ip_output.c revision 1.314 1 /* $NetBSD: ip_output.c,v 1.314 2019/06/05 01:31:04 knakahara Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.314 2019/06/05 01:31:04 knakahara Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 m_freem(m);
206 return error;
207 }
208 }
209
210 error = ip_mark_mpls(ifp, m, rt);
211 if (error != 0) {
212 m_freem(m);
213 return error;
214 }
215
216 error = if_output_lock(ifp, ifp, m, dst, rt);
217
218 return error;
219 }
220
221 /*
222 * IP output. The packet in mbuf chain m contains a skeletal IP
223 * header (with len, off, ttl, proto, tos, src, dst).
224 * The mbuf chain containing the packet will be freed.
225 * The mbuf opt, if present, will not be freed.
226 */
227 int
228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
229 struct ip_moptions *imo, struct inpcb *inp)
230 {
231 struct rtentry *rt;
232 struct ip *ip;
233 struct ifnet *ifp, *mifp = NULL;
234 struct mbuf *m = m0;
235 int len, hlen, error = 0;
236 struct route iproute;
237 const struct sockaddr_in *dst;
238 struct in_ifaddr *ia = NULL;
239 struct ifaddr *ifa;
240 int isbroadcast;
241 int sw_csum;
242 u_long mtu;
243 bool natt_frag = false;
244 bool rtmtu_nolock;
245 union {
246 struct sockaddr sa;
247 struct sockaddr_in sin;
248 } udst, usrc;
249 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
250 * opposed to the nexthop
251 */
252 struct psref psref, psref_ia;
253 int bound;
254 bool bind_need_restore = false;
255
256 len = 0;
257
258 MCLAIM(m, &ip_tx_mowner);
259
260 KASSERT((m->m_flags & M_PKTHDR) != 0);
261 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
263 (M_CSUM_TCPv4|M_CSUM_UDPv4));
264 KASSERT(m->m_len >= sizeof(struct ip));
265
266 hlen = sizeof(struct ip);
267 if (opt) {
268 m = ip_insertoptions(m, opt, &len);
269 hlen = len;
270 }
271 ip = mtod(m, struct ip *);
272
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 /* ip->ip_id filled in after we find out source ia */
280 ip->ip_hl = hlen >> 2;
281 IP_STATINC(IP_STAT_LOCALOUT);
282 } else {
283 hlen = ip->ip_hl << 2;
284 }
285
286 /*
287 * Route packet.
288 */
289 if (ro == NULL) {
290 memset(&iproute, 0, sizeof(iproute));
291 ro = &iproute;
292 }
293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
294 dst = satocsin(rtcache_getdst(ro));
295
296 /*
297 * If there is a cached route, check that it is to the same
298 * destination and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing
300 * the cache with IPv6.
301 */
302 if (dst && (dst->sin_family != AF_INET ||
303 !in_hosteq(dst->sin_addr, ip->ip_dst)))
304 rtcache_free(ro);
305
306 /* XXX must be before rtcache operations */
307 bound = curlwp_bind();
308 bind_need_restore = true;
309
310 if ((rt = rtcache_validate(ro)) == NULL &&
311 (rt = rtcache_update(ro, 1)) == NULL) {
312 dst = &udst.sin;
313 error = rtcache_setdst(ro, &udst.sa);
314 if (error != 0)
315 goto bad;
316 }
317
318 /*
319 * If routing to interface only, short circuit routing lookup.
320 */
321 if (flags & IP_ROUTETOIF) {
322 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
323 if (ifa == NULL) {
324 IP_STATINC(IP_STAT_NOROUTE);
325 error = ENETUNREACH;
326 goto bad;
327 }
328 /* ia is already referenced by psref_ia */
329 ia = ifatoia(ifa);
330
331 ifp = ia->ia_ifp;
332 mtu = ifp->if_mtu;
333 ip->ip_ttl = 1;
334 isbroadcast = in_broadcast(dst->sin_addr, ifp);
335 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
336 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
337 (flags & IP_ROUTETOIFINDEX)) &&
338 imo != NULL && imo->imo_multicast_if_index != 0) {
339 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
340 if (ifp == NULL) {
341 IP_STATINC(IP_STAT_NOROUTE);
342 error = ENETUNREACH;
343 goto bad;
344 }
345 mtu = ifp->if_mtu;
346 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
347 if (ia == NULL) {
348 error = EADDRNOTAVAIL;
349 goto bad;
350 }
351 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
352 ip->ip_dst.s_addr == INADDR_BROADCAST) {
353 isbroadcast = 0;
354 } else {
355 /* IP_ROUTETOIFINDEX */
356 isbroadcast = in_broadcast(dst->sin_addr, ifp);
357 if ((isbroadcast == 0) && ((ifp->if_flags &
358 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
359 (in_direct(dst->sin_addr, ifp) == 0)) {
360 /* gateway address required */
361 if (rt == NULL)
362 rt = rtcache_init(ro);
363 if (rt == NULL || rt->rt_ifp != ifp) {
364 IP_STATINC(IP_STAT_NOROUTE);
365 error = EHOSTUNREACH;
366 goto bad;
367 }
368 rt->rt_use++;
369 if (rt->rt_flags & RTF_GATEWAY)
370 dst = satosin(rt->rt_gateway);
371 if (rt->rt_flags & RTF_HOST)
372 isbroadcast =
373 rt->rt_flags & RTF_BROADCAST;
374 }
375 }
376 } else {
377 if (rt == NULL)
378 rt = rtcache_init(ro);
379 if (rt == NULL) {
380 IP_STATINC(IP_STAT_NOROUTE);
381 error = EHOSTUNREACH;
382 goto bad;
383 }
384 if (ifa_is_destroying(rt->rt_ifa)) {
385 rtcache_unref(rt, ro);
386 rt = NULL;
387 IP_STATINC(IP_STAT_NOROUTE);
388 error = EHOSTUNREACH;
389 goto bad;
390 }
391 ifa_acquire(rt->rt_ifa, &psref_ia);
392 ia = ifatoia(rt->rt_ifa);
393 ifp = rt->rt_ifp;
394 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
395 mtu = ifp->if_mtu;
396 rt->rt_use++;
397 if (rt->rt_flags & RTF_GATEWAY)
398 dst = satosin(rt->rt_gateway);
399 if (rt->rt_flags & RTF_HOST)
400 isbroadcast = rt->rt_flags & RTF_BROADCAST;
401 else
402 isbroadcast = in_broadcast(dst->sin_addr, ifp);
403 }
404 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
405
406 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
407 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
408 bool inmgroup;
409
410 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
411 M_BCAST : M_MCAST;
412 /*
413 * See if the caller provided any multicast options
414 */
415 if (imo != NULL)
416 ip->ip_ttl = imo->imo_multicast_ttl;
417 else
418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419
420 /*
421 * if we don't know the outgoing ifp yet, we can't generate
422 * output
423 */
424 if (!ifp) {
425 IP_STATINC(IP_STAT_NOROUTE);
426 error = ENETUNREACH;
427 goto bad;
428 }
429
430 /*
431 * If the packet is multicast or broadcast, confirm that
432 * the outgoing interface can transmit it.
433 */
434 if (((m->m_flags & M_MCAST) &&
435 (ifp->if_flags & IFF_MULTICAST) == 0) ||
436 ((m->m_flags & M_BCAST) &&
437 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
438 IP_STATINC(IP_STAT_NOROUTE);
439 error = ENETUNREACH;
440 goto bad;
441 }
442 /*
443 * If source address not specified yet, use an address
444 * of outgoing interface.
445 */
446 if (in_nullhost(ip->ip_src)) {
447 struct in_ifaddr *xia;
448 struct ifaddr *xifa;
449 struct psref _psref;
450
451 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
452 if (!xia) {
453 error = EADDRNOTAVAIL;
454 goto bad;
455 }
456 xifa = &xia->ia_ifa;
457 if (xifa->ifa_getifa != NULL) {
458 ia4_release(xia, &_psref);
459 /* FIXME ifa_getifa is NOMPSAFE */
460 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
461 if (xia == NULL) {
462 error = EADDRNOTAVAIL;
463 goto bad;
464 }
465 ia4_acquire(xia, &_psref);
466 }
467 ip->ip_src = xia->ia_addr.sin_addr;
468 ia4_release(xia, &_psref);
469 }
470
471 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
472 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
473 /*
474 * If we belong to the destination multicast group
475 * on the outgoing interface, and the caller did not
476 * forbid loopback, loop back a copy.
477 */
478 ip_mloopback(ifp, m, &udst.sin);
479 }
480 #ifdef MROUTING
481 else {
482 /*
483 * If we are acting as a multicast router, perform
484 * multicast forwarding as if the packet had just
485 * arrived on the interface to which we are about
486 * to send. The multicast forwarding function
487 * recursively calls this function, using the
488 * IP_FORWARDING flag to prevent infinite recursion.
489 *
490 * Multicasts that are looped back by ip_mloopback(),
491 * above, will be forwarded by the ip_input() routine,
492 * if necessary.
493 */
494 extern struct socket *ip_mrouter;
495
496 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
497 if (ip_mforward(m, ifp) != 0) {
498 m_freem(m);
499 goto done;
500 }
501 }
502 }
503 #endif
504 /*
505 * Multicasts with a time-to-live of zero may be looped-
506 * back, above, but must not be transmitted on a network.
507 * Also, multicasts addressed to the loopback interface
508 * are not sent -- the above call to ip_mloopback() will
509 * loop back a copy if this host actually belongs to the
510 * destination group on the loopback interface.
511 */
512 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
513 m_freem(m);
514 goto done;
515 }
516 goto sendit;
517 }
518
519 /*
520 * If source address not specified yet, use address
521 * of outgoing interface.
522 */
523 if (in_nullhost(ip->ip_src)) {
524 struct ifaddr *xifa;
525
526 xifa = &ia->ia_ifa;
527 if (xifa->ifa_getifa != NULL) {
528 ia4_release(ia, &psref_ia);
529 /* FIXME ifa_getifa is NOMPSAFE */
530 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
531 if (ia == NULL) {
532 error = EADDRNOTAVAIL;
533 goto bad;
534 }
535 ia4_acquire(ia, &psref_ia);
536 }
537 ip->ip_src = ia->ia_addr.sin_addr;
538 }
539
540 /*
541 * Packets with Class-D address as source are not valid per
542 * RFC1112.
543 */
544 if (IN_MULTICAST(ip->ip_src.s_addr)) {
545 IP_STATINC(IP_STAT_ODROPPED);
546 error = EADDRNOTAVAIL;
547 goto bad;
548 }
549
550 /*
551 * Look for broadcast address and verify user is allowed to
552 * send such a packet.
553 */
554 if (isbroadcast) {
555 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
556 error = EADDRNOTAVAIL;
557 goto bad;
558 }
559 if ((flags & IP_ALLOWBROADCAST) == 0) {
560 error = EACCES;
561 goto bad;
562 }
563 /* don't allow broadcast messages to be fragmented */
564 if (ntohs(ip->ip_len) > ifp->if_mtu) {
565 error = EMSGSIZE;
566 goto bad;
567 }
568 m->m_flags |= M_BCAST;
569 } else
570 m->m_flags &= ~M_BCAST;
571
572 sendit:
573 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
574 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
575 ip->ip_id = 0;
576 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
577 ip->ip_id = ip_newid(ia);
578 } else {
579 /*
580 * TSO capable interfaces (typically?) increment
581 * ip_id for each segment.
582 * "allocate" enough ids here to increase the chance
583 * for them to be unique.
584 *
585 * note that the following calculation is not
586 * needed to be precise. wasting some ip_id is fine.
587 */
588
589 unsigned int segsz = m->m_pkthdr.segsz;
590 unsigned int datasz = ntohs(ip->ip_len) - hlen;
591 unsigned int num = howmany(datasz, segsz);
592
593 ip->ip_id = ip_newid_range(ia, num);
594 }
595 }
596 if (ia != NULL) {
597 ia4_release(ia, &psref_ia);
598 ia = NULL;
599 }
600
601 /*
602 * If we're doing Path MTU Discovery, we need to set DF unless
603 * the route's MTU is locked.
604 */
605 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
606 ip->ip_off |= htons(IP_DF);
607 }
608
609 #ifdef IPSEC
610 if (ipsec_used) {
611 bool ipsec_done = false;
612
613 /* Perform IPsec processing, if any. */
614 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
615 &ipsec_done);
616 if (error || ipsec_done)
617 goto done;
618 }
619
620 if (!ipsec_used || !natt_frag)
621 #endif
622 {
623 /*
624 * Run through list of hooks for output packets.
625 */
626 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
627 if (error || m == NULL) {
628 IP_STATINC(IP_STAT_PFILDROP_OUT);
629 goto done;
630 }
631 }
632
633 ip = mtod(m, struct ip *);
634 hlen = ip->ip_hl << 2;
635
636 m->m_pkthdr.csum_data |= hlen << 16;
637
638 /*
639 * search for the source address structure to
640 * maintain output statistics, and verify address
641 * validity
642 */
643 KASSERT(ia == NULL);
644 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
645 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia);
646 if (ifa != NULL)
647 ia = ifatoia(ifa);
648
649 /*
650 * Ensure we only send from a valid address.
651 * A NULL address is valid because the packet could be
652 * generated from a packet filter.
653 */
654 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
655 (error = ip_ifaddrvalid(ia)) != 0)
656 {
657 ARPLOG(LOG_ERR,
658 "refusing to send from invalid address %s (pid %d)\n",
659 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
660 IP_STATINC(IP_STAT_ODROPPED);
661 if (error == 1)
662 /*
663 * Address exists, but is tentative or detached.
664 * We can't send from it because it's invalid,
665 * so we drop the packet.
666 */
667 error = 0;
668 else
669 error = EADDRNOTAVAIL;
670 goto bad;
671 }
672
673 /* Maybe skip checksums on loopback interfaces. */
674 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
675 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
676 }
677 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
678
679 /*
680 * If small enough for mtu of path, or if using TCP segmentation
681 * offload, can just send directly.
682 */
683 if (ntohs(ip->ip_len) <= mtu ||
684 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
685 const struct sockaddr *sa;
686
687 #if IFA_STATS
688 if (ia)
689 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
690 #endif
691 /*
692 * Always initialize the sum to 0! Some HW assisted
693 * checksumming requires this.
694 */
695 ip->ip_sum = 0;
696
697 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
698 /*
699 * Perform any checksums that the hardware can't do
700 * for us.
701 *
702 * XXX Does any hardware require the {th,uh}_sum
703 * XXX fields to be 0?
704 */
705 if (sw_csum & M_CSUM_IPv4) {
706 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
707 ip->ip_sum = in_cksum(m, hlen);
708 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
709 }
710 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
711 if (IN_NEED_CHECKSUM(ifp,
712 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
713 in_undefer_cksum_tcpudp(m);
714 }
715 m->m_pkthdr.csum_flags &=
716 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
717 }
718 }
719
720 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
721 if (__predict_false(sw_csum & M_CSUM_TSOv4)) {
722 /*
723 * TSO4 is required by a packet, but disabled for
724 * the interface.
725 */
726 error = ip_tso_output(ifp, m, sa, rt);
727 } else
728 error = ip_if_output(ifp, m, sa, rt);
729 goto done;
730 }
731
732 /*
733 * We can't use HW checksumming if we're about to fragment the packet.
734 *
735 * XXX Some hardware can do this.
736 */
737 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
738 if (IN_NEED_CHECKSUM(ifp,
739 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
740 in_undefer_cksum_tcpudp(m);
741 }
742 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
743 }
744
745 /*
746 * Too large for interface; fragment if possible.
747 * Must be able to put at least 8 bytes per fragment.
748 */
749 if (ntohs(ip->ip_off) & IP_DF) {
750 if (flags & IP_RETURNMTU) {
751 KASSERT(inp != NULL);
752 inp->inp_errormtu = mtu;
753 }
754 error = EMSGSIZE;
755 IP_STATINC(IP_STAT_CANTFRAG);
756 goto bad;
757 }
758
759 error = ip_fragment(m, ifp, mtu);
760 if (error) {
761 m = NULL;
762 goto bad;
763 }
764
765 for (; m; m = m0) {
766 m0 = m->m_nextpkt;
767 m->m_nextpkt = NULL;
768 if (error) {
769 m_freem(m);
770 continue;
771 }
772 #if IFA_STATS
773 if (ia)
774 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
775 #endif
776 /*
777 * If we get there, the packet has not been handled by
778 * IPsec whereas it should have. Now that it has been
779 * fragmented, re-inject it in ip_output so that IPsec
780 * processing can occur.
781 */
782 if (natt_frag) {
783 error = ip_output(m, opt, NULL,
784 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
785 imo, inp);
786 } else {
787 KASSERT((m->m_pkthdr.csum_flags &
788 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
789 error = ip_if_output(ifp, m,
790 (m->m_flags & M_MCAST) ?
791 sintocsa(rdst) : sintocsa(dst), rt);
792 }
793 }
794 if (error == 0) {
795 IP_STATINC(IP_STAT_FRAGMENTED);
796 }
797
798 done:
799 ia4_release(ia, &psref_ia);
800 rtcache_unref(rt, ro);
801 if (ro == &iproute) {
802 rtcache_free(&iproute);
803 }
804 if (mifp != NULL) {
805 if_put(mifp, &psref);
806 }
807 if (bind_need_restore)
808 curlwp_bindx(bound);
809 return error;
810
811 bad:
812 m_freem(m);
813 goto done;
814 }
815
816 int
817 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
818 {
819 struct ip *ip, *mhip;
820 struct mbuf *m0;
821 int len, hlen, off;
822 int mhlen, firstlen;
823 struct mbuf **mnext;
824 int sw_csum = m->m_pkthdr.csum_flags;
825 int fragments = 0;
826 int error = 0;
827 int ipoff, ipflg;
828
829 ip = mtod(m, struct ip *);
830 hlen = ip->ip_hl << 2;
831
832 /* Preserve the offset and flags. */
833 ipoff = ntohs(ip->ip_off) & IP_OFFMASK;
834 ipflg = ntohs(ip->ip_off) & (IP_RF|IP_DF|IP_MF);
835
836 if (ifp != NULL)
837 sw_csum &= ~ifp->if_csum_flags_tx;
838
839 len = (mtu - hlen) &~ 7;
840 if (len < 8) {
841 m_freem(m);
842 return EMSGSIZE;
843 }
844
845 firstlen = len;
846 mnext = &m->m_nextpkt;
847
848 /*
849 * Loop through length of segment after first fragment,
850 * make new header and copy data of each part and link onto chain.
851 */
852 m0 = m;
853 mhlen = sizeof(struct ip);
854 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
855 MGETHDR(m, M_DONTWAIT, MT_HEADER);
856 if (m == NULL) {
857 error = ENOBUFS;
858 IP_STATINC(IP_STAT_ODROPPED);
859 goto sendorfree;
860 }
861 MCLAIM(m, m0->m_owner);
862
863 *mnext = m;
864 mnext = &m->m_nextpkt;
865
866 m->m_data += max_linkhdr;
867 mhip = mtod(m, struct ip *);
868 *mhip = *ip;
869
870 /* we must inherit the flags */
871 m->m_flags |= m0->m_flags & M_COPYFLAGS;
872
873 if (hlen > sizeof(struct ip)) {
874 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
875 mhip->ip_hl = mhlen >> 2;
876 }
877 m->m_len = mhlen;
878
879 mhip->ip_off = ((off - hlen) >> 3) + ipoff;
880 mhip->ip_off |= ipflg;
881 if (off + len >= ntohs(ip->ip_len))
882 len = ntohs(ip->ip_len) - off;
883 else
884 mhip->ip_off |= IP_MF;
885 HTONS(mhip->ip_off);
886
887 mhip->ip_len = htons((u_int16_t)(len + mhlen));
888 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
889 if (m->m_next == NULL) {
890 error = ENOBUFS;
891 IP_STATINC(IP_STAT_ODROPPED);
892 goto sendorfree;
893 }
894
895 m->m_pkthdr.len = mhlen + len;
896 m_reset_rcvif(m);
897
898 mhip->ip_sum = 0;
899 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
900 if (sw_csum & M_CSUM_IPv4) {
901 mhip->ip_sum = in_cksum(m, mhlen);
902 } else {
903 /*
904 * checksum is hw-offloaded or not necessary.
905 */
906 m->m_pkthdr.csum_flags |=
907 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
908 m->m_pkthdr.csum_data |= mhlen << 16;
909 KASSERT(!(ifp != NULL &&
910 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
911 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
912 }
913 IP_STATINC(IP_STAT_OFRAGMENTS);
914 fragments++;
915 }
916
917 /*
918 * Update first fragment by trimming what's been copied out
919 * and updating header, then send each fragment (in order).
920 */
921 m = m0;
922 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
923 m->m_pkthdr.len = hlen + firstlen;
924 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
925 ip->ip_off |= htons(IP_MF);
926 ip->ip_sum = 0;
927 if (sw_csum & M_CSUM_IPv4) {
928 ip->ip_sum = in_cksum(m, hlen);
929 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
930 } else {
931 /*
932 * checksum is hw-offloaded or not necessary.
933 */
934 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
935 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
936 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
937 sizeof(struct ip));
938 }
939
940 sendorfree:
941 /*
942 * If there is no room for all the fragments, don't queue
943 * any of them.
944 */
945 if (ifp != NULL) {
946 IFQ_LOCK(&ifp->if_snd);
947 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
948 error == 0) {
949 error = ENOBUFS;
950 IP_STATINC(IP_STAT_ODROPPED);
951 IFQ_INC_DROPS(&ifp->if_snd);
952 }
953 IFQ_UNLOCK(&ifp->if_snd);
954 }
955 if (error) {
956 for (m = m0; m; m = m0) {
957 m0 = m->m_nextpkt;
958 m->m_nextpkt = NULL;
959 m_freem(m);
960 }
961 }
962
963 return error;
964 }
965
966 /*
967 * Determine the maximum length of the options to be inserted;
968 * we would far rather allocate too much space rather than too little.
969 */
970 u_int
971 ip_optlen(struct inpcb *inp)
972 {
973 struct mbuf *m = inp->inp_options;
974
975 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
976 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
977 }
978 return 0;
979 }
980
981 /*
982 * Insert IP options into preformed packet.
983 * Adjust IP destination as required for IP source routing,
984 * as indicated by a non-zero in_addr at the start of the options.
985 */
986 static struct mbuf *
987 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
988 {
989 struct ipoption *p = mtod(opt, struct ipoption *);
990 struct mbuf *n;
991 struct ip *ip = mtod(m, struct ip *);
992 unsigned optlen;
993
994 optlen = opt->m_len - sizeof(p->ipopt_dst);
995 KASSERT(optlen % 4 == 0);
996 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
997 return m; /* XXX should fail */
998 if (!in_nullhost(p->ipopt_dst))
999 ip->ip_dst = p->ipopt_dst;
1000 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1001 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1002 if (n == NULL)
1003 return m;
1004 MCLAIM(n, m->m_owner);
1005 m_move_pkthdr(n, m);
1006 m->m_len -= sizeof(struct ip);
1007 m->m_data += sizeof(struct ip);
1008 n->m_next = m;
1009 n->m_len = optlen + sizeof(struct ip);
1010 n->m_data += max_linkhdr;
1011 memcpy(mtod(n, void *), ip, sizeof(struct ip));
1012 m = n;
1013 } else {
1014 m->m_data -= optlen;
1015 m->m_len += optlen;
1016 memmove(mtod(m, void *), ip, sizeof(struct ip));
1017 }
1018 m->m_pkthdr.len += optlen;
1019 ip = mtod(m, struct ip *);
1020 memcpy(ip + 1, p->ipopt_list, optlen);
1021 *phlen = sizeof(struct ip) + optlen;
1022 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1023 return m;
1024 }
1025
1026 /*
1027 * Copy options from ipsrc to ipdst, omitting those not copied during
1028 * fragmentation.
1029 */
1030 int
1031 ip_optcopy(struct ip *ipsrc, struct ip *ipdst)
1032 {
1033 u_char *cp, *dp;
1034 int opt, optlen, cnt;
1035
1036 cp = (u_char *)(ipsrc + 1);
1037 dp = (u_char *)(ipdst + 1);
1038 cnt = (ipsrc->ip_hl << 2) - sizeof(struct ip);
1039 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1040 opt = cp[0];
1041 if (opt == IPOPT_EOL)
1042 break;
1043 if (opt == IPOPT_NOP) {
1044 /* Preserve for IP mcast tunnel's LSRR alignment. */
1045 *dp++ = IPOPT_NOP;
1046 optlen = 1;
1047 continue;
1048 }
1049
1050 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1051 optlen = cp[IPOPT_OLEN];
1052 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1053
1054 /* Invalid lengths should have been caught by ip_dooptions. */
1055 if (optlen > cnt)
1056 optlen = cnt;
1057 if (IPOPT_COPIED(opt)) {
1058 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1059 dp += optlen;
1060 }
1061 }
1062
1063 for (optlen = dp - (u_char *)(ipdst+1); optlen & 0x3; optlen++) {
1064 *dp++ = IPOPT_EOL;
1065 }
1066
1067 return optlen;
1068 }
1069
1070 /*
1071 * IP socket option processing.
1072 */
1073 int
1074 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1075 {
1076 struct inpcb *inp = sotoinpcb(so);
1077 struct ip *ip = &inp->inp_ip;
1078 int inpflags = inp->inp_flags;
1079 int optval = 0, error = 0;
1080 struct in_pktinfo pktinfo;
1081
1082 KASSERT(solocked(so));
1083
1084 if (sopt->sopt_level != IPPROTO_IP) {
1085 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1086 return 0;
1087 return ENOPROTOOPT;
1088 }
1089
1090 switch (op) {
1091 case PRCO_SETOPT:
1092 switch (sopt->sopt_name) {
1093 case IP_OPTIONS:
1094 #ifdef notyet
1095 case IP_RETOPTS:
1096 #endif
1097 error = ip_pcbopts(inp, sopt);
1098 break;
1099
1100 case IP_TOS:
1101 case IP_TTL:
1102 case IP_MINTTL:
1103 case IP_RECVOPTS:
1104 case IP_RECVRETOPTS:
1105 case IP_RECVDSTADDR:
1106 case IP_RECVIF:
1107 case IP_RECVPKTINFO:
1108 case IP_RECVTTL:
1109 error = sockopt_getint(sopt, &optval);
1110 if (error)
1111 break;
1112
1113 switch (sopt->sopt_name) {
1114 case IP_TOS:
1115 ip->ip_tos = optval;
1116 break;
1117
1118 case IP_TTL:
1119 ip->ip_ttl = optval;
1120 break;
1121
1122 case IP_MINTTL:
1123 if (optval > 0 && optval <= MAXTTL)
1124 inp->inp_ip_minttl = optval;
1125 else
1126 error = EINVAL;
1127 break;
1128 #define OPTSET(bit) \
1129 if (optval) \
1130 inpflags |= bit; \
1131 else \
1132 inpflags &= ~bit;
1133
1134 case IP_RECVOPTS:
1135 OPTSET(INP_RECVOPTS);
1136 break;
1137
1138 case IP_RECVPKTINFO:
1139 OPTSET(INP_RECVPKTINFO);
1140 break;
1141
1142 case IP_RECVRETOPTS:
1143 OPTSET(INP_RECVRETOPTS);
1144 break;
1145
1146 case IP_RECVDSTADDR:
1147 OPTSET(INP_RECVDSTADDR);
1148 break;
1149
1150 case IP_RECVIF:
1151 OPTSET(INP_RECVIF);
1152 break;
1153
1154 case IP_RECVTTL:
1155 OPTSET(INP_RECVTTL);
1156 break;
1157 }
1158 break;
1159 case IP_PKTINFO:
1160 error = sockopt_getint(sopt, &optval);
1161 if (!error) {
1162 /* Linux compatibility */
1163 OPTSET(INP_RECVPKTINFO);
1164 break;
1165 }
1166 error = sockopt_get(sopt, &pktinfo, sizeof(pktinfo));
1167 if (error)
1168 break;
1169
1170 if (pktinfo.ipi_ifindex == 0) {
1171 inp->inp_prefsrcip = pktinfo.ipi_addr;
1172 break;
1173 }
1174
1175 /* Solaris compatibility */
1176 struct ifnet *ifp;
1177 struct in_ifaddr *ia;
1178 int s;
1179
1180 /* pick up primary address */
1181 s = pserialize_read_enter();
1182 ifp = if_byindex(pktinfo.ipi_ifindex);
1183 if (ifp == NULL) {
1184 pserialize_read_exit(s);
1185 error = EADDRNOTAVAIL;
1186 break;
1187 }
1188 ia = in_get_ia_from_ifp(ifp);
1189 if (ia == NULL) {
1190 pserialize_read_exit(s);
1191 error = EADDRNOTAVAIL;
1192 break;
1193 }
1194 inp->inp_prefsrcip = IA_SIN(ia)->sin_addr;
1195 pserialize_read_exit(s);
1196 break;
1197 break;
1198 #undef OPTSET
1199
1200 case IP_MULTICAST_IF:
1201 case IP_MULTICAST_TTL:
1202 case IP_MULTICAST_LOOP:
1203 case IP_ADD_MEMBERSHIP:
1204 case IP_DROP_MEMBERSHIP:
1205 error = ip_setmoptions(&inp->inp_moptions, sopt);
1206 break;
1207
1208 case IP_PORTRANGE:
1209 error = sockopt_getint(sopt, &optval);
1210 if (error)
1211 break;
1212
1213 switch (optval) {
1214 case IP_PORTRANGE_DEFAULT:
1215 case IP_PORTRANGE_HIGH:
1216 inpflags &= ~(INP_LOWPORT);
1217 break;
1218
1219 case IP_PORTRANGE_LOW:
1220 inpflags |= INP_LOWPORT;
1221 break;
1222
1223 default:
1224 error = EINVAL;
1225 break;
1226 }
1227 break;
1228
1229 case IP_PORTALGO:
1230 error = sockopt_getint(sopt, &optval);
1231 if (error)
1232 break;
1233
1234 error = portalgo_algo_index_select(
1235 (struct inpcb_hdr *)inp, optval);
1236 break;
1237
1238 #if defined(IPSEC)
1239 case IP_IPSEC_POLICY:
1240 if (ipsec_enabled) {
1241 error = ipsec_set_policy(inp,
1242 sopt->sopt_data, sopt->sopt_size,
1243 curlwp->l_cred);
1244 } else
1245 error = ENOPROTOOPT;
1246 break;
1247 #endif /* IPSEC */
1248
1249 default:
1250 error = ENOPROTOOPT;
1251 break;
1252 }
1253 break;
1254
1255 case PRCO_GETOPT:
1256 switch (sopt->sopt_name) {
1257 case IP_OPTIONS:
1258 case IP_RETOPTS: {
1259 struct mbuf *mopts = inp->inp_options;
1260
1261 if (mopts) {
1262 struct mbuf *m;
1263
1264 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1265 if (m == NULL) {
1266 error = ENOBUFS;
1267 break;
1268 }
1269 error = sockopt_setmbuf(sopt, m);
1270 }
1271 break;
1272 }
1273 case IP_TOS:
1274 case IP_TTL:
1275 case IP_MINTTL:
1276 case IP_RECVOPTS:
1277 case IP_RECVRETOPTS:
1278 case IP_RECVDSTADDR:
1279 case IP_RECVIF:
1280 case IP_RECVPKTINFO:
1281 case IP_RECVTTL:
1282 case IP_ERRORMTU:
1283 switch (sopt->sopt_name) {
1284 case IP_TOS:
1285 optval = ip->ip_tos;
1286 break;
1287
1288 case IP_TTL:
1289 optval = ip->ip_ttl;
1290 break;
1291
1292 case IP_MINTTL:
1293 optval = inp->inp_ip_minttl;
1294 break;
1295
1296 case IP_ERRORMTU:
1297 optval = inp->inp_errormtu;
1298 break;
1299
1300 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1301
1302 case IP_RECVOPTS:
1303 optval = OPTBIT(INP_RECVOPTS);
1304 break;
1305
1306 case IP_RECVPKTINFO:
1307 optval = OPTBIT(INP_RECVPKTINFO);
1308 break;
1309
1310 case IP_RECVRETOPTS:
1311 optval = OPTBIT(INP_RECVRETOPTS);
1312 break;
1313
1314 case IP_RECVDSTADDR:
1315 optval = OPTBIT(INP_RECVDSTADDR);
1316 break;
1317
1318 case IP_RECVIF:
1319 optval = OPTBIT(INP_RECVIF);
1320 break;
1321
1322 case IP_RECVTTL:
1323 optval = OPTBIT(INP_RECVTTL);
1324 break;
1325 }
1326 error = sockopt_setint(sopt, optval);
1327 break;
1328
1329 case IP_PKTINFO:
1330 switch (sopt->sopt_size) {
1331 case sizeof(int):
1332 /* Linux compatibility */
1333 optval = OPTBIT(INP_RECVPKTINFO);
1334 error = sockopt_setint(sopt, optval);
1335 break;
1336 case sizeof(struct in_pktinfo):
1337 /* Solaris compatibility */
1338 pktinfo.ipi_ifindex = 0;
1339 pktinfo.ipi_addr = inp->inp_prefsrcip;
1340 error = sockopt_set(sopt, &pktinfo,
1341 sizeof(pktinfo));
1342 break;
1343 default:
1344 /*
1345 * While size is stuck at 0, and, later, if
1346 * the caller doesn't use an exactly sized
1347 * recipient for the data, default to Linux
1348 * compatibility
1349 */
1350 optval = OPTBIT(INP_RECVPKTINFO);
1351 error = sockopt_setint(sopt, optval);
1352 break;
1353 }
1354 break;
1355
1356 #if 0 /* defined(IPSEC) */
1357 case IP_IPSEC_POLICY:
1358 {
1359 struct mbuf *m = NULL;
1360
1361 /* XXX this will return EINVAL as sopt is empty */
1362 error = ipsec_get_policy(inp, sopt->sopt_data,
1363 sopt->sopt_size, &m);
1364 if (error == 0)
1365 error = sockopt_setmbuf(sopt, m);
1366 break;
1367 }
1368 #endif /*IPSEC*/
1369
1370 case IP_MULTICAST_IF:
1371 case IP_MULTICAST_TTL:
1372 case IP_MULTICAST_LOOP:
1373 case IP_ADD_MEMBERSHIP:
1374 case IP_DROP_MEMBERSHIP:
1375 error = ip_getmoptions(inp->inp_moptions, sopt);
1376 break;
1377
1378 case IP_PORTRANGE:
1379 if (inpflags & INP_LOWPORT)
1380 optval = IP_PORTRANGE_LOW;
1381 else
1382 optval = IP_PORTRANGE_DEFAULT;
1383 error = sockopt_setint(sopt, optval);
1384 break;
1385
1386 case IP_PORTALGO:
1387 optval = inp->inp_portalgo;
1388 error = sockopt_setint(sopt, optval);
1389 break;
1390
1391 default:
1392 error = ENOPROTOOPT;
1393 break;
1394 }
1395 break;
1396 }
1397
1398 if (!error) {
1399 inp->inp_flags = inpflags;
1400 }
1401 return error;
1402 }
1403
1404 static int
1405 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts,
1406 int *flags, kauth_cred_t cred)
1407 {
1408 struct ip_moptions *imo;
1409 int error = 0;
1410 bool addrset = false;
1411
1412 if (!in_nullhost(pktinfo->ipi_addr)) {
1413 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1414 /* EADDRNOTAVAIL? */
1415 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred);
1416 if (error != 0)
1417 return error;
1418 addrset = true;
1419 }
1420
1421 if (pktinfo->ipi_ifindex != 0) {
1422 if (!addrset) {
1423 struct ifnet *ifp;
1424 struct in_ifaddr *ia;
1425 int s;
1426
1427 /* pick up primary address */
1428 s = pserialize_read_enter();
1429 ifp = if_byindex(pktinfo->ipi_ifindex);
1430 if (ifp == NULL) {
1431 pserialize_read_exit(s);
1432 return EADDRNOTAVAIL;
1433 }
1434 ia = in_get_ia_from_ifp(ifp);
1435 if (ia == NULL) {
1436 pserialize_read_exit(s);
1437 return EADDRNOTAVAIL;
1438 }
1439 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1440 pserialize_read_exit(s);
1441 }
1442
1443 /*
1444 * If specified ipi_ifindex,
1445 * use copied or locally initialized ip_moptions.
1446 * Original ip_moptions must not be modified.
1447 */
1448 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1449 if (pktopts->ippo_imo != NULL) {
1450 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1451 } else {
1452 memset(imo, 0, sizeof(*imo));
1453 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1454 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1455 }
1456 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1457 pktopts->ippo_imo = imo;
1458 *flags |= IP_ROUTETOIFINDEX;
1459 }
1460 return error;
1461 }
1462
1463 /*
1464 * Set up IP outgoing packet options. Even if control is NULL,
1465 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1466 */
1467 int
1468 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1469 struct inpcb *inp, kauth_cred_t cred)
1470 {
1471 struct cmsghdr *cm;
1472 struct in_pktinfo pktinfo;
1473 int error;
1474
1475 pktopts->ippo_imo = inp->inp_moptions;
1476
1477 struct in_addr *ia = in_nullhost(inp->inp_prefsrcip) ? &inp->inp_laddr :
1478 &inp->inp_prefsrcip;
1479 sockaddr_in_init(&pktopts->ippo_laddr, ia, 0);
1480
1481 if (control == NULL)
1482 return 0;
1483
1484 /*
1485 * XXX: Currently, we assume all the optional information is
1486 * stored in a single mbuf.
1487 */
1488 if (control->m_next)
1489 return EINVAL;
1490
1491 for (; control->m_len > 0;
1492 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1493 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1494 cm = mtod(control, struct cmsghdr *);
1495 if ((control->m_len < sizeof(*cm)) ||
1496 (cm->cmsg_len == 0) ||
1497 (cm->cmsg_len > control->m_len)) {
1498 return EINVAL;
1499 }
1500 if (cm->cmsg_level != IPPROTO_IP)
1501 continue;
1502
1503 switch (cm->cmsg_type) {
1504 case IP_PKTINFO:
1505 if (cm->cmsg_len != CMSG_LEN(sizeof(pktinfo)))
1506 return EINVAL;
1507 memcpy(&pktinfo, CMSG_DATA(cm), sizeof(pktinfo));
1508 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1509 cred);
1510 if (error)
1511 return error;
1512 break;
1513 case IP_SENDSRCADDR: /* FreeBSD compatibility */
1514 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr)))
1515 return EINVAL;
1516 pktinfo.ipi_ifindex = 0;
1517 pktinfo.ipi_addr =
1518 ((struct in_pktinfo *)CMSG_DATA(cm))->ipi_addr;
1519 error = ip_pktinfo_prepare(&pktinfo, pktopts, flags,
1520 cred);
1521 if (error)
1522 return error;
1523 break;
1524 default:
1525 return ENOPROTOOPT;
1526 }
1527 }
1528 return 0;
1529 }
1530
1531 /*
1532 * Set up IP options in pcb for insertion in output packets.
1533 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1534 * with destination address if source routed.
1535 */
1536 static int
1537 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1538 {
1539 struct mbuf *m;
1540 const u_char *cp;
1541 u_char *dp;
1542 int cnt;
1543
1544 KASSERT(inp_locked(inp));
1545
1546 /* Turn off any old options. */
1547 if (inp->inp_options) {
1548 m_free(inp->inp_options);
1549 }
1550 inp->inp_options = NULL;
1551 if ((cnt = sopt->sopt_size) == 0) {
1552 /* Only turning off any previous options. */
1553 return 0;
1554 }
1555 cp = sopt->sopt_data;
1556
1557 if (cnt % 4) {
1558 /* Must be 4-byte aligned, because there's no padding. */
1559 return EINVAL;
1560 }
1561
1562 m = m_get(M_DONTWAIT, MT_SOOPTS);
1563 if (m == NULL)
1564 return ENOBUFS;
1565
1566 dp = mtod(m, u_char *);
1567 memset(dp, 0, sizeof(struct in_addr));
1568 dp += sizeof(struct in_addr);
1569 m->m_len = sizeof(struct in_addr);
1570
1571 /*
1572 * IP option list according to RFC791. Each option is of the form
1573 *
1574 * [optval] [olen] [(olen - 2) data bytes]
1575 *
1576 * We validate the list and copy options to an mbuf for prepending
1577 * to data packets. The IP first-hop destination address will be
1578 * stored before actual options and is zero if unset.
1579 */
1580 while (cnt > 0) {
1581 uint8_t optval, olen, offset;
1582
1583 optval = cp[IPOPT_OPTVAL];
1584
1585 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1586 olen = 1;
1587 } else {
1588 if (cnt < IPOPT_OLEN + 1)
1589 goto bad;
1590
1591 olen = cp[IPOPT_OLEN];
1592 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1593 goto bad;
1594 }
1595
1596 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1597 /*
1598 * user process specifies route as:
1599 * ->A->B->C->D
1600 * D must be our final destination (but we can't
1601 * check that since we may not have connected yet).
1602 * A is first hop destination, which doesn't appear in
1603 * actual IP option, but is stored before the options.
1604 */
1605 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1606 goto bad;
1607
1608 offset = cp[IPOPT_OFFSET];
1609 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1610 sizeof(struct in_addr));
1611
1612 cp += sizeof(struct in_addr);
1613 cnt -= sizeof(struct in_addr);
1614 olen -= sizeof(struct in_addr);
1615
1616 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1617 goto bad;
1618
1619 memcpy(dp, cp, olen);
1620 dp[IPOPT_OPTVAL] = optval;
1621 dp[IPOPT_OLEN] = olen;
1622 dp[IPOPT_OFFSET] = offset;
1623 break;
1624 } else {
1625 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1626 goto bad;
1627
1628 memcpy(dp, cp, olen);
1629 break;
1630 }
1631
1632 dp += olen;
1633 m->m_len += olen;
1634
1635 if (optval == IPOPT_EOL)
1636 break;
1637
1638 cp += olen;
1639 cnt -= olen;
1640 }
1641
1642 inp->inp_options = m;
1643 return 0;
1644
1645 bad:
1646 (void)m_free(m);
1647 return EINVAL;
1648 }
1649
1650 /*
1651 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1652 * Must be called in a pserialize critical section.
1653 */
1654 static struct ifnet *
1655 ip_multicast_if(struct in_addr *a, int *ifindexp)
1656 {
1657 int ifindex;
1658 struct ifnet *ifp = NULL;
1659 struct in_ifaddr *ia;
1660
1661 if (ifindexp)
1662 *ifindexp = 0;
1663 if (ntohl(a->s_addr) >> 24 == 0) {
1664 ifindex = ntohl(a->s_addr) & 0xffffff;
1665 ifp = if_byindex(ifindex);
1666 if (!ifp)
1667 return NULL;
1668 if (ifindexp)
1669 *ifindexp = ifindex;
1670 } else {
1671 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1672 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1673 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1674 ifp = ia->ia_ifp;
1675 if (if_is_deactivated(ifp))
1676 ifp = NULL;
1677 break;
1678 }
1679 }
1680 }
1681 return ifp;
1682 }
1683
1684 static int
1685 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1686 {
1687 u_int tval;
1688 u_char cval;
1689 int error;
1690
1691 if (sopt == NULL)
1692 return EINVAL;
1693
1694 switch (sopt->sopt_size) {
1695 case sizeof(u_char):
1696 error = sockopt_get(sopt, &cval, sizeof(u_char));
1697 tval = cval;
1698 break;
1699
1700 case sizeof(u_int):
1701 error = sockopt_get(sopt, &tval, sizeof(u_int));
1702 break;
1703
1704 default:
1705 error = EINVAL;
1706 }
1707
1708 if (error)
1709 return error;
1710
1711 if (tval > maxval)
1712 return EINVAL;
1713
1714 *val = tval;
1715 return 0;
1716 }
1717
1718 static int
1719 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1720 struct psref *psref, struct in_addr *ia, bool add)
1721 {
1722 int error;
1723 struct ip_mreq mreq;
1724
1725 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1726 if (error)
1727 return error;
1728
1729 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1730 return EINVAL;
1731
1732 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1733
1734 if (in_nullhost(mreq.imr_interface)) {
1735 union {
1736 struct sockaddr dst;
1737 struct sockaddr_in dst4;
1738 } u;
1739 struct route ro;
1740
1741 if (!add) {
1742 *ifp = NULL;
1743 return 0;
1744 }
1745 /*
1746 * If no interface address was provided, use the interface of
1747 * the route to the given multicast address.
1748 */
1749 struct rtentry *rt;
1750 memset(&ro, 0, sizeof(ro));
1751
1752 sockaddr_in_init(&u.dst4, ia, 0);
1753 error = rtcache_setdst(&ro, &u.dst);
1754 if (error != 0)
1755 return error;
1756 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1757 if (*ifp != NULL) {
1758 if (if_is_deactivated(*ifp))
1759 *ifp = NULL;
1760 else
1761 if_acquire(*ifp, psref);
1762 }
1763 rtcache_unref(rt, &ro);
1764 rtcache_free(&ro);
1765 } else {
1766 int s = pserialize_read_enter();
1767 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1768 if (!add && *ifp == NULL) {
1769 pserialize_read_exit(s);
1770 return EADDRNOTAVAIL;
1771 }
1772 if (*ifp != NULL) {
1773 if (if_is_deactivated(*ifp))
1774 *ifp = NULL;
1775 else
1776 if_acquire(*ifp, psref);
1777 }
1778 pserialize_read_exit(s);
1779 }
1780 return 0;
1781 }
1782
1783 /*
1784 * Add a multicast group membership.
1785 * Group must be a valid IP multicast address.
1786 */
1787 static int
1788 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1789 {
1790 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1791 struct in_addr ia;
1792 int i, error, bound;
1793 struct psref psref;
1794
1795 /* imo is protected by solock or referenced only by the caller */
1796
1797 bound = curlwp_bind();
1798 if (sopt->sopt_size == sizeof(struct ip_mreq))
1799 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1800 else {
1801 #ifdef INET6
1802 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1803 #else
1804 error = EINVAL;
1805 #endif
1806 }
1807
1808 if (error)
1809 goto out;
1810
1811 /*
1812 * See if we found an interface, and confirm that it
1813 * supports multicast.
1814 */
1815 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1816 error = EADDRNOTAVAIL;
1817 goto out;
1818 }
1819
1820 /*
1821 * See if the membership already exists or if all the
1822 * membership slots are full.
1823 */
1824 for (i = 0; i < imo->imo_num_memberships; ++i) {
1825 if (imo->imo_membership[i]->inm_ifp == ifp &&
1826 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1827 break;
1828 }
1829 if (i < imo->imo_num_memberships) {
1830 error = EADDRINUSE;
1831 goto out;
1832 }
1833
1834 if (i == IP_MAX_MEMBERSHIPS) {
1835 error = ETOOMANYREFS;
1836 goto out;
1837 }
1838
1839 /*
1840 * Everything looks good; add a new record to the multicast
1841 * address list for the given interface.
1842 */
1843 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1844 if (imo->imo_membership[i] == NULL) {
1845 error = ENOBUFS;
1846 goto out;
1847 }
1848
1849 ++imo->imo_num_memberships;
1850 error = 0;
1851 out:
1852 if_put(ifp, &psref);
1853 curlwp_bindx(bound);
1854 return error;
1855 }
1856
1857 /*
1858 * Drop a multicast group membership.
1859 * Group must be a valid IP multicast address.
1860 */
1861 static int
1862 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1863 {
1864 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1865 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1866 int i, error, bound;
1867 struct psref psref;
1868
1869 /* imo is protected by solock or referenced only by the caller */
1870
1871 bound = curlwp_bind();
1872 if (sopt->sopt_size == sizeof(struct ip_mreq))
1873 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1874 else {
1875 #ifdef INET6
1876 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1877 #else
1878 error = EINVAL;
1879 #endif
1880 }
1881
1882 if (error)
1883 goto out;
1884
1885 /*
1886 * Find the membership in the membership array.
1887 */
1888 for (i = 0; i < imo->imo_num_memberships; ++i) {
1889 if ((ifp == NULL ||
1890 imo->imo_membership[i]->inm_ifp == ifp) &&
1891 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1892 break;
1893 }
1894 if (i == imo->imo_num_memberships) {
1895 error = EADDRNOTAVAIL;
1896 goto out;
1897 }
1898
1899 /*
1900 * Give up the multicast address record to which the
1901 * membership points.
1902 */
1903 in_delmulti(imo->imo_membership[i]);
1904
1905 /*
1906 * Remove the gap in the membership array.
1907 */
1908 for (++i; i < imo->imo_num_memberships; ++i)
1909 imo->imo_membership[i-1] = imo->imo_membership[i];
1910 --imo->imo_num_memberships;
1911 error = 0;
1912 out:
1913 if_put(ifp, &psref);
1914 curlwp_bindx(bound);
1915 return error;
1916 }
1917
1918 /*
1919 * Set the IP multicast options in response to user setsockopt().
1920 */
1921 int
1922 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1923 {
1924 struct ip_moptions *imo = *pimo;
1925 struct in_addr addr;
1926 struct ifnet *ifp;
1927 int ifindex, error = 0;
1928
1929 /* The passed imo isn't NULL, it should be protected by solock */
1930
1931 if (!imo) {
1932 /*
1933 * No multicast option buffer attached to the pcb;
1934 * allocate one and initialize to default values.
1935 */
1936 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1937 if (imo == NULL)
1938 return ENOBUFS;
1939
1940 imo->imo_multicast_if_index = 0;
1941 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1942 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1943 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1944 imo->imo_num_memberships = 0;
1945 *pimo = imo;
1946 }
1947
1948 switch (sopt->sopt_name) {
1949 case IP_MULTICAST_IF: {
1950 int s;
1951 /*
1952 * Select the interface for outgoing multicast packets.
1953 */
1954 error = sockopt_get(sopt, &addr, sizeof(addr));
1955 if (error)
1956 break;
1957
1958 /*
1959 * INADDR_ANY is used to remove a previous selection.
1960 * When no interface is selected, a default one is
1961 * chosen every time a multicast packet is sent.
1962 */
1963 if (in_nullhost(addr)) {
1964 imo->imo_multicast_if_index = 0;
1965 break;
1966 }
1967 /*
1968 * The selected interface is identified by its local
1969 * IP address. Find the interface and confirm that
1970 * it supports multicasting.
1971 */
1972 s = pserialize_read_enter();
1973 ifp = ip_multicast_if(&addr, &ifindex);
1974 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1975 pserialize_read_exit(s);
1976 error = EADDRNOTAVAIL;
1977 break;
1978 }
1979 imo->imo_multicast_if_index = ifp->if_index;
1980 pserialize_read_exit(s);
1981 if (ifindex)
1982 imo->imo_multicast_addr = addr;
1983 else
1984 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1985 break;
1986 }
1987
1988 case IP_MULTICAST_TTL:
1989 /*
1990 * Set the IP time-to-live for outgoing multicast packets.
1991 */
1992 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1993 break;
1994
1995 case IP_MULTICAST_LOOP:
1996 /*
1997 * Set the loopback flag for outgoing multicast packets.
1998 * Must be zero or one.
1999 */
2000 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
2001 break;
2002
2003 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
2004 error = ip_add_membership(imo, sopt);
2005 break;
2006
2007 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
2008 error = ip_drop_membership(imo, sopt);
2009 break;
2010
2011 default:
2012 error = EOPNOTSUPP;
2013 break;
2014 }
2015
2016 /*
2017 * If all options have default values, no need to keep the mbuf.
2018 */
2019 if (imo->imo_multicast_if_index == 0 &&
2020 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2021 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2022 imo->imo_num_memberships == 0) {
2023 kmem_intr_free(imo, sizeof(*imo));
2024 *pimo = NULL;
2025 }
2026
2027 return error;
2028 }
2029
2030 /*
2031 * Return the IP multicast options in response to user getsockopt().
2032 */
2033 int
2034 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
2035 {
2036 struct in_addr addr;
2037 uint8_t optval;
2038 int error = 0;
2039
2040 /* imo is protected by solock or refereced only by the caller */
2041
2042 switch (sopt->sopt_name) {
2043 case IP_MULTICAST_IF:
2044 if (imo == NULL || imo->imo_multicast_if_index == 0)
2045 addr = zeroin_addr;
2046 else if (imo->imo_multicast_addr.s_addr) {
2047 /* return the value user has set */
2048 addr = imo->imo_multicast_addr;
2049 } else {
2050 struct ifnet *ifp;
2051 struct in_ifaddr *ia = NULL;
2052 int s = pserialize_read_enter();
2053
2054 ifp = if_byindex(imo->imo_multicast_if_index);
2055 if (ifp != NULL) {
2056 ia = in_get_ia_from_ifp(ifp);
2057 }
2058 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
2059 pserialize_read_exit(s);
2060 }
2061 error = sockopt_set(sopt, &addr, sizeof(addr));
2062 break;
2063
2064 case IP_MULTICAST_TTL:
2065 optval = imo ? imo->imo_multicast_ttl
2066 : IP_DEFAULT_MULTICAST_TTL;
2067
2068 error = sockopt_set(sopt, &optval, sizeof(optval));
2069 break;
2070
2071 case IP_MULTICAST_LOOP:
2072 optval = imo ? imo->imo_multicast_loop
2073 : IP_DEFAULT_MULTICAST_LOOP;
2074
2075 error = sockopt_set(sopt, &optval, sizeof(optval));
2076 break;
2077
2078 default:
2079 error = EOPNOTSUPP;
2080 }
2081
2082 return error;
2083 }
2084
2085 /*
2086 * Discard the IP multicast options.
2087 */
2088 void
2089 ip_freemoptions(struct ip_moptions *imo)
2090 {
2091 int i;
2092
2093 /* The owner of imo (inp) should be protected by solock */
2094
2095 if (imo != NULL) {
2096 for (i = 0; i < imo->imo_num_memberships; ++i) {
2097 struct in_multi *inm = imo->imo_membership[i];
2098 in_delmulti(inm);
2099 /* ifp should not leave thanks to solock */
2100 }
2101
2102 kmem_intr_free(imo, sizeof(*imo));
2103 }
2104 }
2105
2106 /*
2107 * Routine called from ip_output() to loop back a copy of an IP multicast
2108 * packet to the input queue of a specified interface. Note that this
2109 * calls the output routine of the loopback "driver", but with an interface
2110 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2111 */
2112 static void
2113 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2114 {
2115 struct ip *ip;
2116 struct mbuf *copym;
2117
2118 copym = m_copypacket(m, M_DONTWAIT);
2119 if (copym != NULL &&
2120 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2121 copym = m_pullup(copym, sizeof(struct ip));
2122 if (copym == NULL)
2123 return;
2124 /*
2125 * We don't bother to fragment if the IP length is greater
2126 * than the interface's MTU. Can this possibly matter?
2127 */
2128 ip = mtod(copym, struct ip *);
2129
2130 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2131 in_undefer_cksum_tcpudp(copym);
2132 copym->m_pkthdr.csum_flags &=
2133 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2134 }
2135
2136 ip->ip_sum = 0;
2137 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2138 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2139 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2140 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2141 }
2142
2143 /*
2144 * Ensure sending address is valid.
2145 * Returns 0 on success, -1 if an error should be sent back or 1
2146 * if the packet could be dropped without error (protocol dependent).
2147 */
2148 static int
2149 ip_ifaddrvalid(const struct in_ifaddr *ia)
2150 {
2151
2152 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2153 return 0;
2154
2155 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2156 return -1;
2157 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2158 return 1;
2159
2160 return 0;
2161 }
2162