else {
928 /*
929 * checksum is hw-offloaded or not necessary.
930 */
931 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
932 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
933 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
934 sizeof(struct ip));
935 }
936
937 sendorfree:
938 /*
939 * If there is no room for all the fragments, don't queue
940 * any of them.
941 */
942 if (ifp != NULL) {
943 IFQ_LOCK(&ifp->if_snd);
944 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
945 error == 0) {
946 error = ENOBUFS;
947 IP_STATINC(IP_STAT_ODROPPED);
948 IFQ_INC_DROPS(&ifp->if_snd);
949 }
950 IFQ_UNLOCK(&ifp->if_snd);
951 }
952 if (error) {
953 for (m = m0; m; m = m0) {
954 m0 = m->m_nextpkt;
955 m->m_nextpkt = NULL;
956 m_freem(m);
957 }
958 }
959
960 return error;
961 }
962
963 /*
964 * Determine the maximum length of the options to be inserted;
965 * we would far rather allocate too much space rather than too little.
966 */
967 u_int
968 ip_optlen(struct inpcb *inp)
969 {
970 struct mbuf *m = inp->inp_options;
971
972 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
973 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
974 }
975 return 0;
976 }
977
978 /*
979 * Insert IP options into preformed packet.
980 * Adjust IP destination as required for IP source routing,
981 * as indicated by a non-zero in_addr at the start of the options.
982 */
983 static struct mbuf *
984 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
985 {
986 struct ipoption *p = mtod(opt, struct ipoption *);
987 struct mbuf *n;
988 struct ip *ip = mtod(m, struct ip *);
989 unsigned optlen;
990
991 optlen = opt->m_len - sizeof(p->ipopt_dst);
992 KASSERT(optlen % 4 == 0);
993 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
994 return m; /* XXX should fail */
995 if (!in_nullhost(p->ipopt_dst))
996 ip->ip_dst = p->ipopt_dst;
997 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
998 MGETHDR(n, M_DONTWAIT, MT_HEADER);
999 if (n == NULL)
1000 return m;
1001 MCLAIM(n, m->m_owner);
1002 m_move_pkthdr(n, m);
1003 m->m_len -= sizeof(struct ip);
1004 m->m_data += sizeof(struct ip);
1005 n->m_next = m;
1006 n->m_len = optlen + sizeof(struct ip);
1007 n->m_data += max_linkhdr;
1008 memcpy(mtod(n, void *), ip, sizeof(struct ip));
1009 m = n;
1010 } else {
1011 m->m_data -= optlen;
1012 m->m_len += optlen;
1013 memmove(mtod(m, void *), ip, sizeof(struct ip));
1014 }
1015 m->m_pkthdr.len += optlen;
1016 ip = mtod(m, struct ip *);
1017 memcpy(ip + 1, p->ipopt_list, optlen);
1018 *phlen = sizeof(struct ip) + optlen;
1019 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1020 return m;
1021 }
1022
1023 /*
1024 * Copy options from ipsrc to ipdst, omitting those not copied during
1025 * fragmentation.
1026 */
1027 int
1028 ip_optcopy(struct ip *ipsrc, struct ip *ipdst)
1029 {
1030 u_char *cp, *dp;
1031 int opt, optlen, cnt;
1032
1033 cp = (u_char *)(ipsrc + 1);
1034 dp = (u_char *)(ipdst + 1);
1035 cnt = (ipsrc->ip_hl << 2) - sizeof(struct ip);
1036 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1037 opt = cp[0];
1038 if (opt == IPOPT_EOL)
1039 break;
1040 if (opt == IPOPT_NOP) {
1041 /* Preserve for IP mcast tunnel's LSRR alignment. */
1042 *dp++ = IPOPT_NOP;
1043 optlen = 1;
1044 continue;
1045 }
1046
1047 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1048 optlen = cp[IPOPT_OLEN];
1049 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1050
1051 /* Invalid lengths should have been caught by ip_dooptions. */
1052 if (optlen > cnt)
1053 optlen = cnt;
1054 if (IPOPT_COPIED(opt)) {
1055 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1056 dp += optlen;
1057 }
1058 }
1059
1060 for (optlen = dp - (u_char *)(ipdst+1); optlen & 0x3; optlen++) {
1061 *dp++ = IPOPT_EOL;
1062 }
1063
1064 return optlen;
1065 }
1066
1067 /*
1068 * IP socket option processing.
1069 */
1070 int
1071 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1072 {
1073 struct inpcb *inp = sotoinpcb(so);
1074 struct ip *ip = &inp->inp_ip;
1075 int inpflags = inp->inp_flags;
1076 int optval = 0, error = 0;
1077 struct in_pktinfo pktinfo;
1078
1079 KASSERT(solocked(so));
1080
1081 if (sopt->sopt_level != IPPROTO_IP) {
1082 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1083 return 0;
1084 return ENOPROTOOPT;
1085 }
1086
1087 switch (op) {
1088 case PRCO_SETOPT:
1089 switch (sopt->sopt_name) {
1090 case IP_OPTIONS:
1091 #ifdef notyet
1092 case IP_RETOPTS:
1093 #endif
1094 error = ip_pcbopts(inp, sopt);
1095 break;
1096
1097 case IP_TOS:
1098 case IP_TTL:
1099 case IP_MINTTL:
1100 case IP_RECVOPTS:
1101 case IP_RECVRETOPTS:
1102 case IP_RECVDSTADDR:
1103 case IP_RECVIF:
1104 case IP_RECVPKTINFO:
1105 case IP_RECVTTL:
1106 error = sockopt_getint(sopt, &optval);
1107 if (error)
1108 break;
1109
1110 switch (sopt->sopt_name) {
1111 case IP_TOS:
1112 ip->ip_tos = optval;
1113 break;
1114
1115 case IP_TTL:
1116 ip->ip_ttl = optval;
1117 break;
1118
1119 case IP_MINTTL:
1120 if (optval > 0 && optval <= MAXTTL)
1121 inp->inp_ip_minttl = optval;
1122 else
1123 error = EINVAL;
1124 break;
1125 #define OPTSET(bit) \
1126 if (optval) \
1127 inpflags |= bit; \
1128 else \
1129 inpflags &= ~bit;
1130
1131 case IP_RECVOPTS:
1132 OPTSET(INP_RECVOPTS);
1133 break;
1134
1135 case IP_RECVPKTINFO:
1136 OPTSET(INP_RECVPKTINFO);
1137 break;
1138
1139 case IP_RECVRETOPTS:
1140 OPTSET(INP_RECVRETOPTS);
1141 break;
1142
1143 case IP_RECVDSTADDR:
1144 OPTSET(INP_RECVDSTADDR);
1145 break;
1146
1147 case IP_RECVIF:
1148 OPTSET(INP_RECVIF);
1149 break;
1150
1151 case IP_RECVTTL:
1152 OPTSET(INP_RECVTTL);
1153 break;
1154 }
1155 break;
1156 case IP_PKTINFO:
1157 error = sockopt_getint(sopt, &optval);
1158 if (!error) {
1159 /* Linux compatibility */
1160 OPTSET(INP_RECVPKTINFO);
1161 break;
1162 }
1163 error = sockopt_get(sopt, &pktinfo, sizeof(pktinfo));
1164 if (error)
1165 break;
1166
1167 if (pktinfo.ipi_ifindex == 0) {
1168 inp->inp_prefsrcip = pktinfo.ipi_addr;
1169 break;
1170 }
1171
1172 /* Solaris compatibility */
1173 struct ifnet *ifp;
1174 struct in_ifaddr *ia;
1175 int s;
1176
1177 /* pick up primary address */
1178 s = pserialize_read_enter();
1179 ifp = if_byindex(pktinfo.ipi_ifindex);
1180 if (ifp == NULL) {
1181 pserialize_read_exit(s);
1182 error = EADDRNOTAVAIL;
1183 break;
1184 }
1185 ia = in_get_ia_from_ifp(ifp);
1186 if (ia == NULL) {
1187 pserialize_read_exit(s);
1188 error = EADDRNOTAVAIL;
1189 break;
1190 }
1191 inp->inp_prefsrcip = IA_SIN(ia)->sin_addr;
1192 pserialize_read_exit(s);
1193 break;
1194 break;
1195 #undef OPTSET
1196
1197 case IP_MULTICAST_IF:
1198 case IP_MULTICAST_TTL:
1199 case IP_MULTICAST_LOOP:
1200 case IP_ADD_MEMBERSHIP:
1201 case IP_DROP_MEMBERSHIP:
1202 error = ip_setmoptions(&inp->inp_moptions, sopt);
1203 break;
1204
1205 case IP_PORTRANGE:
1206 error = sockopt_getint(sopt, &optval);
1207 if (error)
1208 break;
1209
1210 switch (optval) {
1211 case IP_PORTRANGE_DEFAULT:
1212 case IP_PORTRANGE_HIGH:
1213 inpflags &= ~(INP_LOWPORT);
1214 break;
1215
1216 case IP_PORTRANGE_LOW:
1217 inpflags |= INP_LOWPORT;
1218 break;
1219
1220 default:
1221 error = EINVAL;
1222 break;
1223 }
1224 break;
1225
1226 case IP_PORTALGO:
1227 error = sockopt_getint(sopt, &optval);
1228 if (error)
1229 break;
1230
1231 error = portalgo_algo_index_select(
1232 (struct inpcb_hdr *)inp, optval);
1233 break;
1234
1235 #if defined(IPSEC)
1236 case IP_IPSEC_POLICY:
1237 if (ipsec_enabled) {
1238 error = ipsec_set_policy(inp,
1239 sopt->sopt_data, sopt->sopt_size,
1240 curlwp->l_cred);
1241 } else
1242 error = ENOPROTOOPT;
1243 break;
1244 #endif /* IPSEC */
1245
1246 default:
1247 error = ENOPROTOOPT;
1248 break;
1249 }
1250 break;
1251
1252 case PRCO_GETOPT:
1253 switch (sopt->sopt_name) {
1254 case IP_OPTIONS:
1255 case IP_RETOPTS: {
1256 struct mbuf *mopts = inp->inp_options;
1257
1258 if (mopts) {
1259 struct mbuf *m;
1260
1261 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1262 if (m == NULL) {
1263 error = ENOBUFS;
1264 break;
1265 }
1266 error = sockopt_setmbuf(sopt, m);
1267 }
1268 break;
1269 }
1270 case IP_TOS:
1271 case IP_TTL:
1272 case IP_MINTTL:
1273 case IP_RECVOPTS:
1274 case IP_RECVRETOPTS:
1275 case IP_RECVDSTADDR:
1276 case IP_RECVIF:
1277 case IP_RECVPKTINFO:
1278 case IP_RECVTTL:
1279 case IP_ERRORMTU:
1280 switch (sopt->sopt_name) {
1281 case IP_TOS:
1282 optval = ip->ip_tos;
1283 break;
1284
1285 case IP_TTL:
1286 optval = ip->ip_ttl;
1287 break;
1288
1289 case IP_MINTTL:
1290 optval = inp->inp_ip_minttl;
1291 break;
1292
1293 case IP_ERRORMTU:
1294 optval = inp->inp_errormtu;
1295 break;
1296
1297 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1298
1299 case IP_RECVOPTS:
1300 optval = OPTBIT(INP_RECVOPTS);
1301 break;
1302
1303 case IP_RECVPKTINFO:
1304 optval = OPTBIT(INP_RECVPKTINFO);
1305 break;
1306
1307 case IP_RECVRETOPTS:
1308 optval = OPTBIT(INP_RECVRETOPTS);
1309 break;
1310
1311 case IP_RECVDSTADDR:
1312 optval = OPTBIT(INP_RECVDSTADDR);
1313 break;
1314
1315 case IP_RECVIF:
1316 optval = OPTBIT(INP_RECVIF);
1317 break;
1318
1319 case IP_RECVTTL:
1320 optval = OPTBIT(INP_RECVTTL);
1321 break;
1322 }
1323 error = sockopt_setint(sopt, optval);
1324 break;
1325
1326 case IP_PKTINFO:
1327 switch (sopt->sopt_size) {
1328 case sizeof(int):
1329 /* Linux compatibility */
1330 optval = OPTBIT(INP_RECVPKTINFO);
1331 error = sockopt_setint(sopt, optval);
1332 break;
1333 case sizeof(struct in_pktinfo):
1334 /* Solaris compatibility */
1335 pktinfo.ipi_ifindex = 0;
1336 pktinfo.ipi_addr = inp->inp_prefsrcip;
1337 error = sockopt_set(sopt, &pktinfo,
1338 sizeof(pktinfo));
1339 break;
1340 default:
1341 /*
1342 * While size is stuck at 0, and, later, if
1343 * the caller doesn't use an exactly sized
1344 * recipient for the data, default to Linux
1345 * compatibility
1346 */
1347 optval = OPTBIT(INP_RECVPKTINFO);
1348 error = sockopt_setint(sopt, optval);
1349 break;
1350 }
1351 break;
1352
1353 #if 0 /* defined(IPSEC) */
1354 case IP_IPSEC_POLICY:
1355 {
1356 struct mbuf *m = NULL;
1357
1358 /* XXX this will return EINVAL as sopt is empty */
1359 error = ipsec_get_policy(inp, sopt->sopt_data,
1360 sopt->sopt_size, &m);
1361 if (error == 0)
1362 error = sockopt_setmbuf(sopt, m);
1363 break;
1364 }
1365 #endif /*IPSEC*/
1366
1367 case IP_MULTICAST_IF:
1368 case IP_MULTICAST_TTL:
1369 case IP_MULTICAST_LOOP:
1370 case IP_ADD_MEMBERSHIP:
1371 case IP_DROP_MEMBERSHIP:
1372 error = ip_getmoptions(inp->inp_moptions, sopt);
1373 break;
1374
1375 case IP_PORTRANGE:
1376 if (inpflags & INP_LOWPORT)
1377 optval = IP_PORTRANGE_LOW;
1378 else
1379 optval = IP_PORTRANGE_DEFAULT;
1380 error = sockopt_setint(sopt, optval);
1381 break;
1382
1383 case IP_PORTALGO:
1384 optval = inp->inp_portalgo;
1385 error = sockopt_setint(sopt, optval);
1386 break;
1387
1388 default:
1389 error = ENOPROTOOPT;
1390 break;
1391 }
1392 break;
1393 }
1394
1395 if (!error) {
1396 inp->inp_flags = inpflags;
1397 }
1398 return error;
1399 }
1400
1401 static int
1402 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
1403 int *flags, kauth_cred_t cred)
1404 {
1405 struct ip_moptions *imo;
1406 int error = 0;
1407 bool addrset = false;
1408
1409 if (!in_nullhost(pktinfo->ipi_addr)) {
1410 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1411 /* EADDRNOTAVAIL? */
1412 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
1413 if (error != 0)
1414 return error;
1415 addrset = true;
1416 }
1417
1418 if (pktinfo->ipi_ifindex != 0) {
1419 if (!addrset) {
1420 struct ifnet *ifp;
1421 struct in_ifaddr *ia;
1422 int s;
1423
1424 /* pick up primary address */
1425 s = pserialize_read_enter();
1426 ifp = if_byindex(pktinfo->ipi_ifindex);
1427 if (ifp == NULL) {
1428 pserialize_read_exit(s);
1429 return EADDRNOTAVAIL;
1430 }
1431 ia = in_get_ia_from_ifp(ifp);
1432 if (ia == NULL) {
1433 pserialize_read_exit(s);
1434 return EADDRNOTAVAIL;
1435 }
1436 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1437 pserialize_read_exit(s);
1438 }
1439
1440 /*
1441 * If specified ipi_ifindex,
1442 * use copied or locally initialized ip_moptions.
1443 * Original ip_moptions must not be modified.
1444 */
1445 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1446 if (pktopts->ippo_imo != NULL) {
1447 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1448 } else {
1449 memset(imo, 0, sizeof(*imo));
1450 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1451 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1452 }
1453 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1454 pktopts->ippo_imo = imo;
1455 *flags |= IP_ROUTETOIFINDEX;
1456 }
1457 return error;
1458 }
1459
1460 /*
1461 * Set up IP outgoing packet options. Even if control is NULL,
1462 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1463 */
1464 int
1465 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1466 struct inpcb *inp, kauth_cred_t cred)
1467 {
1468 struct cmsghdr *cm;
1469 struct in_pktinfo pktinfo;
1470 int error;
1471
1472 pktopts->ippo_imo = inp->inp_moptions;
1473
1474 struct in_addr *ia = in_nullhost(inp->inp_prefsrcip) ? &inp->inp_laddr :
1475 &inp->inp_prefsrcip;
1476 sockaddr_in_init(&pktopts->ippo_laddr, ia, 0);
1477
1478 if (control == NULL)
1479 return 0;
1480
1481 /*
1482 * XXX: Currently, we assume all the optional information is
1483 * stored in a single mbuf.
1484 */
1485 if (control->m_next)
1486 return EINVAL;
1487
1488 for (; control->m_len > 0;
1489 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1490 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1491 cm = mtod(control, struct cmsghdr *);
1492 if ((control->m_len < sizeof(*cm)) ||
1493 (cm->cmsg_len == 0) ||
1494 (cm->cmsg_len > control->m_len)) {
1495 return EINVAL;
1496 }
1497 if (cm->cmsg_level != IPPROTO_IP)
1498 continue;
1499
1500 switch (cm->cmsg_type) {
1501 case IP_PKTINFO:
1502 if (cm->cmsg_len != CMSG_LEN(sizeof(pktinfo)))
1503 return EINVAL;
1504 memcpy(&pktinfo, CMSG_DATA(cm), sizeof(pktinfo));
1505 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1506 cred);
1507 if (error)
1508 return error;
1509 break;
1510 case IP_SENDSRCADDR: /* FreeBSD compatibility */
1511 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr)))
1512 return EINVAL;
1513 pktinfo.ipi_ifindex = 0;
1514 pktinfo.ipi_addr =
1515 ((struct in_pktinfo *)CMSG_DATA(cm))->ipi_addr;
1516 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1517 cred);
1518 if (error)
1519 return error;
1520 break;
1521 default:
1522 return ENOPROTOOPT;
1523 }
1524 }
1525 return 0;
1526 }
1527
1528 /*
1529 * Set up IP options in pcb for insertion in output packets.
1530 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1531 * with destination address if source routed.
1532 */
1533 static int
1534 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1535 {
1536 struct mbuf *m;
1537 const u_char *cp;
1538 u_char *dp;
1539 int cnt;
1540
1541 KASSERT(inp_locked(inp));
1542
1543 /* Turn off any old options. */
1544 if (inp->inp_options) {
1545 m_free(inp->inp_options);
1546 }
1547 inp->inp_options = NULL;
1548 if ((cnt = sopt->sopt_size) == 0) {
1549 /* Only turning off any previous options. */
1550 return 0;
1551 }
1552 cp = sopt->sopt_data;
1553
1554 if (cnt % 4) {
1555 /* Must be 4-byte aligned, because there's no padding. */
1556 return EINVAL;
1557 }
1558
1559 m = m_get(M_DONTWAIT, MT_SOOPTS);
1560 if (m == NULL)
1561 return ENOBUFS;
1562
1563 dp = mtod(m, u_char *);
1564 memset(dp, 0, sizeof(struct in_addr));
1565 dp += sizeof(struct in_addr);
1566 m->m_len = sizeof(struct in_addr);
1567
1568 /*
1569 * IP option list according to RFC791. Each option is of the form
1570 *
1571 * [optval] [olen] [(olen - 2) data bytes]
1572 *
1573 * We validate the list and copy options to an mbuf for prepending
1574 * to data packets. The IP first-hop destination address will be
1575 * stored before actual options and is zero if unset.
1576 */
1577 while (cnt > 0) {
1578 uint8_t optval, olen, offset;
1579
1580 optval = cp[IPOPT_OPTVAL];
1581
1582 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1583 olen = 1;
1584 } else {
1585 if (cnt < IPOPT_OLEN + 1)
1586 goto bad;
1587
1588 olen = cp[IPOPT_OLEN];
1589 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1590 goto bad;
1591 }
1592
1593 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1594 /*
1595 * user process specifies route as:
1596 * ->A->B->C->D
1597 * D must be our final destination (but we can't
1598 * check that since we may not have connected yet).
1599 * A is first hop destination, which doesn't appear in
1600 * actual IP option, but is stored before the options.
1601 */
1602 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1603 goto bad;
1604
1605 offset = cp[IPOPT_OFFSET];
1606 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1607 sizeof(struct in_addr));
1608
1609 cp += sizeof(struct in_addr);
1610 cnt -= sizeof(struct in_addr);
1611 olen -= sizeof(struct in_addr);
1612
1613 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1614 goto bad;
1615
1616 memcpy(dp, cp, olen);
1617 dp[IPOPT_OPTVAL] = optval;
1618 dp[IPOPT_OLEN] = olen;
1619 dp[IPOPT_OFFSET] = offset;
1620 break;
1621 } else {
1622 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1623 goto bad;
1624
1625 memcpy(dp, cp, olen);
1626 break;
1627 }
1628
1629 dp += olen;
1630 m->m_len += olen;
1631
1632 if (optval == IPOPT_EOL)
1633 break;
1634
1635 cp += olen;
1636 cnt -= olen;
1637 }
1638
1639 inp->inp_options = m;
1640 return 0;
1641
1642 bad:
1643 (void)m_free(m);
1644 return EINVAL;
1645 }
1646
1647 /*
1648 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1649 * Must be called in a pserialize critical section.
1650 */
1651 static struct ifnet *
1652 ip_multicast_if(struct in_addr *a, int *ifindexp)
1653 {
1654 int ifindex;
1655 struct ifnet *ifp = NULL;
1656 struct in_ifaddr *ia;
1657
1658 if (ifindexp)
1659 *ifindexp = 0;
1660 if (ntohl(a->s_addr) >> 24 == 0) {
1661 ifindex = ntohl(a->s_addr) & 0xffffff;
1662 ifp = if_byindex(ifindex);
1663 if (!ifp)
1664 return NULL;
1665 if (ifindexp)
1666 *ifindexp = ifindex;
1667 } else {
1668 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1669 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1670 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1671 ifp = ia->ia_ifp;
1672 if (if_is_deactivated(ifp))
1673 ifp = NULL;
1674 break;
1675 }
1676 }
1677 }
1678 return ifp;
1679 }
1680
1681 static int
1682 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1683 {
1684 u_int tval;
1685 u_char cval;
1686 int error;
1687
1688 if (sopt == NULL)
1689 return EINVAL;
1690
1691 switch (sopt->sopt_size) {
1692 case sizeof(u_char):
1693 error = sockopt_get(sopt, &cval, sizeof(u_char));
1694 tval = cval;
1695 break;
1696
1697 case sizeof(u_int):
1698 error = sockopt_get(sopt, &tval, sizeof(u_int));
1699 break;
1700
1701 default:
1702 error = EINVAL;
1703 }
1704
1705 if (error)
1706 return error;
1707
1708 if (tval > maxval)
1709 return EINVAL;
1710
1711 *val = tval;
1712 return 0;
1713 }
1714
1715 static int
1716 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1717 struct psref *psref, struct in_addr *ia, bool add)
1718 {
1719 int error;
1720 struct ip_mreq mreq;
1721
1722 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1723 if (error)
1724 return error;
1725
1726 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1727 return EINVAL;
1728
1729 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1730
1731 if (in_nullhost(mreq.imr_interface)) {
1732 union {
1733 struct sockaddr dst;
1734 struct sockaddr_in dst4;
1735 } u;
1736 struct route ro;
1737
1738 if (!add) {
1739 *ifp = NULL;
1740 return 0;
1741 }
1742 /*
1743 * If no interface address was provided, use the interface of
1744 * the route to the given multicast address.
1745 */
1746 struct rtentry *rt;
1747 memset(&ro, 0, sizeof(ro));
1748
1749 sockaddr_in_init(&u.dst4, ia, 0);
1750 error = rtcache_setdst(&ro, &u.dst);
1751 if (error != 0)
1752 return error;
1753 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1754 if (*ifp != NULL) {
1755 if (if_is_deactivated(*ifp))
1756 *ifp = NULL;
1757 else
1758 if_acquire(*ifp, psref);
1759 }
1760 rtcache_unref(rt, &ro);
1761 rtcache_free(&ro);
1762 } else {
1763 int s = pserialize_read_enter();
1764 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1765 if (!add && *ifp == NULL) {
1766 pserialize_read_exit(s);
1767 return EADDRNOTAVAIL;
1768 }
1769 if (*ifp != NULL) {
1770 if (if_is_deactivated(*ifp))
1771 *ifp = NULL;
1772 else
1773 if_acquire(*ifp, psref);
1774 }
1775 pserialize_read_exit(s);
1776 }
1777 return 0;
1778 }
1779
1780 /*
1781 * Add a multicast group membership.
1782 * Group must be a valid IP multicast address.
1783 */
1784 static int
1785 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1786 {
1787 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1788 struct in_addr ia;
1789 int i, error, bound;
1790 struct psref psref;
1791
1792 /* imo is protected by solock or referenced only by the caller */
1793
1794 bound = curlwp_bind();
1795 if (sopt->sopt_size == sizeof(struct ip_mreq))
1796 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1797 else {
1798 #ifdef INET6
1799 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1800 #else
1801 error = EINVAL;
1802 #endif
1803 }
1804
1805 if (error)
1806 goto out;
1807
1808 /*
1809 * See if we found an interface, and confirm that it
1810 * supports multicast.
1811 */
1812 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1813 error = EADDRNOTAVAIL;
1814 goto out;
1815 }
1816
1817 /*
1818 * See if the membership already exists or if all the
1819 * membership slots are full.
1820 */
1821 for (i = 0; i < imo->imo_num_memberships; ++i) {
1822 if (imo->imo_membership[i]->inm_ifp == ifp &&
1823 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1824 break;
1825 }
1826 if (i < imo->imo_num_memberships) {
1827 error = EADDRINUSE;
1828 goto out;
1829 }
1830
1831 if (i == IP_MAX_MEMBERSHIPS) {
1832 error = ETOOMANYREFS;
1833 goto out;
1834 }
1835
1836 /*
1837 * Everything looks good; add a new record to the multicast
1838 * address list for the given interface.
1839 */
1840 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1841 if (imo->imo_membership[i] == NULL) {
1842 error = ENOBUFS;
1843 goto out;
1844 }
1845
1846 ++imo->imo_num_memberships;
1847 error = 0;
1848 out:
1849 if_put(ifp, &psref);
1850 curlwp_bindx(bound);
1851 return error;
1852 }
1853
1854 /*
1855 * Drop a multicast group membership.
1856 * Group must be a valid IP multicast address.
1857 */
1858 static int
1859 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1860 {
1861 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1862 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1863 int i, error, bound;
1864 struct psref psref;
1865
1866 /* imo is protected by solock or referenced only by the caller */
1867
1868 bound = curlwp_bind();
1869 if (sopt->sopt_size == sizeof(struct ip_mreq))
1870 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1871 else {
1872 #ifdef INET6
1873 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1874 #else
1875 error = EINVAL;
1876 #endif
1877 }
1878
1879 if (error)
1880 goto out;
1881
1882 /*
1883 * Find the membership in the membership array.
1884 */
1885 for (i = 0; i < imo->imo_num_memberships; ++i) {
1886 if ((ifp == NULL ||
1887 imo->imo_membership[i]->inm_ifp == ifp) &&
1888 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1889 break;
1890 }
1891 if (i == imo->imo_num_memberships) {
1892 error = EADDRNOTAVAIL;
1893 goto out;
1894 }
1895
1896 /*
1897 * Give up the multicast address record to which the
1898 * membership points.
1899 */
1900 in_delmulti(imo->imo_membership[i]);
1901
1902 /*
1903 * Remove the gap in the membership array.
1904 */
1905 for (++i; i < imo->imo_num_memberships; ++i)
1906 imo->imo_membership[i-1] = imo->imo_membership[i];
1907 --imo->imo_num_memberships;
1908 error = 0;
1909 out:
1910 if_put(ifp, &psref);
1911 curlwp_bindx(bound);
1912 return error;
1913 }
1914
1915 /*
1916 * Set the IP multicast options in response to user setsockopt().
1917 */
1918 int
1919 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1920 {
1921 struct ip_moptions *imo = *pimo;
1922 struct in_addr addr;
1923 struct ifnet *ifp;
1924 int ifindex, error = 0;
1925
1926 /* The passed imo isn't NULL, it should be protected by solock */
1927
1928 if (!imo) {
1929 /*
1930 * No multicast option buffer attached to the pcb;
1931 * allocate one and initialize to default values.
1932 */
1933 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1934 if (imo == NULL)
1935 return ENOBUFS;
1936
1937 imo->imo_multicast_if_index = 0;
1938 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1939 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1940 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1941 imo->imo_num_memberships = 0;
1942 *pimo = imo;
1943 }
1944
1945 switch (sopt->sopt_name) {
1946 case IP_MULTICAST_IF: {
1947 int s;
1948 /*
1949 * Select the interface for outgoing multicast packets.
1950 */
1951 error = sockopt_get(sopt, &addr, sizeof(addr));
1952 if (error)
1953 break;
1954
1955 /*
1956 * INADDR_ANY is used to remove a previous selection.
1957 * When no interface is selected, a default one is
1958 * chosen every time a multicast packet is sent.
1959 */
1960 if (in_nullhost(addr)) {
1961 imo->imo_multicast_if_index = 0;
1962 break;
1963 }
1964 /*
1965 * The selected interface is identified by its local
1966 * IP address. Find the interface and confirm that
1967 * it supports multicasting.
1968 */
1969 s = pserialize_read_enter();
1970 ifp = ip_multicast_if(&addr, &ifindex);
1971 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1972 pserialize_read_exit(s);
1973 error = EADDRNOTAVAIL;
1974 break;
1975 }
1976 imo->imo_multicast_if_index = ifp->if_index;
1977 pserialize_read_exit(s);
1978 if (ifindex)
1979 imo->imo_multicast_addr = addr;
1980 else
1981 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1982 break;
1983 }
1984
1985 case IP_MULTICAST_TTL:
1986 /*
1987 * Set the IP time-to-live for outgoing multicast packets.
1988 */
1989 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1990 break;
1991
1992 case IP_MULTICAST_LOOP:
1993 /*
1994 * Set the loopback flag for outgoing multicast packets.
1995 * Must be zero or one.
1996 */
1997 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1998 break;
1999
2000 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
2001 error = ip_add_membership(imo, sopt);
2002 break;
2003
2004 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
2005 error = ip_drop_membership(imo, sopt);
2006 break;
2007
2008 default:
2009 error = EOPNOTSUPP;
2010 break;
2011 }
2012
2013 /*
2014 * If all options have default values, no need to keep the mbuf.
2015 */
2016 if (imo->imo_multicast_if_index == 0 &&
2017 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2018 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2019 imo->imo_num_memberships == 0) {
2020 kmem_intr_free(imo, sizeof(*imo));
2021 *pimo = NULL;
2022 }
2023
2024 return error;
2025 }
2026
2027 /*
2028 * Return the IP multicast options in response to user getsockopt().
2029 */
2030 int
2031 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
2032 {
2033 struct in_addr addr;
2034 uint8_t optval;
2035 int error = 0;
2036
2037 /* imo is protected by solock or refereced only by the caller */
2038
2039 switch (sopt->sopt_name) {
2040 case IP_MULTICAST_IF:
2041 if (imo == NULL || imo->imo_multicast_if_index == 0)
2042 addr = zeroin_addr;
2043 else if (imo->imo_multicast_addr.s_addr) {
2044 /* return the value user has set */
2045 addr = imo->imo_multicast_addr;
2046 } else {
2047 struct ifnet *ifp;
2048 struct in_ifaddr *ia = NULL;
2049 int s = pserialize_read_enter();
2050
2051 ifp = if_byindex(imo->imo_multicast_if_index);
2052 if (ifp != NULL) {
2053 ia = in_get_ia_from_ifp(ifp);
2054 }
2055 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
2056 pserialize_read_exit(s);
2057 }
2058 error = sockopt_set(sopt, &addr, sizeof(addr));
2059 break;
2060
2061 case IP_MULTICAST_TTL:
2062 optval = imo ? imo->imo_multicast_ttl
2063 : IP_DEFAULT_MULTICAST_TTL;
2064
2065 error = sockopt_set(sopt, &optval, sizeof(optval));
2066 break;
2067
2068 case IP_MULTICAST_LOOP:
2069 optval = imo ? imo->imo_multicast_loop
2070 : IP_DEFAULT_MULTICAST_LOOP;
2071
2072 error = sockopt_set(sopt, &optval, sizeof(optval));
2073 break;
2074
2075 default:
2076 error = EOPNOTSUPP;
2077 }
2078
2079 return error;
2080 }
2081
2082 /*
2083 * Discard the IP multicast options.
2084 */
2085 void
2086 ip_freemoptions(struct ip_moptions *imo)
2087 {
2088 int i;
2089
2090 /* The owner of imo (inp) should be protected by solock */
2091
2092 if (imo != NULL) {
2093 for (i = 0; i < imo->imo_num_memberships; ++i) {
2094 struct in_multi *inm = imo->imo_membership[i];
2095 in_delmulti(inm);
2096 /* ifp should not leave thanks to solock */
2097 }
2098
2099 kmem_intr_free(imo, sizeof(*imo));
2100 }
2101 }
2102
2103 /*
2104 * Routine called from ip_output() to loop back a copy of an IP multicast
2105 * packet to the input queue of a specified interface. Note that this
2106 * calls the output routine of the loopback "driver", but with an interface
2107 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2108 */
2109 static void
2110 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2111 {
2112 struct ip *ip;
2113 struct mbuf *copym;
2114
2115 copym = m_copypacket(m, M_DONTWAIT);
2116 if (copym != NULL &&
2117 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2118 copym = m_pullup(copym, sizeof(struct ip));
2119 if (copym == NULL)
2120 return;
2121 /*
2122 * We don't bother to fragment if the IP length is greater
2123 * than the interface's MTU. Can this possibly matter?
2124 */
2125 ip = mtod(copym, struct ip *);
2126
2127 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2128 in_undefer_cksum_tcpudp(copym);
2129 copym->m_pkthdr.csum_flags &=
2130 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2131 }
2132
2133 ip->ip_sum = 0;
2134 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2135 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2136 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2137 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2138 }
2139
2140 /*
2141 * Ensure sending address is valid.
2142 * Returns 0 on success, -1 if an error should be sent back or 1
2143 * if the packet could be dropped without error (protocol dependent).
2144 */
2145 static int
2146 ip_ifaddrvalid(const struct in_ifaddr *ia)
2147 {
2148
2149 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2150 return 0;
2151
2152 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2153 return -1;
2154 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2155 return 1;
2156
2157 return 0;
2158 }
2159