ip_output.c revision 1.330 1 /* $NetBSD: ip_output.c,v 1.330 2025/07/17 06:48:39 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.330 2025/07/17 06:48:39 ozaki-r Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mpls.h"
102 #endif
103
104 #include "arp.h"
105
106 #include <sys/param.h>
107 #include <sys/kmem.h>
108 #include <sys/mbuf.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/kauth.h>
112 #include <sys/systm.h>
113 #include <sys/syslog.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/route.h>
118 #include <net/pfil.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_private.h>
127 #include <netinet/in_offload.h>
128 #include <netinet/portalgo.h>
129 #include <netinet/udp.h>
130 #include <netinet/udp_var.h>
131
132 #ifdef INET6
133 #include <netinet6/ip6_var.h>
134 #endif
135
136 #ifdef MROUTING
137 #include <netinet/ip_mroute.h>
138 #endif
139
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144
145 #ifdef MPLS
146 #include <netmpls/mpls.h>
147 #include <netmpls/mpls_var.h>
148 #endif
149
150 static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *);
155 static int ip_ifaddrvalid(const struct in_ifaddr *);
156
157 extern pfil_head_t *inet_pfil_hook; /* XXX */
158
159 int ip_do_loopback_cksum = 0;
160
161 static int
162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
163 const struct rtentry *rt)
164 {
165 int error = 0;
166 #ifdef MPLS
167 union mpls_shim msh;
168
169 if (rt == NULL || rt_gettag(rt) == NULL ||
170 rt_gettag(rt)->sa_family != AF_MPLS ||
171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
172 ifp->if_type != IFT_ETHER)
173 return 0;
174
175 msh.s_addr = MPLS_GETSADDR(rt);
176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
177 struct m_tag *mtag;
178 /*
179 * XXX tentative solution to tell ether_output
180 * it's MPLS. Need some more efficient solution.
181 */
182 mtag = m_tag_get(PACKET_TAG_MPLS,
183 sizeof(int) /* dummy */,
184 M_NOWAIT);
185 if (mtag == NULL)
186 return ENOMEM;
187 m_tag_prepend(m, mtag);
188 }
189 #endif
190 return error;
191 }
192
193 /*
194 * Send an IP packet to a host.
195 */
196 int
197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
198 const struct sockaddr * const dst, const struct rtentry *rt)
199 {
200 int error = 0;
201
202 if (rt != NULL) {
203 error = rt_check_reject_route(rt, ifp);
204 if (error != 0) {
205 IP_STATINC(IP_STAT_RTREJECT);
206 m_freem(m);
207 return error;
208 }
209 }
210
211 error = ip_mark_mpls(ifp, m, rt);
212 if (error != 0) {
213 m_freem(m);
214 return error;
215 }
216
217 error = if_output_lock(ifp, ifp, m, dst, rt);
218
219 return error;
220 }
221
222 /*
223 * IP output. The packet in mbuf chain m contains a skeletal IP
224 * header (with len, off, ttl, proto, tos, src, dst).
225 * The mbuf chain containing the packet will be freed.
226 * The mbuf opt, if present, will not be freed.
227 */
228 int
229 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
230 struct ip_moptions *imo, struct inpcb *inp)
231 {
232 struct rtentry *rt;
233 struct ip *ip;
234 struct ifnet *ifp, *mifp = NULL;
235 struct mbuf *m = m0;
236 int len, hlen, error = 0;
237 struct route iproute;
238 const struct sockaddr_in *dst;
239 struct in_ifaddr *ia = NULL;
240 int isbroadcast;
241 int sw_csum;
242 u_long mtu;
243 bool natt_frag = false;
244 bool rtmtu_nolock;
245 union {
246 struct sockaddr sa;
247 struct sockaddr_in sin;
248 } udst, usrc;
249 struct sockaddr *rdst = &udst.sa; /* real IP destination, as
250 * opposed to the nexthop
251 */
252 struct psref psref, psref_ia;
253 int bound;
254 bool bind_need_restore = false;
255 const struct sockaddr *sa;
256 bool need_ia4_release = false;
257
258 len = 0;
259
260 MCLAIM(m, &ip_tx_mowner);
261
262 KASSERT((m->m_flags & M_PKTHDR) != 0);
263 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
264 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
265 (M_CSUM_TCPv4|M_CSUM_UDPv4));
266 KASSERT(m->m_len >= sizeof(struct ip));
267
268 hlen = sizeof(struct ip);
269 if (opt) {
270 m = ip_insertoptions(m, opt, &len);
271 hlen = len;
272 }
273 ip = mtod(m, struct ip *);
274
275 /*
276 * Fill in IP header.
277 */
278 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
279 ip->ip_v = IPVERSION;
280 ip->ip_off = htons(0);
281 /* ip->ip_id filled in after we find out source ia */
282 ip->ip_hl = hlen >> 2;
283 IP_STATINC(IP_STAT_LOCALOUT);
284 } else {
285 hlen = ip->ip_hl << 2;
286 }
287
288 /*
289 * Route packet.
290 */
291 if (ro == NULL) {
292 memset(&iproute, 0, sizeof(iproute));
293 ro = &iproute;
294 }
295 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0);
296 dst = satocsin(rtcache_getdst(ro));
297
298 /*
299 * If there is a cached route, check that it is to the same
300 * destination and is still up. If not, free it and try again.
301 * The address family should also be checked in case of sharing
302 * the cache with IPv6.
303 */
304 if (dst && (dst->sin_family != AF_INET ||
305 !in_hosteq(dst->sin_addr, ip->ip_dst)))
306 rtcache_free(ro);
307
308 /* XXX must be before rtcache operations */
309 bound = curlwp_bind();
310 bind_need_restore = true;
311
312 if ((rt = rtcache_validate(ro)) == NULL &&
313 (rt = rtcache_update(ro, 1)) == NULL) {
314 dst = &udst.sin;
315 error = rtcache_setdst(ro, &udst.sa);
316 if (error != 0) {
317 IP_STATINC(IP_STAT_ODROPPED);
318 goto bad;
319 }
320 }
321
322 /*
323 * If routing to interface only, short circuit routing lookup.
324 */
325 if (flags & IP_ROUTETOIF) {
326 struct ifaddr *ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
327 if (ifa == NULL) {
328 IP_STATINC(IP_STAT_NOROUTE);
329 error = ENETUNREACH;
330 goto bad;
331 }
332 /* ia is already referenced by psref_ia */
333 ia = ifatoia(ifa);
334 need_ia4_release = true;
335
336 /* Need a reference to keep ifp after ia4_release(ia). */
337 ifp = mifp = if_get_byindex(ia->ia_ifp->if_index, &psref);
338 if (__predict_false(ifp == NULL)) {
339 IP_STATINC(IP_STAT_NOROUTE);
340 error = ENETUNREACH;
341 goto bad;
342 }
343 mtu = ifp->if_mtu;
344 ip->ip_ttl = 1;
345 isbroadcast = in_broadcast(dst->sin_addr, ifp);
346 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) ||
347 ip->ip_dst.s_addr == INADDR_BROADCAST) ||
348 (flags & IP_ROUTETOIFINDEX)) &&
349 imo != NULL && imo->imo_multicast_if_index != 0) {
350 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
351 if (ifp == NULL) {
352 IP_STATINC(IP_STAT_NOROUTE);
353 error = ENETUNREACH;
354 goto bad;
355 }
356 mtu = ifp->if_mtu;
357 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
358 need_ia4_release = true;
359 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
360 ip->ip_dst.s_addr == INADDR_BROADCAST) {
361 isbroadcast = 0;
362 } else {
363 /* IP_ROUTETOIFINDEX */
364 isbroadcast = in_broadcast(dst->sin_addr, ifp);
365 if ((isbroadcast == 0) && ((ifp->if_flags &
366 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) &&
367 (in_direct(dst->sin_addr, ifp) == 0)) {
368 /* gateway address required */
369 if (rt == NULL)
370 rt = rtcache_init(ro);
371 if (rt == NULL || rt->rt_ifp != ifp) {
372 IP_STATINC(IP_STAT_NOROUTE);
373 error = EHOSTUNREACH;
374 goto bad;
375 }
376 rt->rt_use++;
377 if (rt->rt_flags & RTF_GATEWAY)
378 dst = satosin(rt->rt_gateway);
379 if (rt->rt_flags & RTF_HOST)
380 isbroadcast =
381 rt->rt_flags & RTF_BROADCAST;
382 }
383 }
384 } else {
385 if (rt == NULL)
386 rt = rtcache_init(ro);
387 if (rt == NULL) {
388 IP_STATINC(IP_STAT_NOROUTE);
389 error = EHOSTUNREACH;
390 goto bad;
391 }
392 /*
393 * Taking a psref of ifa via rt_ifa is racy, so use it as is, which
394 * is safe because rt_ifa is not freed during rt is held.
395 */
396 ia = ifatoia(rt->rt_ifa);
397 ifp = rt->rt_ifp;
398 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
399 mtu = ifp->if_mtu;
400 rt->rt_use++;
401 if (rt->rt_flags & RTF_GATEWAY)
402 dst = satosin(rt->rt_gateway);
403 if (rt->rt_flags & RTF_HOST)
404 isbroadcast = rt->rt_flags & RTF_BROADCAST;
405 else
406 isbroadcast = in_broadcast(dst->sin_addr, ifp);
407 }
408 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
409
410 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
411 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
412 bool inmgroup;
413
414 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
415 M_BCAST : M_MCAST;
416 /*
417 * See if the caller provided any multicast options
418 */
419 if (imo != NULL)
420 ip->ip_ttl = imo->imo_multicast_ttl;
421 else
422 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
423
424 /*
425 * if we don't know the outgoing ifp yet, we can't generate
426 * output
427 */
428 if (!ifp) {
429 IP_STATINC(IP_STAT_NOROUTE);
430 error = ENETUNREACH;
431 goto bad;
432 }
433
434 /*
435 * If the packet is multicast or broadcast, confirm that
436 * the outgoing interface can transmit it.
437 */
438 if (((m->m_flags & M_MCAST) &&
439 (ifp->if_flags & IFF_MULTICAST) == 0) ||
440 ((m->m_flags & M_BCAST) &&
441 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
442 IP_STATINC(IP_STAT_NOROUTE);
443 error = ENETUNREACH;
444 goto bad;
445 }
446 /*
447 * If source address not specified yet, use an address
448 * of outgoing interface.
449 */
450 if (in_nullhost(ip->ip_src)) {
451 struct in_ifaddr *xia;
452 struct ifaddr *ifa;
453 struct psref _psref;
454
455 xia = in_get_ia_from_ifp_psref(ifp, &_psref);
456 if (!xia) {
457 IP_STATINC(IP_STAT_IFNOADDR);
458 error = EADDRNOTAVAIL;
459 goto bad;
460 }
461 ifa = &xia->ia_ifa;
462 if (ifa->ifa_getifa != NULL) {
463 ia4_release(xia, &_psref);
464 /* FIXME ifa_getifa is NOMPSAFE */
465 xia = ifatoia((*ifa->ifa_getifa)(ifa, rdst));
466 if (xia == NULL) {
467 IP_STATINC(IP_STAT_IFNOADDR);
468 error = EADDRNOTAVAIL;
469 goto bad;
470 }
471 ia4_acquire(xia, &_psref);
472 }
473 ip->ip_src = xia->ia_addr.sin_addr;
474 ia4_release(xia, &_psref);
475 }
476
477 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
478 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
479 /*
480 * If we belong to the destination multicast group
481 * on the outgoing interface, and the caller did not
482 * forbid loopback, loop back a copy.
483 */
484 ip_mloopback(ifp, m, &udst.sin);
485 }
486 #ifdef MROUTING
487 else {
488 /*
489 * If we are acting as a multicast router, perform
490 * multicast forwarding as if the packet had just
491 * arrived on the interface to which we are about
492 * to send. The multicast forwarding function
493 * recursively calls this function, using the
494 * IP_FORWARDING flag to prevent infinite recursion.
495 *
496 * Multicasts that are looped back by ip_mloopback(),
497 * above, will be forwarded by the ip_input() routine,
498 * if necessary.
499 */
500 extern struct socket *ip_mrouter;
501
502 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
503 if (ip_mforward(m, ifp) != 0) {
504 m_freem(m);
505 goto done;
506 }
507 }
508 }
509 #endif
510 /*
511 * Multicasts with a time-to-live of zero may be looped-
512 * back, above, but must not be transmitted on a network.
513 * Also, multicasts addressed to the loopback interface
514 * are not sent -- the above call to ip_mloopback() will
515 * loop back a copy if this host actually belongs to the
516 * destination group on the loopback interface.
517 */
518 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
519 IP_STATINC(IP_STAT_ODROPPED);
520 m_freem(m);
521 goto done;
522 }
523 goto sendit;
524 }
525
526 /*
527 * If source address not specified yet, use address
528 * of outgoing interface.
529 */
530 if (in_nullhost(ip->ip_src)) {
531 struct ifaddr *ifa;
532
533 ifa = &ia->ia_ifa;
534 if (ifa->ifa_getifa != NULL) {
535 if (need_ia4_release) {
536 ia4_release(ia, &psref_ia);
537 need_ia4_release = false;
538 }
539 /* FIXME ifa_getifa is NOMPSAFE */
540 ia = ifatoia((*ifa->ifa_getifa)(ifa, rdst));
541 if (ia == NULL) {
542 error = EADDRNOTAVAIL;
543 goto bad;
544 }
545 ia4_acquire(ia, &psref_ia);
546 need_ia4_release = true;
547 }
548 ip->ip_src = ia->ia_addr.sin_addr;
549 }
550
551 /*
552 * Packets with Class-D address as source are not valid per
553 * RFC1112.
554 */
555 if (IN_MULTICAST(ip->ip_src.s_addr)) {
556 IP_STATINC(IP_STAT_ODROPPED);
557 error = EADDRNOTAVAIL;
558 goto bad;
559 }
560
561 /*
562 * Look for broadcast address and verify user is allowed to
563 * send such a packet.
564 */
565 if (isbroadcast) {
566 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
567 IP_STATINC(IP_STAT_BCASTDENIED);
568 error = EADDRNOTAVAIL;
569 goto bad;
570 }
571 if ((flags & IP_ALLOWBROADCAST) == 0) {
572 IP_STATINC(IP_STAT_BCASTDENIED);
573 error = EACCES;
574 goto bad;
575 }
576 /* don't allow broadcast messages to be fragmented */
577 if (ntohs(ip->ip_len) > ifp->if_mtu) {
578 IP_STATINC(IP_STAT_BCASTDENIED);
579 error = EMSGSIZE;
580 goto bad;
581 }
582 m->m_flags |= M_BCAST;
583 } else
584 m->m_flags &= ~M_BCAST;
585
586 sendit:
587 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
588 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
589 ip->ip_id = 0;
590 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
591 ip->ip_id = ip_newid();
592 } else {
593 /*
594 * TSO capable interfaces (typically?) increment
595 * ip_id for each segment.
596 * "allocate" enough ids here to increase the chance
597 * for them to be unique.
598 *
599 * note that the following calculation is not
600 * needed to be precise. wasting some ip_id is fine.
601 */
602
603 unsigned int segsz = m->m_pkthdr.segsz;
604 unsigned int datasz = ntohs(ip->ip_len) - hlen;
605 unsigned int num = howmany(datasz, segsz);
606
607 ip->ip_id = ip_newid_range(num);
608 }
609 }
610 if (ia != NULL) {
611 if (need_ia4_release) {
612 ia4_release(ia, &psref_ia);
613 need_ia4_release = false;
614 }
615 ia = NULL;
616 }
617
618 /*
619 * If we're doing Path MTU Discovery, we need to set DF unless
620 * the route's MTU is locked.
621 */
622 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
623 ip->ip_off |= htons(IP_DF);
624 }
625
626 #ifdef IPSEC
627 if (ipsec_used) {
628 bool ipsec_done = false;
629 bool count_drop = false;
630
631 /* Perform IPsec processing, if any. */
632 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
633 &ipsec_done, &count_drop);
634 if (count_drop)
635 IP_STATINC(IP_STAT_IPSECDROP_OUT);
636 if (error || ipsec_done)
637 goto done;
638 }
639
640 if (!ipsec_used || !natt_frag)
641 #endif
642 {
643 /*
644 * Run through list of hooks for output packets.
645 */
646 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
647 if (error || m == NULL) {
648 IP_STATINC(IP_STAT_PFILDROP_OUT);
649 goto done;
650 }
651 }
652
653 ip = mtod(m, struct ip *);
654 hlen = ip->ip_hl << 2;
655
656 m->m_pkthdr.csum_data |= hlen << 16;
657
658 /*
659 * search for the source address structure to
660 * maintain output statistics, and verify address
661 * validity
662 */
663 KASSERT(ia == NULL);
664 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0);
665 ia = ifatoia(ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia));
666 if (ia != NULL)
667 need_ia4_release = true;
668
669 /*
670 * Ensure we only send from a valid address.
671 * A NULL address is valid because the packet could be
672 * generated from a packet filter.
673 */
674 if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
675 (error = ip_ifaddrvalid(ia)) != 0)
676 {
677 ARPLOG(LOG_ERR,
678 "refusing to send from invalid address %s (pid %d)\n",
679 ARPLOGADDR(&ip->ip_src), curproc->p_pid);
680 IP_STATINC(IP_STAT_ODROPPED);
681 if (error == 1)
682 /*
683 * Address exists, but is tentative or detached.
684 * We can't send from it because it's invalid,
685 * so we drop the packet.
686 */
687 error = 0;
688 else
689 error = EADDRNOTAVAIL;
690 goto bad;
691 }
692
693 /* Maybe skip checksums on loopback interfaces. */
694 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
695 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
696 }
697 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
698
699 /* Need to fragment the packet */
700 if (ntohs(ip->ip_len) > mtu &&
701 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
702 goto fragment;
703 }
704
705 #if IFA_STATS
706 if (ia)
707 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
708 #endif
709 /*
710 * Always initialize the sum to 0! Some HW assisted
711 * checksumming requires this.
712 */
713 ip->ip_sum = 0;
714
715 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
716 /*
717 * Perform any checksums that the hardware can't do
718 * for us.
719 *
720 * XXX Does any hardware require the {th,uh}_sum
721 * XXX fields to be 0?
722 */
723 if (sw_csum & M_CSUM_IPv4) {
724 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
725 ip->ip_sum = in_cksum(m, hlen);
726 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
727 }
728 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
729 if (IN_NEED_CHECKSUM(ifp,
730 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
731 in_undefer_cksum_tcpudp(m);
732 }
733 m->m_pkthdr.csum_flags &=
734 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
735 }
736 }
737
738 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
739
740 /* Send it */
741 if (__predict_false(sw_csum & M_CSUM_TSOv4)) {
742 /*
743 * TSO4 is required by a packet, but disabled for
744 * the interface.
745 */
746 error = ip_tso_output(ifp, m, sa, rt);
747 } else
748 error = ip_if_output(ifp, m, sa, rt);
749 goto done;
750
751 fragment:
752 /*
753 * We can't use HW checksumming if we're about to fragment the packet.
754 *
755 * XXX Some hardware can do this.
756 */
757 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
758 if (IN_NEED_CHECKSUM(ifp,
759 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
760 in_undefer_cksum_tcpudp(m);
761 }
762 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
763 }
764
765 /*
766 * Too large for interface; fragment if possible.
767 * Must be able to put at least 8 bytes per fragment.
768 */
769 if (ntohs(ip->ip_off) & IP_DF) {
770 if (flags & IP_RETURNMTU) {
771 KASSERT(inp != NULL);
772 in4p_errormtu(inp) = mtu;
773 }
774 error = EMSGSIZE;
775 IP_STATINC(IP_STAT_CANTFRAG);
776 goto bad;
777 }
778
779 error = ip_fragment(m, ifp, mtu);
780 if (error) {
781 m = NULL;
782 goto bad;
783 }
784
785 for (; m; m = m0) {
786 m0 = m->m_nextpkt;
787 m->m_nextpkt = NULL;
788 if (error) {
789 m_freem(m);
790 continue;
791 }
792 #if IFA_STATS
793 if (ia)
794 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
795 #endif
796 /*
797 * If we get there, the packet has not been handled by
798 * IPsec whereas it should have. Now that it has been
799 * fragmented, re-inject it in ip_output so that IPsec
800 * processing can occur.
801 */
802 if (natt_frag) {
803 error = ip_output(m, opt, NULL,
804 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
805 imo, inp);
806 } else {
807 KASSERT((m->m_pkthdr.csum_flags &
808 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
809 error = ip_if_output(ifp, m, (m->m_flags & M_MCAST) ?
810 sintocsa(rdst) : sintocsa(dst), rt);
811 }
812 }
813 if (error == 0) {
814 IP_STATINC(IP_STAT_FRAGMENTED);
815 }
816
817 done:
818 if (need_ia4_release)
819 ia4_release(ia, &psref_ia);
820 rtcache_unref(rt, ro);
821 if (ro == &iproute) {
822 rtcache_free(&iproute);
823 }
824 if (mifp != NULL) {
825 if_put(mifp, &psref);
826 }
827 if (bind_need_restore)
828 curlwp_bindx(bound);
829 return error;
830
831 bad:
832 m_freem(m);
833 goto done;
834 }
835
836 int
837 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
838 {
839 struct ip *ip, *mhip;
840 struct mbuf *m0;
841 int len, hlen, off;
842 int mhlen, firstlen;
843 struct mbuf **mnext;
844 int sw_csum = m->m_pkthdr.csum_flags;
845 int fragments = 0;
846 int error = 0;
847 int ipoff, ipflg;
848
849 ip = mtod(m, struct ip *);
850 hlen = ip->ip_hl << 2;
851
852 /* Preserve the offset and flags. */
853 ipoff = ntohs(ip->ip_off) & IP_OFFMASK;
854 ipflg = ntohs(ip->ip_off) & (IP_RF|IP_DF|IP_MF);
855
856 if (ifp != NULL)
857 sw_csum &= ~ifp->if_csum_flags_tx;
858
859 len = (mtu - hlen) &~ 7;
860 if (len < 8) {
861 IP_STATINC(IP_STAT_CANTFRAG);
862 m_freem(m);
863 return EMSGSIZE;
864 }
865
866 firstlen = len;
867 mnext = &m->m_nextpkt;
868
869 /*
870 * Loop through length of segment after first fragment,
871 * make new header and copy data of each part and link onto chain.
872 */
873 m0 = m;
874 mhlen = sizeof(struct ip);
875 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
876 MGETHDR(m, M_DONTWAIT, MT_HEADER);
877 if (m == NULL) {
878 error = ENOBUFS;
879 IP_STATINC(IP_STAT_ODROPPED);
880 goto sendorfree;
881 }
882 MCLAIM(m, m0->m_owner);
883
884 *mnext = m;
885 mnext = &m->m_nextpkt;
886
887 m->m_data += max_linkhdr;
888 mhip = mtod(m, struct ip *);
889 *mhip = *ip;
890
891 /* we must inherit the flags */
892 m->m_flags |= m0->m_flags & M_COPYFLAGS;
893
894 if (hlen > sizeof(struct ip)) {
895 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
896 mhip->ip_hl = mhlen >> 2;
897 }
898 m->m_len = mhlen;
899
900 mhip->ip_off = ((off - hlen) >> 3) + ipoff;
901 mhip->ip_off |= ipflg;
902 if (off + len >= ntohs(ip->ip_len))
903 len = ntohs(ip->ip_len) - off;
904 else
905 mhip->ip_off |= IP_MF;
906 HTONS(mhip->ip_off);
907
908 mhip->ip_len = htons((u_int16_t)(len + mhlen));
909 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
910 if (m->m_next == NULL) {
911 error = ENOBUFS;
912 IP_STATINC(IP_STAT_ODROPPED);
913 goto sendorfree;
914 }
915
916 m->m_pkthdr.len = mhlen + len;
917 m_reset_rcvif(m);
918
919 mhip->ip_sum = 0;
920 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
921 if (sw_csum & M_CSUM_IPv4) {
922 mhip->ip_sum = in_cksum(m, mhlen);
923 } else {
924 /*
925 * checksum is hw-offloaded or not necessary.
926 */
927 m->m_pkthdr.csum_flags |=
928 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
929 m->m_pkthdr.csum_data |= mhlen << 16;
930 KASSERT(!(ifp != NULL &&
931 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
932 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
933 }
934 IP_STATINC(IP_STAT_OFRAGMENTS);
935 fragments++;
936 }
937
938 /*
939 * Update first fragment by trimming what's been copied out
940 * and updating header, then send each fragment (in order).
941 */
942 m = m0;
943 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
944 m->m_pkthdr.len = hlen + firstlen;
945 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
946 ip->ip_off |= htons(IP_MF);
947 ip->ip_sum = 0;
948 if (sw_csum & M_CSUM_IPv4) {
949 ip->ip_sum = in_cksum(m, hlen);
950 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
951 } else {
952 /*
953 * checksum is hw-offloaded or not necessary.
954 */
955 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
956 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
957 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
958 sizeof(struct ip));
959 }
960
961 sendorfree:
962 /*
963 * If there is no room for all the fragments, don't queue
964 * any of them.
965 */
966 if (ifp != NULL) {
967 IFQ_LOCK(&ifp->if_snd);
968 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
969 error == 0) {
970 error = ENOBUFS;
971 IP_STATINC(IP_STAT_ODROPPED);
972 IFQ_INC_DROPS(&ifp->if_snd);
973 }
974 IFQ_UNLOCK(&ifp->if_snd);
975 }
976 if (error) {
977 for (m = m0; m; m = m0) {
978 m0 = m->m_nextpkt;
979 m->m_nextpkt = NULL;
980 m_freem(m);
981 }
982 }
983
984 return error;
985 }
986
987 /*
988 * Determine the maximum length of the options to be inserted;
989 * we would far rather allocate too much space rather than too little.
990 */
991 u_int
992 ip_optlen(struct inpcb *inp)
993 {
994 struct mbuf *m = inp->inp_options;
995
996 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
997 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
998 }
999 return 0;
1000 }
1001
1002 /*
1003 * Insert IP options into preformed packet.
1004 * Adjust IP destination as required for IP source routing,
1005 * as indicated by a non-zero in_addr at the start of the options.
1006 */
1007 static struct mbuf *
1008 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1009 {
1010 struct ipoption *p = mtod(opt, struct ipoption *);
1011 struct mbuf *n;
1012 struct ip *ip = mtod(m, struct ip *);
1013 unsigned optlen;
1014
1015 optlen = opt->m_len - sizeof(p->ipopt_dst);
1016 KASSERT(optlen % 4 == 0);
1017 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1018 return m; /* XXX should fail */
1019 if (!in_nullhost(p->ipopt_dst))
1020 ip->ip_dst = p->ipopt_dst;
1021 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1022 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1023 if (n == NULL)
1024 return m;
1025 MCLAIM(n, m->m_owner);
1026 m_move_pkthdr(n, m);
1027 m->m_len -= sizeof(struct ip);
1028 m->m_data += sizeof(struct ip);
1029 n->m_next = m;
1030 n->m_len = optlen + sizeof(struct ip);
1031 n->m_data += max_linkhdr;
1032 memcpy(mtod(n, void *), ip, sizeof(struct ip));
1033 m = n;
1034 } else {
1035 m->m_data -= optlen;
1036 m->m_len += optlen;
1037 memmove(mtod(m, void *), ip, sizeof(struct ip));
1038 }
1039 m->m_pkthdr.len += optlen;
1040 ip = mtod(m, struct ip *);
1041 memcpy(ip + 1, p->ipopt_list, optlen);
1042 *phlen = sizeof(struct ip) + optlen;
1043 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1044 return m;
1045 }
1046
1047 /*
1048 * Copy options from ipsrc to ipdst, omitting those not copied during
1049 * fragmentation.
1050 */
1051 int
1052 ip_optcopy(struct ip *ipsrc, struct ip *ipdst)
1053 {
1054 u_char *cp, *dp;
1055 int opt, optlen, cnt;
1056
1057 cp = (u_char *)(ipsrc + 1);
1058 dp = (u_char *)(ipdst + 1);
1059 cnt = (ipsrc->ip_hl << 2) - sizeof(struct ip);
1060 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1061 opt = cp[0];
1062 if (opt == IPOPT_EOL)
1063 break;
1064 if (opt == IPOPT_NOP) {
1065 /* Preserve for IP mcast tunnel's LSRR alignment. */
1066 *dp++ = IPOPT_NOP;
1067 optlen = 1;
1068 continue;
1069 }
1070
1071 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1072 optlen = cp[IPOPT_OLEN];
1073 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1074
1075 /* Invalid lengths should have been caught by ip_dooptions. */
1076 if (optlen > cnt)
1077 optlen = cnt;
1078 if (IPOPT_COPIED(opt)) {
1079 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1080 dp += optlen;
1081 }
1082 }
1083
1084 for (optlen = dp - (u_char *)(ipdst+1); optlen & 0x3; optlen++) {
1085 *dp++ = IPOPT_EOL;
1086 }
1087
1088 return optlen;
1089 }
1090
1091 /*
1092 * IP socket option processing.
1093 */
1094 int
1095 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1096 {
1097 struct inpcb *inp = sotoinpcb(so);
1098 struct ip *ip = &in4p_ip(inp);
1099 int inpflags = inp->inp_flags;
1100 int optval = 0, error = 0;
1101 struct in_pktinfo pktinfo;
1102
1103 KASSERT(solocked(so));
1104
1105 if (sopt->sopt_level != IPPROTO_IP) {
1106 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1107 return 0;
1108 return ENOPROTOOPT;
1109 }
1110
1111 switch (op) {
1112 case PRCO_SETOPT:
1113 switch (sopt->sopt_name) {
1114 case IP_OPTIONS:
1115 #ifdef notyet
1116 case IP_RETOPTS:
1117 #endif
1118 error = ip_pcbopts(inp, sopt);
1119 break;
1120
1121 case IP_TOS:
1122 case IP_TTL:
1123 case IP_MINTTL:
1124 case IP_RECVOPTS:
1125 case IP_RECVRETOPTS:
1126 case IP_RECVDSTADDR:
1127 case IP_RECVIF:
1128 case IP_RECVPKTINFO:
1129 case IP_RECVTTL:
1130 case IP_BINDANY:
1131 error = sockopt_getint(sopt, &optval);
1132 if (error)
1133 break;
1134
1135 switch (sopt->sopt_name) {
1136 case IP_TOS:
1137 ip->ip_tos = optval;
1138 break;
1139
1140 case IP_TTL:
1141 ip->ip_ttl = optval;
1142 break;
1143
1144 case IP_MINTTL:
1145 if (optval > 0 && optval <= MAXTTL)
1146 in4p_ip_minttl(inp) = optval;
1147 else
1148 error = EINVAL;
1149 break;
1150 #define OPTSET(bit) \
1151 if (optval) \
1152 inpflags |= bit; \
1153 else \
1154 inpflags &= ~bit;
1155
1156 case IP_RECVOPTS:
1157 OPTSET(INP_RECVOPTS);
1158 break;
1159
1160 case IP_RECVPKTINFO:
1161 OPTSET(INP_RECVPKTINFO);
1162 break;
1163
1164 case IP_RECVRETOPTS:
1165 OPTSET(INP_RECVRETOPTS);
1166 break;
1167
1168 case IP_RECVDSTADDR:
1169 OPTSET(INP_RECVDSTADDR);
1170 break;
1171
1172 case IP_RECVIF:
1173 OPTSET(INP_RECVIF);
1174 break;
1175
1176 case IP_RECVTTL:
1177 OPTSET(INP_RECVTTL);
1178 break;
1179
1180 case IP_BINDANY:
1181 error = kauth_authorize_network(
1182 kauth_cred_get(), KAUTH_NETWORK_BIND,
1183 KAUTH_REQ_NETWORK_BIND_ANYADDR, so,
1184 NULL, NULL);
1185 if (error == 0) {
1186 OPTSET(INP_BINDANY);
1187 }
1188 break;
1189 }
1190 break;
1191 case IP_PKTINFO:
1192 error = sockopt_getint(sopt, &optval);
1193 if (!error) {
1194 /* Linux compatibility */
1195 OPTSET(INP_RECVPKTINFO);
1196 break;
1197 }
1198 error = sockopt_get(sopt, &pktinfo, sizeof(pktinfo));
1199 if (error)
1200 break;
1201
1202 if (pktinfo.ipi_ifindex == 0) {
1203 in4p_prefsrcip(inp) = pktinfo.ipi_addr;
1204 break;
1205 }
1206
1207 /* Solaris compatibility */
1208 struct ifnet *ifp;
1209 struct in_ifaddr *ia;
1210 int s;
1211
1212 /* pick up primary address */
1213 s = pserialize_read_enter();
1214 ifp = if_byindex(pktinfo.ipi_ifindex);
1215 if (ifp == NULL) {
1216 pserialize_read_exit(s);
1217 error = EADDRNOTAVAIL;
1218 break;
1219 }
1220 ia = in_get_ia_from_ifp(ifp);
1221 if (ia == NULL) {
1222 pserialize_read_exit(s);
1223 error = EADDRNOTAVAIL;
1224 break;
1225 }
1226 in4p_prefsrcip(inp) = IA_SIN(ia)->sin_addr;
1227 pserialize_read_exit(s);
1228 break;
1229 break;
1230 #undef OPTSET
1231
1232 case IP_MULTICAST_IF:
1233 case IP_MULTICAST_TTL:
1234 case IP_MULTICAST_LOOP:
1235 case IP_ADD_MEMBERSHIP:
1236 case IP_DROP_MEMBERSHIP:
1237 error = ip_setmoptions(&inp->inp_moptions, sopt);
1238 break;
1239
1240 case IP_PORTRANGE:
1241 error = sockopt_getint(sopt, &optval);
1242 if (error)
1243 break;
1244
1245 switch (optval) {
1246 case IP_PORTRANGE_DEFAULT:
1247 case IP_PORTRANGE_HIGH:
1248 inpflags &= ~(INP_LOWPORT);
1249 break;
1250
1251 case IP_PORTRANGE_LOW:
1252 inpflags |= INP_LOWPORT;
1253 break;
1254
1255 default:
1256 error = EINVAL;
1257 break;
1258 }
1259 break;
1260
1261 case IP_PORTALGO:
1262 error = sockopt_getint(sopt, &optval);
1263 if (error)
1264 break;
1265
1266 error = portalgo_algo_index_select(inp, optval);
1267 break;
1268
1269 #if defined(IPSEC)
1270 case IP_IPSEC_POLICY:
1271 if (ipsec_enabled) {
1272 error = ipsec_set_policy(inp,
1273 sopt->sopt_data, sopt->sopt_size,
1274 curlwp->l_cred);
1275 } else
1276 error = ENOPROTOOPT;
1277 break;
1278 #endif /* IPSEC */
1279
1280 default:
1281 error = ENOPROTOOPT;
1282 break;
1283 }
1284 break;
1285
1286 case PRCO_GETOPT:
1287 switch (sopt->sopt_name) {
1288 case IP_OPTIONS:
1289 case IP_RETOPTS: {
1290 struct mbuf *mopts = inp->inp_options;
1291
1292 if (mopts) {
1293 struct mbuf *m;
1294
1295 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1296 if (m == NULL) {
1297 error = ENOBUFS;
1298 break;
1299 }
1300 error = sockopt_setmbuf(sopt, m);
1301 }
1302 break;
1303 }
1304 case IP_TOS:
1305 case IP_TTL:
1306 case IP_MINTTL:
1307 case IP_RECVOPTS:
1308 case IP_RECVRETOPTS:
1309 case IP_RECVDSTADDR:
1310 case IP_RECVIF:
1311 case IP_RECVPKTINFO:
1312 case IP_RECVTTL:
1313 case IP_ERRORMTU:
1314 case IP_BINDANY:
1315 switch (sopt->sopt_name) {
1316 case IP_TOS:
1317 optval = ip->ip_tos;
1318 break;
1319
1320 case IP_TTL:
1321 optval = ip->ip_ttl;
1322 break;
1323
1324 case IP_MINTTL:
1325 optval = in4p_ip_minttl(inp);
1326 break;
1327
1328 case IP_ERRORMTU:
1329 optval = in4p_errormtu(inp);
1330 break;
1331
1332 #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1333
1334 case IP_RECVOPTS:
1335 optval = OPTBIT(INP_RECVOPTS);
1336 break;
1337
1338 case IP_RECVPKTINFO:
1339 optval = OPTBIT(INP_RECVPKTINFO);
1340 break;
1341
1342 case IP_RECVRETOPTS:
1343 optval = OPTBIT(INP_RECVRETOPTS);
1344 break;
1345
1346 case IP_RECVDSTADDR:
1347 optval = OPTBIT(INP_RECVDSTADDR);
1348 break;
1349
1350 case IP_RECVIF:
1351 optval = OPTBIT(INP_RECVIF);
1352 break;
1353
1354 case IP_RECVTTL:
1355 optval = OPTBIT(INP_RECVTTL);
1356 break;
1357
1358 case IP_BINDANY:
1359 optval = OPTBIT(INP_BINDANY);
1360 break;
1361 }
1362 error = sockopt_setint(sopt, optval);
1363 break;
1364
1365 case IP_PKTINFO:
1366 switch (sopt->sopt_size) {
1367 case sizeof(int):
1368 /* Linux compatibility */
1369 optval = OPTBIT(INP_RECVPKTINFO);
1370 error = sockopt_setint(sopt, optval);
1371 break;
1372 case sizeof(struct in_pktinfo):
1373 /* Solaris compatibility */
1374 pktinfo.ipi_ifindex = 0;
1375 pktinfo.ipi_addr = in4p_prefsrcip(inp);
1376 error = sockopt_set(sopt, &pktinfo,
1377 sizeof(pktinfo));
1378 break;
1379 default:
1380 /*
1381 * While size is stuck at 0, and, later, if
1382 * the caller doesn't use an exactly sized
1383 * recipient for the data, default to Linux
1384 * compatibility
1385 */
1386 optval = OPTBIT(INP_RECVPKTINFO);
1387 error = sockopt_setint(sopt, optval);
1388 break;
1389 }
1390 break;
1391
1392 #if 0 /* defined(IPSEC) */
1393 case IP_IPSEC_POLICY:
1394 {
1395 struct mbuf *m = NULL;
1396
1397 /* XXX this will return EINVAL as sopt is empty */
1398 error = ipsec_get_policy(inp, sopt->sopt_data,
1399 sopt->sopt_size, &m);
1400 if (error == 0)
1401 error = sockopt_setmbuf(sopt, m);
1402 break;
1403 }
1404 #endif /*IPSEC*/
1405
1406 case IP_MULTICAST_IF:
1407 case IP_MULTICAST_TTL:
1408 case IP_MULTICAST_LOOP:
1409 case IP_ADD_MEMBERSHIP:
1410 case IP_DROP_MEMBERSHIP:
1411 error = ip_getmoptions(inp->inp_moptions, sopt);
1412 break;
1413
1414 case IP_PORTRANGE:
1415 if (inpflags & INP_LOWPORT)
1416 optval = IP_PORTRANGE_LOW;
1417 else
1418 optval = IP_PORTRANGE_DEFAULT;
1419 error = sockopt_setint(sopt, optval);
1420 break;
1421
1422 case IP_PORTALGO:
1423 optval = inp->inp_portalgo;
1424 error = sockopt_setint(sopt, optval);
1425 break;
1426
1427 default:
1428 error = ENOPROTOOPT;
1429 break;
1430 }
1431 break;
1432 }
1433
1434 if (!error) {
1435 inp->inp_flags = inpflags;
1436 }
1437 return error;
1438 }
1439
1440 static int
1441 ip_pktinfo_prepare(const struct inpcb *inp, const struct in_pktinfo *pktinfo,
1442 struct ip_pktopts *pktopts, int *flags, kauth_cred_t cred)
1443 {
1444 struct ip_moptions *imo;
1445 int error = 0;
1446 bool addrset = false;
1447
1448 if (!in_nullhost(pktinfo->ipi_addr)) {
1449 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr;
1450 /* EADDRNOTAVAIL? */
1451 error = inpcb_bindableaddr(inp, &pktopts->ippo_laddr, cred);
1452 if (error != 0)
1453 return error;
1454 addrset = true;
1455 }
1456
1457 if (pktinfo->ipi_ifindex != 0) {
1458 if (!addrset) {
1459 struct ifnet *ifp;
1460 struct in_ifaddr *ia;
1461 int s;
1462
1463 /* pick up primary address */
1464 s = pserialize_read_enter();
1465 ifp = if_byindex(pktinfo->ipi_ifindex);
1466 if (ifp == NULL) {
1467 pserialize_read_exit(s);
1468 return EADDRNOTAVAIL;
1469 }
1470 ia = in_get_ia_from_ifp(ifp);
1471 if (ia == NULL) {
1472 pserialize_read_exit(s);
1473 return EADDRNOTAVAIL;
1474 }
1475 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr;
1476 pserialize_read_exit(s);
1477 }
1478
1479 /*
1480 * If specified ipi_ifindex,
1481 * use copied or locally initialized ip_moptions.
1482 * Original ip_moptions must not be modified.
1483 */
1484 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */
1485 if (pktopts->ippo_imo != NULL) {
1486 memcpy(imo, pktopts->ippo_imo, sizeof(*imo));
1487 } else {
1488 memset(imo, 0, sizeof(*imo));
1489 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1490 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1491 }
1492 imo->imo_multicast_if_index = pktinfo->ipi_ifindex;
1493 pktopts->ippo_imo = imo;
1494 *flags |= IP_ROUTETOIFINDEX;
1495 }
1496 return error;
1497 }
1498
1499 /*
1500 * Set up IP outgoing packet options. Even if control is NULL,
1501 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used.
1502 */
1503 int
1504 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags,
1505 struct inpcb *inp, kauth_cred_t cred)
1506 {
1507 struct cmsghdr *cm;
1508 struct in_pktinfo pktinfo;
1509 int error;
1510
1511 pktopts->ippo_imo = inp->inp_moptions;
1512
1513 struct in_addr *ia = in_nullhost(in4p_prefsrcip(inp)) ? &in4p_laddr(inp) :
1514 &in4p_prefsrcip(inp);
1515 sockaddr_in_init(&pktopts->ippo_laddr, ia, 0);
1516
1517 if (control == NULL)
1518 return 0;
1519
1520 /*
1521 * XXX: Currently, we assume all the optional information is
1522 * stored in a single mbuf.
1523 */
1524 if (control->m_next)
1525 return EINVAL;
1526
1527 for (; control->m_len > 0;
1528 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1529 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1530 cm = mtod(control, struct cmsghdr *);
1531 if ((control->m_len < sizeof(*cm)) ||
1532 (cm->cmsg_len == 0) ||
1533 (cm->cmsg_len > control->m_len)) {
1534 return EINVAL;
1535 }
1536 if (cm->cmsg_level != IPPROTO_IP)
1537 continue;
1538
1539 switch (cm->cmsg_type) {
1540 case IP_PKTINFO:
1541 if (cm->cmsg_len != CMSG_LEN(sizeof(pktinfo)))
1542 return EINVAL;
1543 memcpy(&pktinfo, CMSG_DATA(cm), sizeof(pktinfo));
1544 error = ip_pktinfo_prepare(inp, &pktinfo, pktopts,
1545 flags, cred);
1546 if (error)
1547 return error;
1548 break;
1549 case IP_SENDSRCADDR: /* FreeBSD compatibility */
1550 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_addr)))
1551 return EINVAL;
1552 pktinfo.ipi_ifindex = 0;
1553 pktinfo.ipi_addr =
1554 ((struct in_pktinfo *)CMSG_DATA(cm))->ipi_addr;
1555 error = ip_pktinfo_prepare(inp, &pktinfo, pktopts,
1556 flags, cred);
1557 if (error)
1558 return error;
1559 break;
1560 default:
1561 return ENOPROTOOPT;
1562 }
1563 }
1564 return 0;
1565 }
1566
1567 /*
1568 * Set up IP options in pcb for insertion in output packets.
1569 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1570 * with destination address if source routed.
1571 */
1572 static int
1573 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1574 {
1575 struct mbuf *m;
1576 const u_char *cp;
1577 u_char *dp;
1578 int cnt;
1579
1580 KASSERT(inp_locked(inp));
1581
1582 /* Turn off any old options. */
1583 if (inp->inp_options) {
1584 m_free(inp->inp_options);
1585 }
1586 inp->inp_options = NULL;
1587 if ((cnt = sopt->sopt_size) == 0) {
1588 /* Only turning off any previous options. */
1589 return 0;
1590 }
1591 cp = sopt->sopt_data;
1592
1593 if (cnt % 4) {
1594 /* Must be 4-byte aligned, because there's no padding. */
1595 return EINVAL;
1596 }
1597
1598 m = m_get(M_DONTWAIT, MT_SOOPTS);
1599 if (m == NULL)
1600 return ENOBUFS;
1601
1602 dp = mtod(m, u_char *);
1603 memset(dp, 0, sizeof(struct in_addr));
1604 dp += sizeof(struct in_addr);
1605 m->m_len = sizeof(struct in_addr);
1606
1607 /*
1608 * IP option list according to RFC791. Each option is of the form
1609 *
1610 * [optval] [olen] [(olen - 2) data bytes]
1611 *
1612 * We validate the list and copy options to an mbuf for prepending
1613 * to data packets. The IP first-hop destination address will be
1614 * stored before actual options and is zero if unset.
1615 */
1616 while (cnt > 0) {
1617 uint8_t optval, olen, offset;
1618
1619 optval = cp[IPOPT_OPTVAL];
1620
1621 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1622 olen = 1;
1623 } else {
1624 if (cnt < IPOPT_OLEN + 1)
1625 goto bad;
1626
1627 olen = cp[IPOPT_OLEN];
1628 if (olen < IPOPT_OLEN + 1 || olen > cnt)
1629 goto bad;
1630 }
1631
1632 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1633 /*
1634 * user process specifies route as:
1635 * ->A->B->C->D
1636 * D must be our final destination (but we can't
1637 * check that since we may not have connected yet).
1638 * A is first hop destination, which doesn't appear in
1639 * actual IP option, but is stored before the options.
1640 */
1641 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1642 goto bad;
1643
1644 offset = cp[IPOPT_OFFSET];
1645 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1646 sizeof(struct in_addr));
1647
1648 cp += sizeof(struct in_addr);
1649 cnt -= sizeof(struct in_addr);
1650 olen -= sizeof(struct in_addr);
1651
1652 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1653 goto bad;
1654
1655 memcpy(dp, cp, olen);
1656 dp[IPOPT_OPTVAL] = optval;
1657 dp[IPOPT_OLEN] = olen;
1658 dp[IPOPT_OFFSET] = offset;
1659 break;
1660 } else {
1661 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1662 goto bad;
1663
1664 memcpy(dp, cp, olen);
1665 break;
1666 }
1667
1668 dp += olen;
1669 m->m_len += olen;
1670
1671 if (optval == IPOPT_EOL)
1672 break;
1673
1674 cp += olen;
1675 cnt -= olen;
1676 }
1677
1678 inp->inp_options = m;
1679 return 0;
1680
1681 bad:
1682 (void)m_free(m);
1683 return EINVAL;
1684 }
1685
1686 /*
1687 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1688 * Must be called in a pserialize critical section.
1689 */
1690 static struct ifnet *
1691 ip_multicast_if(struct in_addr *a, int *ifindexp)
1692 {
1693 int ifindex;
1694 struct ifnet *ifp = NULL;
1695 struct in_ifaddr *ia;
1696
1697 if (ifindexp)
1698 *ifindexp = 0;
1699 if (ntohl(a->s_addr) >> 24 == 0) {
1700 ifindex = ntohl(a->s_addr) & 0xffffff;
1701 ifp = if_byindex(ifindex);
1702 if (!ifp)
1703 return NULL;
1704 if (ifindexp)
1705 *ifindexp = ifindex;
1706 } else {
1707 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1708 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1709 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1710 ifp = ia->ia_ifp;
1711 if (if_is_deactivated(ifp))
1712 ifp = NULL;
1713 break;
1714 }
1715 }
1716 }
1717 return ifp;
1718 }
1719
1720 static int
1721 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1722 {
1723 u_int tval;
1724 u_char cval;
1725 int error;
1726
1727 if (sopt == NULL)
1728 return EINVAL;
1729
1730 switch (sopt->sopt_size) {
1731 case sizeof(u_char):
1732 error = sockopt_get(sopt, &cval, sizeof(u_char));
1733 tval = cval;
1734 break;
1735
1736 case sizeof(u_int):
1737 error = sockopt_get(sopt, &tval, sizeof(u_int));
1738 break;
1739
1740 default:
1741 error = EINVAL;
1742 }
1743
1744 if (error)
1745 return error;
1746
1747 if (tval > maxval)
1748 return EINVAL;
1749
1750 *val = tval;
1751 return 0;
1752 }
1753
1754 static int
1755 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1756 struct psref *psref, struct in_addr *ia, bool add)
1757 {
1758 int error;
1759 struct ip_mreq mreq;
1760
1761 error = sockopt_get(sopt, &mreq, sizeof(mreq));
1762 if (error)
1763 return error;
1764
1765 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1766 return EINVAL;
1767
1768 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1769
1770 if (in_nullhost(mreq.imr_interface)) {
1771 union {
1772 struct sockaddr dst;
1773 struct sockaddr_in dst4;
1774 } u;
1775 struct route ro;
1776
1777 if (!add) {
1778 *ifp = NULL;
1779 return 0;
1780 }
1781 /*
1782 * If no interface address was provided, use the interface of
1783 * the route to the given multicast address.
1784 */
1785 struct rtentry *rt;
1786 memset(&ro, 0, sizeof(ro));
1787
1788 sockaddr_in_init(&u.dst4, ia, 0);
1789 error = rtcache_setdst(&ro, &u.dst);
1790 if (error != 0)
1791 return error;
1792 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1793 if (*ifp != NULL) {
1794 if (if_is_deactivated(*ifp))
1795 *ifp = NULL;
1796 else
1797 if_acquire(*ifp, psref);
1798 }
1799 rtcache_unref(rt, &ro);
1800 rtcache_free(&ro);
1801 } else {
1802 int s = pserialize_read_enter();
1803 *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1804 if (!add && *ifp == NULL) {
1805 pserialize_read_exit(s);
1806 return EADDRNOTAVAIL;
1807 }
1808 if (*ifp != NULL) {
1809 if (if_is_deactivated(*ifp))
1810 *ifp = NULL;
1811 else
1812 if_acquire(*ifp, psref);
1813 }
1814 pserialize_read_exit(s);
1815 }
1816 return 0;
1817 }
1818
1819 /*
1820 * Add a multicast group membership.
1821 * Group must be a valid IP multicast address.
1822 */
1823 static int
1824 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1825 {
1826 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1827 struct in_addr ia;
1828 int i, error, bound;
1829 struct psref psref;
1830
1831 /* imo is protected by solock or referenced only by the caller */
1832
1833 bound = curlwp_bind();
1834 if (sopt->sopt_size == sizeof(struct ip_mreq))
1835 error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1836 else {
1837 #ifdef INET6
1838 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1839 #else
1840 error = EINVAL;
1841 #endif
1842 }
1843
1844 if (error)
1845 goto out;
1846
1847 /*
1848 * See if we found an interface, and confirm that it
1849 * supports multicast.
1850 */
1851 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1852 error = EADDRNOTAVAIL;
1853 goto out;
1854 }
1855
1856 /*
1857 * See if the membership already exists or if all the
1858 * membership slots are full.
1859 */
1860 for (i = 0; i < imo->imo_num_memberships; ++i) {
1861 if (imo->imo_membership[i]->inm_ifp == ifp &&
1862 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1863 break;
1864 }
1865 if (i < imo->imo_num_memberships) {
1866 error = EADDRINUSE;
1867 goto out;
1868 }
1869
1870 if (i == IP_MAX_MEMBERSHIPS) {
1871 error = ETOOMANYREFS;
1872 goto out;
1873 }
1874
1875 /*
1876 * Everything looks good; add a new record to the multicast
1877 * address list for the given interface.
1878 */
1879 imo->imo_membership[i] = in_addmulti(&ia, ifp);
1880 if (imo->imo_membership[i] == NULL) {
1881 error = ENOBUFS;
1882 goto out;
1883 }
1884
1885 ++imo->imo_num_memberships;
1886 error = 0;
1887 out:
1888 if_put(ifp, &psref);
1889 curlwp_bindx(bound);
1890 return error;
1891 }
1892
1893 /*
1894 * Drop a multicast group membership.
1895 * Group must be a valid IP multicast address.
1896 */
1897 static int
1898 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1899 {
1900 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1901 struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1902 int i, error, bound;
1903 struct psref psref;
1904
1905 /* imo is protected by solock or referenced only by the caller */
1906
1907 bound = curlwp_bind();
1908 if (sopt->sopt_size == sizeof(struct ip_mreq))
1909 error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1910 else {
1911 #ifdef INET6
1912 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1913 #else
1914 error = EINVAL;
1915 #endif
1916 }
1917
1918 if (error)
1919 goto out;
1920
1921 /*
1922 * Find the membership in the membership array.
1923 */
1924 for (i = 0; i < imo->imo_num_memberships; ++i) {
1925 if ((ifp == NULL ||
1926 imo->imo_membership[i]->inm_ifp == ifp) &&
1927 in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1928 break;
1929 }
1930 if (i == imo->imo_num_memberships) {
1931 error = EADDRNOTAVAIL;
1932 goto out;
1933 }
1934
1935 /*
1936 * Give up the multicast address record to which the
1937 * membership points.
1938 */
1939 in_delmulti(imo->imo_membership[i]);
1940
1941 /*
1942 * Remove the gap in the membership array.
1943 */
1944 for (++i; i < imo->imo_num_memberships; ++i)
1945 imo->imo_membership[i-1] = imo->imo_membership[i];
1946 --imo->imo_num_memberships;
1947 error = 0;
1948 out:
1949 if_put(ifp, &psref);
1950 curlwp_bindx(bound);
1951 return error;
1952 }
1953
1954 /*
1955 * Set the IP multicast options in response to user setsockopt().
1956 */
1957 int
1958 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1959 {
1960 struct ip_moptions *imo = *pimo;
1961 struct in_addr addr;
1962 struct ifnet *ifp;
1963 int ifindex, error = 0;
1964
1965 /* The passed imo isn't NULL, it should be protected by solock */
1966
1967 if (!imo) {
1968 /*
1969 * No multicast option buffer attached to the pcb;
1970 * allocate one and initialize to default values.
1971 */
1972 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1973 if (imo == NULL)
1974 return ENOBUFS;
1975
1976 imo->imo_multicast_if_index = 0;
1977 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1978 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1979 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1980 imo->imo_num_memberships = 0;
1981 *pimo = imo;
1982 }
1983
1984 switch (sopt->sopt_name) {
1985 case IP_MULTICAST_IF: {
1986 int s;
1987 /*
1988 * Select the interface for outgoing multicast packets.
1989 */
1990 error = sockopt_get(sopt, &addr, sizeof(addr));
1991 if (error)
1992 break;
1993
1994 /*
1995 * INADDR_ANY is used to remove a previous selection.
1996 * When no interface is selected, a default one is
1997 * chosen every time a multicast packet is sent.
1998 */
1999 if (in_nullhost(addr)) {
2000 imo->imo_multicast_if_index = 0;
2001 break;
2002 }
2003 /*
2004 * The selected interface is identified by its local
2005 * IP address. Find the interface and confirm that
2006 * it supports multicasting.
2007 */
2008 s = pserialize_read_enter();
2009 ifp = ip_multicast_if(&addr, &ifindex);
2010 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2011 pserialize_read_exit(s);
2012 error = EADDRNOTAVAIL;
2013 break;
2014 }
2015 imo->imo_multicast_if_index = ifp->if_index;
2016 pserialize_read_exit(s);
2017 if (ifindex)
2018 imo->imo_multicast_addr = addr;
2019 else
2020 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2021 break;
2022 }
2023
2024 case IP_MULTICAST_TTL:
2025 /*
2026 * Set the IP time-to-live for outgoing multicast packets.
2027 */
2028 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
2029 break;
2030
2031 case IP_MULTICAST_LOOP:
2032 /*
2033 * Set the loopback flag for outgoing multicast packets.
2034 * Must be zero or one.
2035 */
2036 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
2037 break;
2038
2039 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
2040 error = ip_add_membership(imo, sopt);
2041 break;
2042
2043 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
2044 error = ip_drop_membership(imo, sopt);
2045 break;
2046
2047 default:
2048 error = EOPNOTSUPP;
2049 break;
2050 }
2051
2052 /*
2053 * If all options have default values, no need to keep the mbuf.
2054 */
2055 if (imo->imo_multicast_if_index == 0 &&
2056 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2057 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2058 imo->imo_num_memberships == 0) {
2059 kmem_intr_free(imo, sizeof(*imo));
2060 *pimo = NULL;
2061 }
2062
2063 return error;
2064 }
2065
2066 /*
2067 * Return the IP multicast options in response to user getsockopt().
2068 */
2069 int
2070 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
2071 {
2072 struct in_addr addr;
2073 uint8_t optval;
2074 int error = 0;
2075
2076 /* imo is protected by solock or referenced only by the caller */
2077
2078 switch (sopt->sopt_name) {
2079 case IP_MULTICAST_IF:
2080 if (imo == NULL || imo->imo_multicast_if_index == 0)
2081 addr = zeroin_addr;
2082 else if (imo->imo_multicast_addr.s_addr) {
2083 /* return the value user has set */
2084 addr = imo->imo_multicast_addr;
2085 } else {
2086 struct ifnet *ifp;
2087 struct in_ifaddr *ia = NULL;
2088 int s = pserialize_read_enter();
2089
2090 ifp = if_byindex(imo->imo_multicast_if_index);
2091 if (ifp != NULL) {
2092 ia = in_get_ia_from_ifp(ifp);
2093 }
2094 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
2095 pserialize_read_exit(s);
2096 }
2097 error = sockopt_set(sopt, &addr, sizeof(addr));
2098 break;
2099
2100 case IP_MULTICAST_TTL:
2101 optval = imo ? imo->imo_multicast_ttl
2102 : IP_DEFAULT_MULTICAST_TTL;
2103
2104 error = sockopt_set(sopt, &optval, sizeof(optval));
2105 break;
2106
2107 case IP_MULTICAST_LOOP:
2108 optval = imo ? imo->imo_multicast_loop
2109 : IP_DEFAULT_MULTICAST_LOOP;
2110
2111 error = sockopt_set(sopt, &optval, sizeof(optval));
2112 break;
2113
2114 default:
2115 error = EOPNOTSUPP;
2116 }
2117
2118 return error;
2119 }
2120
2121 /*
2122 * Discard the IP multicast options.
2123 */
2124 void
2125 ip_freemoptions(struct ip_moptions *imo)
2126 {
2127 int i;
2128
2129 /* The owner of imo (inp) should be protected by solock */
2130
2131 if (imo != NULL) {
2132 for (i = 0; i < imo->imo_num_memberships; ++i) {
2133 struct in_multi *inm = imo->imo_membership[i];
2134 in_delmulti(inm);
2135 /* ifp should not leave thanks to solock */
2136 }
2137
2138 kmem_intr_free(imo, sizeof(*imo));
2139 }
2140 }
2141
2142 /*
2143 * Routine called from ip_output() to loop back a copy of an IP multicast
2144 * packet to the input queue of a specified interface. Note that this
2145 * calls the output routine of the loopback "driver", but with an interface
2146 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2147 */
2148 static void
2149 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
2150 {
2151 struct ip *ip;
2152 struct mbuf *copym;
2153
2154 copym = m_copypacket(m, M_DONTWAIT);
2155 if (copym != NULL &&
2156 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2157 copym = m_pullup(copym, sizeof(struct ip));
2158 if (copym == NULL)
2159 return;
2160 /*
2161 * We don't bother to fragment if the IP length is greater
2162 * than the interface's MTU. Can this possibly matter?
2163 */
2164 ip = mtod(copym, struct ip *);
2165
2166 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2167 in_undefer_cksum_tcpudp(copym);
2168 copym->m_pkthdr.csum_flags &=
2169 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2170 }
2171
2172 ip->ip_sum = 0;
2173 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2174 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2175 (void)looutput(ifp, copym, sintocsa(dst), NULL);
2176 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2177 }
2178
2179 /*
2180 * Ensure sending address is valid.
2181 * Returns 0 on success, -1 if an error should be sent back or 1
2182 * if the packet could be dropped without error (protocol dependent).
2183 */
2184 static int
2185 ip_ifaddrvalid(const struct in_ifaddr *ia)
2186 {
2187
2188 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
2189 return 0;
2190
2191 if (ia->ia4_flags & IN_IFF_DUPLICATED)
2192 return -1;
2193 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
2194 return 1;
2195
2196 return 0;
2197 }
2198